Events

Conferences, Research Colloquia & Seminars, Defenses, and other events


   February 2024      
Su Mo Tu We Th Fr Sa  
             1  2  3  
 4  5  6  7  8  9 10  
11 12 13 14 15 16 17  
18 19 20 21 22 23 24  
25 26 27 28 29        
                      

Geometry Seminar

This is the research seminar of the group and focuses on recent research in (differential) geometry; during the semester the seminar is usually scheduled to take place on Wednesday at 16:00 in the Zeichensaal 1 or online. If you are interested in giving a talk, please contact the organizers: Ivan Izmestiev

Student Seminars

These seminars are usually part of the assessment and are open to the public, in particular, to interested students; topics typically focus on geometry but cover a wider range of areas, depending on the students' and the advisor's interests. Presentations are often delivered in German.


This semester's schedule

Talks in the geometry seminar

(hover/tap name or title to view more information)

29 Nov 2023: Geometry seminar 16:15
Martin Kilian (TU Wien): Meshes with Spherical Faces

Abstract

A truly Möbius invariant discrete surface theory must consider meshes where the transformation group acts on all of its elements, including edges and faces. We therefore systematically describe so called sphere meshes with spherical faces and circular arcs as edges. Driven by aspects important for manufacturing, we provide the means to cluster spherical panels by their radii. We investigate the generation of sphere meshes which allow for a geometric support structure and characterize all such meshes with triangular combinatorics in terms of non-Euclidean geometries. We generate sphere meshes with hexagonal combinatorics by intersecting tangential spheres of a reference surface and let them evolve - guided by the surface curvature - to visually convex hexagons, even in negatively curved areas. Furthermore, we extend meshes with circular faces of all combinatorics to sphere meshes by filling its circles with suitable spherical caps and provide a re-meshing scheme to obtain quadrilateral sphere meshes with support structure from given sphere congruences. By broadening polyhedral meshes to sphere meshes we exploit the additional degrees of freedom to minimize intersection angles of neighboring spheres enabling the use of spherical panels that provide a softer perception of the overall surface.
22 Nov 2023: Geometry seminar
Felix Dellinger (TU Wien): Orthogonal structures

Abstract

In this talk we introduce a definition for orthogonal quadrilateral nets based on equal diagonal length in every quad. This definition can be motivated through Ivory's Theorem and rhombic bi-nets. We find that non-trivial orthogonal multi-nets exist, i.e., nets where the orthogonality condition holds for every combinatorial rectangle and present a method to construct them. The orthogonality condition is well suited for numerical optimization. Since the definition does not depend on planar quadrilaterals it can be paired with common discretizations of conjugate nets, asymptotic nets, geodesic nets, Chebyshev nets or principal symmetric nets. This gives a way to numerically compute prinicipal nets, minimal surfaces, developable surfaces and cmc-surfaces.
11 Oct 2023: Geometry seminar
Sadashige Ishida (IST Austria): Area formula for spherical polygons via prequantization

Abstract

I derive a formula for the signed area of a spherical polygon via the so-called prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. I also explain that the classical formula can be recovered from a specific choice of prequantum bundle and lift.

Summer term 2023

Talks in the geometry seminar

(hover/tap name or title to view more information)

31 May 2023: Geometry seminar
Gunter Weiss (TU Wien & TU Dresden): Der Satz von Miquel und seine Brüder

Abstract

Der elementargeometrische Satz von Miquel geht von einem Dreieck $ABC$ und Punkten $R, S, T$ auf dessen Seiten aus und behauptet, dass die drei Kreise $\bigcirc ART$, $\bigcirc BRS$, $\bigcirc CST$ einen Punkt, den "Miquel-Punkt" $M$, gemeinsam haben. Für $M$ hat man die Dreiecksebene, also eine zweiparametrige Menge, von Möglichkeiten, sodass es zu jedem $M$ eine einparametrige Menge von Tripeln $R, S, T$ geben muss. Wählt man $R, S, T$ speziell und/oder voneinander abhängig, so ergeben sich das "Bierdeckel-Theorem", die Sätze von Brocard und Simson-Wallace als Spezialfälle des Satzes von Miquel. Dabei ergeben sich auch überraschende "merkwürdige Inzidenzen" und Zusammenhänge mit anderen elementar-geometrischen Sätzen. Der Satz von Miquel erlaubt auch eine direkte 3D-Verallgemeinerung, während etwa die Satzgruppe von Brocard nur mit Modifikationen ins Dreidimensionale übertragbar ist.
03 May 2023: Geometry seminar
Mohammad Ivaki (TU Wien): Firey's worn stones are round

Abstract

I will talk about the Gauss curvature flow, which in $R^3$ was proposed by Firey as a model for the changing shape of smooth, strictly convex stones as they tumble on a beach. I'll give a summary of the results on this flow from its inception to its complete resolution.

Winter term 2022/23

Hans Havlicek with participants, 9 Dec 2022
photograph © Gunter Weiß

Hellmuth Stachel, 18 Nov 2022
photograph © Georg Glaeser

Festkolloquia

09 Dez 2022, Zeichensaal 3: Festkolloquium
zum 70. Geburtstag von Hans Havlicek

Programm

13:30 - 14:30
Silvia Pianta (Universita Cattolica del Sacre Cuore, Brescia): 1984, and beyond ... through joint Hanswers around parallelisms
14:30 - 15:30
Markus Stroppel (Universität Stuttgart): Projective geometry in an algebraist's toolbox
15:30 - 16:00
Kaffeepause
16:00 - 17:00
Mark Pankov (University Warmia and Mazury, Olsztyn): One result of Hans and a non-bijective version of Wigner theorem
17:00 - 18:00
Corrado Zanella (Universita di Padova): Incidence properties of algebraic varieties

18 Nov 2022, Zeichensaal 3: Festkolloquium
zum 80. Geburtstag von Hellmuth Stachel

Programm

13:15 - 14:00
Eröffnung und Laudatio von Otto Röschel
14:00 - 15:00
Johannes Wallner (TU Graz): Flexible nets and discrete differential geometry
15:00 - 16:00
Georg Glaeser (Universität für angewandte Kunst Wien): Forty years between descriptive and computational geometry: the universe of spatial imagination
16:00 - 16:30
Kaffeepause
16:30 - 17:30
Hans-Peter Schröcker (Universität Innsbruck): Devil in paradise II - recent results in motion factorization
17:30 - 18:30
Giorgio Figliolini (Universität Cassino): Kinematics of mechanisms with higher-pairs: fundamentals and applications
19:00
Abendessen im Restaurant Waldviertlerhof, Schönbrunnerstr. 20, 1050 Wien

Talks in the geometry seminar

(hover/tap name or title to view more information)

21 Feb 2023: Geometry seminar 15:00, ZS1
Alex Fairley (TU Berlin): Circular nets with spherical parameter lines

Abstract

In the context of discrete differential geometry, circular nets provide a discretisation of curvature line parametrisations. In this talk, we will present incidence theorems to construct circular nets with spherical parameter lines. And we will present geometric properties of circular nets with spherical parameter lines. We will compare them with the classical properties of surfaces with spherical curvature lines. These are classical surfaces that were intensely studied in the 19th century.
23 Jan 2023: Geometry seminar
Sergey Agafonov (Sao Paulo State University): Confocal conics and 4-webs of maximal rank

Abstract

Confocal conics form an orthogonal net. Supplementing this net with one of the following: 1) the net of Cartesian coordinate lines aligned along the principal axes of conics, 2) the net of Apollonian pencils of circles whose foci coincide with the foci of conics, 3) the net of tangents to a conic of the confocal family, we get a planar 4-web. We show that each of these 4-webs is of maximal rank and characterize confocal conics from the web theory viewpoint.
12 Dec 2022
16 Jan 2023: Geometry seminar
Christian Müller (TU Wien): The Geometry of Discrete AGAG-Webs in Isotropic 3-Space

Abstract

We investigate webs from the perspective of the geometry of webs on surfaces in three dimensional space. Our study of AGAG-webs is motivated by architectural applications of gridshell structures where four families of manufactured curves on a curved surface are realizations of asymptotic lines and geodesic lines. We describe all discrete AGAG-webs in isotropic space and propose a method to construct them. Furthermore, we prove that some sub-nets of an AGAG-web are timelike minimal surfaces in Minkowski space and can be embedded into a one-parameter family of discrete isotropic Voss nets. This is a joint work with Helmut Pottman.
09 Jan 2023: Geometry seminar
Jan Gregorovic (TU Wien): Invariants of curves in conformal manifolds

Abstract

I will talk about invariants that can be assigned to curves in conformal manifolds of dimension greater than 2. An invariant is a quantity depending only on the curve and the conformal class of metrics and in particular, is invariant under all conformal transformation. The construction of these invariants uses the description of conformal manifolds via tractor bundles, which I describe in detail. Using tractor fields instead of vector fields along the curve allows to construct an analogy of the Frenet frame and use it to define invariants.
28 Nov 2022: Geometry seminar
Günter Rote (FU Berlin): Grid peeling and the affine curve-shortening flow

Abstract

Grid Peeling is the process of taking the integer grid points inside a convex region and repeatedly removing the convex hull vertices. It has been observed by Eppstein, Har-Peled, and Nivasch, that, as the grid is refined, this process converges to the Affine Curve-Shortening Flow (ACSF), which is defined as a deformation of a smooth curve.

As part of the M.Ed. thesis of Moritz Rüber, we have investigated the grid peeling process for special parabolas, and we could observe some striking phenomena. This has lead to a conjecture for the value of the constant that relates the two processes.

14 Nov 2022: Geometry seminar
Karoly Bezdek (University of Calgary): Ball polyhedra -- old and new

Abstract

We survey a number of metric properties of intersections of finitely many congruent balls called ball polyhedra in Euclidean spaces. In particular, our talk is centered around the status of the shortest billiard conjecture, the global rigidity conjecture, Hadwiger???s covering conjecture, and the Gromov-Klee-Wagon volumetric conjecture for ball polyhedra.

17 Oct 2022: Geometry seminar
Group meeting

Events in former years

External Links


Copyright © 1996-2021 by Differential Geometry and Geometric Structures. All rights reserved.
Web design: Hans Havlicek, Udo Hertrich-Jeromin
(W3C) Last modified on Thu 23 Nov 2023, 10:12:10 CET