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Theorem (Bergman, 2006)
If Q is infinite, then the permutation group Sq has the Bergman property.
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(¢) IfO(k) holds, then there is an n-Shelah group of size k.
In fact, the same is true for weaker forms of ()(k), so an n-Shelah group
may exist above a supercompact cardinal.

In all the above cases, our n is 10120.

Corollary (P — Rinot, 2023)
In L, for every regular uncountable cardinal k, TFAE:
e « is not weakly compact;

e there is a Shelah group of size k.

The proof uses:
e Small cancellation theory, and

e Two forms of strong anti-Ramsey colorings.
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Two notions of strong colorings

Let 8 < x denote a pair of infinite regular cardinals.

Definition (Erdés — Hajnal — Rado, 1965)

K - [K]% asserts that there is a coloring ¢ : [k]* — & such that,
for every T € [r]", c"[[]? is equal to .
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for every I € [k]", c¢"[l']? is equal to .

i.e., for every £ < k, there are 8 < in I such that ¢(8,v) = &.
Definition (Lambie-Hanson — Rinot, 2018)

U(k,2,0,2) asserts that there is a coloring d : []> — @ such that,
for every I € [k]", d"[[]? is cofinal in 6.
i.e., for every i < 0, there are 3 < v in I such that d(3,~) > i.

Mutually active strong colorings

For every I' € [k]", there exists a club D C k such that, for all:
e £€6€D,
o /<0,
e yeT\J,

there exists 8 € ' N § such that ¢(8,v) =& and d(8,7) > i.
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The coloring hypothesis

Theorem (P — Rinot, 2023)
Suppose that:

(1) 0 < k is a pair of infinite regular cardinals

(2) c: []*> = & is a witness for k + [k]>

(3) d: [K]* = 0 is a subadditive witness for U(x,2,6,2)

(4) c and d are mutually active

Then there is a 10120-Shelah group of cardinality k with a malnormal filtration.
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B _
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Overview of the construction

The group G will be generated by k-many generators (x. | @ < k).
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For every g € G, (74, ig) stands for the left-lexicographically least pair

(v,7) € k x 0 such that g € Gpy, Ui} (so in particular, g € Gy (v, \ Gy,)
The group G is constructed in a two-dimensional recursion,

where we gradually determine the relations for the subgroups

(GDl_ | v < k, i <8). The subgroup GDZ'+1U{7} is an amalgamation of the
subgroups GDQU{W} and GD!H over GD!. Small cancellation theory is applied
to equate words involving x € GDZ;U{’Y} \ GDZ;’ y € GDZr‘ and z € GDLH \ GDZ;
with group elements of GD;, based on an interpretation of ¢(vz,7).

Biggest challenge boils down to the task of ensuring that if

7,7/ € Gpy, |\ Gpy, are such that v, = a <y =’ € DZ;,, \ DZ; (eg.

Z = Xa, Z' = Xo), then z and Z’ are independent over GDZ"
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An excerpt from the paper

Looking at Definition 5.14, we see that:

do
to,
hs,
Yo.,0
Yol
Z5

¢

*

bs, - bs,
GD%,. N G(a,+1)

Table 1.

I
3 o~

0

I
3

1

(€
(¢
2(§
(¢
(¢

1
S

3
4
zy-z

|
3

— — —

Zry - Z- Zry - Z
= Gle N G(a+1)

Evaluations

t
h
Yo
Y1
z
€
b
b/

GD;].Q(a-%—l)
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An high-level explanation of why it works

Given X C G of full size, we may thin it out to ensure that x — iy is constant
over X, say it is j.
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Let h € G, and we shall find x,y,z € X with h = p(xyz, xyxyz).

Fix an elementary submodel M < H,+ that knows about everything and
0:=MnNkis < k. In particular, he€ Gs = GN M.

Pick x € X\ M, so that v« > §. We denote by X a certain residue of x that lies
in M. Meanwhile, pick y € X N M with d(y,7x) > J.

Finally, pick z € X N M such that:

(1) 7= > max{vy,7=},

(2) i:=d(yz,7x) is large enough (this implies z € GDQX’_+1 \ GDQX/_),

(3) € :=c(7z,7x) is a code for (h,X,y) (the code belongs to M).

Since x belongs to G, et our particular amalgamation procedure together
with (1)—(3) ensure that GDwa = h = p(xyz, xyxyz). O
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Thank you for your attention!
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