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The problem

Definition (Jónsson group)

We say that the group G is a Jónsson group , if for each proper subgroup

H ⪇ G

necessarily |H| < |G |, i.e.

∀S ∈ [G ]|G | : ⟨S⟩ = G .

Examples.

• for each prime p, letting Gn = {z ∈ C | zp
n

= 1}, then ⟨Gn | n ∈ ω⟩ is an
increasing chain of cyclic groups, its union is Jónsson:
it satisfies that if g ∈ Gn+1 \ Gn, then g generates Gn+1.

• Ol’̌sanskĭı’s Tarski monsters , i.e. (for some fixed prime p) there exists a
countable group G for which

∀H ⪇ G : |H| = p (and so H ≃ Z/pZ),

in particular, G is generated by 2 elements, and every p + 1 elements
generate G .
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Kurosh monster: The first instance for an uncountable Jónsson group (group
theoretic motivations):

Theorem (Shelah, 1978)

There exists a Jónsson group G on ℵ1.

Markov asked in the 1940’s whether every infinite group admits a non-trivial
Hausdorff topology.
In the above paper, the Jónsson group that Shelah constructed was also a
counterexample to Markov’s question assuming CH: The points:

There is an n such that whenever X ⊆ G is of full size, every g ∈ G can
be written as a word of length n in X , i.e. X n = G
There exists a malnormal filtration G =

⋃
α∈ω1

Gα (an increasing sequence
⟨Gα : α < ω1⟩ of countable malnormal subgroups of G).

Definition (Boundedly Jónsson groups)

We say that the Jónsson group is boundedly Jónsson , if for some nG ∈ ω

∀S ∈ [G ]|G | : (S ∪ S−1)≤nG = G .

(note that being Jónsson is equivalent to G = (S ∪ S−1)<ω)

Definition
The subgroup H ≤ G is malnormal (in symbols, H ≤m G), if

(∀g ∈ G \ H) (∀h ∈ H \ {1}) : g−1hg /∈ H.
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Nontopologizable groups

Theorem (Shelah, 1978)

(2λ = λ+) There exists a boundedly Jónsson group G of size λ+ with
nG = 6640, and even S ∈ [G ]|G | =⇒ S6640 = G, moreover, G admits a
malnormal filtration.

The conjunction of these properties in turn imply that G admits no nondiscrete
compatible T1 topology:

Corollary (Shelah)

(2λ = λ+ for some λ) There exists a group that does not admit any T2 (in fact
any T1) group topology other than the discrete topology.
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Proof of the corollary

Lemma
If G is a group on a regular κ,

i) boundedly Jónsson,

(for some n, S ∈ [G ]|G | implies (S∪S−1)≤n = G), and,

ii) admits a malnormal filtration ⟨Gα : α < κ⟩,
then G admits no non-discrete T1 group topology.

Proof. Assume on the contrary that τ is a T1 group topology on G , such that
{1} /∈ τ .
Fix an open U so that 1 ∈ U ⊊ G , pick an open 1 ∈ V = V−1 ⊆ U with

V≤n = V ∪ V 2 ∪ · · · ∪ V n ⊆ U,

in particular, V≤n ⊊ G . Now

(1) Case 1: |V | = |G |, in which case V≤n = G , a contradiction,

(2) or Case 2: |V | < |G |, and then 1 ∈ V ⊆ Gα ⪇m G for some α < κ. But
then for any fixed g /∈ Gα: V ∩ g−1Vg ⊆ Gα ∩ g−1Gαg = {1} by the
malnormality of Gα, hence

{1} = V ∩ g−1Vg ∈ τ,

a contradiction.
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Boundedly Jónsson groups
Shortly after Shelah’s non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol’̌sanskĭı)

There exists a countable non-topologizable group.

Variations.

Definition
The group G admits the Bergman property if

∀S ⊆ G : (⟨S⟩ = G) =⇒ (S ∪ S−1)≤n = G for some n = nS ∈ ω.

Remark
Being Jónsson is equivalent to G = (S ∪ S−1)<ω for each full-sized S, and
boundedly Jónsson is equivalent to G = (S ∪ S−1)≤nG , and so

Boundedly Jónsson =⇒ (Jónsson + Bergman)

Theorem (Bergman, 2006)

If Ω is infinite, then the permutation group SΩ has the Bergman property.
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There exists a countable non-topologizable group.

Variations.

Definition
The group G admits the Bergman property if

∀S ⊆ G : (⟨S⟩ = G) =⇒ (S ∪ S−1)≤n = G for some n = nS ∈ ω.

Remark
Being Jónsson is equivalent to G = (S ∪ S−1)<ω for each full-sized S, and
boundedly Jónsson is equivalent to G = (S ∪ S−1)≤nG , and so

Boundedly Jónsson =⇒ (Jónsson + Bergman)

Theorem (Bergman, 2006)

If Ω is infinite, then the permutation group SΩ has the Bergman property.

6 / 15



Boundedly Jónsson groups
Shortly after Shelah’s non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol’̌sanskĭı)
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Shelah groups

Definition
A group G is n-Shelah if X n = G for every X ⊆ G of full size. A Shelah group
is an n-Shelah group for some n.

Theorem (Shelah)

(2κ = κ+) There exists a 6640-Shelah group on κ+.

Question

(a) Can one use alternative polynomials to get n < 6640?

(b) Is it consistent to have a Shelah group of inaccessible size?

(c) What can be done on the ground of ZFC alone?

Exercise (Observation)

Whereas if there exists an n-Shelah group, then there exist colorings
c0, c1, . . . , cnn−1 : [κ]n → κ, such that for every Γ ∈ [κ]κ we have⋃

i<nn ci“[Γ]
n = κ

(therefore, κ ↛ [κ]nκ, which asserts that there is a coloring c : [κ]n → κ
such that, for every Γ ∈ [κ]κ, c“[Γ]n = κ).

If κ = ℵ0 or if κ is weakly compact, then there is no n-Shelah group of size
κ.
We don’t know if there exists a countable group with the Bergman property.
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Recent developments

Theorem (Cornullier, 2018)

Every 3-Shelah group is finite.

Theorem (Banakh, 2022)

If 2λ = λ+, then there exists a 36-Shelah group (G , ·) of size λ+.
Moreover, the group is not polybounded (for every system p0, p1, . . . , pk−1 of
group polynomials there is some g ∈ G, i < k for which pi (g) ̸= 1), and
absolutely T1 − S-closed (G forms a closed set whenever it is embedded in a
T1 semigroup).

Theorem (Corson-Ol’̌sanskĭı-Varghese, 2023)

There exists a group G on ω1 that is Jónsson and has the Bergman property:

∀Y ∈ [G ]ℵ1 ∃nY ∈ ω : Y≤nY = G .
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Main result

Theorem (P – Rinot, 2023)

(a) For every regular λ, there is an n-Shelah group of size λ+.

(b) If there is a uniformly coherent κ-Souslin tree, then there is an n-Shelah
group of size κ.

(c) If □(κ) holds, then there is an n-Shelah group of size κ.
In fact, the same is true for weaker forms of □(κ), so an n-Shelah group
may exist above a supercompact cardinal.

In all the above cases, our n is 10120.

Corollary (P – Rinot, 2023)

In L, for every regular uncountable cardinal κ, TFAE:

• κ is not weakly compact;

• there is a Shelah group of size κ.

The proof uses:

• Small cancellation theory, and

• Two forms of strong anti-Ramsey colorings.
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• there is a Shelah group of size κ.

The proof uses:

• Small cancellation theory, and

• Two forms of strong anti-Ramsey colorings.
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Two notions of strong colorings

Let θ < κ denote a pair of infinite regular cardinals.

Definition (Erdős – Hajnal – Rado, 1965)

κ ↛ [κ]2κ asserts that there is a coloring c : [κ]2 → κ such that,
for every Γ ∈ [κ]κ, c“[Γ]2 is equal to κ.

Mutually active strong colorings

For every Γ ∈ [κ]κ, there exists a club D ⊆ κ such that, for all:

• ξ ∈ δ ∈ D,

• i < θ,

• γ ∈ Γ \ δ,
there exists β ∈ Γ ∩ δ such that c(β, γ) = ξ and d(β, γ) > i .
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The coloring hypothesis

Theorem (P – Rinot, 2023)

Suppose that:

(1) θ < κ is a pair of infinite regular cardinals

(2) c : [κ]2 → κ is a witness for κ ↛ [κ]2κ

(3) d : [κ]2 → θ is a subadditive witness for U(κ, 2, θ, 2)

(4) c and d are mutually active

Then there is a 10120-Shelah group of cardinality κ with a malnormal filtration.
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d is subadditive iff writing Dγ

<i := {α < γ | d(α, γ) < i}, it is the case that the
filtrations ⟨Dγ

<i | i < θ⟩ (γ ∈ κ) cohere in the following sense:
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<i = Dγ
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Overview of the construction

The group G will be generated by κ-many generators ⟨xα | α < κ⟩.

For A ⊆ κ, we denote by GA the group generated by {xα | α ∈ A}.
• ⟨Gγ | γ < κ⟩ will form a malnormal filtration of G ;

• ⟨GD
γ
<i

| i < θ⟩ will form a filtration of Gγ ;

• GD
γ
<i∩Dδ

<j
will coincide with GD

γ
<i

∩ GDδ
<j
.

Definition
For every g ∈ G , (γg , ig ) stands for the left-lexicographically least pair
(γ, i) ∈ κ× θ such that g ∈ GD

γ
<i+1∪{γ}. (so in particular, g ∈ Gγg∪{γg} \ Gγg )

The group G is constructed in a two-dimensional recursion,
where we gradually determine the relations for the subgroups
⟨GD

γ
<i

| γ < κ, i < θ⟩. The subgroup GD
γ
<i+1∪{γ} is an amalgamation of the

subgroups GD
γ
<i∪{γ} and GD

γ
<i+1

over GD
γ
<i
. Small cancellation theory is applied

to equate words involving x ∈ GD
γ
<i∪{γ} \GD

γ
<i
, y ∈ GD

γ
<i

and z ∈ GD
γ
<i+1

\GD
γ
<i

with group elements of GD
γ
<i
, based on an interpretation of c(γz , γ).

Biggest challenge boils down to the task of ensuring that if
z , z ′ ∈ GD

γ
<i+1

\ GD
γ
<i

are such that γz = α < γz′ = α′ ∈ Dγ
<i+1 \ D

γ
<i (e.g.

z = xα, z
′ = xα′), then z and z ′ are independent over GD

γ
<i
.
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We want to equate p(xyz , xyxyz) with some prescribed h ∈ GD
γ
<i

for as many

triplets (x , y , z) as possible:

employing small cancellation theory and
preservation theorems for that.
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<i+1∪{γ} is an amalgamation of the

subgroups GD
γ
<i∪{γ} and GD

γ
<i+1

over GD
γ
<i
. Small cancellation theory is applied

to equate words involving x ∈ GD
γ
<i∪{γ} \GD

γ
<i
, y ∈ GD

γ
<i

and z ∈ GD
γ
<i+1

\GD
γ
<i

with group elements of GD
γ
<i
, based on an interpretation of c(γz , γ).

Biggest challenge boils down to the task of ensuring that if
z , z ′ ∈ GD

γ
<i+1

\ GD
γ
<i

are such that γz = α < γz′ = α′ ∈ Dγ
<i+1 \ D

γ
<i (e.g.

z = xα, z
′ = xα′), then z and z ′ are independent over GD

γ
<i
.
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An excerpt from the paper

Looking at Definition 5.14, we see that:

aσ∗ = a = zα = a
tσ∗ = t = t = t
hσ∗ = π0(c(αa, γ)) = π0(ξ) = h
yσ∗,0 = π1(c(αa, γ)) = π1(ξ) = y0
yσ∗,1 = π2(c(αa, γ)) = π2(ξ) = y1
zσ∗ = π3(c(αa, γ)) = π3(ξ) = z
εσ∗ = π4(c(αa, γ)) = π4(ξ) = ε
bσ∗ = yσ∗,0 · tεσ∗ · yσ∗,1 · zσ∗ = zγ · z = b
b′
σ∗ = bσ∗ · bσ∗ = zγ · z · zγ · z = b′

Kσ∗ = GD
γ
≤i

∩ G(αa+1) = GD
γ
≤i

∩ G(α+1) = GD
γ
≤i

∩(α+1)

Table 1. Evaluations
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An high-level explanation of why it works

Given X ⊆ G of full size, we may thin it out to ensure that x 7→ ix is constant
over X , say it is j .

Let h ∈ G , and we shall find x , y , z ∈ X with h = p(xyz , xyxyz).
Fix an elementary submodel M ≺ Hκ+ that knows about everything and
δ := M ∩ κ is < κ. In particular, h ∈ Gδ = G ∩M.
Pick x ∈ X \M, so that γx ≥ δ. We denote by x̄ a certain residue of x that lies
in M. Meanwhile, pick y ∈ X ∩M with d(γy , γx) > j .
Finally, pick z ∈ X ∩M such that:

(1) γz > max{γy , γx̄},
(2) i := d(γz , γx) is large enough (this implies z ∈ GD

γx
<i+1

\ GD
γx
<i
),

(3) ξ := c(γz , γx) is a code for (h, x̄ , y) (the code belongs to M).

Since x belongs to G
D

γx+1
<i+1

, our particular amalgamation procedure together

with (1)–(3) ensure that G
D

γx+1
<i+1

|= h = p(xyz , xyxyz).
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Thank you for your attention!
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