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Semigraphoids are combinatorial structures arising from
models of probabilistic conditional independence. We in-
vestigate the classification of maximal semigraphoids on
n random variables to better understand these sets.

Purpose

♦

•Let A, B, C be pairwise disjoint subsets of the set
[n] = {1, . . . , n}. We regard statements of the form
A ⊥⊥ B|C as triplets over [n].

What is a Semigraphoid?

A semigraphoid S is a set of triplets that satisfy the following
for every pairwise disjoint A, B, C, D ⊂ [n]:

1 Symmetry: If A ⊥⊥ B|C ∈ S, then B ⊥⊥ A|C ∈ S.

2 Decomposition: If A ⊥⊥ BC|D ∈ S, then A ⊥⊥ B|D ∈ S.

3 Weak Union: If A ⊥⊥ BC|D ∈ S, then A ⊥⊥ B|CD ∈ S.

4 Contraction: If {A ⊥⊥ B|CD, A ⊥⊥ C|D} ⊂ S, then
A ⊥⊥ BC|D ∈ S. [1,4]

Lattice of Semigraphoids on Three Random Variables
Height Depth

4 0

3 1

2 2

1 3

0 4∅

1 ⊥⊥ 2

1 ⊥⊥ 2, 1 ⊥⊥ 2|3

1 ⊥⊥ 2, 1 ⊥⊥ 3
1 ⊥⊥ 2, 2 ⊥⊥ 3

1 ⊥⊥ 2, 1 ⊥⊥ 3, 2 ⊥⊥ 3
1 ⊥⊥ 23

Complete

1 ⊥⊥ 3

1 ⊥⊥ 3, 1 ⊥⊥ 3|2
1 ⊥⊥ 3, 2 ⊥⊥ 3

12 ⊥⊥ 3

2 ⊥⊥ 3

2 ⊥⊥ 3, 2 ⊥⊥ 3|1

13 ⊥⊥ 2

1 ⊥⊥ 2|3

1 ⊥⊥ 2|3, 1 ⊥⊥ 3|2
1 ⊥⊥ 2|3, 2 ⊥⊥ 3|1

1 ⊥⊥ 2|3, 1 ⊥⊥ 3|2, 2 ⊥⊥ 3|1

1 ⊥⊥ 3|2

1 ⊥⊥ 3|2, 2 ⊥⊥ 3|1

2 ⊥⊥ 3|1

Semigraphoids as a Lattice

•With the binary relation ⊆, the set of all semigraphoids
on n random variables is a lattice [4]. Let S and T be
semigraphoids. Then the join of S and T is 〈S ∪ T 〉 and
the meet is precisely S ∩ T .

•Statements of the form a ⊥⊥ b|C where a, b ∈ [n] and
C ⊆ [n] \ {a, b} are the building blocks of the lattice of
semigraphoids on n random variables. They are the
atoms.

•The lattice of semigraphoids is atomic. That is, every
semigraphoid is generated by a join of atoms [3].

•We define an atom a ⊥⊥ b|C to be a k-atom if |C| = k.
The set {k − atoms} is the set of all k-atoms in CI(n) for
a certain cardinality k.

Maximality of non-k-atoms

Theorem. If A ⊆ 〈{l − atoms : l < k}〉 and
B ⊆ 〈{l − atoms : l > k}〉, then 〈A ∪B〉 = 〈A〉 ∪ 〈B〉.

Corollary. Given any integer k ≤ n− 2 and generating set
of atoms C. A semigraphoid S = 〈C〉 contains a k-atom if
and only if there is at least one k-atom in C.

Theorem. The semigraphoid 〈∪l∈{1,...,n−2}\k{l − atoms}〉
is maximal for any k ∈ {1, . . . , n − 2}. This semigraphoid
is notated 〈non− k − atoms〉 and called the non-k-atoms.
•Let a ⊥⊥ b|C be any k-atom for k < n− 2. Then we have
〈a ⊥⊥ b|C ∪ {(k + 1)− atoms}〉 =
〈{x ⊥⊥ y|C : for all x, y ∈ [n] \ C} ∪ {(k + 1)− atoms}〉.

•Let a ⊥⊥ b|C be any k-atom for k < n− 2. Then we have
〈a ⊥⊥ b|C ∪ {(k − 1)− atoms}〉 =
〈{x ⊥⊥ y|Z : xyZ = abC} ∪ {(k − 1)− atoms}〉.

Direct Sums

Corollary. Any maximal semigraphoid that is not equal to
〈non− k − atoms〉 for any k, must have at least one l-atom
for every 0 ≤ l ≤ n− 2.

Let A and B be two disjoint sets of random variables. Given
two semigraphoids S, T such that S ⊆ CI(A) and T ⊆
CI(B), we define the direct sum [3] of S and T to be the
semigraphoid:

S ⊕ T = 〈S ∪ T ∪ {A ⊥⊥ B}〉.

The direct sum operation is associative. For any semi-
graphoids S , T , and U on disjoint sets we have

S ⊕ (T ⊕ U) = (S ⊕ T )⊕ U .

Lemma. Let N be an index set and A ⊂ N . The direct
sum of the complete model on A and the complete model on
N \ A is CI(N).

Theorem. Let N be an index set and A ⊂ N . The direct
sum of a maximal semigraphoid on A and the complete model
on N \ A is a maximal semigraphoid on N .

The following direct sums are maximal on four random vari-
ables:
1 〈a ⊥⊥ bc〉 ⊕ 〈∅〉{d} = 〈∅〉{a} ⊕ 〈∅〉{b,c} ⊕ 〈∅〉{d}

= 〈a ⊥⊥ d〉 ⊕ 〈∅〉{b,c}
2 〈a ⊥⊥ b, a ⊥⊥ c, b ⊥⊥ c〉 ⊕ 〈∅〉{d}
3 〈a ⊥⊥ b|c, a ⊥⊥ c|b, b ⊥⊥ c|a〉 ⊕ 〈∅〉{d}

Maximal on Four Random Variables

All maximal semigraphoids on four random variables up to
permutation (for arbitrary a, b, c, d ∈ [4]):

For k ∈ {0, 1, 2}, the first three maximal semigraphoids are
the non-k-atoms.

4 〈∪k∈{0,1}{k − atoms}〉
5 〈∪k∈{0,2}{k − atoms}〉
6 〈∪k∈{1,2}{k − atoms}〉

The last four follow definite patterns:

7 〈CI(3) ∪ {2− atoms}〉

= 〈



a ⊥⊥ b
a ⊥⊥ c
b ⊥⊥ c



,



a ⊥⊥ b|c
a ⊥⊥ c|b
b ⊥⊥ c|a



, {2− atoms} 〉

8 〈 {0− atoms},



a ⊥⊥ b|c
a ⊥⊥ c|b
b ⊥⊥ c|a



,



a ⊥⊥ b|cd
a ⊥⊥ c|bd
b ⊥⊥ c|ad



〉

Observe that these last two are formed by strategically
choosing a chain of atoms without consequences.

0-atoms 1-atoms 2-atoms

9 〈 a ⊥⊥ b, ∼


a ⊥⊥ x|b
b ⊥⊥ x|a

x∈[4]\ab

, c ⊥⊥ d|ab 〉

10 〈 ∼a ⊥⊥ b,



a ⊥⊥ x|b
b ⊥⊥ x|a

x∈[4]\ab

, ∼c ⊥⊥ d|ab 〉

An algorithm for finding all maximal semigraphoids on n random variables begins with the non-k-atoms. For every set
of non-k-atoms, we add a k-atom to the set while simultaneously choosing either (k − 1)- or (k + 1)-atoms to remove
that interact with that k-atom (have consequences). Unless our maximal semigraphoid is a chain of atoms that do not
interact with one another, they will be composed of sets of k-atoms for every k except two consecutive, say l and l + 1.

Algorithm Sketch

♦

Outlook

•A graphoid G is a semigraphoid that satisfies a fifth
axiom for every pairwise disjoint A, B, C, D ⊂ [n]:
Intersection: If {A ⊥⊥ B|CD, A ⊥⊥ C|BD} ⊂ G, then
A ⊥⊥ BC|D ∈ G. [1]

•As graphoids are semigraphoids by definition, we extend
our study to these structures. Out of the ten types of
maximal semigraphoids classified above, the semigraphoids
of type 1,2, and 4 are all of the maximal graphoids.

•Semigraphoids on n discrete random variables define
algebraic varieties [1,2]. We plan to further investigate the
conditional independence ideals of these maximal sets.
Addressing computational complications that the
contraction axiom presents.
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