Cardinal invariants of products of ideals

Takashi Yamazoe

(in progress) Joint work with Aleksander Cieślak, Takehiko Gappo and Arturo Martínez-Celis

The Vienna Oracle of Set Theory

2 Additivity

3 Uniformity

Let \mathscr{I} be an ideal on ω . For a function $\phi \colon \omega \to \mathscr{I}$, let:

$$K_{\phi} := \{ x \in \omega^{\omega} : \forall^{\infty} n < \omega \ x(n) \in \phi(n) \}.$$

$$K_{\mathscr{I}} \coloneqq \text{ the } (\sigma\text{-)ideal generated by } \{K_{\phi}: \phi \in \mathscr{I}^{\omega}\}.$$

$$(= \text{ the } \sigma\text{-ideal generated by the sets of the form } \prod_{n<\omega} I_n \in \mathscr{I}^{\omega}.)$$

For example, when $\mathscr{I}=\mathrm{Fin}$ is the finite ideal, $K_{\mathscr{I}}$ is the σ -ideal generated by compact sets in ω^{ω} .

In this talk we focus on $add(K_{\mathscr{I}})$ and $non(K_{\mathscr{I}})$.

2 Additivity

3 Uniformity

additivity

The additivity of the σ -ideal turns out to have a relationship between the *-additivity of the ideal \mathscr{I} . Recall:

$$\mathrm{add}^*(\mathscr{I}) \coloneqq \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathscr{I}, \forall X \in \mathscr{I} \; \exists A \in \mathcal{A} \; (A \not\subseteq^* X)\}$$

However, $\operatorname{add}^*(\mathscr{I}) = \omega$ holds if (and only if) \mathscr{I} is not a P-ideal $(\mathscr{I} \text{ is a P-ideal } :\Leftrightarrow \forall \mathcal{A} \in [\mathscr{I}]^{\omega} \ \exists X \in \mathscr{I} \ \forall A \in \mathcal{A} \ (A \subseteq^* X)).$ Thus we look at the ω -version number:

$$\mathrm{add}_{\omega}^*(\mathscr{I}) \coloneqq \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathscr{I}, \forall \mathcal{X} \in [\mathscr{I}]^{\omega} \; \exists A \in \mathcal{A} \; \forall X \in \mathcal{X} \; (A \nsubseteq^* X)\}$$

Note that $\mathrm{add}_{\omega}^*(\mathscr{I}) \geq \omega_1$ and $\mathrm{add}^*(\mathscr{I}) = \mathrm{add}_{\omega}^*(\mathscr{I})$ if (and only if) \mathscr{I} is a P-ideal.

Remark

For an ultrafilter \mathcal{U} , Brendle and Shelah [BS99(Sh:642)] introduced the number $\mathfrak{p}'(\mathcal{U})$, which is the same as add_{ω}^* (the dual ideal of \mathcal{U}).

additivity

(Recall:)

$$\mathrm{add}_\omega^*(\mathscr{I}) \coloneqq \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathscr{I}, \forall \mathcal{X} \in [\mathscr{I}]^\omega \; \exists A \in \mathcal{A} \; \forall X \in \mathcal{X} \; (A \not\subseteq^* X)\}$$

We find the following relationship between $\operatorname{add}_{\omega}^*(\mathscr{I})$ and $\operatorname{add}(K_{\mathscr{I}})$:

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

$$\min\{\operatorname{add}_{\omega}^*(\mathscr{I}),\mathfrak{b}\} \leq \operatorname{add}(K_{\mathscr{I}}) \leq \operatorname{add}_{\omega}^*(\mathscr{I}).$$

For many concrete ideals \mathscr{I} , the values of $\mathrm{add}_{\omega}^*(\mathscr{I})$ are $\omega_1,\mathrm{add}(\mathcal{N}),\mathrm{add}(\mathcal{M})$, or \mathfrak{b} . Since all of them are $\leq \mathfrak{b}$, we have $\mathrm{add}(K_{\mathscr{I}})=\mathrm{add}_{\omega}^*(\mathscr{I})$ for such ideals. Consequently, we ask:

Question

Does ZFC prove $\mathrm{add}_{\omega}^*(\mathscr{I}) \leq \mathfrak{b}$ (for \mathscr{I} in a certain good class)?

2 Additivity

3 Uniformity

Basic properties on $non(K_{\mathscr{I}})$

Let us move on to $\operatorname{non}(K_{\mathscr{I}})$ and see their basic properties first. First of all, since $\operatorname{Fin} \subseteq \mathscr{I}$ and $\omega \notin \mathscr{I}$, it follows that:

Lemma

$$\mathfrak{b} \leq \operatorname{non}(K_{\mathscr{I}}) \leq \operatorname{non}(\mathcal{M}).$$

Cardona, Gavalová, Mejía, Repický and Šupina [CGMRS24] studied cardinal invariants associated with slaloms $\phi\colon\omega\to\mathcal{P}(\omega)$ in a general framework. Using their notation of slalom numbers, $\mathrm{non}(K_\mathscr{I})=\mathfrak{sl}_{\mathrm{t}}^\perp(\mathscr{I},\mathrm{Fin}).$ Thanks to their work, we particularly have:

Fact

 $\mathscr{I} \leq_K \mathscr{J}$ implies $\mathrm{non}(K_{\mathscr{I}}) \leq \mathrm{non}(\mathcal{K}_{\mathscr{J}})$ for any ideals \mathscr{I} and \mathscr{J} , where \leq_K denotes the Katětov-order among ideals on ω .

Connection with $non_{\omega}^*(\mathscr{I})$

Let us see the connection with the *-uniformity of \mathscr{I} . Recall: $\operatorname{non}^*(\mathscr{I}) := \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^\omega, \ \forall X \in \mathscr{I} \ \exists A \in \mathcal{A} \ |A \cap X| < \omega)\}$ Again we look at the ω -version:

 $\mathrm{non}_{\omega}^*(\mathscr{I}) \coloneqq \min\{|\mathcal{A}|: \mathcal{A} \subseteq [\omega]^{\omega}, \forall \mathcal{X} \in [\mathscr{I}]^{\omega} \; \exists A \in \mathcal{A} \; \forall X \in \mathcal{X} \; |A \cap X| < \omega\}$

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

 $\operatorname{non}(K_{\mathscr{I}}) \leq \max\{\mathfrak{b}, \operatorname{non}_{\omega}^*(\mathscr{I})\}.$

Remark

Šupina [Šup23] proved the following dual inequality in a topological way:

$$\min\{\operatorname{cov}^*(\mathscr{I}), \mathfrak{d}\} < \operatorname{cov}(K_{\mathscr{A}}).$$

Recall:

 $\operatorname{cov}^*(\mathscr{I}) \coloneqq \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathscr{I}, \forall X \in [\omega]^\omega \ \exists A \in \mathcal{A} \ |A \cap X| = \omega)\},$ so the ω -version of $\operatorname{cov}^*(\mathscr{I})$ would be the same.

Optimality of $\mathfrak{b} \leq \operatorname{non}(K_{\mathscr{I}}) \leq \max\{\mathfrak{b}, \operatorname{non}_{\omega}^*(\mathscr{I})\}$

For some specific ideal, $\operatorname{non}(K_{\mathscr{I}})$ is equal to either of the upper or lower bounds of $\mathfrak{b} \leq \operatorname{non}(K_{\mathscr{I}}) \leq \max\{\mathfrak{b}, \operatorname{non}_{\omega}^*(\mathscr{I})\}$. Recall:

- Fin \times Fin $\coloneqq \{A \subseteq \omega \times \omega : \forall^{\infty} n < \omega \mid (A)_n \mid < \omega \}$ is the Fubini product of two Fin's, where $(A)_n \coloneqq \{m < \omega : (n,m) \in A\}$ denotes the n-th vertical section of A.
- \mathcal{S} is Solecki's ideal: defined on the countable set $\Omega \coloneqq \{U \in \operatorname{Clopen}(2^\omega) : \operatorname{Leb}(U) = \frac{1}{2}\}$ and generated by subsets $A \subseteq \Omega$ with non-empty intersection.

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

- $\operatorname{non}(K_{\operatorname{Fin} \times \operatorname{Fin}}) = \mathfrak{b}.$
- $\operatorname{non}(K_{\mathcal{S}}) = \max\{\mathfrak{b}, \operatorname{non}_{\omega}^*(\mathcal{S})\}.$

Short remark on $\mathrm{non}_{\omega}^*(\mathcal{S})$

We compute the value of $\mathrm{non}_{\omega}^*(\mathcal{S})$. Hrušák, Meza-Alcántara and Minami [HMM10] proved $\mathrm{cov}^*(\mathcal{S}) = \mathrm{non}(\mathcal{N})$ and we obtain the following " ω -versioned" dual equality:

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

$$\begin{aligned} \mathrm{non}_{\omega}^*(\mathcal{S}) &= \mathrm{cov}_{\omega}(\mathcal{N}) \\ &\coloneqq \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{N}, \forall A \in [\mathbb{R}]^{\omega} \; \exists N \in \mathcal{F} \; (A \subseteq N)\} \end{aligned}$$

 $\mathrm{cov}_{\omega}(\mathcal{N})$ itself seems interesting:

Lemma

- $cov(\mathcal{N}) \leq cov_{\omega}(\mathcal{N}) \leq non(\mathcal{M}).$
- $\operatorname{cf}(\operatorname{cov}_{\omega}(\mathcal{N})) \geq \omega_1$.

In particular, $cov(\mathcal{N}) < cov_{\omega}(\mathcal{N})$ is consistent since $cov(\mathcal{N})$ may have countable cofinality, proved by Shelah [She00(Sh:592)].

On the asymptotic density zero ideal ${\mathcal Z}$

Let \mathcal{Z} denote the asymptotic density zero ideal:

$$\mathcal{Z} := \left\{ A \subseteq \omega : \frac{|A \cap n|}{n} \xrightarrow{n \to \infty} 0 \right\}.$$

Due to Pawlikowski [Paw00], the following holds, where \mathcal{E} denotes the σ -ideal on the reals generated by closed null sets:

$$non(K_{\mathcal{Z}}) \leq max\{\mathfrak{b}, non(\mathcal{E})\}.$$

We introduce a forcing notion which increases $non(K_Z)$ and keeps $\mathfrak b$ small (more technically, "it has ultrafilter-limits"), and by iterating the poset we obtain:

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

 $\mathfrak{b} < \operatorname{non}(K_{\mathcal{Z}})$ is consistent.

Cichoń's maximum with $non(K_Z)$ and $cov(K_Z)$

Moreover, by using the methods from Cardona, Mejía, Uribe-Zapata [CMU24] and Yamazoe [Yam24] to keep $\operatorname{non}(\mathcal{E})$ small through our forcing iteration, we have (recall $\operatorname{non}(K_{\mathcal{Z}}) \leq \max\{\mathfrak{b}, \operatorname{non}(\mathcal{E})\}$):

Theorem (Cieślak, Gappo, Martínez-Celis and Y.)

 $\operatorname{non}(K_{\mathcal{Z}})$ and $\operatorname{cov}(K_{\mathcal{Z}})$ can be added to Cichoń's maximum.

Question and table

Question

How much can we extend the class of ideals \mathscr{I} such that $\operatorname{non}(K_{\mathscr{I}})$ and $\operatorname{cov}(K_{\mathscr{I}})$ can be added to a model of Cichoń's maximum?

We conclude this talk with the following table.

ideal	$\operatorname{add}_{\omega}^*(\mathscr{I})$	$\mathrm{non}^*_\omega(\mathscr{I})$	$\mathrm{non}(K_{\mathscr{I}})$
$\overline{\mathcal{R}}$	ω_1	ω_1	ь
${\mathcal S}$	ω_1	$\mathrm{cov}_{\omega}(\mathcal{N})$	$\max\{\mathfrak{b}, \mathrm{cov}_{\omega}(\mathcal{N})\}$
nwd	$\operatorname{add}(\mathcal{M})$	$\mathrm{non}(\mathcal{M})$?
conv	ω_1	ω_1	b
$\operatorname{Fin} \times \operatorname{Fin}$	ь	ð	b
$\mathcal{E}\mathcal{D}$	ω_1	$\mathrm{cov}(\mathcal{M})$	b
$\mathcal{ED}_{ ext{fin}}$	ω_1	?	?
${\cal I}_{\underline{1}}$	$\operatorname{add}(\mathcal{N})$	$\mathrm{non}^*({\mathcal I}_{rac{1}{2}})$?
$\overset{n}{\mathcal{Z}}$	$\operatorname{add}(\mathcal{N})$	$\mathrm{non}^*(\overset{\scriptscriptstyle n}{\mathcal{Z}})$?

References I

[BS99(Sh:642)] Jörg Brendle and Saharon Shelah.

Ultrafilters on ω -their ideals and their cardinal characteristics.

Transactions of the American Mathematical Society,

351(7):2643-2674, 1999.

[CGMRS24] Miguel A Cardona, Viera Gavalova, Diego A Mejia, Miroslav

Repicky, and Jaroslav Supina.

Slalom numbers.

arXiv preprint arXiv:2406.19901, 2024.

[CMU24] Miguel A Cardona, Diego A Mejía, and Andrés F Uribe-Zapata.

A general theory of iterated forcing using finitely additive

measures.

arXiv preprint arXiv:2406.09978, 2024.

[HMM10] Michael Hrušák, David Meza-Alcántara, and Hiroaki Minami.

Pair-splitting, pair-reaping and cardinal invariants of F_{σ} -ideals.

The Journal of Symbolic Logic, 75(2):661–677, 2010.

References II

[Paw00] Janusz Pawlikowski.

Density zero slaloms.

Annals of Pure and Applied Logic, 103(1-3):39-53, 2000.

[She00(Sh:592)] Saharon Shelah.

Covering of the null ideal may have countable cofinality.

Fundamenta Mathematicae, 166:109-136, 2000.

[Šup23] Jaroslav Šupina.

Pseudointersection numbers, ideal slaloms, topological spaces,

and cardinal inequalities.

Archive for Mathematical Logic, 62(1):87-112, 2023.

[Yam24] Takashi Yamazoe.

Cichoń's maximum with cardinals of the closed null ideal.

arXiv preprint arXiv:2412.09069, 2024.

Appendix

- \mathcal{R} is the random graph ideal: generated by homogeneous sets for the random graph (Rado graph).
- $nwd := \{A \subseteq \mathbb{Q} : A \text{ is nowhere dense in } \mathbb{Q}\}.$
- conv is the ideal generated by sequences in $\mathbb{Q} \cap [0,1]$ convergent in [0,1].
- $\mathcal{ED} := \{ A \subseteq \omega \times \omega : \exists k < \omega \ \forall^{\infty} n < \omega \ | (A)_n | \le k \}.$
- $\mathcal{ED}_{\mathrm{fin}} \coloneqq \mathcal{ED} \upharpoonright \Delta$ where $\Delta \coloneqq \{(n,m) \in \omega \times \omega : m \leq n\}$.
- $\mathcal{I}_{\frac{1}{n}}$ is the summable ideal: consists of $A\subseteq\omega$ s.t. $\sum_{n\in A}\frac{1}{n}$ is finite.