A Shelah group in ZFC

Márk Poór Cornell University

VOrST Workshop Vienna

July 2025

joint work with Assaf Rinot

Definition (Jónsson group)

We say that the group G is a $\mbox{\it Jónsson group}$, if for each proper subgroup $H \lneq G$

Definition (Jónsson group)

We say that the group G is a <code>Jónsson group</code> , if for each proper subgroup $H \lneq G$ necessarily |H| < |G|,

Definition (Jónsson group)

We say that the group G is a <code>Jónsson group</code> , if for each proper subgroup $H \lneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Definition (Jónsson group)

We say that the group G is a $\frac{\text{Jónsson group}}{\text{Jonsson group}}$, if for each proper subgroup $H \lneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

• for each prime p, letting $G_n=\{z\in\mathbb{C}\mid z^{p^n}=1\}$, then $\langle G_n\mid n\in\omega\rangle$ is an increasing chain of cyclic groups, its union is Jónsson:

Definition (Jónsson group)

We say that the group G is a <code>Jónsson group</code> , if for each proper subgroup $H \lneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

• for each prime p, letting $G_n = \{z \in \mathbb{C} \mid z^{p^n} = 1\}$, then $\langle G_n \mid n \in \omega \rangle$ is an increasing chain of cyclic groups, its union is Jónsson: it satisfies that if $g \in G_{n+1} \setminus G_n$, then g generates G_{n+1} .

Definition (Jónsson group)

We say that the group G is a <code>Jónsson group</code> , if for each proper subgroup $H \lneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

- for each prime p, letting $G_n = \{z \in \mathbb{C} \mid z^{p^n} = 1\}$, then $\langle G_n \mid n \in \omega \rangle$ is an increasing chain of cyclic groups, its union is Jónsson: it satisfies that if $g \in G_{n+1} \setminus G_n$, then g generates G_{n+1} .
- Ol'šanskii's Tarski monsters

Definition (Jónsson group)

We say that the group G is a $\frac{\text{Jónsson group}}{\text{Jonsson group}}$, if for each proper subgroup $H \lneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

- for each prime p, letting $G_n = \{z \in \mathbb{C} \mid z^{p^n} = 1\}$, then $\langle G_n \mid n \in \omega \rangle$ is an increasing chain of cyclic groups, its union is Jónsson: it satisfies that if $g \in G_{n+1} \setminus G_n$, then g generates G_{n+1} .
- Ol'šanskii"s Tarski monsters , i.e. (for some fixed prime p) there exists a countable group G for which

$$\forall H \subsetneq G: |H| = p \text{ (and so } H \simeq \mathbb{Z}/p\mathbb{Z}),$$

Definition (Jónsson group)

We say that the group G is a Jónsson group , if for each proper subgroup $H \subsetneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

- for each prime p, letting $G_n = \{z \in \mathbb{C} \mid z^{p^n} = 1\}$, then $\langle G_n \mid n \in \omega \rangle$ is an increasing chain of cyclic groups, its union is Jónsson: it satisfies that if $g \in G_{n+1} \setminus G_n$, then g generates G_{n+1} .
- Ol'šanskii's Tarski monsters, i.e. (for some fixed prime p) there exists a countable group G for which

$$\forall H \subseteq G : |H| = p \text{ (and so } H \simeq \mathbb{Z}/p\mathbb{Z}),$$

in particular, ${\cal G}$ is generated by 2 elements, and every p+1 elements generate ${\cal G}$.

Definition (Jónsson group)

We say that the group G is a Jónsson group , if for each proper subgroup $H \subsetneq G$ necessarily |H| < |G|, i.e.

$$\forall S \in [G]^{|G|}: \langle S \rangle = G.$$

Examples.

- for each prime p, letting $G_n = \{z \in \mathbb{C} \mid z^{p^n} = 1\}$, then $\langle G_n \mid n \in \omega \rangle$ is an increasing chain of cyclic groups, its union is Jónsson: it satisfies that if $g \in G_{n+1} \setminus G_n$, then g generates G_{n+1} .
- Ol'šanskii's Tarski monsters, i.e. (for some fixed prime p) there exists a countable group G for which

$$\forall H \subseteq G : |H| = p \text{ (and so } H \simeq \mathbb{Z}/p\mathbb{Z}),$$

in particular, ${\cal G}$ is generated by 2 elements, and every p+1 elements generate ${\cal G}$.

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

In the above paper, the Jónsson group that Shelah constructed was also a counterexample to Markov's question assuming CH:

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

In the above paper, the Jónsson group that Shelah constructed was also a counterexample to Markov's question assuming CH: The points:

There is an n such that whenever $X\subseteq G$ is of full size, every $g\in G$ can be written as a word of length n in X, i.e. $X^n=G$ There exists a malnormal filtration $G=\bigcup_{\alpha\in\omega_n}G_\alpha$ (an increasing sequence

 $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ of countable malnormal subgroups of G).

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

In the above paper, the Jónsson group that Shelah constructed was also a counterexample to Markov's question assuming CH: The points:

There is an n such that whenever $X \subseteq G$ is of full size, every $g \in G$ can be written as a word of length n in X, i.e. $X^n = G$

There exists a malnormal filtration $G=\bigcup_{\alpha\in\omega_1}G_\alpha$ (an increasing sequence $\langle G_\alpha:\ \alpha<\omega_1\rangle$ of countable malnormal subgroups of G).

Definition (Boundedly Jónsson groups)

We say that the Jónsson group is boundedly Jónsson , if for some $n_G \in \omega$

$$\forall S \in [G]^{|G|}$$
: $(S \cup S^{-1})^{\leq n_G} = G$.

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

In the above paper, the Jónsson group that Shelah constructed was also a counterexample to Markov's question assuming CH: The points:

There is an n such that whenever $X \subseteq G$ is of full size, every $g \in G$ can be written as a word of length n in X, i.e. $X^n = G$

There exists a malnormal filtration $G = \bigcup_{\alpha \in \omega_1} G_{\alpha}$ (an increasing sequence $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ of countable malnormal subgroups of G).

Definition (Boundedly Jónsson groups)

We say that the Jónsson group is boundedly Jónsson , if for some $n_G \in \omega$

$$\forall S \in [G]^{|G|}: (S \cup S^{-1})^{\leq n_G} = G.$$

(note that being Jónsson is equivalent to $G = (S \cup S^{-1})^{<\omega}$)

Theorem (Shelah, 1978)

There exists a Jónsson group G on \aleph_1 .

Markov asked in the 1940's whether every infinite group admits a non-trivial Hausdorff topology.

In the above paper, the Jónsson group that Shelah constructed was also a counterexample to Markov's question assuming CH: The points:

There is an n such that whenever $X \subseteq G$ is of full size, every $g \in G$ can be written as a word of length n in X, i.e. $X^n = G$

There exists a malnormal filtration $G=\bigcup_{\alpha\in\omega_1}G_\alpha$ (an increasing sequence $\langle G_\alpha:\ \alpha<\omega_1\rangle$ of countable malnormal subgroups of G).

Definition (Boundedly Jónsson groups)

We say that the Jónsson group is boundedly Jónsson , if for some $n_G \in \omega$

$$\forall S \in [G]^{|G|}: (S \cup S^{-1})^{\leq n_G} = G.$$

(note that being Jónsson is equivalent to $G = (S \cup S^{-1})^{<\omega}$)

Definition

The subgroup $H \leq G$ is malnormal (in symbols, $H \leq_m G$), if

$$(\forall g \in G \setminus H) \ (\forall h \in H \setminus \{1\}) : g^{-1}hg \notin H.$$

Nontopologizable groups

Theorem (Shelah, 1978)

 $(2^{\lambda}=\lambda^+)$ There exists a boundedly Jónsson group G of size λ^+ with $n_G=6640$, and even $S\in [G]^{|G|}\implies S^{6640}=G$, moreover, G admits a malnormal filtration.

Nontopologizable groups

Theorem (Shelah, 1978)

 $(2^{\lambda}=\lambda^+)$ There exists a boundedly Jónsson group G of size λ^+ with $n_G=6640$, and even $S\in [G]^{|G|}\implies S^{6640}=G$, moreover, G admits a malnormal filtration.

The conjunction of these properties in turn imply that G admits no nondiscrete compatible T_1 topology:

Corollary (Shelah)

 $(2^{\lambda} = \lambda^{+} \text{ for some } \lambda)$ There exists a group that does not admit any T_{2} (in fact any T_{1}) group topology other than the discrete topology.

Lemma

If G is a group on a regular κ ,

i) boundedly Jónsson,

Lemma

If G is a group on a regular κ ,

i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$),

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle \mathsf{G}_{\alpha}:\ \alpha<\kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that au is a T_1 group topology on G, such that $\{1\} \notin au$.

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$,

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that au is a T_1 group topology on G, such that $\{1\} \notin au$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$.

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$. Now

(1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$,

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that au is a T_1 group topology on G, such that $\{1\} \notin au$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$. Now

(1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$, a contradiction,

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$. Now

- (1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$, a contradiction,
- (2) or Case 2: |V| < |G|, and then $1 \in V \subseteq G_{\alpha} \subsetneq_{m} G$ for some $\alpha < \kappa$.

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$. Now

- (1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$, a contradiction,
- (2) or Case 2: |V|<|G|, and then $1\in V\subseteq G_{\alpha}\lneq_{\mathrm{m}}G$ for some $\alpha<\kappa$. But then for any fixed $g\notin G_{\alpha}\colon V\cap g^{-1}Vg\subseteq G_{\alpha}\cap g^{-1}G_{\alpha}g=\{1\}$ by the malnormality of G_{α} ,

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that au is a T_1 group topology on G, such that $\{1\} \notin au$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subsetneq G$. Now

- (1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$, a contradiction,
- (2) or Case 2: |V| < |G|, and then $1 \in V \subseteq G_{\alpha} \lneq_{\mathrm{m}} G$ for some $\alpha < \kappa$. But then for any fixed $g \notin G_{\alpha}$: $V \cap g^{-1}Vg \subseteq G_{\alpha} \cap g^{-1}G_{\alpha}g = \{1\}$ by the malnormality of G_{α} , hence

$$\{1\} = V \cap g^{-1} V g \in \tau,$$

Lemma

If G is a group on a regular κ ,

- i) boundedly Jónsson, (for some n, $S \in [G]^{|G|}$ implies $(S \cup S^{-1})^{\leq n} = G$), and,
- ii) admits a malnormal filtration $\langle G_{\alpha}: \alpha < \kappa \rangle$,

then G admits no non-discrete T_1 group topology.

Proof. Assume on the contrary that τ is a T_1 group topology on G, such that $\{1\} \notin \tau$.

Fix an open U so that $1 \in U \subsetneq G$, pick an open $1 \in V = V^{-1} \subseteq U$ with

$$V^{\leq n} = V \cup V^2 \cup \cdots \cup V^n \subseteq U,$$

in particular, $V^{\leq n} \subseteq G$. Now

- (1) Case 1: |V| = |G|, in which case $V^{\leq n} = G$, a contradiction,
- (2) or Case 2: |V|<|G|, and then $1\in V\subseteq G_{\alpha}\lneq_{\mathrm{m}}G$ for some $\alpha<\kappa$. But then for any fixed $g\notin G_{\alpha}\colon V\cap g^{-1}Vg\subseteq G_{\alpha}\cap g^{-1}G_{\alpha}g=\{1\}$ by the malnormality of G_{α} , hence

$$\{1\} = V \cap g^{-1}Vg \in \tau$$

a contradiction.

Boundedly Jónsson groups

Shortly after Shelah's non-topologizable group under CH:

Boundedly Jónsson groups

Shortly after Shelah's non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Shortly after Shelah's non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol'šanskiĭ)

There exists a countable non-topologizable group.

Shortly after Shelah's non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol'šanskiĭ)

There exists a countable non-topologizable group.

Variations.

Definition

The group G admits the Bergman property if

$$\forall S \subseteq G : (\langle S \rangle = G) \implies (S \cup S^{-1})^{\leq n} = G \text{ for some } n = n_S \in \omega.$$

Shortly after Shelah's non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol'šanskii)

There exists a countable non-topologizable group.

Variations.

Definition

The group G admits the Bergman property if

$$\forall S\subseteq G: \ (\langle S\rangle =G) \ \implies \ (S\cup S^{-1})^{\leq n}=G \ \text{ for some } n=n_S\in\omega.$$

Remark

Being Jónsson is equivalent to $G=(S\cup S^{-1})^{<\omega}$ for each full-sized S, and boundedly Jónsson is equivalent to $G=(S\cup S^{-1})^{\leq n_G}$, and so

$$Boundedly\ Jónsson \implies (Jónsson\ +\ Bergman)$$

Shortly after Shelah's non-topologizable group under CH:

Theorem (Hesse)

There exists a non-topologizable group (in ZFC).

Theorem (Ol'šanskiĭ)

There exists a countable non-topologizable group.

Variations.

Definition

The group G admits the Bergman property if

$$\forall S\subseteq G: \ (\langle S\rangle =G) \ \implies \ (S\cup S^{-1})^{\leq n}=G \ \text{ for some } n=n_S\in\omega.$$

Remark

Being Jónsson is equivalent to $G=(S\cup S^{-1})^{<\omega}$ for each full-sized S, and boundedly Jónsson is equivalent to $G=(S\cup S^{-1})^{\leq n_G}$, and so

Boundedly Jónsson
$$\implies$$
 (Jónsson + Bergman)

Theorem (Bergman, 2006)

If Ω is infinite, then the permutation group S_{Ω} has the Bergman property.

Definition

A group G is n-Shelah if $X^n = G$ for every $X \subseteq G$ of full size. A Shelah group is an n-Shelah group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on $\kappa^+.$

Definition

A group G is n-Shelah if $X^n=G$ for every $X\subseteq G$ of full size. A Shelah group is an n-Shelah group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on κ^+ .

Question

- (a) Can one use alternative polynomials to get n < 6640?
- (b) Is it consistent to have a Shelah group of inaccessible size?
- (c) What can be done on the ground of ZFC alone?

Definition

A group G is n-Shelah if $X^n = G$ for every $X \subseteq G$ of full size. A Shelah group is an n-Shelah group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on κ^+ .

Question

- (a) Can one use alternative polynomials to get n < 6640?
- (b) Is it consistent to have a Shelah group of inaccessible size?
- (c) What can be done on the ground of ZFC alone?

Exercise (Observation)

Whereas if there exists an n-Shelah group, then there exist colorings $c_0, c_1, \ldots, c_{n^n-1} : [\kappa]^n \to \kappa$, such that for every $\Gamma \in [\kappa]^{\kappa}$ we have $\bigcup_{i < n^n} c_i$ " $[\Gamma]^n = \kappa$

Definition

A group G is n-Shelah if $X^n=G$ for every $X\subseteq G$ of full size. A Shelah group is an n-Shelah group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on κ^+ .

Question

- (a) Can one use alternative polynomials to get n < 6640?
- (b) Is it consistent to have a Shelah group of inaccessible size?
- (c) What can be done on the ground of ZFC alone?

Exercise (Observation)

Whereas if there exists an n-Shelah group, then there exist colorings $c_0, c_1, \ldots, c_{n^n-1} : [\kappa]^n \to \kappa$, such that for every $\Gamma \in [\kappa]^{\kappa}$ we have $\bigcup_{i < n^n} c_i : [\Gamma]^n = \kappa$

(therefore, $\kappa \nrightarrow [\kappa]_{\kappa}^n$, which asserts that there is a coloring $c : [\kappa]^n \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c''[\Gamma]^n = \kappa$).

Definition

A group G is $n ext{-}Shelah$ if $X^n=G$ for every $X\subseteq G$ of full size. A Shelah group is an $n ext{-}Shelah$ group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on κ^+ .

Question

- (a) Can one use alternative polynomials to get n < 6640?
- (b) Is it consistent to have a Shelah group of inaccessible size?
- (c) What can be done on the ground of ZFC alone?

Exercise (Observation)

Whereas if there exists an n-Shelah group, then there exist colorings $c_0, c_1, \ldots, c_{n^n-1} : [\kappa]^n \to \kappa$, such that for every $\Gamma \in [\kappa]^{\kappa}$ we have $\bigcup_{i < n^n} c_i \text{ if } [\Gamma]^n = \kappa$

(therefore, $\kappa \nrightarrow [\kappa]_{\kappa}^n$, which asserts that there is a coloring $c : [\kappa]^n \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c''[\Gamma]^n = \kappa$).

If $\kappa = \aleph_0$ or if κ is weakly compact, then there is no n-Shelah group of size κ .

Definition

A group G is $n ext{-}Shelah$ if $X^n=G$ for every $X\subseteq G$ of full size. A Shelah group is an $n ext{-}Shelah$ group for some n.

Theorem (Shelah)

 $(2^{\kappa}=\kappa^+)$ There exists a 6640-Shelah group on κ^+ .

Question

- (a) Can one use alternative polynomials to get n < 6640?
- (b) Is it consistent to have a Shelah group of inaccessible size?
- (c) What can be done on the ground of ZFC alone?

Exercise (Observation)

Whereas if there exists an n-Shelah group, then there exist colorings $c_0, c_1, \ldots, c_{n^n-1} : [\kappa]^n \to \kappa$, such that for every $\Gamma \in [\kappa]^{\kappa}$ we have $\bigcup_{i < n^n} c_i \text{ "}[\Gamma]^n = \kappa$

(therefore, $\kappa \nrightarrow [\kappa]_{\kappa}^n$, which asserts that there is a coloring $c : [\kappa]^n \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c''[\Gamma]^n = \kappa$).

If $\kappa = \aleph_0$ or if κ is weakly compact, then there is no n-Shelah group of size κ .

We don't know if there exists a countable group with the Bergman property.

Theorem (Cornullier, 2018) Every 3-Shelah group is finite.

Theorem (Cornullier, 2018)

Every 3-Shelah group is finite.

Theorem (Banakh, 2022)

If $2^{\lambda} = \lambda^+$, then there exists a 36-Shelah group (G, \cdot) of size λ^+ .

Theorem (Cornullier, 2018)

Every 3-Shelah group is finite.

Theorem (Banakh, 2022)

If $2^{\lambda} = \lambda^+$, then there exists a 36-Shelah group (G, \cdot) of size λ^+ . Moreover, the group is not polybounded (for every system $p_0, p_1, \ldots, p_{k-1}$ of group polynomials there is some $g \in G$, i < k for which $p_i(g) \neq 1$), and absolutely $T_1 - S$ -closed (G forms a closed set whenever it is embedded in a T_1 semigroup).

Theorem (Corson-Ol'šanskiĭ-Varghese, 2023)

There exists a group G on ω_1 that is Jónsson and has the Bergman property:

$$\forall Y \in [G]^{\aleph_1} \exists n_Y \in \omega : Y^{\leq n_Y} = G.$$

Theorem (Cornullier, 2018)

Every 3-Shelah group is finite.

Theorem (Banakh, 2022)

If $2^{\lambda} = \lambda^+$, then there exists a 36-Shelah group (G, \cdot) of size λ^+ . Moreover, the group is not polybounded (for every system $p_0, p_1, \ldots, p_{k-1}$ of group polynomials there is some $g \in G$, i < k for which $p_i(g) \neq 1$), and absolutely $T_1 - S$ -closed (G forms a closed set whenever it is embedded in a T_1 semigroup).

Theorem (Corson-Ol'šanskiĭ-Varghese, 2023)

There exists a group G on ω_1 that is Jónsson and has the Bergman property:

$$\forall Y \in [G]^{\aleph_1} \exists n_Y \in \omega : Y^{\leq n_Y} = G.$$

Theorem (P - Rinot, 2023)

(a) For every regular λ , there is an n-Shelah group of size λ^+ .

Theorem (P - Rinot, 2023)

- (a) For every regular λ , there is an n-Shelah group of size λ^+ .
- (b) If there is a uniformly coherent κ -Souslin tree, then there is an n-Shelah group of size κ .

Theorem (P - Rinot, 2023)

- (a) For every regular λ , there is an n-Shelah group of size λ^+ .
- (b) If there is a uniformly coherent κ -Souslin tree, then there is an n-Shelah group of size κ .
- (c) If $\Box(\kappa)$ holds, then there is an n-Shelah group of size κ . In fact, the same is true for weaker forms of $\Box(\kappa)$, so an n-Shelah group may exist above a supercompact cardinal.

Theorem (P – Rinot, 2023)

- (a) For every regular λ , there is an n-Shelah group of size λ^+ .
- (b) If there is a uniformly coherent κ -Souslin tree, then there is an n-Shelah group of size κ .
- (c) If $\square(\kappa)$ holds, then there is an n-Shelah group of size κ . In fact, the same is true for weaker forms of $\square(\kappa)$, so an n-Shelah group may exist above a supercompact cardinal.

In all the above cases, our n is 10120.

Theorem (P - Rinot, 2023)

- (a) For every regular λ , there is an n-Shelah group of size λ^+ .
- (b) If there is a uniformly coherent κ -Souslin tree, then there is an n-Shelah group of size κ .
- (c) If $\Box(\kappa)$ holds, then there is an n-Shelah group of size κ . In fact, the same is true for weaker forms of $\Box(\kappa)$, so an n-Shelah group may exist above a supercompact cardinal.

In all the above cases, our n is 10120.

Corollary (P - Rinot, 2023)

In L, for every regular uncountable cardinal κ , TFAE:

- κ is not weakly compact;
- there is a Shelah group of size κ .

Theorem (P - Rinot, 2023)

- (a) For every regular λ , there is an n-Shelah group of size λ^+ .
- (b) If there is a uniformly coherent κ -Souslin tree, then there is an n-Shelah group of size κ .
- (c) If $\Box(\kappa)$ holds, then there is an n-Shelah group of size κ . In fact, the same is true for weaker forms of $\Box(\kappa)$, so an n-Shelah group may exist above a supercompact cardinal.

In all the above cases, our n is 10120.

Corollary (P - Rinot, 2023)

In L, for every regular uncountable cardinal κ , TFAE:

- κ is not weakly compact;
- there is a Shelah group of size κ .

The proof uses:

- Small cancellation theory, and
- Two forms of strong anti-Ramsey colorings.

```
Let \theta < \kappa denote a pair of infinite regular cardinals.
```

```
Definition (Erdős – Hajnal – Rado, 1965)
```

 $\kappa \nrightarrow [\kappa]_{\kappa}^2$ asserts that there is a coloring $c : [\kappa]^2 \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c''[\Gamma]^2$ is equal to κ .

Let $\theta < \kappa$ denote a pair of infinite regular cardinals.

Definition (Erdős – Hajnal – Rado, 1965)

 $\kappa \to [\kappa]_{\kappa}^2$ asserts that there is a coloring $c : [\kappa]^2 \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c''[\Gamma]^2$ is equal to κ .

Definition (Lambie-Hanson - Rinot, 2018)

 $\mathsf{U}(\kappa,2,\theta,2)$ asserts that there is a coloring $d:[\kappa]^2\to\theta$ such that, for every $\Gamma\in[\kappa]^\kappa$, $d''[\Gamma]^2$ is cofinal in θ .

Let $\theta < \kappa$ denote a pair of infinite regular cardinals.

Definition (Erdős – Hajnal – Rado, 1965)

 $\kappa \nrightarrow [\kappa]_{\kappa}^2$ asserts that there is a coloring $c: [\kappa]^2 \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c"[\Gamma]^2$ is equal to κ .

i.e., for every $\xi < \kappa$, there are $\beta < \gamma$ in Γ such that $c(\beta, \gamma) = \xi$.

Definition (Lambie-Hanson - Rinot, 2018)

 $U(\kappa, 2, \theta, 2)$ asserts that there is a coloring $d : [\kappa]^2 \to \theta$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, d " $[\Gamma]^2$ is cofinal in θ .

i.e., for every $i < \theta$, there are $\beta < \gamma$ in Γ such that $d(\beta, \gamma) > i$.

Let $\theta < \kappa$ denote a pair of infinite regular cardinals.

Definition (Erdős – Hajnal – Rado, 1965)

 $\kappa \nrightarrow [\kappa]_{\kappa}^2$ asserts that there is a coloring $c: [\kappa]^2 \to \kappa$ such that, for every $\Gamma \in [\kappa]^{\kappa}$, $c"[\Gamma]^2$ is equal to κ .

i.e., for every $\xi < \kappa$, there are $\beta < \gamma$ in Γ such that $c(\beta, \gamma) = \xi$.

Definition (Lambie-Hanson - Rinot, 2018)

 $\mathsf{U}(\kappa,2,\theta,2)$ asserts that there is a coloring $d:[\kappa]^2\to\theta$ such that, for every $\Gamma\in[\kappa]^\kappa$, d " $[\Gamma]^2$ is cofinal in θ .

i.e., for every $i < \theta$, there are $\beta < \gamma$ in Γ such that $d(\beta, \gamma) > i$.

Mutually active strong colorings

For every $\Gamma \in [\kappa]^{\kappa}$, there exists a club $D \subseteq \kappa$ such that, for all:

- $\xi \in \delta \in D$,
- $i < \theta$.
- $\gamma \in \Gamma \setminus \delta$,

there exists $\beta \in \Gamma \cap \delta$ such that $c(\beta, \gamma) = \xi$ and $d(\beta, \gamma) > i$.

The coloring hypothesis

Theorem (P - Rinot, 2023)

Suppose that:

- (1) $\theta < \kappa$ is a pair of infinite regular cardinals
- (2) $c: [\kappa]^2 \to \kappa$ is a witness for $\kappa \nrightarrow [\kappa]^2_{\kappa}$
- (3) $d: [\kappa]^2 \to \theta$ is a <u>subadditive</u> witness for $U(\kappa, 2, \theta, 2)$
- (4) c and d are mutually active

<u>Then</u> there is a 10120-Shelah group of cardinality κ with a malnormal filtration.

The coloring hypothesis

Theorem (P - Rinot, 2023)

Suppose that:

- (1) $\theta < \kappa$ is a pair of infinite regular cardinals
- (2) $c: [\kappa]^2 \to \kappa$ is a witness for $\kappa \nrightarrow [\kappa]^2_{\kappa}$
- (3) $d: [\kappa]^2 \to \theta$ is a <u>subadditive</u> witness for $U(\kappa, 2, \theta, 2)$
- (4) c and d are mutually active

<u>Then</u> there is a 10120-Shelah group of cardinality κ with a malnormal filtration.

Definition

d is <u>subadditive</u> iff writing $D_{< i}^{\gamma} := \{ \alpha < \gamma \mid d(\alpha, \gamma) < i \}$, it is the case that the filtrations $\langle D_{< i}^{\gamma} \mid i < \theta \rangle$ ($\gamma \in \kappa$) cohere in the following sense:

The coloring hypothesis

Theorem (P - Rinot, 2023)

Suppose that:

- (1) $\theta < \kappa$ is a pair of infinite regular cardinals
- (2) $c: [\kappa]^2 \to \kappa$ is a witness for $\kappa \nrightarrow [\kappa]^2_{\kappa}$
- (3) $d: [\kappa]^2 \to \theta$ is a <u>subadditive</u> witness for $U(\kappa, 2, \theta, 2)$
- (4) c and d are mutually active

 $\underline{\underline{Then}}$ there is a 10120-Shelah group of cardinality κ with a malnormal filtration.

Definition

d is <u>subadditive</u> iff writing $D_{< i}^{\gamma} := \{ \alpha < \gamma \mid d(\alpha, \gamma) < i \}$, it is the case that the filtrations $\langle D_{< i}^{\gamma} \mid i < \theta \rangle$ ($\gamma \in \kappa$) cohere in the following sense:

$$\beta \in D^{\gamma}_{< i} \implies D^{\beta}_{< i} = D^{\gamma}_{< i} \cap \beta.$$

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$.

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

• $\langle \textit{G}_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle G_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\bullet \ \langle \textit{G}_{\textit{D}_{< i}^{\gamma}} \mid \textit{i} < \theta \rangle \text{ will form a filtration of } \textit{G}_{\gamma};$

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle G_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ G_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ G_{D_{< i}^{\gamma}} \cap G_{D_{< j}^{\delta}}.$

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle \textit{G}_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{\leq i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ G_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ G_{D_{< i}^{\gamma}} \cap G_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle \textit{G}_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ G_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ G_{D_{< i}^{\gamma}} \cap G_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$.

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle \textit{G}_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ G_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ G_{D_{< i}^{\gamma}} \cap G_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$. The subgroup $G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$ is an amalgamation of the subgroups $G_{D_{< i}^{\gamma} \cup \{\gamma\}}$ and $G_{D_{< i+1}^{\gamma}}$ over $G_{D_{< i}^{\gamma}}$.

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle \textit{G}_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ \textit{G}_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ \textit{G}_{D_{< i}^{\gamma}} \cap \ \textit{G}_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$. The subgroup $G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$ is an amalgamation of the subgroups $G_{D_{< i}^{\gamma} \cup \{\gamma\}}$ and $G_{D_{< i+1}^{\gamma}}$ over $G_{D_{< i}^{\gamma}}$. Small cancellation theory is applied to equate words involving $x \in G_{D_{< i}^{\gamma} \cup \{\gamma\}} \setminus G_{D_{< i}^{\gamma}}$, $y \in G_{D_{< i}^{\gamma}}$ and $z \in G_{D_{< i+1}^{\gamma}} \setminus G_{D_{< i}^{\gamma}}$ with group elements of $G_{D_{< i}^{\gamma}}$, based on an interpretation of $c(\gamma_z, \gamma)$.

Overview of the construction

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle G_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} | i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ \textit{G}_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ \textit{G}_{D_{< i}^{\gamma}} \cap \textit{G}_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$. The subgroup $G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$ is an amalgamation of the subgroups $G_{D_{< i}^{\gamma} \cup \{\gamma\}}$ and $G_{D_{< i+1}^{\gamma}}$ over $G_{D_{< i}^{\gamma}}$. Small cancellation theory is applied to equate words involving $x \in G_{D_{< i}^{\gamma} \cup \{\gamma\}} \setminus G_{D_{< i}^{\gamma}}$, $y \in G_{D_{< i}^{\gamma}}$ and $z \in G_{D_{< i+1}^{\gamma}} \setminus G_{D_{< i}^{\gamma}}$ with group elements of $G_{D_{< i}^{\gamma}}$, based on an interpretation of $c(\gamma_z, \gamma)$.

We want to equate p(xyz, xyxyz) with some prescribed $h \in G_{D_{< i}}^{\gamma}$ for as many triplets (x, y, z) as possible:

Overview of the construction

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle G_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{\leq i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ \textit{G}_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ \textit{G}_{D_{< i}^{\gamma}} \cap \textit{G}_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$. The subgroup $G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$ is an amalgamation of the subgroups $G_{D_{< i}^{\gamma} \cup \{\gamma\}}$ and $G_{D_{< i+1}^{\gamma}}$ over $G_{D_{< i}^{\gamma}}$. Small cancellation theory is applied to equate words involving $x \in G_{D_{< i}^{\gamma} \cup \{\gamma\}} \setminus G_{D_{< i}^{\gamma}}$, $y \in G_{D_{< i}^{\gamma}}$ and $z \in G_{D_{< i+1}^{\gamma}} \setminus G_{D_{< i}^{\gamma}}$ with group elements of $G_{D_{< i}^{\gamma}}$, based on an interpretation of $c(\gamma_z, \gamma)$.

We want to equate p(xyz, xyxyz) with some prescribed $h \in G_{D_{< i}}^{\gamma}$ for as many triplets (x, y, z) as possible: employing small cancellation theory and preservation theorems for that.

Overview of the construction

The group G will be generated by κ -many generators $\langle x_{\alpha} \mid \alpha < \kappa \rangle$. For $A \subseteq \kappa$, we denote by G_A the group generated by $\{x_{\alpha} \mid \alpha \in A\}$.

- $\langle G_{\gamma} \mid \gamma < \kappa \rangle$ will form a malnormal filtration of G;
- $\langle G_{D_{< i}^{\gamma}} \mid i < \theta \rangle$ will form a filtration of G_{γ} ;
- $\bullet \ \ \textit{G}_{D_{< i}^{\gamma} \cap D_{< j}^{\delta}} \ \ \text{will coincide with} \ \ \textit{G}_{D_{< i}^{\gamma}} \cap \ \textit{G}_{D_{< j}^{\delta}}.$

Definition

For every $g \in G$, (γ_g, i_g) stands for the left-lexicographically least pair $(\gamma, i) \in \kappa \times \theta$ such that $g \in G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$. (so in particular, $g \in G_{\gamma_g \cup \{\gamma_g\}} \setminus G_{\gamma_g}$)

The group G is constructed in a two-dimensional recursion, where we gradually determine the relations for the subgroups $\langle G_{D_{< i}^{\gamma}} \mid \gamma < \kappa, \ i < \theta \rangle$. The subgroup $G_{D_{< i+1}^{\gamma} \cup \{\gamma\}}$ is an amalgamation of the subgroups $G_{D_{< i}^{\gamma} \cup \{\gamma\}}$ and $G_{D_{< i+1}^{\gamma}}$ over $G_{D_{< i}^{\gamma}}$. Small cancellation theory is applied to equate words involving $x \in G_{D_{< i}^{\gamma} \cup \{\gamma\}} \setminus G_{D_{< i}^{\gamma}}$, $y \in G_{D_{< i}^{\gamma}}$ and $z \in G_{D_{< i+1}^{\gamma}} \setminus G_{D_{< i}^{\gamma}}$ with group elements of $G_{D_{< i}^{\gamma}}$, based on an interpretation of $c(\gamma_z, \gamma)$. Biggest challenge boils down to the task of ensuring that if $z, z' \in G_{D_{< i+1}^{\gamma}} \setminus G_{D_{< i}^{\gamma}}$ are such that $\gamma_z = \alpha < \gamma_{z'} = \alpha' \in D_{< i+1}^{\gamma} \setminus D_{< i}^{\gamma}$ (e.g. $z = x_{\alpha}$, $z' = x_{\alpha'}$), then z and z' are independent over $G_{D_{< i}^{\gamma}}$.

An excerpt from the paper

Looking at Definition 5.14, we see that:

Table 1. Evaluations

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Fix an elementary submodel $M \prec H_{\kappa^+}$ that knows about everything and $\delta := M \cap \kappa$ is $< \kappa$. In particular, $h \in G_\delta = G \cap M$.

14 / 15

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Fix an elementary submodel $M \prec H_{\kappa^+}$ that knows about everything and

 $\delta := M \cap \kappa$ is $< \kappa$. In particular, $h \in G_{\delta} = G \cap M$.

Pick $x \in X \setminus M$, so that $\gamma_x \geq \delta$. We denote by \bar{x} a certain residue of x that lies in M.

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Fix an elementary submodel $M \prec H_{\kappa^+}$ that knows about everything and

 $\delta := M \cap \kappa$ is $< \kappa$. In particular, $h \in G_{\delta} = G \cap M$.

Pick $x \in X \setminus M$, so that $\gamma_x \ge \delta$. We denote by \bar{x} a certain residue of x that lies in M. Meanwhile, pick $y \in X \cap M$ with $d(\gamma_y, \gamma_x) > j$.

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Fix an elementary submodel $M \prec H_{\kappa^+}$ that knows about everything and $\delta := M \cap \kappa$ is $< \kappa$. In particular, $h \in G_{\delta} = G \cap M$.

Pick $x \in X \setminus M$, so that $\gamma_x \ge \delta$. We denote by \bar{x} a certain residue of x that lies in M. Meanwhile, pick $y \in X \cap M$ with $d(\gamma_y, \gamma_x) > j$.

Finally, pick $z \in X \cap M$ such that:

- (1) $\gamma_z > \max\{\gamma_y, \gamma_{\bar{x}}\},$
- (2) $i:=d(\gamma_z,\gamma_x)$ is large enough (this implies $z\in G_{D_{< i+1}}^{\gamma_x}\setminus G_{D_{< i}}^{\gamma_x}$)
- (3) $\xi := c(\gamma_z, \gamma_x)$ is a code for (h, \bar{x}, y) (the code belongs to M).

Given $X \subseteq G$ of full size, we may thin it out to ensure that $x \mapsto i_x$ is constant over X, say it is j.

Let $h \in G$, and we shall find $x, y, z \in X$ with h = p(xyz, xyxyz).

Fix an elementary submodel $M \prec H_{\kappa^+}$ that knows about everything and $\delta := M \cap \kappa$ is $< \kappa$. In particular, $h \in G_\delta = G \cap M$.

Pick $x \in X \setminus M$, so that $\gamma_x \geq \delta$. We denote by \bar{x} a certain residue of x that lies in M. Meanwhile, pick $y \in X \cap M$ with $d(\gamma_y, \gamma_x) > j$. Finally, pick $z \in X \cap M$ such that:

- (1) $\gamma_z > \max\{\gamma_v, \gamma_{\bar{x}}\},$
- (2) $i:=d(\gamma_z,\gamma_x)$ is large enough (this implies $z\in G_{D^{\gamma_x}}\setminus G_{D^{\gamma_x}}$),
- (3) $\xi := c(\gamma_z, \gamma_x)$ is a code for (h, \bar{x}, y) (the code belongs to M).

Since x belongs to $G_{D_{< i+1}^{\gamma_x+1}}$, our particular amalgamation procedure together with (1)–(3) ensure that $G_{D_{< i+1}^{\gamma_x+1}}\models h=p(xyz,xyxyz)$.

Thank you for your attention!