
SIMULTANEOUS REGISTRATION OF MULTIPLE VIEWS OF A 3D OBJECT
Helmut Pottmann a, Stefan Leopoldseder a, Michael Hofer a

a Institute of Geometry, Vienna University of Technology, Wiedner Hauptstr. 8–10, A–1040 Wien, Austria -
pottmann@geometrie.tuwien.ac.at, leopoldseder@geometrie.tuwien.ac.at, hofer@geometrie.tuwien.ac.at

KEY WORDS: registration, matching, inspection, three-dimensional data, CAD, geometry.

ABSTRACT

In the reconstruction process of geometric objects from several three-dimensional images (clouds of measurement points)
it is crucial to align the point sets of the different views, such that errors in the overlapping regions are minimized. We
present an iterative algorithm which simultaneously registers all 3D image views. It can also be used for the solution of
related positioning problems such as the registration of one or several measurement point clouds of an object to a CAD
model of that object. Our method is based on a first order kinematical analysis and on local quadratic approximants of the
squared distance function to geometric objects.

1 INTRODUCTION

In the reconstruction process of surfaces with help of stereo
photogrammetry one often obtains several point clouds
arising from different views of the object. By evaluation
of the surface texture in the different images, correspon-
dences between points of overlapping point clouds can be
determined with some confidence value. Now, the differ-
ent point clouds have to be combined into one consistent
representation. There, we may get errors in the overlap-
ping regions. Minimization of those errors is the goal of
the present algorithm.

A more challenging task is the simultaneous registration
of several moving systems where no point-to-point corre-
spondences are known. One application where only two
systems are involved is the following:

Suppose that we are given a large number of 3D data points
that have been obtained by some 3D measurement device
(laser scan, light sectioning, . . .) from the surface of a tech-
nical object. Furthermore, let us assume that we also have
got the CAD model of this workpiece. This CAD model
shall describe the ‘ideal’ shape of the object and will be
available in a coordinate system that is different to that of
the 3D data point set. For the goal of shape inspection it
is of interest to find the optimal Euclidean motion (transla-
tion and rotation) that aligns, or registers, the point cloud
to the CAD model. This makes it possible to check the
given workpiece for manufacturing errors and to classify
the deviations.

Another application with more than two systems is the
multiple matching of different 3D laser scanner images
of some 3D object. The 3D point sets of different views
will be given in different coordinate systems, their position
in a common ‘object’ coordinate system may be known
only approximately. Now the key task is to simultaneously
match, or register, the different point sets such that they
optimally fit in their overlapping regions.

In the following we show how to solve these optimization
problems with an iterative algorithm. In each iteration step
all N systems are registered simultaneously. An arbitrary
number of systems (at least one) is kept fixed. The algo-
rithm uses a kinematical analysis of first order and solves

a linear system of equations, which comes from a least
squares problem. In the case that we do not have corre-
spondences, the algorithm is based on local quadratic ap-
proximants of the squared distance function to geometric
objects.

In Sec. 2 we briefly review contributions in the literature
which are closely related to our algorithm. In Sec. 3 some
basic facts of spatial kinematics are collected. Sec. 4 is
devoted to the mathematical description of our algorithm
which simultaneously aligns multiple point clouds in the
case that point-to-point correspondences are known. In
Sec. 5 we describe how to treat the more difficult case
where no correspondences are given. Finally, in Sec. 6
topics of further research are addressed.

2 CURRENT REGISTRATION ALGORITHMS

Let us first focus on registration problems where only two
systems are involved (N = 2). One system moves rela-
tive to the second system which is kept fixed. If point-to-
point correspondences are known, the optimal motion that
minimizes the Euclidean distances between corresponding
points can be explicitly given. The use of quaternions for
determining this motion can already be found in (Faugeras
Hebert, 1986, Horn, 1987). In many applications, how-
ever, no point-to-point correspondences are given. One
example is the alignment of a single 3D point cloud to
a geometric entity which could be a CAD model or an-
other 3D point set. Here a well-known standard algorithm
is the iterative closest point (ICP) algorithm of Besl and
McKay (Besl McKay, 1992). In Sec. 2.1 we will briefly
summarize this algorithm which establishes point-to-point
correspondences in each iteration step and uses the rep-
resentation of 3D Euclidean motions by unit quaternions.
For an overview on the recent literature on this topic we
refer to (Eggert et al., 1998). A summary with new results
on the acceleration of the ICP algorithm has been given by
Rusinkiewicz and Levoy (Rusinkiewicz Levoy, 2001).

There are two major restrictions of the ICP algorithm.
First, it is implicitly assumed that one of the data sets is
a subset of the other. The presence of points that have no
corresponding point in the other set leads to incorrect as-
signments. Several different approaches to threshold out-

liers have been presented, see the literature cited in (Eggert
et al., 1998). Secondly, the ICP algorithm is a two set ap-
proach and is not directly extendable to multiple data sets.
It is not sufficient to apply registration to consecutive pairs
of 3D point sets, since alignment errors accumulate and
certain point sets will be very poorly adjusted. There have
been several approaches to the simultaneous registration of
all data sets, see e.g. the spring force model of (Eggert et
al., 1998). (Bergevin et al., 1996) apply incremental trans-
formations to all the moving systems with respect to a fixed
system and use point-to-tangent plane correspondences in
the overlapping regions.

2.1 The ICP algorithm

A point set (‘data’ shape) is rigidly moved (registered, po-
sitioned) to be in best alignment with the corresponding
CAD model (‘model’ shape) in the following iterative way.

In the first step of each iteration, for each point of the data
shape, the closest point in the model shape is computed.
This is the most time consuming part of the algorithm and
can be implemented efficiently, e.g. by using an octree data
structure. As result of this first step one obtains a point
sequence Y = (y

1
, y

2
, . . .) of closest model shape points

to the data point sequence X = (x1, x2, . . .). Each point
xi corresponds to the point yi with the same index.

In the second step of each iteration the rigid motion M is
computed such that the moved data points M(xi) are clos-
est to their corresponding points yi, where the objective
function to be minimized is

∑

i

‖yi − M(xi)‖
2.

This least squares problem can be solved explicitly, see e.g.
(Besl McKay, 1992, Horn, 1987). The translational part of
M brings the center of mass of X to the center of mass of
Y . The rotational part of M can be obtained as the unit
eigenvector that corresponds to the maximum eigenvalue
of a symmetric 4 × 4 matrix. The solution eigenvector is
nothing but the unit quaternion description of the rotational
part of M .

After this second step the positions of the data points are
updated via Xnew = M(Xold). Now step 1 and step 2 are
repeated, always using the updated data points, as long as
the change in the mean-square error falls below a preset
threshold. The ICP algorithm always converges monoton-
ically to a local minimum, since the value of the objective
function is decreasing both in steps 1 and 2.

3 KINEMATICS

An important part of the algorithm uses instantaneous
kinematics. Thus, we briefly describe the most important
facts before going into the details of the algorithm.

Consider a continuous one-parameter motion of a rigid
body in space. If x is a point in Euclidean three-space,

the symbol v(x) denotes the velocity vector of that point
of the moving body which is at this moment at position x.
Thus v(x) is a time-dependent vector attached to the point
x. It is well known that at some instant t, a smooth motion
has a velocity vector field of the form

v(x) = c + c × x, (1)

with vectors c, c ∈ R
3. Thus the velocity vector field (or

the infinitesimal motion) at some instant t is uniquely de-
termined by the pair (c, c).

Of special interest are the uniform motions, whose veloc-
ity vector field is constant over time. It is well known
that apart from the trivial uniform motion, where nothing
moves at all and all velocities are zero, there are the fol-
lowing three cases:

1. Uniform translations have c = o, but c 6= o, i.e.,
all velocity vectors equal c. The paths of a uniform
translation are straight lines parallel to c.

2. Uniform rotations with nonzero angular velocity
about a fixed axis. We have c · c = 0, but c 6= o.
The point trajectories of a uniform rotation are circles
with the rotational axis as common axis.PSfrag replacements

x1 x2

x3

A

pt
t

x(t)

x(0) = x

Figure 1: Helical motion.

3. Uniform helical motions are the superposition of a
uniform rotation and a uniform translation parallel to
the rotation’s axis. They are characterized by c·c 6= 0.

If the point x is situated on the axis, its path coincides
with the axis. The trajectories of the other points are
helices.

If ω is the angular velocity of the rotation, and v the
velocity of the translation, then p = v/ω is called the
pitch of the helical motion. We use the convention
that ω is nonnegative, that p > 0 for right-handed
helical motions, and that p < 0 for left-handed ones.

To further clarify the concept of a uniform helical mo-
tion, we assume the x3-axis of a Cartesian system
(x1, x2, x3) to be the helical axis (see Fig. 1). A uni-
form helical motion may then be written as x 7→ x(t)
with

x(t) =





cos t − sin t 0
sin t cos t 0

0 0 1



 x+





0
0

p · t



 , (2)

Formally, p = 0 means a uniform rotation and p = ∞
corresponds to a uniform translation.

Since all possible pairs (c, c) actually occur, we can use
these three cases to classify the type of velocity vector field
at one instant of an arbitrary smooth motion: Infinitesimal
translations are characterized by c = o, and infinitesimal
rotations by c · c = 0. The remaining velocity vector fields
are said to belong to infinitesimal helical motions. At all
instants, if the velocity vector field of a smooth motion is
nonzero, it belongs to one of the three cases.

If (c, c) represents the velocity vector field of a uniform ro-
tation or helical motion, then the Plücker coordinates (g, g)
of the axis A, the pitch p and the angular velocity ω are re-
constructed by

(g, g) = (c, c − pc), p = c · c/c2, ω = ‖c‖, (3)

see e.g. (Pottmann Wallner, 2001).

The Plücker coordinates (g, g) of a straight line A consist
of a direction vector g and the moment vector g about the
origin. From the moment vector, we can easily compute a
point p of the line A, since for all points p on A we have
the relation g = p × g.

The above results about infinitesimal motions are a limit
case of the following fundamental result of 3-dimensional
kinematics: Any two positions of a rigid body in 3-space
can be transformed onto each other by a (discrete) helical
motion (consisting of a rotation about an axis and a trans-
lation along that axis), including the special cases of a pure
rotation and a pure translation.

Our algorithm actually iteratively computes the velocity
vector field of a discrete helical motion. Those underly-
ing helical motions are then used for the displacement.

4 SIMULTANEOUS REGISTRATION WITH
KNOWN CORRESPONDENCES

The first application we have in mind is the simultaneous
registration of N point clouds which have been obtained by
stereo photogrammetry. The point clouds partially overlap,
and in these regions correspondences (plus confidence val-
ues) between points of different point clouds are known
from surface texture analysis.

The N point clouds can be viewed as rigid systems and
are denoted by Σi. An arbitrary number (at least one)
of the given systems remains fixed. The others shall be
moved such that after application of the motions the dis-
tances of corresponding points, weighted with their confi-
dence value, are as small as possible. Since in our case we
have N > 2, only an iterative procedure is possible. We
use a geometric method that involves instantaneous kine-
matics, and thus it is similar to the approach in (Bourdet
Clément, 1988).

Only those points in a cloud are used for the alignment pro-
cess which belong to an overlapping region with a neigh-
boring point cloud. For such a given data point pair (xi, yi)
we know the index j of the system Σj to which xi belongs,

Figure 2: Example of multiple registration with known
correspondences: All given 30 point clouds (top) and detail
of 4 clouds showing the overlapping areas (bottom). Data
by courtesy of Gerhard Paar, Joanneum Research.

and the index k indicating the system Σk of the point yi.
The point pairs have found to be in correspondence with a
confidence value wi ∈ (0, 1).

Our goal is to move each system Σl by a motion Ml in a
way, such that after application of all these motions Ml,
the new positions of corresponding points are as close as
possible to each other in a least squares sense. Thereby we
have to keep in mind the confidence values of correspon-
dences.

4.1 Displacement estimation via instantaneous kine-
matics

Since the expected motions are small displacements any-
way, we replace them by instantaneous motions. The in-
stantaneous motion of system Σl against one fixed system
(called Σ0 henceforth) possesses a velocity vector field. It
is characterized by two vectors cl, cl ∈ R

3, and analo-
gously to Eq. 1, the velocity vector vl0 of a point xi ∈ Σl

is then given by

vl0(xi) = cl + cl × xi. (4)

For a pair of corresponding points (xi, yi) we would like to
estimate their distance after the motions have been applied
to their systems Σj and Σk, respectively. In first order, we

can use the velocity vectors, and thus the squared distance
of the displaced points is given by

Q1(xi, yi) = (xi + vj0(xi) − yi − vk0(yi))
2 =

(xi − yi + (cj + cj × xi) − (ck + ck × yi))
2.

(5)

This term Q1(xi, yi) is a quadratic function in the un-
knowns cj , cj , ck, ck of the instantaneous motions applied
to the involved systems Σj and Σk.

There is an alternative to Eq. (5): Instead of linearizing
the motion of Σj against Σ0 and the motion of Σk against
Σ0, one can linearize the relative motion of Σj against Σk.
The velocity vector vjk of a point xi ∈ Σj for this relative
motion is given by

vjk(xi) = vj0(xi) − vk0(xi). (6)

Here, the distance of interest is between the point xi +
vjk(xi) and yi (i.e., xi is interpreted to be moving with
system Σj relative to the point yi in system Σk). The
squared distance of these two points of interest is given
by

Q2(xi, yi) = (xi + vjk(xi) − yi)
2 =

(xi − yi + (cj + cj × xi) − (ck + ck × xi))
2.

(7)

The term Q2(xi, yi) is again a quadratic function in the
unknowns cj , cj , ck, ck.

We see that any pair of corresponding points gives rise to
such a quadratic term Q1 or Q2 in the involved unknown
motion parameters. That term is a first order estimate of
the squared distance (error) after application of the mo-
tions. Hence, to perform the error minimization, we will
minimize the following weighted sum

F =
∑

i

wiQ2(xi, yi). (8)

The weight wi is the known confidence value of the pair
(xi, yi). Note that since point-to-point correspondences
are known, both Q1 and Q2 can be used. Without known
correspondences, however, it is necessary to use the veloc-
ity vectors vjk for the relative motion of Σj against Σk,
see Sec. 5.

The minimization of F is mathematically simple, because
F is a quadratic function in the unknown motion param-
eters cl, cl. Collecting all unknowns in the vector C =
(c1, c1, c2, c2, . . . , cN , cN)T , we may write F in the form

F = CT · B · C + 2A · C +
∑

i

wi(xi − yi)
2. (9)

Hence, the minimizer C of F solves the following linear
system,

B · C + AT = 0, (10)

where B is a 6 × 6N matrix and A is a 1N × 6N matrix.

Note that it is very easy to fix more than one system. Fixing
Σl just requires to set both vectors cl and cl equal to zero.

4.2 Computing the actual displacements from veloci-
ties

In the previous subsection we have estimated the displace-
ment vector of a point (i.e., the vector pointing from the old
to the new position) with help of the velocity vector of an
instantaneous motion. However, displacing points in this
way would result in an affine mapping of the correspond-
ing system Σl and not in a rigid body motion. Although
such affine transformations are actually used in the litera-
ture (Bourdet Clément, 1988), we prefer to compute exact
rigid body motions in the following way.

It is sufficient to explain this for one moving system, which
we denote by Σ, and whose instantaneous displacement is
given by the vectors c, c. In the unlikely case that there
is no rotational part, i.e., c = 0, we are done, since then
we have a translation with the vector c, which of course
is a rigid body motion. Otherwise we note that the veloc-
ity field of the instantaneous motion is uniquely associated
with a uniform helical motion. Its axis A and pitch p can
be computed with formula (3). The idea now is to move
points via that helical motion approximately as far as indi-
cated by the velocity vectors (points are now moved along
helical paths of that motion). Note that ‖c‖ gives the an-
gular velocity of the rotational part. We apply a motion to
Σ which is the superposition of a rotation about the axis
A through an angle of α = arctan(‖c‖) and a translation
parallel to A by the distance of p · α.

A rotation through an angle of α about an axis (with unit
direction vector a = (ax, ay, az)) through the origin is
known to be given by x′ = R · x with orthogonal matrix

R = 1
m00

·






m11 2(b1b2 + b0b3) 2(b1b3 − b0b2)

2(b1b2 − b0b3) m22 2(b2b3 + b0b1)

2(b1b3 + b0b2) 2(b2b3 − b0b1) m33






,

m00 = b2

0
+ b2

1
+ b2

2
+ b2

3
,m11 = b2

0
+ b2

1
− b2

2
− b2

3
,

m22 = b2

0
− b2

1
+ b2

2
− b2

3
,m33 = b2

0
− b2

1
− b2

2
+ b2

3
,
(11)

where b0 = cos(α/2), b1 = ax sin(α/2), b2 =
ay sin(α/2), b3 = az sin(α/2).

The superposition of the rotation about the axis A with
Plücker coordinates (a, a), cf. Eq. (3), through an angle
α and the translation parallel to A by p ·α is then given by

x′ = R(x − p) + (p · α)a + p, (12)

where R is the matrix given above and p is an arbitrary
point on the helical axis (e.g. p = a × a).

4.3 Iteration and termination criteria

With the methods from 4.1 the algorithm iteratively com-
putes instantaneous motions of the moving systems, whose
actual displacements are then computed as in 4.2. This it-
erative procedure is terminated if one of the two following
conditions is satisfied.

1. The improvement in the objective function (8), after
some iteration step, is below a chosen value.

2. The number of iterations exceeds a chosen constant.

5 SIMULTANEOUS REGISTRATION WITHOUT
CORRESPONDENCES

Given are N clouds of 3D data points (systems
Σ1, . . . ,ΣN) that partially overlap, but now we have nei-
ther correspondences between point pairs, nor confidence
values, as in Sec. 4. But we still assume that a good initial
position of these N 3D point sets in a global coordinate
system is known. Furthermore we know which of the pairs
of systems Σj , Σk actually overlap.

In Sec. 4 each data point xi ∈ Σj that corresponds to yi ∈
Σk contributes to the functional F in Eq. (8) with the term
Q2(xi, yi) which is quadratic in the unknowns vjk(xi) =
(cj − ck) + (cj − ck) × xi. Now we also want to set
up such a quadratic functional for each data point xi in
an overlapping region. We present a strategy based on a
quadratic approximation of the squared distance function,
cf. (Pottmann Hofer, 2002).

If two systems Σj , Σk overlap we triangulate the point
cloud in Σk and refer to the triangulated point cloud as
T (Σk). First we determine those points xi ∈ Σj that ac-
tually lie in the overlapping region, i.e., their distance to
T (Σk) is below a certain threshold. For literature on these
thresholding techniques, see e.g. (Blais Levine, 1995, Eg-
gert et al., 1998, Zhang, 1994).

Now, the goal is to bring the points xi closer to the geo-
metric shape T (Σk), i.e., to move the points xi to lower
levels of the squared distance function to the triangulated
surface T (Σk). In (Pottmann Hofer, 2002) it is described
how to compute for any point xi ∈ R

3 a local quadratic
approximant Fd,xi

=: F i
d to a smooth surface. For our ap-

plications this has to be a nonnegative quadratic function,
F i

d(x) ≥ 0,∀x ∈ R
3. Here we do not have a smooth sur-

face but a triangulated point cloud T (Σk). We can apply
the results of (Pottmann Hofer, 2002), if we are able to
locally approximate the triangulated surface by a smooth
surface. For this we can use local quadric fits to T (Σk),
see e.g. (Yang Lee, 1999). In case that the triangulation is
too coarse, we may first apply mesh refinement techniques
(e.g. interpolatory subdivision) to get a sufficiently dense
triangulation (Dyn et al., 1990, Zorin, 1997).

Now the registration of two such overlapping point clouds
is found by iteratively minimizing the functional

∑

i

F i
d(xi + vjk(xi)), (13)

which is quadratic in the unknowns cj , cj , ck, ck. If we
do not consider points xi from one overlapping region
(Σj ,Σk) only, but points from all overlapping regions si-
multaneously, then we have to minimize the functional
(13) for the unknowns c1, c1, . . . , cN , cN . In order to fix

certain systems Σl, one simply has to set the vectors cl, cl

equal to zero.

As a simple example for a quadratic approximant F i
d of

the squared distance function of T (Σk) at the point xi, we
would like to present a squared point-tangent plane dis-
tance: Let yi denote the closest point of T (Σk) to xi. We
estimate the unit normal vector ni to T (Σk) in yi, e.g. by
computing a regression plane using the points in a certain
neighborhood of yi. In the following we refer to the plane
with normal vector ni through yi as the tangent plane of
T (Σk) in yi. Let di denote the oriented distance of xi to
this plane. If xi is already close to T (Σk) it is better to first
refine the triangulation and then compute the nearest point
and proceed as mentioned above.

We want to minimize the squared distance of the displaced
point x∗

i = xi + vjk(xi) to the tangent plane at yi. The
distance is given by di + nivjk(xi) and thus we get the
functional

Q3(xi) = F i
d(x∗

i) = (di + vjk(xi) · ni)
2

= (di + (cj − ck) · ni + det(cj − ck, xi, ni))
2,

(14)

which is quadratic in the unknowns cj , cj , ck, ck. In
this way we can compute a quadratic term Q3(xi) for all
points xi that have been found to lie in an overlapping re-
gion. Hence, to simultaneously register all N point clouds
(where at least one is fixed) we have to minimize the fol-
lowing functional

F =
∑

i

Q3(xi). (15)

As mentioned in Sec. 4 one has to observe the fact that the
map xi 7→ xi + vj0(xi) is no Euclidean rigid body motion.
See Sec. 4.2 for the computation of the rigid motion which
brings xi close to tips of the vectors xi + vj0(xi).

The squared distance function to the tangent plane has al-
ready been used in several variants to the ICP algorithm,
cf. (Bergevin et al., 1996, Chen Medioni, 1992). Our ap-
proach of a local quadratic approximant of the squared dis-
tance function is more general and includes the squared
distance function to the tangent plane as a special case.
Fig. 3 gives an example for our algorithm in the case
N = 2, namely the registration of a point cloud to a CAD
model. In Fig. 4 the mean squared error of the data points
to the CAD surface after each iteration is given, both for
our algorithm and for the standard ICP algorithm. Our
algorithm converges much faster, since we minimize the
distances to the tangent planes of the surface. Therefore,
tangential movement is not restricted.

6 EXTENSIONS AND FUTURE RESEARCH

Here we did not deal with those systematic and random
errors in the 3D point clouds that arise in the data capturing
process. Our algorithm for the simultaneous registration of
multiple point clouds iteratively minimizes a function F =
∑

i ωiQk(xi), k = 1, 2, 3. The weights ωi can be used to

Figure 3: Registration of a point cloud to a CAD model:
Initial and final position of the point cloud

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Iterations

M
S

 a
lig

nm
en

t e
rr

or Minimization of point−to−plane distances
Minimization of point−to−point distances (ICP)

Figure 4: Comparision of the convergence rate for
minimizing point-to-plane distances vs. point-to-point dis-
tances (ICP).

successively downweight outliers. Appropriate weighting
schemes may be found in (Rousseeuw Leroy, 1987).

A fast and efficient implementation of the registration al-
gorithm requires the development of a spatial data struc-
ture, computed in a preprocessing step from the given point
clouds. Then the necessary quadratic approximants, or at
least the closest points, can be quickly retrieved from that
structure. Further ideas for acceleration and stabilization
of the algorithm can be taken from (Rusinkiewicz Levoy,
2001).

Furthermore, in our contribution we have assumed that a
rough, initial alignment of the point clouds is given and
that small displacements of the point clouds are sufficient
to bring them in optimal alignment. A very ambitious task
for future research is to derive a stable algorithm to find
these rough initial alignments. Such an algorithm should
be applicable to multiple point clouds and should exploit
as much information on the involved geometric entities as
possible.

Finally, for special geometries like 3D objects composed
of simple surfaces one may have additional or more pre-
cise information on the squared distance function (Kverh

Leonardis, 2002). Additional work has to be done to in-
clude such information in the basic algorithm.

ACKNOWLEDGEMENTS

This work has been carried out within the K plus Compe-
tence Center Advanced Computer Vision and was funded
from the K plus program.

REFERENCES

Bergevin R., Laurendeau D., Poussart, D., 1996. Registering
range views of multipart objects. Comput. Vision Image Under-
standing, 61, pp. 540–547.
Besl, P. J., McKay, N. D., 1992. A method for registration of
3D shapes. IEEE Trans. Pattern Anal. and Mach. Intell., 14, pp.
239–256.
Blais, G., Levine, D., 1995. Registering multiview range data to
create 3D computer objects. IEEE Trans. Pattern Anal. Mach. In-
tell., 17, pp. 820–824.
Bourdet, P., Clément, A., 1988. A study of optimal-criteria iden-
tification based on the small-displacement screw model. Annals
of the CIRP, 37, pp. 503–506.
Chen, Y., Medioni, G., 1992. Object modelling by registration
of multiple range images. Image and Vision Computing, 10, pp.
145–155.
Dyn, N., Levin, D., Gregory, J. A., 1990. A butterfly subdivi-
sion scheme for surface interpolation with tension control. ACM
Transactions on Graphics, 9(2), pp. 160–169.
Eggert, D. W., Fitzgibbon, A. W., Fisher, R. B., 1998. Simula-
neous registration of multiple range views for use in reverse en-
gineering of CAD models. Computer Vision and Image Under-
standing, 69, pp. 253–272.
Faugeras, O. D., Hebert, M., 1986. The representation, recog-
nition, and locating of 3-D objects. Int. J. Robotic Res., 5, pp.
27–52.
Horn, B. K. P., 1987. Closed-form solution of absolute orientation
using unit quaternions. J. Opt. Soc. Am. A, 4, pp. 629–642.
Kvehr, B., Leonardis, A., 2002. A new refinement method for
registration of range images based on segmented data. Comput-
ing, 68(1), pp. 81-96.
Nikolaidis, N., Pitas, I., 2001. 3-D Image Processing Algorithms.
Wiley.
Pottmann, H., Hofer, M., 2002. Geometry of the squared distance
function to curves and surfaces. Technical Report No. 90, Insti-
tute of Geometry, Vienna University of Technology.
Pottmann, H., Wallner, J., 2001. Computational Line Geometry,
Springer-Verlag.
Rousseeuw, P. J., Leroy, A. M., 1987. Robust Regression and Out-
lier Detection, Wiley.
Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP
algorithm. In: Proc. 3rd Int. Conf. on 3D Digital Imaging and
Modeling, Quebec.
Yang, M., Lee, E., 1999. Segmentation of measured point data us-
ing a parametric quadric surface approximation. Computer-Aided
Design, 31, pp. 449–457.
Zhang, Z., 1994. Iterative point matching for registration of
smooth surfaces using differential properties. In: Proceedings of
the 3rd European Conference on Computer Vision, Stockholm,
pp. 397–406.
Zorin, D., Schröder, P., Sweldens, W., 1997. Interactive multires-
olution mesh editing. In: SIGGRAPH 97 Conference Proceed-
ings, pp. 259–268.

