# Abstract Elementary Classes and their axiomatizations: a review

#### Nicolás Nájar Salinas

Universidad Nacional de Colombia



The VOrST TU Wien Wien July 16, 2025

# Abstract Elementary Classes and their axiomatizations: a review

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

#### AEC definition

Let  $\tau$  a language and  $\mathcal K$  a class of  $\tau$ -structures. We say that  $(\mathcal K, \prec_{\mathcal K})$  is an Abstract Elementary Class (AEC) if and only if:

- $\bullet$   $\prec_{\mathcal{K}}$  is a partial order over  $\mathcal{K}$  and refines the  $\subseteq$  relation.
- $(\mathcal{K}, \prec_{\mathcal{K}})$  is closed under isomorphisms.
- **③** There is a Cardinal  $\kappa$ , called the Löwenheim-Skolem number of  $\mathcal{K}$ , such that for all  $M \in \mathcal{K}$  and all  $A \subseteq |M|$  there is  $N \in \mathcal{K}$  such that  $A \subseteq |N|$  and  $||N|| \ge \kappa$ .
- $\textbf{ 9} \ \, \text{For all} \,\, M_1, \,\, M_2, \,\, N \in \mathcal{K} \,\, \text{such that} \,\, M_1, M_2 \prec_{\mathcal{K}} N \,\, \text{and} \,\, M_1 \subseteq M_2, \\ \text{then} \,\, M_1 \prec_{\mathcal{K}} M_2.$
- **5** For every increasing and continuous  $\prec_{\mathcal{K}}$ -chain  $\langle M_i \rangle_{i < \alpha}$ , we have:
  - $M_{\alpha} := \bigcup_{i \in \alpha} M_i \in \mathcal{K}$ .
  - For all  $i < \alpha$ ,  $M_i \prec_{\mathcal{K}} \bigcup M_{\alpha}$ .
  - If  $N \in \mathcal{K}$  is such that  $M_i \prec_{\mathcal{K}} N$ , then  $M_{\alpha}M_1 \prec_{\mathcal{K}} N$ .

#### Example

- If T is a first order theory, then  $(Mod(T), \prec_{\mathcal{K}})$  is an AEC with  $LS(\mathcal{K}) = \aleph_0$ .
- If  $\psi \in \mathbb{L}_{\omega_1,\omega}$  and  $\Delta \subseteq \mathbb{L}_{\omega_1,\omega}$  a countable fragment that contains  $\psi$ , then  $(Mod(\psi), \prec_{\Delta})$  is an AEC with  $LS(\mathcal{K}) = \aleph_0$ .
- (Mazari-Armida 23)Classes of abelian groups and modules using the pure subgroup or module relation.

#### Definition

Let  $f:\mathcal{M}\longrightarrow\mathcal{N}$  be an embedding, f is a  $\mathcal{K}$ -embedding if  $f[\mathcal{M}]\prec_{\mathcal{K}}\mathcal{N}$ 

#### Shelah's Presentation Theorem

- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

### Shelah's Presentation Theorem and the EM-functor

### Theorem (Sh:87)

Let  $K=(\mathcal{K}, \prec_{\mathcal{K}})$  be an AEC with Löwenheim-Skolem number  $\kappa$  in a vocabulary  $\tau$  such that  $|\tau| \leq \kappa$ . Then, there exists a vocabulary  $\tau' \supset \tau$  with  $|\tau'| = \kappa$ , a first order  $\tau'$ -theory T' and a set  $\Gamma'$  of quantifier free T'-types such that

$$\mathcal{K} = \{M' \mid_{\tau} : M' \vDash T' \text{ and omits all the types in } \Gamma' \}.$$

#### Furthermore,

- If  $M', N' \models T'$  are such that that omit all the types in  $\Gamma'$  and  $M' \subseteq N'$ , then  $M' \upharpoonright_{\tau} \prec_{\mathcal{K}} N' \upharpoonright_{\tau}$  and,
- ② If  $M, N \in K$  are such that  $M \prec_{\mathcal{K}} N$ , then there are expansions M' of M and N' of N to  $\tau'$  such that  $M', N' \models T'$ , omit all the types in  $\Gamma'$  and  $M' \subseteq N'$ .

$$(\mathcal{K}, \prec_{\mathcal{K}}) = (PC_{\tau}(T', \Gamma'), \subseteq)$$

## Extracting indiscernibles

**Definition 11.5.** Let  $\Phi$  be an EM blueprint. Let I, J be a linear orders, let  $\delta$  be a limit ordinal and let  $\langle \bar{a}_j : j \in J \rangle$  be a sequence. We say that  $\langle \bar{a}_j : j \in J \rangle$  is  $(\Phi, I)$ -strictly indiscernible if:

- (1) J is infinite.
- (2) For some α, for all j ∈ J, ā<sub>j</sub> ∈ α EM<sub>τ</sub>(I, Φ).
- (3) There exists a sequence ⟨ā<sup>'</sup><sub>j</sub>: j ∈ J⟩ and a sequence of terms ρ̄ such that ā<sub>j</sub> = ρ̄(ā<sup>'</sup><sub>j</sub>) for all j ∈ J and ⟨ā<sup>'</sup><sub>j</sub>: j ∈ J⟩ is quantifier-free indiscernible in the vocabulary of linear orders inside I.

We call  $\langle \bar{a}_j : j \in J \rangle$   $(\Phi, I)$ -strictly indiscernible over A if  $\langle \bar{a}_j \bar{a} : j \in J \rangle$  is  $(\Phi, I)$ -strictly indiscernible for some (any) enumeration  $\bar{a}$  of A.

**Theorem 11.7** (Strict indiscernible extraction). Let K be an AEC with arbitrarily large models and let  $LS(K) < \theta \le \lambda$  be cardinals with  $\theta$  regular. Let  $\kappa < \theta$  be a (possibly finite) cardinal. Let  $\Phi \in \Upsilon_{LS(K)}[K]$  be an EM blueprint for K.

Let  $N := \mathrm{EM}_{\tau(\mathbf{K})}(\lambda, \Phi)$ . Let  $M \in \mathbf{K}_{\leq \mathrm{LS}(\mathbf{K})}$  be such that  $M \leq_{\mathbf{K}} N$ . Let  $\langle \bar{a}_i : i < \theta \rangle$  be a sequence of distinct elements such that for all  $i < \theta$ ,  $\bar{a}_i \in {}^{\kappa}|N|$ .

If  $\theta_0^{\kappa} < \theta$  for all  $\theta_0 < \theta$ , then there exists  $w \subseteq \theta$  with  $|w| = \theta$  such that  $\langle \bar{a}_i : i \in w \rangle$  is  $(\Phi, \lambda)$ -strictly indiscernible over M.

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

#### Relational Presentation Theorem

#### Theorem (BaBo17)

Let  $(\mathcal{K}, \prec_{\mathcal{K}})$  be an AEC with Löwenheim-Skolem number  $\kappa$  in a vocabulary  $\tau$ . Then there exists an expansion of  $\tau$  by predicates of arity  $\kappa$  and a T'  $\tau'$ -theory in  $\mathbb{L}_{(2^{\kappa})^+,\kappa^+}$  such that

$$\mathcal{K} = \{ M' \upharpoonright_{\tau} : M' \vDash T' \}.$$

#### **Furthermore**

- If  $M', N' \models T'$  are such that  $M' \subseteq N'$ , then  $M' \upharpoonright_{\tau} \prec_{\mathcal{K}} N' \upharpoonright_{\tau}$ .
- ② If  $M, N \in K$  are such that  $M \prec_{\mathcal{K}} N$ , then there are expansions M' of M and N' of N to  $\tau'$  such that  $M', N' \models T'$  and  $M' \subseteq N'$ .

$$(\mathcal{K}, \prec_{\mathcal{K}}) = (PC_{\tau}(T'), \subseteq)$$

#### Theorem (BaBo17)

Let  $\kappa$  be a strongly compact cardinal and let  $(\mathcal{K}, \prec_{\mathcal{K}})$  be an AEC with  $LS(\mathcal{K}) < \kappa$ . If  $\mathcal{K}_{[\mu,\kappa)}$  has AP, JEP..., then  $\mathcal{K}_{>\mu}$  has AP, JEP....

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

## Leung's Axiomatization

#### Theorem (Le23)

Let  $\lambda = \kappa + I_2(\kappa, \mathcal{K})$  where  $I_2(\kappa, \mathcal{K})$  is the number of non-isomorphic pairs (M,N) such that  $M \prec_{\mathcal{K}} N$  and bought have cardinality  $LS(\mathcal{K})$ . There is  $\sigma_{\mathcal{K}} \in \mathbb{L}_{\lambda^+,\kappa^+}(\omega \cdot \omega)(\tau)$  such that  $(\mathcal{K}, \prec_{\mathcal{K}}) = (\{M \in \tau - \text{structures} | M \models \sigma_{\mathcal{K}}\}, \prec_{\Delta}).$ 

#### Remark

This is used to simplify some resoults and extend it to other contexts.

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

## The correspondence

#### Definition (Galois Morlization, Vas16)

Let  $\kappa$  be an infinite cardinal and let  $(\mathcal{K}, \prec_{\mathcal{K}})$  be an AEC. The  $(<\kappa)$ -Galois Morlization of  $(\mathcal{K}, \prec_{\mathcal{K}})$  is  $(\hat{\mathcal{K}}, \prec_{\hat{\mathcal{K}}})$ , an AEC in a  $<\kappa$ -ary language  $\hat{\tau}$  extending  $\tau$  such that:

- ② For all  $p \in ga\text{-}S^{<\kappa}(\emptyset;\mathbb{C})$ , there exists  $R_p \in \hat{\tau}$  such that  $\mathbb{C} \models R_p[\bar{b}]$  iff  $p = ga\text{-}tp(\bar{a}/\emptyset;\mathbb{C})$ .
- $\begin{array}{l} \bullet \ tp_{\Delta}(\overline{b}/A;\mathbb{C}) := \{\psi(\overline{x};\overline{a}) \in qf\text{-}\mathbb{L}_{\kappa,\kappa}(\hat{\tau})\text{- formulas}|\overline{a} \in A \text{ y } \mathbb{C} \vDash \psi[\overline{b};\overline{a}]\}. \end{array}$

### Fact (The semantic-syntactic correspondence, Vas16)

 $\mathcal{K}$  is  $(<\kappa)$ -tame iff ga- $tp(\overline{b}/A;\mathbb{C}) \mapsto tp_{\Delta}(\overline{b}/A;\mathbb{C})$  from ga- $S^{<\kappa}(A;\mathbb{C})$  to qf- $\mathbb{L}_{\kappa,\kappa}$ - $S^{<\kappa}(A;\mathbb{C})$  is a bijection.

## Order Property

#### Definition

We say that  $\mathcal{K}$  has the  $(\kappa_1,\kappa_2,\theta)$ -order property of length  $\mu$  if there are  $A\subseteq |\mathbb{C}|$  with  $|A|\leq \theta$ ,  $\langle \overline{a}_i|i<\mu\rangle$  where  $\overline{a}_i\in^{\kappa_1}|\mathbb{C}|$  and  $\langle \overline{b}_i|i<\mu\rangle$  where  $\overline{b}_i\in^{\kappa_2}|\mathbb{C}|$  such that if  $i_0< j_0<\mu$ ,  $i_1< j_1<\mu$ , then  $ga\text{-}tp(\overline{a}_{i_0}\overline{b}_{j_0}/A;\mathbb{C})\neq ga\text{-}tp(\overline{a}_{j_1}\overline{b}_{i_1}/A;\mathbb{C})$ .

#### **Fact**

If K has AP and is  $\kappa$ -tame, then K is  $\lambda$ -stable iff does not have the  $(\kappa_1, \kappa_2, \lambda)$ -order property.

## Independence property

#### Definition

Let  $\lambda$  be a cardinal.

 $ded(\lambda) = \sup\{\kappa : \text{there is a linear order of size } \kappa \text{ which has a dense}$ 

subset of size  $\lambda$ }.

#### **Fact**

Let 
$$\mu:=\beth_{(2^{LS(\mathcal{K})})^+}$$
. If  $\mathcal{K}$  is  $<\aleph_0$ -tame,  $C\subseteq |\mathbb{C}|$  with  $|C|=\lambda>\beth_3(LS(\mathcal{K}))$  and  $|ga\text{-}S^1(C;\mathbb{C})|>Ded(\lambda)$ ,  $y$   $Ded(\lambda)^{2^\kappa}=Ded(\lambda)$ , then there are  $\psi(\overline{x},\overline{y})\in qf-\mathbb{L}_{\kappa,\kappa}(\hat{\tau})$ ,  $\langle \overline{a_i}\in |\mathbb{C}|:i<\mu\rangle$   $y$   $\langle \overline{b}_w\in |\mathbb{C}|:w\subseteq\mu\rangle$  such that  $\mathbb{C}\models\psi[\overline{a}_i;\overline{b}_w]$  iff  $i\in w$ .

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

## Canonical tree



#### The formulas

We define by induction on  $\gamma < \lambda^+$  formulas  $\varphi_{N,\gamma,n}(\overline{x}_n)$  in  $\mathbb{L}_{\lambda^+,\kappa^+}$  for all  $n < \omega$  and  $N \in \mathcal{S}_n$ .

- - $\textbf{9} \ \, \text{For} \, \, n>0, \, \text{let} \, \, \varphi_{N,0,n}(\overline{x}_n):=\bigwedge Diag^\kappa_n(N) \, \, \text{where} \, \, Diag^\kappa_n(N):=\{\varphi(x_{\alpha_0},...,x_{\alpha_{k-1}}):\alpha_0,...,\alpha_{k-1}<\kappa\cdot n, \, \, \varphi(x_{\alpha_0},...,x_{\alpha_{k-1}}) \, \, \text{is an atomic or negation of an atomic formula and} \, \, N \vDash \varphi(a^*_{\alpha_0},...,a^*_{\alpha_{k-1}})\}.$

$$\varphi_{N,\gamma,n}(\overline{x}_n) := \forall z_{[\kappa]} \bigvee_{N \prec \kappa N', \ N' \in \mathcal{S}_{n+1}} \exists \overline{x}_{=n}$$

$$\left[\varphi_{N',\beta,n+1}(\overline{x}_{n+1}) \wedge \bigwedge_{\alpha < \kappa} \bigvee_{\delta < \kappa \cdot (n+1)} z_{\alpha} = x_{\delta}\right].$$

 $\bullet \ \text{ If } \gamma \text{ is a limit ordinal, then } \varphi_{N,\gamma,n}(\overline{x}_n) := \bigwedge_{\beta < \gamma} \varphi_{N,\beta,n}(\overline{x}_n)$ 

## $M \vDash \varphi_{\emptyset,1,0}$





## $M \vDash \overline{\varphi_{\emptyset,1,0}}$



## $M \vDash \overline{\varphi_{\emptyset,2,0}}$



#### The sentence

#### Fact

Let 
$$\lambda = \beth_2(\kappa)^{++}$$
. We have  $\varphi_{\emptyset,\lambda+1,0} \in \mathbb{L}_{\lambda^+,\kappa^+}$ .

#### Theorem (Shelah-Villaveces 2022)

 $M \in \mathcal{K}$  if and only if  $M \models \varphi_{\emptyset,\lambda+1,0}$ 

#### Proof sketch.

Notice that  $M \models \varphi_{\emptyset,\lambda+1,0}$  if and only if for all  $\gamma < \lambda$  and all  $A \in [|M|]^{\kappa}$ ,  $M \vDash \varphi_{N,\gamma,1}[A]$  for some  $N \in \mathcal{S}_1$ .

Left to right: induction on  $\gamma < \lambda$ . Use coherence and Löwenheim-Skolem.

Right to left: show that

$$\mathbb{S}:=\{M^*\subseteq M| \text{ there are } N\in\mathcal{S}_1 \text{ with enumeration } \langle a_{\alpha}^*|\alpha<\kappa \rangle \text{ and }$$

$$f:N\cong M^*$$
 such that  $M\vDash \varphi_{N,\lambda,1}[\langle f(a^*_{\alpha})|\alpha<\kappa
angle]\}$ 

is a directed system. Use a complicate combinatorial principle.

## Syntactic substructure criteria

#### Theorem (Shelah-Villaveces 2022, N.S. 2023)

- ② if  $\overline{a} \in |M_1|^{\leq \kappa}$  then there are  $M_{\overline{a}} \prec_{\mathcal{K}} M_1$ ,  $N_{\overline{a}} \in \mathcal{S}_1$  with enumeration  $\langle a_{\alpha}^* | \alpha < \kappa \rangle$  and  $f_{\overline{a}} : N_{\overline{a}} \cong M_{\overline{a}}$  such that
  - $\overline{a} \in |M_{\overline{a}}|^{\leq \kappa}$  and
  - $M_2 \vDash \varphi_{N_{\overline{\alpha}},\lambda,1}[\langle f_{\overline{a}}(a_{\alpha}^*) | \alpha < \kappa \rangle].$

## Syntactic substructure criteria





$$(\mathcal{K}, \prec_{\mathcal{K}}) = (Mod(\psi_{\mathcal{K}}), \prec_{\Delta})$$

## A game to know if $M \in \mathcal{K}$ : $G_{AEC}(M)$

Let M be a  $\tau(\mathcal{K})$ -structure. Remember that  $\lambda = \beth_2(\kappa)^{++}$  and  $\kappa = LS(\mathcal{K})$ . The states of the game are pairs  $(\alpha,\pi)$  where  $\alpha < \lambda$  and  $\pi: N \longrightarrow M$  is a  $\mathcal{K}$ -embedding for  $N \in \mathcal{S}_n$  and  $n < \omega$ .

**Starting stage:** is  $(\lambda, \emptyset)$ .

**Further stages:** At stage  $(\alpha, \pi)$ :

- $\textbf{ 1 Player I: picks an ordinal } \alpha < \lambda \text{ and a tuple } \overline{a} \in |M|^{\kappa}.$
- ② Player II: picks  $N' \in \mathcal{S}_{n+1}$  and a  $\mathcal{K}$ -embedding  $\pi': N' \longrightarrow M$  such that  $N \prec_{\mathcal{K}} N'$  and

$$\pi' = \pi \cup \{(n_i, m_i) : i \in [\kappa \cdot n, \kappa \cdot (n+1))\}$$

#### **Fact**

 $M \in \mathcal{K}$  iff player II has a wining strategy in the game  $G_{AEC}(M)$ .

- Shelah's Presentation Theorem
- Relational Presentation Theorem
- Leung's Axiomatization
- The semantic-syntactic correspondence
- Shelah-Villaveces Axiomatization
- Wath we have

#### What we have



Thank you! :)