Prüfung aus Mathematik 3 für MB und VT am 15. Oktober 2010

Deckblatt bitte nicht herunterreißen! Arbeitszeit: 90 Minuten!

- 1. (a) Formulieren Sie den Satz von Dirichlet über Fourierreihen.
 - (b) Lösen Sie das Sturm-Liouvillesche Randwertproblem

$$y'' + \lambda y = 0,$$
 $y'(0) = y'(\pi) = 0.$

- (c) Entwickeln Sie die auf dem Intervall $[0,\pi)$ definierte Funktion $g(x)=\cos(17x)$ nach Eigenfunktionen des Sturm-Liouvilleschen Randwertproblems aus Beispiel (b).
- 2. (a) Es sei A eine $n \times n$ Matrix. Erklären Sie allgemein die Vorgehensweise zur Lösung eines Differentialgleichungssystems $\dot{\boldsymbol{x}}(t) = A\,\boldsymbol{x}(t)$ mit Hilfe der Eigenwert-Eigenvektormethode.
 - (b) Bestimmen Sie ein Fundamentalsystem des Differentialgleichungssystems

$$\dot{\boldsymbol{x}}(t) = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{array}\right) \boldsymbol{x}(t).$$

- 3. (a) Formulieren Sie den Integralsatz von Gauß.
 - (b) Es sei F der Schnitt der Ebene x + 2y + z = 4 mit dem ersten Oktanten und

$$\boldsymbol{v} = \begin{pmatrix} zx \\ 2y \\ x+y \end{pmatrix}.$$

Berechnen Sie unter Verwendung eines geeigneten Integralsatzes das Kurvenintegral $\int_C \boldsymbol{v} \, d\boldsymbol{x}$, wobei C die im mathematisch positiven Sinn durchlaufene Randkurve von F bezeichnet.

4. Bestimmen Sie für $0 \le x \le \pi$ und $t \ge 0$ eine Lösung der Differentialgleichung

$$u_t = u_{xx},$$
 $u_x(0,t) = u_x(\pi,t) = 0,$ $u(x,0) = 1 - \cos(17x).$