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1 Introduction

Motion design is an important and widely studied problem, e.g., in robotics,
manufacturing geometry, and computer animation. We are interested in the
design of a smooth and fair gliding motion of one surface on another surface
such that given positions already in contact are either interpolated or ap-
proximated. We confine ourselves to differentiable one-parameter motions in
Euclidean 3-space and to parametric surfaces. Using variational subdivision,
instantaneous kinematics, and the relation to line geometry, we show how to
construct such motions. Gliding motion design has applications e.g. in the NC
machining of complex shapes (cf. Marciniak (1991)), and in medical applica-
tions where the gliding motion of joints is studied (cf. Hoschek and Weber
(1987)).

1.1 Review of previous work

Motion design is an important research area in fields such as Computational
Geometry (see e.g. Halperin et al. (1997); Sharir (1997)), Robotics and Kine-
matics (see e.g. Latombe (2001); Park and Ravani (1995)), Computer Graph-
ics (see e.g. Shoemake (1985); Marchand and Courty (2002)) and Computer
Aided Geometric Design (see e.g. Röschel (1998); Jüttler and Wagner (2002)).
For applications it is important to be able to control the smoothness level
of a motion. Forces and vibrations depend on second derivatives and jumps
in the velocity should be avoided with NC machining and in computer an-
imation. Thus one goal is the design of C2 motions. Smooth motions that
make use of NURBS techniques have been investigated by e.g. Jüttler and
Wagner (1996). To describe rigid body motions it is necessary to use rational
rather than polynomial representations. However, rational representations are
much less suitable for variational design and efficient optimization techniques
than polynomial ones. Therefore, Hyun et al. (2001) recently investigated the
construction of affine spline motions with minimal distortion. Motion design
based on the quaternion representation of the spherical component and non-
linear extensions of spline constructions in affine spaces to the sphere (see the
references in Röschel (1998)), are also difficult to deal with for optimization
purposes. Algorithms for motion fairing using the quaternion representation
have been proposed by Fang et al. (1998) and Hsieh and Chang (2003), where
the latter are using genetic algorithms. Belta and Kumar (2002) recently pre-
sented a singular value decomposition projection method for interpolation on
the group of Euclidean motions SE(3).
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1.2 Contributions of the present paper

Hofer et al. (2002) have outlined two new approaches to motion design which
deal with variational motion design and that allow to incorporate constraints
into the motion planning process. The first approach has been studied in
Hofer et al. (2003), the second approach will be studied here and is extended
to handle motions constrained by a contacting surface pair which is the main
contribution of this paper. The singularities of motions constrained by a con-
tacting surface pair have been studied by Pottmann and Ravani (2000). Here
we present an algorithm for the design of a gliding motion for the entire mo-
tion cycle rather than around singularities. All other previous works have not
considered gliding motions where a rigid moving body maintains contact with
another body during its motion cycle. Wallner (2002) has investigated glid-
ing spline motions using an active motion approach. However, the resulting
motions are in general only near-Euclidean near-contact spline motions. Our
work in terms of the formulation of the fairness is also different from pre-
vious approaches on un-constraint motion design in that our formulation of
‘fairness’ is based on fair trajectories of chosen feature points of the moving
body. A rigid body motion is a curve in the Euclidean motion group and vari-
ational motion design could be based on expressing the fairness of that curve
(see Park and Ravani (1997)). However, for the applications we have in mind,
not the motion as such, but its action on a certain rigid body is employed in
fairness criteria. Another contribution of this paper is the extension of known
interpolatory variational subdivision algorithms for curves to special cases of
variational curve design via subdivision on k-dimensional surfaces in R

d.

The paper is organized as follows. In Sect. 2 we review some aspects of ex-
isting interpolatory variational subdivision algorithms for curves and extend
them to curves on surfaces. In Sect. 3 we summarize relations between spatial
kinematics and line geometry that we use for our motion design algorithm.
In Sect. 4 we present a subdivision algorithm for unconstraint motion design,
which in Sect. 5 is extended to a subdivision algorithm for the design of a
gliding motion of one surface on another surface such that given positions in
contact are interpolated or approximated. We conclude the paper in Sect. 6
with a summary of our work and an outlook towards future research.

2 Variational subdivision for curves

Kobbelt (1996) has introduced a class of interpolatory variational subdivision
schemes. Thereby, new points for the refinement of a given polygon are deter-
mined by solving an optimization problem that minimizes quadratic energy
functionals. This is a familiar approach from non-discrete curve design where
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energy functionals are minimized for curve fairing. Kobbelt and Schröder
(1998) have extended interpolatory variational subdivision from the uniform
to the non-uniform parameter setting and discussed it in a multiresolution
framework. These schemes are global, i.e., every new point depends on all
points to be refined. Interpolation is guaranteed since the old points belong
to the newly calculated finer version. The computational complexity is linear
in the number of points of the polygon.

Important examples of variational subdivision are found by minimizing dif-
ferences. In the uniform (non-uniform) case we minimize forward (divided)
differences, see Kobbelt and Schröder (1998). Explicit formulae for the mini-
mization of second forward differences in the open and closed curve case can be
found in Hofer et al. (2003), who have also generalized interpolatory schemes
to approximating ones. Kobbelt (1996) has shown that by minimizing second
differences the limit curves are at least C2 curves.

2.1 Variational subdivision for surface curves

Given are N points f1, . . . , fN on a smooth two-dimensional parametric surface
Φ ⊂ R

3. If Φ(u, v) is a parametrization of Φ, then fi = Φ(ui, vi). To compute
a variational surface curve on Φ that interpolates the given points we propose
the following algorithm (which we call ‘tangential method’, see Fig. 1).PSfrag replacements
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fi+1

q∗
i−1

q∗
iqi−1

qi

q′
i−1
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ai−1

ai

bi−1
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Fig. 1. Variational subdivision for surface curves.

First insert by some heuristic between the given points new points q1, . . . ,qN−1

on Φ, i.e., qj = Φ(uj, vj). Then compute a basis ai,bi of Φ′s tangent space at
qi and define (yet unknown) displacement vectors

vi := λiai + µibi. (1)
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The points q∗
i := qi + vi are found by minimizing the objective function

F2(λ1, µ1, . . . , λN−1, µN−1) =
N−1∑

i=1

‖fi − 2q∗
i + fi+1‖

2

+
N−2∑

i=1

‖q∗
i − 2fi+1 + q∗

i+1‖
2, (2)

which is quadratic in the 2(N − 1) unknowns λi, µi. The minimization of (2)
leads to the linear system of equations

AtCt = Bt (3)

where Bt and Ct are vectors of size 2N − 2,

Bt =




























a1 · (−q2 + 4f2 − 5q1 + 2f1)

b1 · (−q2 + 4f2 − 5q1 + 2f1)
...

ai · (−qi−1 + 4fi − 6qi + 4fi+1 − qi+1)

bi · (−qi−1 + 4fi − 6qi + 4fi+1 − qi+1)
...

aN−1 · (−qN−2 + 4fN−1 − 5qN−1 + 2fN)

bN−1 · (−qN−2 + 4fN−1 − 5qN−1 + 2fN)




























, (4)

Ct = (λ1, µ1, · · · , λi, µi, · · · , λN−1, µN−1)
T , (5)

and the upper triangular part of the symmetric (2N − 2) × (2N − 2) matrix
At is given by

At =




























5a2
1 5a1 · b1 a1 · a2 a1 · b2

5b2
1 b1 · a2 b1 · b2

. . .

6a2
i 6ai · bi ai · ai+1 ai · bi+1

6b2
i bi · ai+1 bi · bi+1

. . .

5a2
N−1 5aN−1 · bN−1

5b2
N−1




























, (6)
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where i = 2, . . . , N − 2. The solution of (3) are λi, µi, i = 1, . . . , N − 1 which
are then used to compute the points q∗

i := qi + λiai + µibi. Note that q∗
i is

only in the tangent space of Φ at qi. Hence we orthogonally project q∗
i onto a

point q′
i of Φ, i.e., we compute q′

i such that the following squared distance d2

is minimized,

d2(q∗
i ,q

′
i) = min

q̃i∈Φ
d2(q∗

i , q̃i). (7)

The minimization of (7) is a nonlinear problem and can be solved with a
Newton type method, cf. Fletcher (2000). If q∗

i is not on the medial axis of Φ
then we find a unique point q′

i ∈ Φ. We repeat the minimization of (2) until
the value of the objective function F2 falls below a certain threshold. Then we
insert the final positions q′

i into the sequence of given points fi and continue
with the next subdivision step.

Remark 1 One could perform variational subdivision in the parameter do-
main and then map the such obtained curve to the parametric surface. We call
this the ‘parameter domain method’. However, since the evaluation of a para-
metric surface is not an affine map, the such obtained surface curve does not
minimize the variational energy functional any more, see Fig. 2. A summary
of the ‘tangential method’ is given in Alg. 1.

Remark 2 All numerical experiments for this paper have been performed with
a Matlab implementation on a 1.8 GHZ Pentium 4 with 1GB RAM. Timing
results for our method (2) are given in Table 1. For a fast orthogonal projection
of a point onto a surface (7) we refer the reader to the literature (cf. Johnson
and Cohen (1998) and the references therein). Since we have just implemented
a simple un-optimized algorithm for the solution of (7) we do not give timing
results for this part of the algorithm. Table 1 contains the following informa-
tion, which we explain at hand of the Moebius strip example: given 7 input
points on Φ we apply 4 subdivision steps which results in 97 output points on
Φ. In subdivision step 1, 2, 3, 4 the optimization (2) has been performed 4, 3, 2, 2
times. The total number of 11 calls of (2) took a computation time of 0.07s.

Moebius strip Torus Wave Ellipsoid

input/output points 7/97 20/305 12/353 7/97

subdivision steps 4 4 5 4

optimization steps (2) 4,3,2,2 8,4,3,2 13,13,3,2,2 6,6,5,4

total calls/time (2) 11/0.07s 17/0.2s 33/0.24s 21/0.11s

Table 1
Numerical results for surface curves shown in Fig. 2.
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(a) (b)

(c) (d)

Fig. 2. Variational subdivision surface curves interpolating given surface points:
‘tangential method’ (black curve), ‘parameter domain method’ (gray curve): (a)
Moebius strip, (b) torus, (c) wave surface patch, (d) ellipsoid.

3 The relation between spatial kinematics and line geometry

3.1 Instantaneous kinematics

Consider a differentiable one-parameter rigid body motion in Euclidean 3-
space. Introducing Cartesian coordinate frames Σ in the moving system and
Σ0 in the fixed system, the time dependent position x0(t) of a point x ∈ Σ in
the fixed system Σ0 is given by

x0(t) = R(t)x + r(t). (8)
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Input: N0 points f
(0)
1 , . . . , f

(0)
N0

on a surface Φ, number of subdivision steps
S, maximum number of optimization steps M , threshold T for optimization
termination

for l = 1 to S
(1) insert initial points q

(l−1)
i between f

(l−1)
i and f

(l−1)
i+1 for i = 1, . . . , Nl−1 − 1

(2) while j < M and val > T do

• compute q
∗(l−1)
i by minimizing F2 given by (2)

• compute val = |F2(q
(l−1)
i ) − F2(q

∗(l−1)
i )|

• if val > T
· orthogonally project q

∗(l−1)
i 6∈ Φ onto q

′(l−1)
i ∈ Φ via (7)

· q
(l−1)
i = q

′(l−1)
i

· j = j + 1
endif

end

(3) f
(l)
2i−1 := f

(l−1)
i , i = 1, . . . , Nl−1

f
(l)
2i := q

(l−1)
i , i = 1, . . . , Nl−1 − 1

end

Output: NS := (N0 − 1)2S + 1 points f
(S)
1 , . . . , f

(S)
NS

on the surface Φ

Alg. 1: Variational subdivision algorithm for surface curves.

Here, the time dependent orthogonal matrix R(t) represents the spherical
component of the motion, and r(t) describes the trajectory of the origin of
the moving system. All arising functions shall be C1. By differentiation we get
the velocity vectors. It is well-known that the velocity vector field is linear at
any time instant. More precisely, at any time instant there exist vectors c, c̄
such that the velocity vector v(x) of any point x of the moving body can be
computed as

v(x) = c̄ + c × x. (9)

Note that in this formula all arising vectors are represented in the same system;
this may be the moving or the fixed system. The meaning of c, c̄ is as follows:
c̄ represents the velocity vector of the origin, and c is the so-called Darboux
vector. Only very special one-parameter motions have a constant, i.e., time-
independent velocity vector field. These motions are

• A translation with constant velocity (if c = 0),
• A uniform rotation about an axis (if c · c̄ = 0),
• A uniform helical motion (if c · c̄ 6= 0).
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The most general case is that of a uniform helical motion, which is the super-
position of a rotation with constant angular velocity about an axis A and a
translation with constant velocity parallel to A. If the moving body rotates
about an angle α, the translation distance is pα. The constant factor p is
referred to as pitch of the helical motion. The Plücker coordinates (a, ā) of
the axis A, the pitch p of the helical motion and the angular velocity ω are
computed from (c, c̄) by

a =
c

‖c‖
, ā =

c̄ − pc

‖c‖
, p =

c · c̄

c2
, ω = ‖c‖. (10)

For more details on helical motions and the close relation to line geometry we
refer to Pottmann and Wallner (2001).

3.2 Line geometry

In three-dimensional Euclidean space E3 with a Cartesian coordinate system,
a straight line L can be represented by a normalized direction vector l, ‖l‖ = 1,
and its moment vector l̄ := x×l with respect to the origin. Thereby, x denotes
the coordinate vector of an arbitrary point on L. Note that l̄ is independent
of the choice of x. The 6 coordinates of L are its so-called normalized Plücker
coordinates. They satisfy the Plücker relation l · l̄ = 0. Any 6-tuple (l, l̄) ∈ R

6

with ‖l‖ = 1 and l · l̄ = 0 represents a line in E3, where (l, l̄) and (−l, −̄l)
describe the same line.

One of the fundamental relations between spatial one-parameter motions and
line geometry is, that for every time instant t, the path normals (l, l̄), i.e., the
lines through a point x normal to v(x), of such a motion lie in a linear line
complex C. Such a linear complex is defined as the solution set of a linear
homogeneous equation in Plücker coordinates,

0 = v · l = (c̄ + c × x) · l = c̄ · l + c · l̄. (11)

The linear line complex is singular if either p = 0 or p = ∞. We speak of the
pitch p and the axis A of a linear complex which can be computed via (10),
since C is defined by (c, c̄). Conversely, any linear line complex C, defined as
the solution set of a linear homogeneous equation in Plücker coordinates

c̄ · l + c · l̄ = 0, (12)

can be obtained as a path normal complex of a spatial one-parameter motion.
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4 Variational subdivision for unconstraint motion design

Hofer et al. (2002) have outlined two variational subdivision algorithms for mo-
tion design. The first algorithm has been investigated in Hofer et al. (2003),
the second one is studied in this section. This algorithm computes to given
positions Φ1, . . . , ΦN of a moving body Φ a smooth and fair motion Φ(t) that
interpolates or approximates Φi at time instances ti. Current motion design
algorithms consider fairness criteria which possess full kinematic invariance.
This means that the result does not change under the application of Euclidean
displacements in the moving or fixed system, respectively. As a consequence
of that, one cannot impose fairness criteria based only on the trajectories
of points on the moved object. If one works in Euclidean three-space, the
advantage is, that fairness criteria can be employed much easier than if we
would work on the six-dimensional manifold of Euclidean motions. Therefore
we choose K feature points f 1, . . . , fK on the moving body Φ that represent it
sufficiently well, and use them to employ fairness criteria in the motion design
process. Fig. 3 shows a simplified robot gripper arm where the 24 vertices
of the polyhedral representation are used as feature points. For the choice of
feature points we refer the reader to Sect. 4.4. Another advantage of our ap-

Fig. 3. Simplified robot gripper arm with 24 feature points.

proach is, that it can be used with the whole class of interpolatory variational
subdivision algorithms introduced by Kobbelt (1996), and with the extension
to approximating schemes as discussed in Sect. 2. We present the algorithm
in terms of the minimization of second forward differences, since in that case
the formulae are shorter. The generalization to the non-uniform parameter
setting and to an approximating algorithm is straightforward, although a bit
more tedious.

4.1 Outline of the algorithm

Variational subdivision for curves combines the insertion and position op-
timization (i.e., minimization of some quadratic energy functional) of new
points in every subdivision step. In the motion design case we have to split
this into two separate steps, insertion and optimization, since we do not just
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have a single point but a rigid body. These two steps are repeated until the
required density of positions is reached:

(1) Position insertion: Insert between each two adjacent given copies one
Euclidean copy Φi|i+1 of the moving body. For given N positions this
gives N − 1 initial intermediate positions.

(2) Position optimization: Use Φi|i+1 as starting values for an iterative
optimization algorithm that uses linearized motions and simultaneous
variational subdivision on all K feature points. Terminate the iteration
if the objective function reaches a minimum, or alternatively, if the sum
of squared distances between the feature points in the current and in the
following iteration step falls below a certain threshold. Then add the final
positions to the sequence of given positions, update the number of given
positions to 2N − 1 and continue with step 1.

Remark 3 By a position of a rigid body we mean the location in space de-
termined by six parameters, three for translation and three for rotation. In the
literature, a position sometimes is only defined by the three translation param-
eters, and the three rotation parameters are referred to as orientation of the
rigid body.

4.2 Position insertion

Between each two adjacent given copies Φi and Φi+1 one new copy Φi|i+1 of the
moving body Φ is inserted (in the curve case one new point would be inserted
between each two given points). We get Φi|i+1 by applying the Euclidean rigid
body transformation m to Φi,

Φi|i+1 := m(Φi) := Ri(Φi) + ti, (13)

where m is chosen such that Φi|i+1 ‘is between’ Φi and Φi+1. The simplest
choice of m is the identity transformation Ri = I and ti = 0. However, the
optimization step of the algorithm (described in Sect. 4.3) needs less iteration
steps, if we compute ‘reasonable’ ti and Ri. This computation of the transla-
tional and the rotational part is done separately. Consider the given positions
si of the barycenter s of the moving body Φ and apply one iteration step of
interpolatory variational subdivision for curves to find intermediate positions
si|i+1. Then the obvious choice for the translational part ti of the Euclidean
transformation m is,

ti := si|i+1 − si. (14)
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Now we discuss the computation of Ri. Translate Φi+1 by t∗i+1 := si − si+1 to
a position Φ?

i+1 such that s?
i+1 = si. Since Φi and Φi+1 are Euclidean copies of

Φ there is a unique rotation – with angle of rotation ρi and direction vector
di of the rotation axis – that rotates Φi into Φ?

i+1. In our algorithm we rotate
through an angle of ρi/2 about di, which corresponds to the unit quaternion

(a0, a1, a2, a3) = (cos
ρi

4
, sin

ρi

4
di). (15)

The rotation matrix corresponding to (15) is

Ri =










a2
0 + a2

1 − a2
2 − a2

3 2(a1a2 + a0a3) 2(a1a3 − a0a2)

2(a1a2 − a0a3) a2
0 − a2

1 + a2
2 − a2

3 2(a2a3 + a0a1)

2(a1a3 + a0a2) 2(a2a3 − a0a1) a2
0 − a2

1 − a2
2 + a2

3










. (16)

Thus we find the starting positions Φi|i+1 in the following way: For i =
1, . . . , N − 1 first compute the translational part ti by (14), then the rota-
tional part Ri by (15) and (16), and finally apply the Euclidean transforma-
tion (13) to get the starting position Φi|i+1. For easier reading of the following
computations we denote the feature points in the positions Φi|i+1 by qk

i for
i = 1, . . . , N − 1 and k = 1, . . . , K.

4.3 Position optimization

This step in our motion design algorithm simultaneously optimizes the posi-
tions of the inserted copies Φi|i+1. The iterative algorithm uses instantaneous
kinematics and simultaneous interpolatory variational subdivision on the K
sequences of feature points f k

1 ,qk
1, f

k
2 , . . . , fk

N−1,q
k
N−1, f

k
N (k = 1, . . . , K). Posi-

tions fk
1 ,qk

1, f
k
2 . . . of the same feature point f k at different time instances are

called homologous points. If we assume uniformly distributed time instances
ti of our input positions, then we generalize uniform interpolatory variational
subdivision for curves. To the feature points qk

i , k = 1, . . . , K, of each single
copy Φi|i+1, i = 1, . . . , N − 1 we attach (see Fig. 4) vectors

vk
i := v(qk

i ) = c̄i + ci × qk
i , (17)

belonging to the linear velocity vector field of an instantaneous helical motion
described by the pair (ci, c̄i), see Sect. 3.1. The velocity vectors are used for
first order estimates of the new positions. Simultaneous variational subdivision
(with uniform parametrization) on the K sequences of feature points amounts
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PSfrag replacements

fk
i−1

fk
i

fk
i+1

qk
i−1

qk
i

1
2
(fk

i−1 + fk
i )

1
2
(qk

i−1 + vk
i−1 + qk

i + vk
i )

1
2
(fk

i + fk
i+1)

qk
i−1 + vk

i−1

qk
i + vk

i

Fig. 4. Simultaneous variational subdivision on K sequences of homologous points.

to the minimization of the following objective function, which is quadratic in
the unknowns c1, c̄1, . . . , cN−1, c̄N−1,

F2(c1, c̄1, . . . , cN−1, c̄N−1) =
K∑

k=1

N−1∑

i=1

‖fk
i − 2(qk

i + vk
i ) + fk

i+1‖
2

+
N−2∑

i=1

‖(qk
i + vk

i ) − 2fk
i+1 + (qk

i+1 + vk
i+1)‖

2. (18)

The minimization of (18) is found by setting the partial derivatives of F2 with
respect to the unknowns ci, c̄i equal to zero,

∂F2

∂ci

= o,
∂F2

∂c̄i

= o, i = 1, . . . , N − 1.

This leads to the linear system of equations

A · C = B, (19)

B =
K∑

k=1




























2(qk
1 × fk

1 ) + 4(qk
1 × fk

2 ) − (qk
1 × qk

2)

2fk
1 + 4fk

2 − 5qk
1 − qk

2

...

(qk
i−1 × qk

i ) + 4(qk
i × fk

i ) + 4(qk
i × fk

i+1) − (qk
i × qk

i+1)

4fk
i + 4fk

i+1 − qk
i−1 − 6qk

i − qk
i+1

...

2(qk
N−1 × fk

N) + 4(qk
N−1 × fk

N−1) − (qk
N−1 × qk

N−2)

2fk
N + 4fk

N−1 − 5qk
N−1 − qk

N−2




























, (20)
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C = (c1, c̄1, · · · , ci, c̄i, · · · , cN−1, c̄N−1)
T , (21)

A =
K∑

k=1




























5Ak
11 5Qk

1 Ak
13 Qk

1

5I −Qk
2 I

. . .

6Ak
2i−1,2i−1 6Qk

i Ak
2i−1,2i+1 Qk

i

6I −Qk
i+1 I

. . .

5Ak
2N−3,2N−3 5Qk

N−1

5I




























, (22)

where i = 2, . . . , N − 2. B and C are vectors of size 6(N − 1). The 3 × 3
blockmatrices Ak

ij of the upper triangular part of the symmetric 6(N − 1) ×
6(N − 1) matrix A are given by

Ak
ij =

(

qk
j+1

2

· qk
i+1

2

)

I − qk
j+1

2

(

qk
i+1

2

)T

, (23)

and all other entries of the matrix A are zero. I is the 3× 3 unit matrix. The
3 × 3 skew symmetric matrix Qk

i corresponds to

qk
i × c = Qk

i · c =










0 −(qk
i )z (qk

i )y

(qk
i )z 0 −(qk

i )x

−(qk
i )y (qk

i )x 0










c, (24)

where (qk
i )ξ denotes the ξ-th coordinate of the point qk

i with ξ ∈ {x, y, z}.

The solution of (19) gives us (ci, c̄i) for i = 1, . . . , N − 1. Note however, that
the transformation which maps qk

i to qk
i + vk

i is an affine map and not a
rigid Euclidean transformation. Therefore, in every iteration step we apply
to each intermediate position Φi|i+1 a helical motion (Ri, ti) that is uniquely
determined by the velocity vector field represented by the pair (ci, c̄i). This
means that we apply a rotation Ri through an angle of

αi := arctan(‖ci‖) (25)

around an axis Ai and a translation

ti := αipiai (26)
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parallel to Ai. For the computation of the Plücker coordinates (ai, āi) of the
axis Ai and the pitch pi from (ci, c̄i) see (10). This Euclidean transformation
(25) brings the points q1

i , . . . ,q
K
i to positions q1

i

′
, . . . ,qK

i

′
that are close to the

tips q1
i + v1

i , . . . ,q
K
i + vK

i of the velocity vectors used in (18), see Fig. 5. We
compute the new positions Φ′

i|i+1 by

Φ′
i|i+1 := Ri(Φi|i+1) + ti. (27)

Note that αi = 0, i.e., ci = 0, corresponds to a pure translation. Then qk
i

′
=

qk
i + c̄i and thus ek

i := ‖qk
i

′
− qk

i − vk
i ‖ = 0. This expresses the fact that the

velocity vector field of a pure translation coincides with the translation itself.
If the pitch pi = 0, we just apply a rotation through the angle αi around the
axis Ai.PSfrag replacements

Ai

qk
i

qk
i + vk

i

qk
i

′

αi

αipiai
pi

ek
i

Fig. 5. New position qk
i

′
of a point qk

i by applying the helical motion with the
velocity vector field described by (ci, c̄i).

Remark 4 The presented estimation of an instantaneous motion has also
been used by Bourdet and Clément (1976, 1988) for the solution of a reg-
istration problem in Computer Vision. However, they directly transform the
body (in an affine way) with the velocity vectors, and do not use the suggested
correction via an appropriate helical motion.

Then we use the new positions qk
i

′
of the feature points as the starting po-

sitions for the next iteration step in the iterative optimization procedure. As
a termination criterion for the iteration use the sum of squared distances be-
tween the positions of the feature points before and after the repositioning,

val :=
∑

i,k

‖qk
i

′
− qk

i ‖
2. (28)

If val falls below a certain threshold T , we terminate the optimization and
insert the last obtained positions into the sequence of the fixed positions of
the moving body. This new sequence of fixed positions is the input for the
next subdivision step in our motion design algorithm.

Remark 5 A summary of the unconstraint motion design algorithm is given
in Alg. 2. Similarly to minimizing second forward differences in the motion
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Fig. 6. One subdivision step in variational motion design: (a) Position insertion
(×), iterative position optimization (·) and final position (◦) of the feature points.
(b) The dashed line connects the barycenters (�) in their final positions.

design algorithm one generalizes non-uniform and approximating variational
subdivision for motion design purposes. It is also possible to insert in each
iteration step more than one intermediate position between known positions.

Fig. 7 shows an open and closed motion of a robot gripper arm interpolating
5 given positions.
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Fig. 7. Three variational subdivision steps for (a) open and (b) closed motion
design to five input positions Φi.
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Input: N0 positions Φ
(0)
1 , . . . , Φ

(0)
N0

of a surface Φ, number of subdivision steps
S, maximum number of optimization steps M , threshold T for optimization
termination

for l = 1 to S
(1) insert initial positions Φ

(l−1)
i|i+1 between given positions Φ

(l−1)
i and Φ

(l−1)
i+1 ,

for i = 1, . . . , Nl−1 − 1

• compute translational parts t
(l−1)
i by (14)

• compute rotational parts R
(l−1)
i by (15)

• apply transformation (13)
(2) while j < M and val > T do

• compute (ci, c̄i) by minimizing (18)

• transform Φ
(l−1)
i|i+1 via (27) to new position Φ

′(l−1)
i|i+1

• compute val via (28)

• Φ
(l−1)
i|i+1 = Φ

′(l−1)
i|i+1

• j = j + 1
end

(3) Φ
(l)
2i−1 := Φ

(l−1)
i , i = 1, . . . , Nl−1

Φ
(l)
2i := Φ

(l−1)
i|i+1 , i = 1, . . . , Nl−1 − 1

end

Output: NS := (N0 − 1)2S + 1 positions Φ
(S)
1 , . . . , Φ

(S)
NS

of the surface Φ

Alg. 2: Variational subdivision algorithm for unconstraint motion design.

4.4 Higher-dimensional viewpoint and dependency on feature points

In this section we give a higher-dimensional viewpoint of the presented un-
constraint motion design algorithm. Furthermore we show that our algorithm
gives the same result for every choice of feature points with the same barycen-
ter and the same inertia tensor.

An affine transformation α in Euclidean three-space E3 is given by

x 7→ a + Ax, a ∈ R
3, A ∈ R

3×3, detA 6= 0. (29)

We denote the 12-dimensional space of affine transformations by A12, and the
6-dimensional manifold of Euclidean transformations (i.e., for the matrix A in
(29) we have ATA = AAT = I) by M 6. We define a Euclidean metric in A12

via the sum of squared distances between feature points of the moving body
in homologous positions in E3.

Definition 6 Let α, β be two affine maps that are applied to a Euclidean body
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Φ, which is represented by feature points f 1, . . . , fK. We define the distance
d(α(Φ), β(Φ)) between α(Φ) and β(Φ) by

d2(α(Φ), β(Φ)) :=
K∑

i=1

‖α(f i) − β(f i)‖2. (30)

Remark 7 If a moving body is represented by a finite number of feature points
f1, . . . , fK of unit point masses, then the coordinate matrix J of the inertia
tensor is given by

J =
K∑

i=1

f i(f i)T . (31)

Proposition 8 The Euclidean metric in A12, defined via the squared distance
d2(α(Φ), β(Φ)), only depends on the barycenter and on the inertia tensor of
the rigid body Φ.

PROOF. Let f 1, . . . , fK be a feature point representation of a Euclidean body
Φ, and let α, β be two affine maps given by (29). We rewrite d2(α(Φ), β(Φ))
from (30) using (29) as follows,

d2(α(Φ), β(Φ)) =
K∑

i=1

‖α(f i) − β(f i)‖2

=
K∑

i=1

(a + Af i − b − Bf i)T (a + Af i − b − Bf i)

:=
K∑

i=1

(d + Df i)T (d + Df i)

=
K∑

i=1

(dTd + 2dTDf i + f iTDTDf i)

= KdTd + 2dTD
K∑

i=1

f i +
K∑

i=1

f iTQf i (32)

where d := a − b, D := A − B and Q := DTD. The second term in (32)
contains the barycenter of the point cloud f 1, . . . , fK and the last term contains
the components

∑

i f
i
jf

i
k of the inertia tensor described by the matrix J. Thus

for fixed α and β, d2(α(Φ), β(Φ)) only depends on the barycenter and on the
inertia tensor of Φ. Note that (32) can be rewritten as

d2(α, β) = (â − b̂)TM(â − b̂) (33)

with a positive definite 12 × 12 matrix M. Then (33) is the familiar form of
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a Euclidean metric. The vectors â and b̂ collect the twelve parameters (a,A)
and (b,B) of the affine transformations α and β. 2

Thus, the Euclidean metric we have defined is the same for all choices of feature
points on Φ with the same barycenter s := 1/N

∑K
i=1 f i and the same inertia

tensor. By a well-known result from mechanics we can replace the feature
points f1, . . . , fK by the six special points

± f i := s ±

√

λi

2
ei, i = 1, 2, 3, (34)

where λ1, λ2, λ3 and e1, e2, e3 are the eigenvalues and eigenvectors of J.
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Fig. 8. The motion design algorithm sketched in A12.

We compare the motion design algorithm presented in this paper to a previ-
ously discussed algorithm: The algorithm for the design of a rigid body motion
presented by Hofer et al. (2003) first computes an affine motion α(t) (i.e., via
a variational approach a curve in A12) that interpolates M 6 in given points Fi.
Then α(t) is projected orthogonally onto M 6. This orthogonality is understood
in the Euclidean metric defined in (33).

The approach we present in this paper designs via variational subdivision a
curve on M 6: Between given points Fi ∈ M6 we insert initial points Qi ∈ M6

to which we attach unknown vectors Vi in the 6-dimensional tangent space of
M6 at Qi (parameterized with help of (ci, c̄i)). Then we minimize a quadratic
energy functional for the points . . . ,Fi,Q

∗
i := Qi + Vi,Fi+1, . . .. Since the

such computed new positions Q∗
i are in A12 but not on M 6 we replace them
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by positions Q′
i on M6 close to them. In the algorithm this is done by using the

helical motion with the velocity vector field (ci, c̄i). From a higher-dimensional
viewpoint this corresponds to an orthogonal projection of Q∗

i ∈ A12 to Q′
i ∈

M6 via the metric (33). Now Prop. 8 says that this projection is the same
for every choice of feature points with the same barycenter and same inertia
tensor. Now this two step procedure (insertion of Q∗

i and orthogonal projection
onto Q′

i) is repeated until the quadratic energy functional is minimized. Then
we continue with the next subdivision step.

Remark 9 Note that our algorithm for motion design is a special case of vari-
ational curve design (via subdivision) on arbitrary k-dimensional surfaces in
R

d. One example has been given in Sect. 2.1 for a 2-dimensional surface in R
3,

another example follows in Sect. 5, where a 5-dimensional surface contained
in M6 arises from a contact condition on the designed motion.

4.5 Conjecture concerning smoothness of the motion

The variational interpolatory subdivision scheme we use in our approach pro-
duces at least C2-curves, as proved by Kobbelt (1996). However, we have
slightly modified this scheme and apply it to several input polygons simulta-
neously. Furthermore, we do not reposition the feature points by the velocity
vectors used in the computation – which would lead to affinely distorted copies
of our moving body – but with the underlying helical motion. Therefore it is
more difficult to theoretically analyze the smoothness of the resulting motion.
However, numerical tests (the second numerical derivatives of the paths of the
feature points are ‘continuous’) suggest that the computed motions are C2.

5 Geometric design of motions constrained by a contacting surface

pair

In this section we present an algorithm that solves the following problem:
Given are N positions Φi of a moving surface Φ in contact with a fixed surface
Ψ, see Fig. 9. Contact means that the surface normals of both surfaces coincide
in the contact points. The objective is to compute a motion such that Φ glides
on Ψ and interpolates (or approximates) the given positions Φi.

The gliding motion of a surface Φ on a surface Ψ is a five-parameter motion. At
every instance, the gliding motion of two surfaces has an instantaneous path
normal complex which contains the common normal of the gliding surface pair.
Up to first order this is the only constraint on a gliding surface pair, see e.g.
Pottmann and Ravani (2000). Thus we extend the subdivision algorithm for
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Fig. 9. The fixed surface Ψ and the input positions Φi of the moving surface Φ in
contact with Ψ.

motion design presented in Sect. 4 to the design of gliding motions by adding
this gliding constraint.

The instantaneous motions used in the optimization procedure (18) are de-
scribed by pairs (ci, c̄i). The common normal ni of the two surfaces Ψ and Φi

in the instantaneous contact point has normalized Plücker coordinates (ni, n̄i).
The constraint, that ni is contained in the instantaneous path normal complex
of the motion, follows from (12) and thus reads as

ci · n̄i + c̄i · ni = 0, i = 1, . . . , N − 1. (35)

These linear constraints are added to the quadratic objective function (18)
and the such obtained energy functional is minimized. The optimization is
again based on a feature point representation of the moving surface Φ, see
Sect. 4.4.

5.1 Outline of the algorithm

Before we discuss the individual steps of the algorithm in more detail we give
an outline of the subdivision algorithm for gliding motion design:

(1) Position insertion: Insert initial intermediate positions of the moving
surface in contact with the fixed surface between each two given contact
positions.
(a) Insert with the algorithm for variational design of a surface curve

(Sect. 2.1) new intermediate contact points on both, the fixed and
the moving surface. Compute the surface normals in these new con-
tact points. Let the new points and normals with the same index
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correspond to each other.
(b) Insert Euclidean copies Φi|i+1 such that the surface normals of fixed

and moving surface coincide in the new contact points.
(c) Apply an iterative position optimization algorithm to all Φi|i+1 si-

multaneously by using velocity vector fields of pure rotations around
the common surface normals in the new contact points. This gives
good starting positions for the following optimization with gliding
constraints.

(2) Position optimization with gliding constraint:

(a) Minimize the quadratic energy functional (18) with the linear con-
straint (35) and apply the resulting helical motions to the inserted
copies Φi|i+1 to get Φ′

i|i+1.
(b) Note that after step (a) the moving surface might not be in contact

with the fixed surface. Therefore we compute the common normals of
Ψ and Φ′

i|i+1 and translate each Φ′
i|i+1 such that it is again in contact

with Ψ.
(c) Repeat steps (a) and (b) until the constraint objective function is

minimized. Then insert the final positions into the sequence of fixed
positions of Φ and use these new 2N − 1 copies as input to the next
subdivision step.

Remark 10 Note that the optimization is computed using a feature point rep-
resentation of the moving surface. But once we have found the transformations
that perform the relocations of the feature points, we can also apply these trans-
formations to the moving surface itself (and vice versa).

5.2 Position insertion

The input positions Φi (i = 1, . . . , N) of the moving surface Φ are in contact
with the fixed surface Ψ, i.e., in the contact point of Ψ and Φi the surface
normals coincide. Between each two adjacent input positions Φi and Φi+1 we
insert an initial intermediate position Φi|i+1 of the moving surface Φ in such a
way that Φi|i+1 is in contact with Ψ and both surfaces have the same surface
normal in the contact point. The Φi|i+1 are then the start positions for an
optimization with gliding constraints.

For the insertion of new contact points we apply one subdivision step of the
algorithm for variational surface curve design (presented in Sect. 2.1) to the
given contact points on both surfaces, the fixed and the moving one, separately.
In these new corresponding contact points we compute the surface normal for
each surface. Then we insert copies Φi|i+1 of the moving surface such that
the inserted contact points of the moving surface are mapped to the inserted
contact points of the fixed surface and that the surface normals of Ψ and Φ
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in those points coincide.

The such obtained positions Φi|i+1 are not unique. For every position there is
still one degree of freedom, the rotation around the common surface normal.
We use this degree of freedom for every Φi|i+1 for a simultaneous optimization
with a variant of the variational subdivision algorithm for motion design pre-
sented in Sect. 4. Each velocity vector field is restricted to coincide up to first
order with a pure rotation around the common normal in the contact point
of fixed and moving surface. This reduces the six free parameters (ci, c̄i) for
every moving position in (18) to only one, the rotation angle γi := ‖ci‖. Since
for a pure rotation the pitch p is zero, we conclude from (10) that (ci, c̄i) are
of the form

(ci, c̄i) = ‖ci‖(ni, n̄i), i = 1, . . . , N − 1. (36)

The objective function (18) with the 6(N−1) unknowns c1, c̄1, . . . , cN−1, c̄N−1

now reduces to the following objective function, which is quadratic in the N−1
unknowns γ1, . . . , γN−1,

F2(γ1, . . . , γN−1) =
K∑

k=1

N−1∑

i=1

‖fk
i − 2(qk

i + vk
i ) + fk

i+1‖
2

+
N−2∑

i=1

‖(qk
i + vk

i ) − 2fk
i+1 + (qk

i+1 + vk
i+1)‖

2, (37)

where

vk
i := v(qk

i ) = γi(n̄i + ni × qk
i ). (38)

The minimization of (37) is found by solving the linear system of equations

ArΓ = Br (39)

We collect the unknowns in Γ = (γ1, . . . , γN−1) and derive for i = 1, . . . , N −1
the i-th entry of the vector Br as

Br(i) = B(6i − 5, . . . , 6i − 3) · ni + B(6i − 2, . . . , 6i) · n̄i, (40)

where B is given by (20). The entries on the main diagonal of the tridiagonal
(N − 1) × (N − 1) symmetric matrix Ar are given by

ajj = 5Kn̄2
j + 10(

∑

k

qk
j ) · (n̄j × nj) + 5(

∑

k

qk�
jj ) · n

∗
jj − 10(

∑

k

qk?
jj ) · n

?
jj,
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aii = 6Kn̄2
i + 12(

∑

k

qk
i ) · (n̄i × ni) + 6(

∑

k

qk�
ii ) · n∗

ii − 12(
∑

k

qk?
ii ) · n?

ii,

for j = 1, N − 1 and i = 2, . . . , N − 2. The elements on the upper diagonal are
the real numbers

ai,i+1 = K(n̄i · n̄i+1) + (
∑

k

qk
i+1) · (n̄i × ni+1) + (

∑

k

qk
i ) · (n̄i+1 × ni)

+ (
∑

k

qk∗
i,i+1) · n

�
i,i+1 − (

∑

k

qk?
i,i+1) · n

?
i+1,i − (

∑

k

qk?
i+1,i) · n

?
i,i+1, (41)

for i = 1, . . . , N−2. The superscripts ∗, ?, � denote special vectors, here defined
in terms of ni = (ni1, ni2, ni3)

T and nj = (nj1, nj2, nj3)
T ,

n∗
ij :=










ni1nj1

ni2nj2

ni3nj3










, n?
ij :=










ni1nj3

ni2nj1

ni3nj2










, n�
ij :=










ni2nj2 + ni3nj3

ni1nj1 + ni3nj3

ni1nj1 + ni2nj2










. (42)

The solution of (39) gives us γ1, . . . , γN−1 and to each position Φi|i+1 we apply
the rotations through angles γi around the common surface normals of Φi|i+1

and Ψ. Then we iterate the whole procedure until the minimum of the objective
function (37) is reached. This gives the initial intermediate positions Φi|i+1 (i =
1, . . . , N − 1) that are used as starting values for the constraint optimization
described in Sect. 5.3.

5.3 Position optimization with gliding constraint

In this step of the algorithm we use the above computed positions of the
moving surface as starting values for an iterative optimization algorithm. As
in Sect. 4 we denote the feature points in the position Φi|i+1 by qk

i and attach
vectors

vk
i := v(qk

i ) = c̄i + ci × qk
i (43)

to them. The vk
i again belong to the linear velocity vector field of an instanta-

neous helical motion described by the pair (ci, c̄i), see Sect. 3.1. The velocity
vectors are used for first order estimates of the new positions. The gliding mo-
tion of two surfaces has an instantaneous path normal complex which contains
the common normal of the gliding surface pairs Ψ and Φi|i+1,

ci · n̄i + c̄i · ni = 0, i = 1, . . . , N − 1. (44)
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Up to first order this is the only gliding constraint. Thereby, (ci, c̄i) are the
yet unknown representations of the velocity vector fields and (ni, n̄i) are the
Plücker coordinates of the contact normals in the initial intermediate posi-
tions. This gives N −1 linear constraints, one for each inserted position of the
moving body. Using (44) and ‖n‖ = 1 one can eliminate 3(N − 1) unknowns,
since

c̄i = −(ci · n̄i)ni, i = 1, . . . , N − 1. (45)

Substitution of (45) in the objective function (18) results in solving a quadratic
objective function for the remaining 3(N − 1) unknowns ci.

However, we introduce Lagrange multipliers λ1, . . . , λN−1, since this allows us
to describe the linear system of equations, that has to be solved, in terms of
that of Sect. 4.3. The Lagrange function L consists of the quadratic objective
function F2 from (18) and λi times the linear constraints (44),

L(c1, c̄1, . . . , cN−1, c̄N−1, λ1, . . . , λN−1) = F2 +
N−1∑

i=1

λi(ci · n̄i + c̄i · ni).(46)

Computing the partial derivatives of L with respect to Ci := (ci, c̄i) and λi,

∂L

∂Ci

= o,
∂L

∂λi

= 0, i = 1, . . . , N − 1, (47)

leads to a system of 7(N − 1) linear equations

Ac · Cc = Bc. (48)

We find Bc,Cc,Ac by extending B,C,A from (20), (21), (22) respectively in
the following way. The vector Bc is equal to the vector B extended by (N −1)
zeros, and the vector of unknowns Cc is derived from C by adding the N − 1
Lagrange multipliers λi at the end,

Bc = (BT , 0, . . . , 0
︸ ︷︷ ︸

N−1

)T , Cc =
(

CT , λ1, . . . , λN−1

)T
. (49)

The symmetric matrix Ac is a block matrix with A from (22) as an 6(N−1)×
6(N − 1) block in the upper left corner, the 6(N − 1)× (N − 1) block matrix
N in the upper right corner, its transpose NT and the (N − 1)× (N − 1) zero
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matrix 0 in the lower two blocks,

Ac =






A N

NT 0




 with NT =










n̄T
1 nT

1

. . . . . .

n̄T
N−1 nT

N−1










. (50)

Once we have solved (48) we use the helical motions corresponding to (ci, c̄i) to
separately reposition each intermediate position Φi|i+1 of the moving surface
and of the feature points qk

i . Note that after we have applied the helical
motions, the resulting positions Φ′

i|i+1 might not be in contact with Ψ anymore.
Therefore we have to perform the following position correction, which we just
briefly outline: Compute the common normal (cf. e.g. Johnson and Cohen
(1998) and Sohn et at. (2002) and the references therein) of Ψ and Φi|i+1

which intersects the two surfaces in points pi|i+1,Ψ and pi|i+1,Φ. Then translate
Φi|i+1 by the vector

ti|i+1 := pi|i+1,Ψ − pi|i+1,Φ. (51)

Now the fixed and the copies of the moving surface are again in contact and we
continue with the next subdivision step of the gliding motion design algorithm.

Remark 11 We have presented the subdivision algorithms for smooth and
gliding motion design such that the computed motion interpolates the given
positions. This algorithm is summarized in Alg. 3. With the same approach,
using a generalization of approximating variational subdivision we can design
smooth and gliding motions that approximate given input positions.

5.4 Examples

The numerical experiments have been performed with a Matlab implementa-
tion on a 1.8 GHZ Pentium 4 with 1GB RAM. Our first example simulates a
toroidal cutter (for a definition see Hoschek and Lasser (1993)) Φ gliding on
a wave surface Ψ. Fig. 10 shows the inserted copies of the moving surface Φ
after the first to fourth subdivision step. Fig. 11 shows the contact curves on
Ψ and Φ respectively. The second example is a toroidal cutter Φ gliding on a
ruled surface Ψ. Fig. 13 shows the computed positions after the third subdi-
vision step. The third example is a toroidal cutter Φ gliding on an ellipsoid
Ψ. Fig. 12 shows the computed positions after the fourth subdivision step.
Table 2 shows some numerical results for the computed gliding motions: For
each of the three examples we have computed four subdivision steps. We list
the number of calls of (37) and (46) in every subdivision step and the total
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Input: N0 positions Φ
(0)
1 , . . . , Φ

(0)
N0

of a surface Φ in point contact with a
surface Ψ, number of subdivision steps S, maximum number of optimization
steps M , threshold T for optimization termination

for l = 1 to S
(1) insert initial positions Φ

(l−1)
i|i+1 between given positions Φ

(l−1)
i and Φ

(l−1)
i+1 in

point contact with Ψ for i = 1, . . . , Nl−1 − 1
• apply one subdivision step of the variational surface curve algorithm

described in Sect. 2.1 to the contact points on Φ and Ψ
• compute the surface normals of Φ and Ψ in the new contact points
• insert Φ

(l−1)
i|i+1 such that Φ

(l−1)
i|i+1 and Ψ touch each other in the new contact

point and that the surface normals coincide
while j1 < M and val1 > T do

• compute γi by minimizing (37)

• rotate Φ
(l−1)
i|i+1 around the common surface normal to new position Φ

′(l−1)
i|i+1

• compute val1 =
∑

i,k ‖q
k
i

′
− qk

i ‖
2

• Φ
(l−1)
i|i+1 = Φ

′(l−1)
i|i+1

• j1 = j1 + 1
end

(2) Optimize positions Φ
′(l−1)
i|i+1 with gliding constraint (35)

while j2 < M and val2 > T do

• compute (ci, c̄i) by minimizing (46)

• transform Φ
(l−1)
i|i+1 via the helical motion corresponding to (ci, c̄i) to new

position Φ
′(l−1)
i|i+1

• compute val2 =
∑

i,k ‖q
k
i

′
− qk

i ‖
2

• compute common normal of Φ
′(l−1)
i|i+1 and Ψ and translate Φ

′(l−1)
i|i+1 by (51)

• Φ
(l−1)
i|i+1 = Φ

′(l−1)
i|i+1

• j2 = j2 + 1
end

(3) Φ
(l)
2i−1 := Φ

(l−1)
i , i = 1, . . . , Nl−1

Φ
(l)
2i := Φ

(l−1)
i|i+1 , i = 1, . . . , Nl−1 − 1

end

Output: NS := (N0 − 1)2S + 1 positions Φ
(S)
1 , . . . , Φ

(S)
NS

of the moving surface
Φ in contact with the fixed surface Ψ

Alg. 3: Variational subdivision algorithm for design of a motion
constraint by a contacting surface pair.
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computation time for the respective operation (for the ‘wave’ example, (37)
has been called 33, 10, 7, 7 times in the 1, 2, 3, 4 subdivision step and the total
computation time for these 57 calls was 0.74s. If the input positions are far
apart (as in the case of the wave and the ellipsoid example), then we insert –
by the first two subdivision steps – three intermediate positions for which we
only employ (37), and then from the third subdivision step onwards we also
employ the constraint optimization (46).

Wave Ruled surface Ellipsoid

input positions 4 5 4

calls/total time (37) 33,10,7,7/0.74s 3,2,2,2/0.21s 14,9,8,8/0.68s

calls/total time (46) -,-,2,2/0.13s 2,2,2,2/0.36s -,-,4,4/0.37s

Table 2
Numerical results for the gliding motion shown in Fig. 10, 12 and 13.
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Fig. 10. Toroidal cutter Φ gliding on a wave surface Ψ: (a), . . . , (d) show the
positions of Φ after the first to fourth subdivision step of the gliding motion design
algorithm.
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Fig. 11. The contact curve on fixed and moving surface.
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Fig. 12. Toroidal cutter Φ gliding on an ellipsoid Ψ.

6 Conclusions and future work

The main contribution of this paper is a subdivision algorithm for geomet-
ric design of motions constraint by a contacting surface pair. The presented
algorithm uses instantaneous kinematics, line geometry, and variational sub-
division algorithms. We have first presented a motion design algorithm for
unconstraint motion design and then we included the constraint of a con-
tacting surface pair to get the main algorithm. In this paper we have also
extended known interpolatory variational subdivision algorithms for curve de-
sign to special cases of variational curve design on k-dimensional surfaces in
R

d.
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Fig. 13. Toroidal cutter Φ gliding on a ruled surface Ψ.

The results can be extended to the design of smooth motions in the presence
of obstacles. There are many algorithms to design smooth motions based on
techniques from Computer Aided Geometric Design, and a variety of solutions
for the avoidance of obstacles based on Computational Geometry. Whereas the
latter approaches do not deal with spline-type smooth motions, the former are
lacking an efficient treatment of obstacles. Using the presented subdivision
methods for (gliding) motion design, the problem of obstacle avoidance can
be investigated. This might be the subject of future research.
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