Prüfung aus Mathematik (2) ALT für BI am 3. 12. 2004

Deckblatt bitte nicht herunterreißen! Bitte für jedes Beispiel ein eigenes Blatt verwenden!

Arbeitszeit: 150 Minuten

Zuname:
Vorname:
Kennzahl / Mat.Nr.:

- 1.) a) Lösen Sie das homogene Differentialgleichungssystem $\dot{\boldsymbol{y}} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \boldsymbol{y} \quad (\lambda = -1, 1, 1) \quad \text{mit der Eigenwert-Eigenvektormethode.}$
- b) Wie lautet der <u>Ansatz</u> für eine Partikulärlösung des Systems $y' = Ay + re^{-t} + se^t$, wobei $r, s \in \mathbb{R}^3$ konstante Spaltenvektoren sind.
- 2.) Ein Körper mit Einheitsmasse bewege sich auf der y-Achse. Seine Position zum Zeitpunkt t ist y=y(t), sein Impuls p ist durch $p=\frac{dy}{dt}$ gegeben. Ist K=K(y) eine vom Ort y abhängige, in Bahnrichtung wirkende Kraft, so lautet die Newtonsche Bewegungsgleichung $\frac{dp}{dt}=K(y)$. Bei konstanter Masse erhält man damit y''=K(y), also einen Spezialfall einer autonomen DG zweiter Ordnung vom allgemeinen Typ y''=f(y,y'). Lösen Sie diese DG mittels der üblichen Substitution, wodurch die DG in zwei Differentialgleichungen erster Ordnung zerfällt. Zur übersichtlichen Darstellung der Lösung empfiehlt es sich dabei, die von der Position y abhängige $Energie\ E(y)=\int K(y)dy$ einzuführen.
- 3.) Geben Sie alle radialsymmetrischen harmonischen Funktionen u(x,y)=h(r) $(r=\sqrt{x^2+y^2})$ in zwei Variablen an. Gesucht ist also eine möglichst allgemeine Lösung der Laplaceschen Differentialgleichung $\bar{\Delta}u=0$, wobei $\bar{\Delta}$ der Laplaceoperator in Polarkoordinaten ist.
- 4.) Gegeben seien die Punkte $(x_1, y_1) = (0, 1)$, $(x_2, y_2) = (1, 0)$, $(x_3, y_3) = (2, 0)$, $(x_4, y_4) = (3, 0)$. Bestimmen Sie die Ausgleichsparabel, also diejenige Parabel $y = y(x) = a + bx + cx^2$, für die $\sum_{k=1}^{4} (a + bx_k + cx_k^2 y_k)^2$ minimal wird, und fertigen Sie eine Skizze an.
- 5.) Lösen Sie die Schwingungsgleichung für eine quadratische Membran mit Seitenlänge 1, die an allen vier Seiten fest eingespannt ist.

Prüfung aus Mathematik (2) NEU für BI am 3. 12. 2004

Deckblatt bitte nicht herunterreißen! Bitte für jedes Beispiel ein eigenes Blatt verwenden! Arbeitszeit: 150 Minuten

Zuname: .				 	 		•
Vorname:				 	 		
Kennzahl	/ Ma	t.N	r.: .	 	 		

- 1.) a) Lösen Sie das homogene Differentialgleichungssystem $\dot{\boldsymbol{y}} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \boldsymbol{y} \quad (\lambda = -1, 1, 1) \quad \text{mit der Eigenwert-Eigenvektormethode.}$
- b) Wie lautet der <u>Ansatz</u> für eine Partikulärlösung des Systems $y' = Ay + re^{-t} + se^t$, wobei $r, s \in \mathbb{R}^3$ konstante Spaltenvektoren sind.
- 2.) Ein Körper mit Einheitsmasse bewege sich auf der y-Achse. Seine Position zum Zeitpunkt t ist y=y(t), sein Impuls p ist durch $p=\frac{dy}{dt}$ gegeben. Ist K=K(y) eine vom Ort y abhängige, in Bahnrichtung wirkende Kraft, so lautet die Newtonsche Bewegungsgleichung $\frac{dp}{dt}=K(y)$. Bei konstanter Masse erhält man damit y''=K(y), also einen Spezialfall einer autonomen DG zweiter Ordnung vom allgemeinen Typ y''=f(y,y'). Lösen Sie diese DG mittels der üblichen Substitution, wodurch die DG in zwei Differentialgleichungen erster Ordnung zerfällt. Zur übersichtlichen Darstellung der Lösung empfiehlt es sich dabei, die von der Position y abhängige Energie $E(y)=\int K(y)dy$ einzuführen.
- 3.) Geben Sie alle radialsymmetrischen harmonischen Funktionen u(x,y)=h(r) $(r=\sqrt{x^2+y^2})$ in zwei Variablen an. Gesucht ist also eine möglichst allgemeine Lösung der Laplaceschen Differentialgleichung $\bar{\Delta}u=0$, wobei $\bar{\Delta}$ der Laplaceoperator in Polarkoordinaten ist.
- 4.) a) Berechnen Sie Mittel und Varianz der Poissonverteilung mit Parameter μ .
- b) In einer Telephonzentrale wird ständig die Zahl k der in Minute eingehenden Anrufe registriert. Zu einer bestimmten Tageszeit werden in 20 aufeinanderfolgenden Minuten folgende Werte k_1, \ldots, k_{20} beobachtet: 1,0,0,0,2,0,1,0,0,2,0,1,0,0,1,0,1,0,1. Von der Messgröße k darf angenommen werden, dass sie poissonverteilt ist. Berechnen Sie das empirische Mittel ξ und die empirische Varianz s^2 . Vergleichen Sie s^2 mit der Varianz σ^2 der Poissonverteilung mit Parameter ξ .
- 5.) Lösen Sie die Schwingungsgleichung für eine quadratische Membran mit Seitenlänge 1, die an allen vier Seiten fest eingespannt ist.