Prüfung – Mathematik 3 für MB, WIMB und VT - WS 2021/22TU Wien (online), 10. Juni 2022.

1.	$egin{aligned} & Variante \ A \ & Variante \ A \end{aligned}$ Wir betrachten das Sturm-Liouville Eigenwertproblem
	$y''(x) + \lambda(1+x)y(x) = 0, y'(0) = y(\pi/2) = 0.$ (SL-EWP)
	Weiters seien e_0, e_1, \ldots ein zu SL-EWP gehöriges Orthonormalsystem von Eigenfunktionen mit Eigenwerten $\lambda_0, \lambda_1, \ldots$ Zudem sei $f : \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Funktion mit $f'(0) = f(\pi/2) = 0$ und schließlich seien $c_0, c_1, \ldots \in \mathbb{R}$ gegeben durch $c_n = \langle e_n, f \rangle, n \in \mathbb{N}$, wobei $\langle \cdot, \cdot \rangle$ das zu SL-EWP gehörige innere Produkt bezeichne.
	(a) Ist die folgende Aussage wahr oder falsch? Es gibt Zahlen $a, b \in \mathbb{R}$, die nicht beide 0 sind, sodass $ax + b$ orthogonal auf den von $\{1, x\}$ aufgespannten Unterraum steht. \Box wahr \Box falsch
	(b) Welches der folgenden Integrale ist sicher 0? $\Box \int_{0}^{\frac{\pi}{2}} e_1(x)e_1(x) dx \Box \int_{0}^{\frac{\pi}{2}} e_1(x)e_2(x) dx \Box \int_{0}^{\frac{\pi}{2}} e_1(x)e_1(x)(1+x) dx$ $\Box \int_{0}^{\frac{\pi}{2}} e_1(x)e_2(x)(1+x) dx$
	(c) Welchen Wert hat das Integral $\int_0^{\frac{\pi}{2}} e_1(x)e_1(x)(1+x) dx$? $\Box 0 \Box 1 \Box \pi/2$
	(d) Setzen Sie das fehlende Zeichen in folgende Aussage ein: Es gilt $ f - \sum_{n=0}^{m} c_n e_n \square f - \sum_{n=0}^{m} d_n e_n $ für alle $d_0, \ldots, d_m \in \mathbb{R}$ mit $(d_0, \ldots, d_m) \neq (c_0, \ldots, c_m)$. $\square < \square = \square >$
	(e) Welchen Wert hat $\sum_{k=0}^{\infty} c_k^2$? $\Box \ f\ ^2 \Box 0 \Box 1$
	(f) Ist die folgende Aussage wahr oder falsch? Zu jedem Eigenwert λ_i von SL-EWP gibt es einen Eigenwert λ_j , $i \neq j$, sodass λ_j konjugiert komplex zu λ_i ist. \square wahr \square falsch
	(g) Ist die folgende Aussage wahr oder falsch? $Es \ gilt \ \langle e_4, e_4 \rangle > 0.$ $\Box \ wahr \ \Box \ falsch$
	(h) Ist die folgende Aussage wahr oder falsch? Es gibt Eigenfunktionen e_i und e_j , $i \neq j$, zum selben Eigenwert. \square wahr \square falsch
	(i) Wie viele Eigenwerte λ_i erfüllen $ \lambda_i > 5$?

Der Ausdruck $\int_0^{\frac{\pi}{2}} (\mu e_3(x) - \cos(x)) dx$ wird maximal für $\mu = \int_0^{\frac{\pi}{2}} e_3(x) \cos(x) (1+x) dx$. \Box wahr \Box falsch

 $\ \square \ keiner \ \square \ genau \ einer \ \square \ unendlich \ viele$

(j) Ist die folgende Aussage wahr oder falsch?

 $Variante\ B$

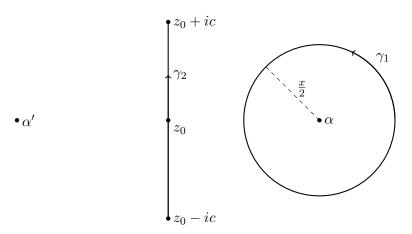
Wir	betrachten	das	Sturm-	-Liouville	Eigenwert	problem
-----	------------	-----	--------	------------	-----------	---------

$g(x) + \lambda(1 + x)g(x) = 0, g(0) = g(\lambda/2) = 0.$	$y''(x) + \lambda(1+x)y(x) = 0,$	$y(0) = y'(\pi/2) = 0.$	(SL-EWP
---	----------------------------------	-------------------------	---------

Weiters seien e_0, e_1, \ldots ein zu SL-EWP gehöriges Orthonormalsystem von Eigenfunktionen mit Eigenwerten $\lambda_0,\lambda_1,\ldots$ Zudem sei $f:\mathbb{R}\to\mathbb{R}$ eine stetig differenzierbare Funktion mit f(0)= $f'(\pi/2) = 0$ und schließlich seien $c_0, c_1, \ldots \in \mathbb{R}$ gegeben durch $c_n = \langle e_n, f \rangle, n \in \mathbb{N}$, wobei $\langle \cdot, \cdot \rangle$ das zu SL-EWP gehörige innere Produkt bezeichne.

(a)	Ist die folgende Aussage wahr oder falsch? Funktionen der Form $ax + b$, mit $a, b \in \mathbb{R}$, nicht beide 0, stehen nie orthogonal auf den von $\{1, x\}$ aufgespannten Unterraum. \Box wahr \Box falsch
(b)	Welches der folgenden Integrale ist sicher 1? $\Box \int_{0}^{\frac{\pi}{2}} e_{1}(x)e_{1}(x) dx \Box \int_{0}^{\frac{\pi}{2}} e_{1}(x)e_{2}(x) dx \Box \int_{0}^{\frac{\pi}{2}} e_{1}(x)e_{1}(x)(1+x) dx$ $\Box \int_{0}^{\frac{\pi}{2}} e_{1}(x)e_{2}(x)(1+x) dx$
(c)	Welchen Wert hat das Integral $\int_0^{\frac{\pi}{2}} e_1(x)e_2(x)(1+x) dx$? $\Box 0 \Box 1 \Box \pi/2$
(d)	Setzen Sie das fehlende Zeichen in folgende Aussage ein: Es gilt $\ f - \sum_{n=0}^m d_n e_n\ \square \ f - \sum_{n=0}^m c_n e_n\ $ für alle $d_0, \ldots, d_m \in \mathbb{R}$ mit $(d_0, \ldots, d_m) \neq (c_0, \ldots, c_m)$. $\square < \square = \square >$
(e)	Welchen Wert hat $\sum_{k=0}^{\infty} c_k^2$? $\Box \ f\ ^2 \Box 0 \Box 1$
(f)	Ist die folgende Aussage wahr oder falsch? Zu jedem Eigenwert λ_i von SL-EWP gibt es einen Eigenwert λ_j , $i \neq j$, sodass λ_j konjugiert komplex zu λ_i ist. \Box wahr \Box falsch
(g)	Ist die folgende Aussage wahr oder falsch? $Es\ gilt\ \langle e_5, e_5 \rangle < 0.$ $\Box\ wahr\ \Box\ falsch$
(h)	Ist die folgende Aussage wahr oder falsch? Es gibt keine Eigenfunktionen e_i und e_j , $i \neq j$, zum selben Eigenwert. \Box wahr \Box falsch
(i)	Wie viele Eigenwerte λ_i erfüllen $ \lambda_i > 7$? \square keiner \square genau einer \square unendlich viele
(j)	Ist die folgende Aussage wahr oder falsch?
	Der Ausdruck $\int_0^{\frac{\pi}{2}} (\mu e_4(x) - \sin(x)) dx$ wird minimal für $\mu = \int_0^{\frac{\pi}{2}} e_4(x) \sin(x) (1+x) dx$. \square wahr \square falsch
	10 Punkte (ie 1)

- 2. Es seien $z_0 \in \mathbb{C}$ und c > 0 beliebig. Weiters seien $\alpha = z_0 + x$ und $\alpha' = z_0 x$ für x > 0.
 - (a) Finden Sie Parametrisierungen für die Wege γ_1 und γ_2 , welche durch die folgende Skizze gegeben sind.



(b) Berechnen Sie

$$\oint_{\gamma_1} \frac{1}{z - \alpha} dz$$
 und $\oint_{\gamma_1} \frac{1}{z - \alpha'} dz$.

Begründen Sie Ihre Lösung und geben Sie alle verwendeten Sätze an!

(c) Zeigen Sie, dass

$$\lim_{x\to 0^+} \int_{\gamma_2} \biggl(\frac{1}{z-\alpha} - \frac{1}{z-\alpha'}\biggr) \,\mathrm{d}z = -2\pi i.$$

Hinweis: Formelsammlung zu Stammfunktionen einiger häufig auftretender Funktionen (insb. arctan als Stammfunktion).

 $\lim_{s\to+\infty}\arctan(s)=\frac{\pi}{2}$ und $\arctan(-s)=-\arctan(s)$.

10 Punkte (2+4+4)

- 3. (a) Formulieren Sie den Satz über die Existenz von Laplacetransformierten.
 - (b) Bestimmen Sie die Laplacetransformierte $F(s) := \mathcal{L}\{f(t)\}(s), \, s > 0, \, \text{der Funktion}$

$$f(t) = t^2 \sin(2t).$$

(c) Bestimmen Sie die Funktion g(t), deren Laplacetransformation gegeben ist durch

$$G(s) = \mathcal{L}{g(t)}(s) = \frac{1}{(s^2 + 9)^2}$$

für s > 0.

Hinweis: Formelsammlung zur Laplacetransformation sowie zu trigonometrischen Funktionen.

10 Punkte (2+4+4)

4. Gegeben ist die Differentialgleichung

$$xu_x(x,y) + yu_y(x,y) = 0,$$

für x > 0 und y > 0.

- (a) Ist die Differentialgleichung homogen?
- (b) Zeigen Sie mithilfe der Methode der Charakteristiken, dass eine allgemeine Lösung der Differentialgleichung von der Form $u(x,y)=f(\frac{x}{y})$ ist, wobei $f:(0,\infty)\to\mathbb{R}$ eine beliebige stetig differenzierbare Funktion ist.
- (c) Entscheiden Sie, ob die Differentialgleichung eine Lösung besitzt, welche u(1-y,y)=y für y>0 erfüllt und schreiben Sie eine solche Lösung gegebenenfalls explizit an. Begründen Sie Ihre Antwort!
- (d) Bestimmen Sie eine möglichst allgemeine Lösung der partiellen Differentialgleichung

$$xu_x(x,y) + yu_y(x,y) = u(x,y)$$

für x > 0 und y > 0.

Hinweis: Benutzen Sie die Variablensubstitution $X(x,y) = \frac{y}{x}$ und Y(x,y) = y und betrachten Sie u(x,y) = U(X(x,y),Y(x,y)).

10 Punkte (1+4+2+3)

Notenschlüssel: S1: 35-40 Punkte; U2: 30-34 Punkte; B3: 25-29 Punkte; G4: 20-24 Punkte; N5: 0-19 Punkte