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1. Special subsets of the real line R

We start with the definitions of several special subsets of the real
line R.

(a) A Q-set X is a subset of R such that each subset of X is Fσ,
or, equivalently, each subset of X is Gδ in X .

(b) A λ-set X is a subset of R such that each countable A ⊂ X is
Gδ in X .

(c) A ∆-set X is a subset of R such that for every decreasing
sequence {Dn : n ∈ ω} of subsets of X with

⋂
n∈ω Dn = ∅,

there is a decreasing sequence {Vn : n ∈ ω} consisting of open
subsets of X such that Dn ⊂ Vn for every n, and again with⋂

n∈ω Vn = ∅.
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Status of the existence of Q-sets

Each Q-set must be a ∆-set.

Each ∆-set must be a λ-set.

K. Kuratowski constructed uncountable λ-sets in ZFC.
The existence of an uncountable Q-set is one of the fundamental
set-theoretical problems. F. Hausdorff (1933) observed that

(1) the cardinality of an uncountable Q-set X has to be strictly
smaller than the continuum c = 2ℵ0 , so assuming the
Continuum Hypothesis (CH) there are no uncountable Q-sets.
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This result was extended independently by W. Sierpiński (1938)
and F. Rothberger (1948) (the existence of a Q-set implies
2ℵ0 = 2ℵ1). On the other hand,

(2) Martin’s Axiom plus the negation of the Continuum
Hypothesis (MA +¬CH) implies that
every subset X ⊂ R of cardinality less than c is a Q-set
(Martin-Solovay (1970), M.E. Rudin (1977)).
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Status of the existence of ∆-sets

The definition of a ∆-set of reals was given by G.M. Reed and
then improved by E. van Douwen in 1977.

(3) No ∆-set X can have cardinality c (T. Przymusiński (1977)).
Hence, under MA, every subset of R that is a ∆-set is also a
Q-set.
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Problem 1

Is it consistent that there exists a ∆-set X ⊂ R that is not a Q-set?

R. Knight published a paper (1993) aiming to show that the
answer is ”Yes”. However, up to now no expert can confirm that
the proof is correct. Let us state as an open and challenging
problem to find an alternative and real proof of this claim.

The following problem also is open.

Problem 2 (Reed, 1980)

Does the existence of a ∆-set imply 2ℵ0 = 2ℵ1?
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On products of ∆-sets

J. Brendle (2018) proved the consistency of the existence of a
Q-set whose square is not a Q-set. R. Carvalho and V. Rodrigues
(2024) modified Brendle’s argument to prove the consistency of
the existence of a Q-set whose square is not a ∆-set. They also
proved that the existence of a ∆-set implies the existence of a
strong ∆-set, that is, of a ∆-set whose all finite powers are ∆-sets.
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2. Examples of using of Q-sets and ∆-sets in general
topology

A Moore space is a developable regular topological space. For a
long time, topologists were trying to prove the so-called normal
Moore space conjecture: every normal Moore space is metrizable.
This was inspired by the fact that all known Moore spaces that
were not metrizable were also not normal.

A Moore space is a regular topological space X having a sequence
of open covers {Un : n ∈ ω} such that for each point p ∈ X and
each open V containing p, there is an n ∈ ω such that⋃
{U ∈ Un : p ∈ U} ⊂ V .
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One of the most basic and amazing constructions in general
topology is the Nemytskii plane L. It is an example of a Tychonoff
non-normal Moore space.

Let L be the closed upper half-plane, L1 be the x-axis and
L2 = L \ L1. The topology on the Nemytskii plane L is generated
by the following open base.
Basic open neighborhoods of p ∈ L2 are the usual Euclidean balls;
and if p = (x , 0) ∈ L1, then we take a tangent ball
U(p, ε) = B((x , ε), ε) ∪ {p}.
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Subspace M(X ) of the Nemytskii plane L

In 1935, F.B. Jones was the first to consider the subspace M(X ) of
Nemytskii plane L, which is obtained by using only a subset X ⊂ R
of the x-axis. Observe that M(X ) always is a Tychonoff separable
first-countable Moore space. Also,

(a) M(X ) is normal if and only if X is a Q-set (R.H. Bing, R.W.
Heath).

(b) M(X ) is countably paracompact if and only if X is a ∆-set
(T.C. Przymusiński).

(c) M(X ) is pseudonormal and nonmetrizable if X is an
uncountable λ-set (F.B. Jones).
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3. General topological spaces: Q-set spaces and ∆-spaces

Q-set space

A Hausdorff topological space X is called a Q-space if each subset
of X is Fσ, or, equivalently, each subset of X is Gδ in X .
Z. Balogh defined a Q-set space which requires the Q-space to be
not σ-discrete. He gave a beautiful ZFC construction (1998) of a
topological space X which is a hereditarily paracompact, perfectly
normal Q-set space with |X | = c.

∆-space

A Tychonoff space X is called a ∆-space if for every decreasing
sequence {Dn : n ∈ ω} of subsets of X with

⋂
n∈ω Dn = ∅, there is

a decreasing sequence {Vn : n ∈ ω} consisting of open subsets of
X such that Dn ⊂ Vn for every n, and again with

⋂
n∈ω Vn = ∅.
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Connections with the function space C (X )

Below topological spaces X are assumed to be Tychonoff, which
means that real-valued continuous functions on X separate points
and closed subsets of X .
By Cp(X ) we denote the space of all real-valued continuous
functions on a topological space X in the topology of pointwise
convergence, i.e. Cp(X ) is considered as a subspace of the product
of the real lines RX equipped with the product topology.
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1 A collection of sets {Uγ : γ ∈ Γ} is called an expansion of a
collection of sets {Xγ : γ ∈ Γ} in X if Xγ ⊆ Uγ ⊆ X for every
index γ ∈ Γ.

2 A collection of sets {Uγ : γ ∈ Γ} is called point-finite if no
point belongs to infinitely many Uγ -s.
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Characterization theorem for Cp(X )

Theorem 3.1 (A.L, J. Ka̧kol, 2021)

For a Tychonoff space X , the following conditions are equivalent:

(1) Cp(X ) is a large subspace of the product RX , i.e. for every
f ∈ RX there is a bounded set B ⊂ Cp(X ) such that
f ∈ clRX (B).

(2) Any countable partition of X admits a point-finite open
expansion in X .

(3) Any countable disjoint collection of subsets of X admits a
point-finite open expansion in X .

(4) X is a ∆-space.
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Theorem 3.2

Let X be a normal topological space. The following conditions are
equivalent:

(1) For every f ∈ RX there exists a sequence
S = {fn : n ∈ ω} ⊂ Cp(X ) such that fn → f in RX .

(2) X is a Q-space.
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Some examples of ∆-spaces

The one-point compactification of an uncountable discrete
space provides the simplest example of a ∆-space which is not
a Q-space.

Every scattered Eberlein compact space is a ∆-space.

If A is an almost disjoint family of subsets of N, let Ψ(A)
denote the corresponding Isbell–Mrówka topological space.
The underlying set of Ψ(A) is N

⋃
A, the points of N are

isolated and a base of neighborhoods of A ∈ A is the
collection of all sets of the form {A} ∪ B, where A \ B is
finite. Take X be the one-point compactification of Ψ(A).
Then X is a compact ∆-space.
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Some topological properties of compact ∆-spaces

Every compact ∆-space X is scattered. However, the
compact ordinal space [0, ω1] is not a ∆-space.

Every compact ∆-space X has countable tightness, i.e. if
x ∈ cl(A) in X then there is a countable M ⊂ A such that
x ∈ cl(M) in X .

If X is a compact ∆-space and Y is its continuous image,
then Y also is a compact ∆-space.

If X =
⋃

n∈ω Xn, and every Xn is a compact ∆-space, then X
also is a ∆-space.
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Ladder system spaces

In my recently published joint paper
A.L, P. Szeptycki, On ∆-spaces, Israel J. Math. 2025,
we investigated several set-theoretical constructions which produce
locally compact first-countable topological spaces. In particular, we
considered ladder system spaces.

Let L be a ladder system over a stationary subset of limit ordinals
D ⊂ ω1. I.e. L = {sα : α ∈ D}, where each sα is an ω-sequence in
α cofinal in α. Traditionally, we denote by XL the topological
space ω1 × {0} ∪ D × {1}, where every point (α, 0) is isolated and
for each α ∈ D, a basic neighborhood of (α, 1) consists of {(α, 1)}
along with a cofinite subset of sα × {0}.
We ask the following natural question: under which conditions on
the ladder system L, XL is a ∆-space?
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Remark 3.3

MA(ω1) implies that every ladder system space XL is a normal
σ-closed discrete space, hence it is consistent that all XL are
∆-spaces.

Remark 3.4

In ZFC there is a ladder system L on ω1 such that the
corresponding space XL is a ∆-space.

However, consistently there are ladder system spaces XL not ∆-.

Theorem 3.5

In forcing extension of ZFC obtained by adding one Cohen real,
there is a ladder system L on ω1 whose corresponding space XL is
not a ∆-space.
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In our paper we posed the following problem.

Question

Does there exist in ZFC a ladder system L on some cardinal κ
whose corresponding space XL is not a ∆-space?

Very recently, this problem was solved, for large κ and µ-bounded
ladder systems.
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Theorem 3.6 (R. Carvalho, T. Inamdar, A. Rinot, 2025)

For κ = cf (iω+1) there are co-boundedly many regular cardinals
µ < iω such that Eκµ = {δ < κ : cf (δ) = µ} carries a µ-bounded
ladder system L such that XL is not a ∆-space.

The construction uses Shelah’s middle diamonds.

Assuming iω = ℵω the authors produced an example at a much

lower cardinality, namely κ = 22
2ℵ0

, and a ladder system L is
moreover ω-bounded.

Whether it is possible to get such an ω-bounded ladder system L
for some κ in ZFC, is still unknown.
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4. The scale of ∆-classes

The scale of certain classes of topological spaces naturally
extending the class ∆ of ∆-spaces has been introduced and
investigated in our recent paper
J. Ka̧kol, O. Kurka, A. L., Some classes of topological spaces
extending the class of ∆-spaces, Proc. Amer. Math. Soc., 152
(2024), 883–898.

Definition 4.1

Let P be a family of subsets of a Hausdorff space X with ∅ ∈ P.
We say that X has the ∆-property with respect to P if for every
countable disjoint sequence 〈Xn | n ∈ ω〉 of sets Xn ∈ P, there is a
point-finite expansion 〈Un | n ∈ ω〉 consisting of open sets in X .
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We consider the classes of topological spaces which possess the
∆-property with respect to several natural families P.

Definition 4.2

For a Hausdorff space X we say that

(0) X ∈ ∆0 if P = P0 is the family consisting of ∅ and all
singletons {x} for x ∈ X .

(1) X ∈ ∆1 if P = P1 is the family consisting of all A ⊆ X with
|A| ≤ ℵ0.

(2) X ∈ ∆2 if P = P2 is the family consisting of all compact
subsets of X .

(3) X ∈ ∆ if P = P(X ) is the family consisting of all subsets of
X .
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The following inclusions hold:

∆ ( ∆2 ( ∆1 = ∆0

(namely, ∆ is a proper subclass of ∆2).

It was established that the ∆1-property and ∆2-property coincide
in the class of Čech-complete spaces as well as in the class of
spaces of countable character. In particular,

For a set X ⊆ R, X ∈ ∆1 iff X ∈ ∆2 iff X is a λ-set.
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5. Topological games on X from the classes ∆(i)

We introduce new topological games, inspired by the definitions of
the classes ∆(i). We consider topological games of two players,
called player I and player II, where player I makes the first move.
The result of a play cannot end in a draw. A strategy of a player is
a function from a finite initial sequence of a play with the last
move taken by the other player to legal moves of the player. A
game G is said to be determined if either player I or player II has a
winning strategy in G , where a strategy for a player is winning if
every play of the game in which all moves of the player are
determined by the strategy results in a win for the player.
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Definition 5.1

For a Hausdorff space X let P be a family of subsets of X .
Player I and Player II play on X a game GP as follows. Player I
starts and on each stage n ∈ ω chooses a subset Xn ∈ P such that
X0 = ∅ and every Xn is disjoint with all previously chosen sets
〈Xi | i ≤ n − 1〉. Player II responds at stage n ∈ ω by choosing an
open set Un ⊆ X such that Xn ⊆ Un for every n ∈ ω. So, playing
G , the players produce a sequence of pairs 〈(Xn,Un) | n ∈ ω〉.
Player II wins if after ω moves the family of open sets 〈Un | n ∈ ω〉
is point-finite; otherwise Player I wins.
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Definition 5.2

Denote by G (∆) the game GP where P is the family of all subsets
of X ; denote by G (∆0) the game GP where P is the family
{∅} ∪ {{x} | x ∈ X}; denote by G (∆1) the game GP where P is
the family consisting of all countable subsets of X ; denote by
G (∆2) the game GP where P is the family consisting of all
compact subsets of X .
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The following assertion is straightforward.

Proposition 5.3

Let X /∈ ∆ (X /∈ ∆i ). Then player I has a winning strategy in the
game G (∆) (G (∆i ), respectively).

Problem 3

For which subsets X ⊆ R are any of the games G (∆), G (∆2),
G (∆1), and G (∆0) determined?
Is the game G (∆) determined, assuming that X is a ∆-set or
a Q-set of reals?

Find characterizations of the classes of topological spaces X
for which the games G (∆), G (∆2), G (∆1), and G (∆0) are
determined.
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Problem 4

For which subsets X ⊆ R does player II have a winning
strategy in any of the games G (∆), G (∆2), G (∆1) or G (∆0)?

Find a characterization of the classes of topological spaces X
for which player II has a winning strategy in any of the games
G (∆), G (∆2), G (∆1) or G (∆0).
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Theorem 5.4 (jointly with W. Kubis)

Assume that X a first-countable space from the class ∆0. Then
player I does not have a winning strategy in the game G (∆0).
In particular, if X is a λ-set of reals then player I does not have a
winning strategy in the game G (∆0).

Problem 5

Let X be a ∆-set or a Q-set of reals. Is it possible to prove
that player I does not have a winning strategy in the game
G (∆)?

Assume that (MA +¬CH) holds. Let X ⊂ R be a set of
cardinality less than c. Is it true that player I does not have a
winning strategy in the game G (∆)?
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For general topological spaces X we do have sufficient condition,
in ZFC.
A compact space X is a scattered Eberlein compact if it can be
embedded into σ-product of two-point spaces {0, 1}.

Theorem 5.5

Let X be a subspace of any topological space Y which can be
represented as a countable union of scattered Eberlein compact
spaces. Then player II has a winning strategy in the game G (∆),
hence also in all the games G (∆2), G (∆1), and G (∆0).

Evidently, Theorem 5.5 applies to any countable space X .
However, Theorem 5.5 cannot help if X is an uncountable set of
reals.
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Thank you!

32 / 32


