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Abstract

Using tools from classical line geometry and the theory of kinematic mappings, it is
possible to define an intrinsic control structure for NURBS curves and surfaces on
the sphere, the cylinder and on any projectively equivalent quadratic surface. These
methods are further used to construct exact C1 blends between these surfaces, such
that interactive design of trim lines and surface tension is possible. The lowest
possible degree of a blend that can be achieved with this method is (4, 3).
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Blending surfaces are surfaces smoothly joining two other surfaces. There are a
variety of different types of blends: implicit blends, which are given by a relation
of the type F (x, y, z) = 0 or parametric blends, which are given by an equation of
the form F = (x(u, v), y(u, v), z(u, v)). Depending on the original surfaces we have
to join, we can use approximate or exact blends. For a survey of different blending
methods using parametric surfaces see e.g. (Varady, 1994) and the extensive bib-
liography given therein, or, for implicit blending, (Hoffmann, 1987) and (Warren,
1989).

It is the aim of this paper to present a method to construct exact C1 rational

blending surfaces between quadrics, which are frequently used primitives in solid
modeling systems. For this purpose we use quadratic projections which have their
origin in the theory of kinematic mappings to define intrinsic control structures for
NURBS curves and surfaces on quadrics.

1 The spherical kinematic mapping

In this section we describe well known connections between the group SO3 of ro-
tations in three-space and the space of quaternions. In euclidean four-space R

4

we have coordinates (x0, . . . , x3). We identify (a0, . . . , a3) ∈ R
4 with the quater-

nion a = a0 + ia1 + ja2 + ka3. The conjugate quaternion is denoted by ā =
a0 − ia1 − ja2 − ka3. The canonical scalar product in R

4 gives rise to a norm
N(a) = a2

0 + a2
1 + a2

2 + a2
3 = aā, which is multiplicative, that is N(ab) = N(a)N(b).

We embed R
3 into R

4 by letting (x, y, z) 7→ ix + jy + kz. Then the unit sphere
S3 = {a ∈ R

4|N(a) = 1} acts on R
3 by multiplication: If N(a) = 1 and x ∈ R

3,
then axā ∈ R

3. The mapping x 7→ axā is linear and because of N(axā) = N(x) it is
isometric. It can also be shown that it is orientation preserving, which means that
it is a rotation. Now it is well known that for all rotations L ∈ SO3 there exists an
a ∈ S3 such that precisely a and −a describe L.

This allows us to define a 1-1 mapping σ from the group of rotations onto
projective three space P 3, which will be called the spherical kinematic mapping.
In P 3 we will use homogeneous coordinates, a point Ra ∈ P 3 consists of all scalar
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multiples of a homogeneous coordinate vector a = (a0, . . . , a3). Choose L ∈ SO3

and let a ∈ S3 correspond to L. Then σ(L) is Ra. Note that σ is well defined.
The scalar product in R

4 induces a distance d(., .) in P 3 by cos d(Ra, Rb) =
(ab)/

√

N(a)N(b). Thus P 3 becomes an elliptic space according to the Cayley-
Klein classification. For details on σ, see for instance (Müller, 1962). The following
list of properties can be easily verified:

1. One-parameter subgroups of SO3 and their cosets are mapped to straight
lines.

2. The group-invariant distance in SO3 which equals the angle between two ro-
tations, is mapped to twice the distance in P 3.

3. Fix a unit vector n ∈ S2 ⊂ R
3. For all unit vectors v ∈ S2 the set of all

rotations which map n to v has a straight line as image under σ. These lines
form a fibration of P 3, which is known to geometers as an elliptic net. The
induced fibration in S3 is known as the Hopf fibration.

2 A spherical control structure

We choose a unit vector n ∈ S2 and define a mapping δ : P 3 → S2 by letting

δ(Ra) = avā.

n can be chosen such that δ has the following representation in homogeneous coor-
dinates: δ : R

4 → R
4, x 7→ y = δ(x),

y0 = x2
0 + x2

1 + x2
2 + x2

3,
y1 = 2(x0x1 − x2x3),
y2 = 2(x1x3 − x0x2),
y3 = x2

1 + x2
2 − x2

0 − x2
3.

(1)

Sometimes we will look at δ as at a mapping P 3 → P 3, sometimes as at a mapping
R

4 → R
4. When restricted to the unit sphere S3, δ is called the Hopf map S3 → S2.

It has been proved in (Dietz et al., 1993) that a rational curve or surface of degree
≤ 2m contained in the unit sphere has a representation of the form y = δ(x), where
the xi are univariate or bivariate polynomials of degree less or equal to m (see also
Dietz et al., 1995).

δ also is the composition of an elliptic net projection and the inverse of a stereo-
graphic projection, and therefore is also called generalized stereographic projection.
Now the inverse images of points are just the lines mentioned above. If we neglect
metric properties of δ, an analogous map exists for all oval quadrics in P 3, which
are projectively equivalent to the sphere.

It is now possible to define an intrinsic control structure for NURBS curves
on the sphere, as described in (Pottmann, 1995). Choose a sequence d0, . . . of de
Boor points and a sequence f0, . . . of Farin points, choose p0 in δ−1d0 and calculate
successively points q0, p1, q1, p2, . . . such that qi = 1

2
(pi + pi+1), δ(qi) = fi and

δ(pi) = di. If we use the sequence p0, p1, . . . as a sequence of control points for a Ck

piecewise polynomial spline curve p(t) of degree n, δ(p(t)) will be a Ck piecewise
rational spline curve of degree 2n, which does not depend on the choice of p0,
because an elliptic net admits a one-parameter group of automorphic collineations
which map each line of the net onto itself.

If we want to generate closed NURBS curves on the sphere described by the
sequence d0, f0, . . . , dn−1, fn−1, dn = d0, we extend the sequence dj by defining
di+n = di and construct a corresponding control polygon pi. This does not have to
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Figure 1: control structure for rational curves on the sphere

be closed, but if we use a “periodic” knot vector, the δ-image of the resulting poly-
nomial spline curve will be a periodic NURBS curve on the sphere, as is illustrated
in figure 1.

3 The kinematic mapping of Blaschke and Grün-

wald

To perform similar constructions in the case of the unit cylinder Z2 with equation
x2 + y2 = 1, we can do the following (see Blaschke and Müller, 1956): SO3 was
the group of invertible linear transformations automorphic for the unit sphere. We
introduce an isotropic scalar product in R

3, that is a symmetric bilinear form of
defect 1 and index 0, such as (x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2. Then we define
a norm by ‖x‖ =

√
x.x and Z2 is the unit sphere in this metric.

The group G of those invertible linear transformations which are automorphic for
Z2 and leave the z-axis pointwise fixed, is isomorphic to the planar euclidean motion
group OA2. An isomorphism ν is constructed as follows: Let x = (x1, x2, x3) ∈ Z2

and consider the linear function fx(u, v) = −x3 − x2u + x1v. fx ≥ 0 defines a
half-plane in R

2, whose boundary is the oriented line ν(x). The action of OA2 on
oriented lines now equals the ν-image of G.

The following construction is completely analogous to the spherical case: Let
Q3 equal P 3 without the line x0 = x3 = 0. The kinematic mapping of Blaschke

and Grünwald, which will be denoted by σ for simplicity, is a one-to-one mapping
G = OA2 → Q3. In homogeneous coordinates, σ maps a euclidean rotation with
center (xm, ym) and angle α to the point R(− cot(α/2), xm, ym, 1) and a euclidean
translation with vector (u, v) to the point R(1,−v, u, 0). This makes σ even smooth.

We introduce a scalar product of defect 2 and index 0 in R
4 by letting x ·

y = x0y0 + x3y3, which induces a distance d(., .) in Q3 by letting cos d(Ra, Rb) =
a · b/

√

(a · a)(b · b). Then σ has the following properties:

1. One-parameter subgroups of OA2 and their cosets are mapped to straight
lines in Q3.

2. The group-invariant distance in OA2 which equals the angle between two
rotations or translations, is mapped to twice the distance in Q3.

3. Fix a “unit” vector n ∈ Z2 ⊂ R
3. For all unit vectors v ∈ Z2 the set of all

L ∈ OA2 which map n to v has a straight line as image under σ. These lines
form a fibration of Q3, which is known to geometers as a parabolic net.

4 A cylindrical control structure

We define an intrinsic control structure for NURBS curves on a cylinder or a cone
in projective three-space P 3. First, it is sufficient to consider the unit cylinder
Z2 : x2

1 + x2
2 = x2

0, as all singular quadrics with 1 singular point are projectively
equivalent. From the Klein model of the Grassmann manifold of lines in three-
space, where oval quadrics correspond to elliptic, ruled quadrics to hyperbolic and
singular quadrics with one singular point to parabolic nets, we would suppose that
there is a quadratic projection P 3 → Z2 with the lines of a parabolic net as inverse
images of points.
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Figure 2: convex hull property

Figure 3: control points for trimlines

This is accomplished in the following way: Let x ∈ Q3 and let L = σ−1(x) be
the preimage of x under the kinematic mapping. From (Strubecker, 1961) it follows
that we can choose n ∈ Z2, such that the mapping δ : Q3 → Z2 : δ(x) = L(n), has
the following representation in homogeneous coordinates:

y0 = x2
3 + x2

0,
y1 = x2

3 − x2
0,

y2 = −2x3x0,
y3 = 2(x3x1 − x2x0),

(2)

and thus has the desired properties. For more details on δ, see also (Dietz, 1995).
The cylindrical control structure now is completely anologous to the spherical

case. There are, however, some difficulties that do not arise in the case of an elliptic
net. The condition qi = 1

2
(pi + pi+1) can be fulfilled uniquely if e.g. the lines δ−1di,

δ−1fi and δ−1di+1 are skew and cannot be fulfilled if two of the lines intersect
and the third is skew to them. In an elliptic net, all lines are pairwise skew. A
parabolic net consists of line pencils, which correspond to lines on the cylinder.
Lines of different pencils are skew. Therefore, if two of the points di, fi, di+1 lie on
a common generator line l ⊂ Z2, the third point must also be in l. This is also clear
from the fact that the line segment pipi+1 is mapped to a quadratic rational curve,
which is part of a planar intersection of the cylinder, and if two points of a line lie
in a plane, then the whole line is contained in the plane.

It is possible to derive a variation diminishing property and a convex hull property

for δ-images of segments of quadratic Bézier curves c: c is contained in some plane
ε which contains some line l belonging to the elliptic or parabolic net. Every line
contained in ε does intersect l and therefore δ(c) contains the point δ(l). For all
conic sections d on the sphere or cylinder through δ(l) there exists a line d̃ ⊆ ε
with δ(d̃) = d. Therefore both the variation diminishing property and the convex
hull property with respect to the conic sections containing δ(l) hold (see figure 2).
A stereographic projection with center δ(l) maps all these conics to lines, so in a
stereographic image this is just the classical case.

5 Construction of Blending surfaces

We can use the control structures defined above to find rational blending surfaces
between oval and singular quadrics. The line–geometric model of ruled quadrics, the
hyperbolic net together with the hyperbolic motion group, would make it possible to
perform analogous constructions, but ruled quadrics do not play such an important
role in practice.

The construction is as follows:

1. Define four NURBS curves by their intrinsic control polygons di1, ci1, . . . ,
di4, ci4. (see figure 3) The two outer curves will be the trimlines of a blend.

2. Construct the corresponding polygons pi1, . . . in R
4, such that the conditions

given above are fulfilled, and use {pi1, pi2} and {pi3, pi4} as control net for
(m, 1) piecewise TP-polynomial ruled spline surfaces.

4



Figure 4: Definition of the transition surface

3. Apply δ (the spherical δ in the case of a sphere, the cylindrical δ in the case of
a cylinder). This gives us a (2m, 2)-NURBS patch on each of the two quadrics.
Calculate the control points of the two surface patches.

4. Select the “outermost two” control point rows and define them to be the
control net of a (2n, 3)-NURBS transition surface (see figure 4).

The two patches do not depend on the choice of the p0j , but the transition
surface does. This could be used as a design parameter together with the choice of
the trimlines themselves.

As the boundary curve and the first derivatives of a NURBS surface are com-
pletely determined by the first two rows of control points, the so defined transition
surface is an exact C1 blend between the two quadrics. By letting m = 2 we achieve
the lowest degree which is possible for a C1-blend constructed with this method:
(4, 3).

The trimlines could be given by the designer or be chosen automatically, e.g.
the distance to the intersection curve could be chosen as a function of the angle
between the surfaces.

So far we have not dealt with the case of closed intersection curves and trimlines.
Here some problems arise. As mentioned above, the curves x(t) do not have to be
closed for their projections y(t) to be closed and to be of the same differentiability
class. For the transition surfaces, however, the situation is different. As C1- or
G1-boundary conditions for NURBS surfaces are rather complicated, it is desirable
to have something closed in R

4 to project.
According to (Pottmann, 1995), a spherical polygon c defines a path in SO3:

First we rotate along c1, then along c2, and so on. If we apply the spherical kinematic
mapping to this path, we get just the polygon Rp0, . . . , Rpn in P 3.

Analogously, a polygon consisting of elliptic segments on the cylinder defines
a path in the planar euclidean motion group: The ν-image of an elliptic arc ci

contained in Z2 equals the set of oriented tangents of an oriented circular arc ki in
the euclidean plane, or, as the degenerate case with radius 0, a sector of a line pencil.
We rotate along k1, then along k2, and so on. Then we apply the kinematic mapping
of Blaschke and Grünwald and get just the polygon Rp0, . . . , Rpn in Q3 ⊂ P 3.

To formulate a closedness condition, it is necessary to define the notion of angle

between two oriented segments c1 and c2 of conic sections on the sphere or cylinder,
where the endpoint p of c1 equals the starting point of c2. In the case of the sphere
the angle is defined to be the euclidean angle between tangent vectors. In the case
of the cylinder, the angle is defined to be the isotropic angle, which is the difference
of the slopes of the tangent vectors to ci in p. The slope of the vector (x, y, z) equals

k = z/
√

x2 + y2. It is important for us that this angle is an invariant under the
groups SO3 and OA2, respectively. Having defined the turning angle at each vertex
of a spherical or cylindrical polygon, we define the total turning number als the sum
of the turning angles.

Proposition 1: Let p0, . . . , pn be the vertices of a polygon in R
4 and let the

spherical or cylindrical δ-image c, consisting of segments c1, . . . , cn be closed. Then

Rp0 = Rpn if and only if the total turning angle of c equals 2kπ for the spherical

and 0 for the cylindrical case

Proof: From the corresponding kinematic mapping it is clear that c is closed
if and only if the motion corresponding to the endpoint of the last segment is the
identity mapping. A motion with one point fixed is uniquely determined by the
image of one tangent vector. On the sphere this condition if fulfilled if and ony if
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Figure 5: Example of blending surface between oval quadrics

Figure 6: Example of blending surface between oval and singular quadric

a tangent vector rotates about an angle of 2kπ during the motion. On the cylinder
this is equivalent to the condition that after moving a tangent vector around its
slope has not changed, which in our terms is expressed by a vanishing total turning
angle.

For design purposes it is best to leave the ci unchanged and change the fi such
that the total turning angle will equal the desired value and the polygon Rpi will be
closed. To achieve closedness of the polygon pi in R

4, we first change the fi to be
the group-midpoint of pi and pi+1 in the one-parameter subgroup determined by ci.
Without loss of generality ‖p0‖ = 1. Then ‖pi‖ = 1 for all i and qi = λ(pi + pi+1).
The rotation along ci is mapped to a segment of a “great circle” starting at pi,
having its midpoint at qi and ending at pi+1.

As both the unit spheres S3 for the spherical and Z3 for the cylindrical case are
twofold coverings of P 3 and Q3, resp., with fibers consisting of pairs of antipodal
points, for the case cn = c0 the endpoint pn will be either p0 or −p0.

Let pi and qi be two such polygons. If the corresponding paths in the appropriate
motion group are homotopic, p0 = ±pn if and only if q0 = ±qn. This gives us

Proposition 2: Let c = c1, . . . , cn and d = d1, . . . , dn be two closed spherical

polygons satisfying the angle condition. After changing the total turning angle of at

most one of the two polygons there exist δ-preimages p0, . . . and q0, . . . such that the

δ-image of a piecewise polynomial (m, 1) spline surface defined by the pi and the qi

is a closed C1 piecewise polynomial (2m, 2) spline surface in R
4.

Proof: The homotopy relation will be denoted by ∼. For details on homotopy
and coverings, see e.g. (Bredon, 1993). If for the corresponding paths c̃ and d̃ in
the spherical motion group c̃ ∼ d̃ holds, either both pn = p0 and qn = q0 or both
pn = −p0 and qn = −q0. As δ(x) = δ(−x), the proposition then follows. If c̃ 6∼ d̃,
w.l.o.g. we can assume pn = p0 and qn = −q0. Now we construct a spherical polygon
d′0, . . . , d

′

n with the same starting points and endpoints as d0, . . . , dn by adding a
total turning angle of 2π. Let µ denote the rotation with angle 2π and axis Rδ(p0).
Then µ 6∼ 0 and d̃′ ∼ d̃ ? µ imply d̃′ ∼ c̃.

Proposition 3: Let c and d be two closed homotopic cylindrical polygons not

containing a line segment and satisfying the angle condition. Then there exist δ-
preimages p0, . . . and q0, . . . with the same properties as in Prop. 2.

Proof: If the cylindrical polygons are homotopic, the corresponding paths in
the euclidean motion group are homotopic. Therefore either both pn = p0 and
qn = q0 or both pn = −p0 and qn = −q0. As δ(x) = δ(−x), the proposition follows.

Now let two oval or singular quadratic surfaces and on each of them two closed
polygons satisfying the angle condition be given. It follows from propositions 2
and 3 that after changing the total turning number of at most one of them, the
construction described in figure 4 can be applied. Figures 5 and 6 show some
examples.
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