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1. Strong measure zero sets and Yorioka ideals



Strong measure zero sets

Definition 1.1
1 For σ = ⟨σi : i < ω⟩ ∈ (2<ω)ω, define htσ : ω → ω s.t. htσ(i) := |σi|.
2 A set Z ⊆ 2ω has strong measure zero (in 2ω) if

∀ f ∈ ωω ∃σ ∈ (2<ω)ω : f ≤ htσ and Z ⊆
∪
i<ω

[σi]

where [s] := {x ∈ 2ω : s ⊆ x} for s ∈ 2<ω.

3 SN : the collection of strong measure zero subsets of 2ω.

Fact 1.2

A set Z ⊆ 2ω has strong measure zero iff

∀ f ∈ ωω ∃σ ∈ (2<ω)ω : f ≤∗ htσ and Z ⊆ [σ]∞

where [σ]∞ := {x ∈ 2ω : x extends infinitely many σi}.



Yorioka ideals

Definition 1.3
1 For x, y ∈ ωω,

x ≪ y iff ∀ k < ω ∃mk < ω ∀ i ≥ mk : x(i
k) ≤ y(i).

2 ω↑ω := {f ∈ ωω : f is increasing}.
3 For f ∈ ω↑ω define the Yorioka ideal

If := {A ⊆ 2ω : ∃σ ∈ (2<ω)ω : f ≪ htσ and A ⊆ [σ]∞}.

Theorem 1.4 (Yorioka 2002)

Each If is a σ-ideal and SN =
∩

f∈ω↑ω If .

Theorem 1.5 (Kamo & Osuga 2008)

We do not get an ideal when replacing f ≪ htσ by f ≤∗ htσ.



Fact 1.6
1 If f ≤∗ g then Ig ⊆ If .
2 If D ⊆ ω↑ω is a dominating family, then SN =

∩
f∈D If .

Definition 1.7

minadd := min
f∈ω↑ω

add(If ),

supcov := sup
f∈ω↑ω

cov(If ),

minnon := min
f∈ω↑ω

non(If )

supcof := sup
f∈ω↑ω

cof(If ).
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Yorioka’s Characterization Theorem

Theorem 1.8 (Yorioka 2022)

If minadd = supcof = λ then add(SN ) = λ and cof(SN ) = dλ.

Theorem 1.9 (Yorioka 2002)

ZFC does not prove any relation between cof(SN ) and c.



2. The cofinality of SN



Powers of ideals

Definition 2.1 (Power of ideals)

For an ideal I ⊆ P(X), Iκ generates an ideal on Xκ. Denote by add(Iκ),
cov(Iκ), non(Iκ) and cof(Iκ) the cardinal characteristics associated with
this ideal.

Fact 2.2

add(Iκ) = add(I) and non(Iκ) = non(I), while cov(I) ≤ cov(Iκ) and
cof(I) ≤ cof(Iκ).



An upper bound of cof(SN )

Theorem 2.3 (Cardona & M. 2025)

cof(SN ) ≤ cov
(
([supcof]<minadd)d

)
.

Fact 2.4

If minadd = supcof = λ then λ is regular, d = λ, and
cov

(
([supcof]<minadd)d

)
= dλ.



Proof of Theorem 2.3

Pick D ⊆ ω↑ω dominating of size d.
For each f ∈ D, pick some cofinal family Cf := {Af

α : α < supcof} in If .

Let F be a witness of cov
(
([supcof]<minadd)d

)
.

Each H ∈ F can be seen as a function D → [supcof]<minadd.

Since |H(f)| < minadd for all f ∈ ω↑ω, CH(f) :=
∪

α∈H(f)A
f
α is in If .

Set CH :=
∩

f∈D CH(f).

{CH : H ∈ F} is cofinal in SN :

For A ∈ SN and f ∈ D choose αf < supcof s.t. A ⊆ Af
αf .

There is some H ∈ F s.t. αf ∈ H(f) for all f ∈ D, hence

A ⊆ Af
αf ⊆ CH(f) (∴) A ⊆ CH .



Dominating systems

Definition 2.5

Let I be a set, δ an ordinal, and let f̄ = ⟨fα : α < δ⟩ be dominating in
ω↑ω. We say that ⟨Āα : α < δ⟩ is an f̄ -dominating system in I if, for any
α < δ:

I1 Āα = ⟨Aα
i : i ∈ I⟩ is cofinal in Ifα , and

I2 ∀α < δ ∀ z ∈ Iα :
∩

ξ<αA
ξ
z(ξ) /∈ Ifα .

The existence of such a system implies d ≤ δ and supcof ≤ |I|.



Dominating system principle

Lemma 2.6

Let δ be an ordinal, |I| ≥ supcof, and f̄ = ⟨fα : α < δ⟩ ⊆ ω↑ω

dominating. TFAE:

I There is an f̄ -dominating system in I.

II There is some Ā = ⟨Aα : α < δ⟩ s.t. for all α < δ,

S1 Aα ∈ Ifα and

S2
∩

ξ<α Aξ /∈ Ifα .

Definition 2.7

A DS-pair of length δ is a pair (f̄ , Ā) satisfying II .

DS(δ): There is some DS-pair of length δ.



Existence of dominating systems

Theorem 2.8 (Cardona & M. 2025)

cov(M) = d implies DS(d).



Some properties

Lemma 2.9

DS(δ) implies:

a DS(δ − β) for any β < δ.

b δ is a limit ordinal and d ≤ δ < c+.

c There is some δ′ ≤ δ s.t. |δ′| = d, cf(δ′) = cf(δ) and DS(δ′) holds.

d b ≤ cf(δ) ≤ d.

Corollary 2.10

If κ is regular and DS(κ) holds, then κ = d.

Corollary 2.11

If ∃ δ DS(δ) and b = d then DS(d) holds.



Main Lemma

Main Lemma 2.12 (Cardona & M. 2025)

Under DS(δ): Let (f̄ , Ā) be a DS-pair of length δ.
If ⟨Cα : α < δ⟩ satisfies

Cα ⊆ Ifα and
∑
ξ<α

|Cξ| < non(SN ) for all α < δ,

then there is some K ∈ SN s.t. K ⊈ C for all C ∈
∪

α<δ Cα and

|K| =
∑
α<δ

|Cα| ≤ non(SN ).



Applications

Theorem 2.13 (Cardona & M. 2025)

Assume DS(δ).

a If δ ≤ non(SN ) then δ < cof(SN ).

b If cf(non(SN )) = cf(δ) then non(SN ) < cof(SN )
and there is some K ∈ SN of size non(SN ).

Corollary 2.14

If d ≤ cof(SN ) then cov(M) < cof(SN ).

Goldstern & Judah & Shelah 1993

There is a forcing extension satisfying c = ℵ2 and SN = [2ω]<c.
Here, d = ℵ1, add(SN ) = cof(SN ) = ℵ2 and DS(ω1) holds.



Theorem 2.15 (Cardona & M. 2025)

Under DS(δ): if µ := non(SN ) = supcof and κ := cf(δ) = cf(µ) then

add(SN ) ≤ κ and dκ ≤ cof(SN ).

Moreover, dκ ̸= µ and µ < cof(SN ).

Corollary 2.16

If cov(M) = d, µ := non(SN ) = supcof and κ := cf(d) = cf(µ) then
add(SN ) ≤ κ and dκ ≤ cof(SN ).

As a consequence:

Theorem 1.8 (Yorioka’s characterization, 2002)

If minadd = supcof = λ then add(SN ) = λ and cof(SN ) = dλ.



3. Questions



Lower bounds of cofinality

Question 3.1

b ≤ cof(SN )? cof(N ) ≤ cof(SN )?

Question 3.2 (Yorioka 2002)

ℵ1 < cof(SN )?



About DS(δ)

Question 3.3

Is there some δ s.t. DS(δ) holds?

Question 3.4

Does ∃ δ DS(δ) imply DS(d)?

Question 3.5

Assuming ∃ δ DS(δ), let δ0 be the smallest ordinal satisfying DS.
Do we have δ0 ≤ non(SN )?

δ0 is (additively) indecomposable and |δ0| = d.



4. おまけ



Forcing

Theorem 4.1

Assume λℵ0 = λ, 0 < γ < λ+ is indecomposable and cf(λγ) > ω (i.e.
γ = 1 or cf(γ) > ω).

Then, any ccc finite support iteration of length λγ forces c = λ and
DS(λβ) for all β ≤ γ with cf(β) = cf(γ).

Corollary 4.2

If λℵ0 = λ then Cλ forces DS(λβ) for all β < λ+ s.t. β = 1 or cf(β) > ω.

In particular dcf(λ) ≤ cof(SN ) ≤ cov
(
([λ]<ℵ1)λ

)
and λ < cof(SN ).



Fix κ ≤ λ = λℵ0 with κ regular.

Corollary 4.3

The finite support iteration of amoeba forcing of length λκ forces
add(N ) = cof(N ) = κ and c = λ.

In particular, DS(κ) and DS(λκ) hold, and cof(SN ) = dκ.

Corollary 4.4

The finite support iteration of Hechler forcing of length λκ forces
cov(SN ) = ℵ1, add(M) = cof(M) = κ and non(SN ) = c = λ.

In particular, DS(κ) and DS(λκ) hold.

If cf(λ) = κ then dκ ≤ cof(SN ) ≤ cov
(
([λ]<ℵ1)κ

)
and λ < cof(SN ).
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