Prüfung aus Mathematik 1 für BI am 12. Oktober 2018

Deckblatt bitte nicht herunterreißen! Arbeitszeit: 90 Minuten!

1. Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. Argumentieren Sie bei richtigen Aussagen durch eine kurze aber schlüssige Erklärung und widerlegen Sie falsche Aussagen durch ein Gegenbeispiel.

- (a) Wenn $1 + \frac{1}{n}$ die *n*-te Partialsumme einer unendlichen Reihe ist, so konvergiert diese Reihe.
- (b) Wenn $1 \frac{1}{n}$ der n-te Summand einer unendlichen Reihe ist, so konvergiert diese Reihe.
- (c) Wenn $f, g : \mathbb{R} \to \mathbb{R}$ zwei überall differenzierbare Funktionen sind und g an der Stelle $x_0 = 17$ eine waagrechte Tangente hat, so hat auch das Produkt $f \cdot g$ an $x_0 = 17$ eine waagrechte Tangente.
- (d) Wenn $f, g : \mathbb{R} \to \mathbb{R}$ zwei überall differenzierbare Funktionen sind und g an der Stelle $x_0 = 17$ eine waagrechte Tangente hat, so hat auch die Zusammensetzung $f \circ g$ an $x_0 = 17$ eine waagrechte Tangente.
- 2. Diskutieren Sie für die auf [-2,5] definierte Funktion

$$f(x) = 2x^2 - |x|$$

die folgenden Punkte:

- Differenzierbarkeit an $x_0 = 0$
- Monotonieverhalten und Extrema (inkl. Randextrema)

Verwenden Sie die gesammelten Informationen, um eine Skizze von f anzufertigen.

- 3. (a) Formulieren Sie den (kleinen) Mittelwertsatz der Integralrechnung.
 - (b) Geben Sie die Definition des Differentialquotienten (also der Ableitung) einer allgemeinen Funktion $h : \mathbb{R} \to \mathbb{R}$ an einer Stelle $x_0 \in \mathbb{R}$ an.
 - (c) Es sei $h : \mathbb{R} \to \mathbb{R}$ stetig und $a \in \mathbb{R}$ beliebig. Bestimmen Sie mit Hilfe von Beispiel 2 (a) und (b) die Ableitung der Funktion

$$H(x) = \int_{a}^{x} h(t) dt.$$

4. Bestimmen Sie die Lösung des Anfangswertproblems

$$y'(x) = \frac{y(x)}{x} + \frac{1}{x+1}, \quad y(1) = 0.$$