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Abstract

Developable surfaces are modelled with pieces of right circular cones. These

cone spline surfaces are well-suited for applications: They possess degree two

parametric and implicit representations. Bending sequences and the develop-

ment can be explicitly computed and the offsets are of the same type. The

algorithms are based on elementary analytic and constructive geometry. There

appear interesting relations to planar and spherical arc splines.

Keywords: developable surface, rational Bézier representation, NURBS, arc

spline, circular spline.

INTRODUCTION

Developable surfaces are special ruled surfaces which can be unfolded or developed

into a plane without stretching or tearing. Mathematically speaking, these surfaces

can be mapped isometrically into the Euclidean plane. Because of this property,

they are of considerable importance to sheet-metal and plate-metal based industries.

Applications include windshield design, binder surfaces for sheet metal forming pro-

cesses, aircraft skins, ship hulls and others (see e.g. [16]).

To include developable surfaces into current CAD/CAM systems, they need to be

represented as NURBS surfaces [7, 20]. There are basically two approaches to rational

developable surfaces. First, one can express such a surface as a tensor product surface

of degree (1, n) and solve the nonlinear side conditions expressing the developability
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[1, 2, 8, 15]. Second, we can view the surface as envelope of its one parameter set of

tangent planes and thus treat it as a curve in dual projective space [4, 5, 11, 12, 13,

22, 23, 26, 28]. Based on the latter approach, some interpolation and approximation

algorithms as well as initial solutions to special applications have been presented

recently [12, 13, 23].

The numerical computation of the isometric mapping of a developable surface

into the plane has been treated by several authors (see e.g. [6, 10, 14, 27]).

For applications, where the development of the designed surfaces needs to be com-

puted with high accuracy, it is desirable to avoid numerical integration techniques.

Therefore, we study here the design of smooth developable surfaces with pieces of cones

of revolution: these surfaces possess the lowest possible parametric and implicit de-

gree for designing G1 surfaces, their development and bending into other developable

shapes is elementary and their offsets are of the same type. We call these surfaces

cone spline surfaces henceforth.

During the preparation of the revised version of the present paper, we became

aware of a contribution by Redont [25] on cone spline surfaces. However, there ap-

pears to be no overlap with our work. Redont studies the surfaces from a purely

differential geometric point of view and proposes a global approximation algorithm.

Our algorithms are local and based on a careful study of cone spline surfaces using

tools from various branches of classical geometry. In this way we can get valuable

insight into the degrees of freedom, the variety of feasible solutions and ways for

optimizing them.

Our approach to approximation of a given developable surface Γ by a cone spline

surface is based on the following strategy. Choose an appropriate sequence of rulings

plus tangent planes of Γ. Then each pair of consecutive rulings plus tangent planes

(G1 Hermite data) can be interpolated by a smoothly joined pair of right circular

cones. These cones either have the same vertex or they possess parallel axes or a

common inscribed sphere. In the first two cases, we get a construction using spherical

or planar biarcs. In the third, general case, the cones touch the inscribed sphere,

which is computable from the input, along a spherical biarc. Using known results

on biarcs [9], we see that there exists a one parameter family of solutions to the

present G1 Hermite problem. We discuss the choice of good solutions within this

set. Furthermore, a certain spatial counterpart to the planar osculating arc splines of

Meek and Walton [18] is presented. The efficiency and practicality of the proposed

algorithms is discussed at hand of several examples.

2



FUNDAMENTALS AND PROBLEM DESCRIPTION

Developable surfaces can be isometrically mapped (developed) into the plane. As-

suming sufficient differentiability, they are characterized by the property of possessing

vanishing Gaussian curvature. All nonflat developable surfaces are envelopes of one

parameter sets of planes. Such a developable surface is either a conical surface, a

cylindrical surface, the tangent surface of a twisted curve or a composition of these

three surface types. Thus, developable surfaces are ruled surfaces, but with the special

property that they possess the same tangent plane at all points of the same generator.

For an analytical treatment, we will work in the projective extension P 3 of real

Euclidean 3-space E3. We use homogeneous Cartesian coordinates (x0, x1, x2, x3),

collected in the 4-vector X. The one dimensional subspace of R
4 spanned by X is

a point in P 3. This point will also be denoted by X if no ambiguity can result.

For points not at infinity, i.e., x0 6= 0, the corresponding inhomogeneous Cartesian

coordinates are x = x1/x0, y = x2/x0, z = x3/x0; they are comprised in x = (x, y, z).

The inhomogeneous parametric representation of a ruled surface Γ is

g(u, v) = l(u) + ve(u), (1)

where l(u) represents a curve on Γ and e(u) are unit vectors of the generator lines.

The condition that (1) represents a developable surface is

det(l̇, e, ė) = 0. (2)

For a cylinder e is constant, and for a cone we may choose l = const as the vertex. In

a differential geometric treatment, a tangent surface is written in the form (1) with u

as arc length of the line of regression l, and e = l̇(u). Let e,p,n be the Frenet frame

vectors of l, with p and n as principal normal and binormal, respectively, and let κ

and τ be curvature and torsion of l. Then the Darboux vector

d(u) = τ(u)e(u) + κ(u)n(u) (3)

defines the axis a = l + λd of a cone of revolution ∆(u) with vertex l, which touches

Γ along the generator e(u). ∆ is called osculating cone, since it has contact of order 2

with Γ at all regular points of the common ruling. This cone may be considered as the

counterpart of the osculating circle of a curve; it determines the curvature behaviour

of a developable surface along a ruling. Formula (3) is not applicable for a cone or

cylinder Γ. If Γ is a cone, the osculating cone ∆ contains the osculating circle of the

spherical curve c(u) = l+e(u); for a cylinder, one may compute its intersection curve

c with a plane normal to the generators. Then, the osculating cylinders pass through

the osculating circles of c.
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The osculating cone or cylinder may degenerate to a plane; the corresponding

generator of Γ is then called an inflection generator. For a cylinder Γ this happens,

if the normal section c has an inflection point (point with vanishing curvature). A

cone Γ has an inflection generator, if the spherical curve c sends its osculating plane

through the vertex. Finally, a tangent surface has an inflection generator if the

corresponding point of the line of regression possesses vanishing torsion.

A plane u0 + u1x + u2y + u3z = 0 can be represented by its homogeneous plane

coordinates U = (u0, u1, u2, u3). We will also use oriented planes and represent them

by normalized plane coordinates, where the normal vector (u1, u2, u3) is normalized,

u2
1 + u2

2 + u2
3 = 1, and determines the orientation.

The “dual approach” to developable surfaces interprets a developable NURBS

surface as set of its tangent planes U(t). It can then be written as

U(t) =
n

∑

i=0

Ui N
k
i (t), (4)

with the normalized B–spline functions N k
i (t) of degree k over a given knot vector V .

The vectors Ui are the homogeneous plane coordinate vectors of the control planes,

also denoted by Ui.

Each generator of the developable surface follows from (4) as intersection of the

plane U(t) and its derivative U̇(t). In particular, the boundary rulings of the surface

are the intersections of the boundary control planes U0 ∩ U1 and Un−1 ∩ Un. The

cuspoidal edge or line of regression is obtained as intersection U(t) ∩ U̇(t) ∩ Ü(t).

In general, it is a Bézier or B–spline curve of degree 3k − 6. Recently, algorithms

for the computation with the dual representation, the conversion to the standard

tensor product representation and the solution of interpolation and approximation

algorithms have been developed [12, 13, 23].

For k = 2, the developable NURBS surface is composed of pieces of quadratic

cones or cylinders. Apart from the cone vertices, the surface is G1, i.e., adjacent

cones or cylinders are tangent to each other along the common ruling. Even in this

simple case, the development of the surface can, in general, not be given in terms

of elementary functions. Therefore, we will now study the case where the surface

is composed of right circular cones or cylinders only. These surfaces shall be called

cone spline surfaces henceforth. Figure 1 shows the Bézier planes of a right circular

cone segment. Using normalized plane coordinates U0 and U2, the Bézier plane

U1 = (u10, u11, u12, u13) contains the boundary generators and has the weight

w1 =
√

u2
11 + u2

12 + u2
13 =

cos α

cos β
,

with α and β denoting the angle between the axis a and U0 or U1, respectively. It is
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Figure 1: Cone segment

well known that the point set of such a cone segment could also be represented by a

rational Bézier tensor product surface of degree (1,2) (see e.g. [20]).

Modeling with cone spline surfaces is thought in the following way. First, the

shape of the surface is described in some analytic form, for example (4) with arbitrary

degree k. Together with this G1 developable surface Γ we prescribe a region of interest

Ω in which Γ is free of singularities. Ω may be a simply connected region, for example

a bounding box or a ball, which makes it computationally easy to decide whether or

not a point lies in Ω. We would like to approximate Γ by a cone spline surface Λ

which is free of singularities inside Ω.

G1 HERMITE ELEMENTS

The idea is to select a sequence of rulings ei of Γ, compute their tangent planes τi and

interpolate consecutive G1 elements (ei, τi) with two segments of cones of revolution,

which possess the same tangent plane along the common generator. Throughout this

paper, we will tacitly allow that the cone may degenerate to a cylinder and mention

this case only if necessary. Furthermore, we will simply refer to a segment of a right

circular cone, bounded by two generators, as a cone segment. The two cone segments

which interpolate the given G1 Hermite data form a G1 cone pair.

For computing a practically useful solution, it is necessary to select special gen-

erators of Γ and to introduce some orientations.

Since cones of revolution do not have inflection generators, the typical behaviour

of an inflection generator can only be represented at a junction of two cones. There-

fore, inflection generators belong to the selected generators. We also select those

rulings of the given surface Γ along which we have a G1 junction of two developable

surface patches such that the patches lie locally on different sides of the common tan-

gent plane. The remaining rulings should be selected such that the desired accuracy
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can be achieved. A good strategy is a topic for future research. Here, we will focus

on the solution of the Hermite interpolation problem.

Let (ei, τi), i = 1, 2, be two consecutive G1 elements. With each element we

associate an orthonormal basis ei,pi,ni in the following way (Fig. 2). τi is spanned

Figure 2: Orthonormal basis

by the generator vector ei and the unit vector pi normal to ei. The orientation of ei

is taken from an orientation of the set of generators of the given surface Γ. The vector

pi indicates the side on which the interpolant between ei and ei+1 has to connect.

Thus, the unit normal ni = ei × pi always points to the same side of the surface Γ,

which is assumed to be regular and orientable in the region of interest.

The general case

If two cones of revolution Λ1, Λ2 with different vertices v1, v2 possess a common

generator and tangent plane, their axes either intersect at a point m or are parallel.

We will now treat the first (general) case. Here m is the center of a sphere Σ that

touches both cones along circles c1, c2 (Fig. 3). Σ can already be computed from the

two given G1 elements. Using a point li on ei, the midpoint m of Σ is the intersection

of the normal planes

νi : (x − li) · pi = 0, i = 1, 2 (5)

with the tangent planes’ bisector plane

σ : x · (n1 − n2) − l1 · n1 + l2 · n2 = 0. (6)

Let ai be the touching point of Σ and ei. The desired cone pair will touch Σ along a

G1 pair of circle segments, i.e., a spherical biarc. Its end points are ai, and the end

tangent vectors are pi. The set of biarcs interpolating two points plus tangent vectors

has been studied by Fuhs and Stachel [9] and their results can now be applied to the

present problem.
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Figure 3: Inscribed sphere of two cones

For the rational Bézier representation of the biarc, we denote the Bézier points

of its two circle segments c1, c2 by a1,b1, c,b2, a2 (Fig. 4) and let b1 = a1 + λ1p1,

b2 = a2 − λ2p2. The two legs in the Bézier polygon of a circle possess equal length

Figure 4: Control polygon of a biarc

and thus an admissible pair of inner Bézier points is characterized by

(b2 − b1)
2 = (λ1 + λ2)

2.

This is equivalent to

(a2 − a1)
2 − 2λ1(a2 − a1) · p1 − 2λ2(a2 − a1) · p2 + 2λ1λ2(p1 · p2 − 1) = 0. (7)

We may choose b1(λ1) and then compute a unique b2(λ2) via (7). To complete the

rational Bézier representation, we also need the junction point

c =
λ2b1 + λ1b2

λ1 + λ2

. (8)
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Setting the weights at the end points of the two circle segments to 1, the weights wi

at bi are computed as

|wi| =
|(bi − ai) · (c − ai)|

‖bi − ai‖‖c − ai‖
.

If λi > 0, then one uses the arc contained in the triangle ai,bi, c and a positive

weight wi. Otherwise one has to use the complementary arc and a negative weight.

The homogeneous coordinates of the Bézier points are

Ai = (1, ai), Bi = (wi, wibi), C = (1, c).

The Bézier planes of the cone segments are the polar planes of these Bézier points

with respect to the sphere Σ : (x−m)2 = r2. The homogeneous equation of the polar

plane of a point with homogeneous coordinates Y = (y0,y) is

(x − x0m) · (y − y0m) = r2x0y0.

Clearly, a cone pair and the corresponding spherical biarc are connected via this

polarity.

As we have a region Ω of interest, an additional problem has to be considered. For

Figure 5: Σ and Ω lying on the same side of v

the moment, let us look at a single cone for which we have computed the corresponding

spherical arc c with Bézier points a,b, c. As we exclude all solutions with vertex v

in Ω, we have to distinguish between two cases. The first case is shown in Figure 5.
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The sphere Σ and the region Ω lie on the same side of the vertex v. Choosing a point

d of the bounding generator e lying in Ω, this is characterized by

(a − v) · (d − v) > 0.

Here c directly corresponds to the useful piece of the cone.

If Σ and Ω lie on different sides of v however, equivalent to

(a − v) · (d − v) < 0,

using the computed arc c would lead to sharp edges in the interpolated surface.

Figure 6 shows that the arc c̄ complementary to c has to be used. This leads to sharp

Figure 6: Σ and Ω lying on different sides of v

edges in the spherical arc spline on Σ, but guarantees a smooth surface. The change

from c to c̄ is easily accomplished by changing the sign of the weight w of the inner

Bézier point B = (w,wb).

The vertices vi of the two cone segments can be computed by intersecting the

tangent plane of Σ at c with the boundary generators ei. We can also first compute

the vertices in a way analogous to the inner Bézier points. Letting v1 = a1 + µ1e1,

v2 = a2 − µ2e2, an admissible vertex pair is characterized by

(v2 − v1)
2 = (µ1 + µ2)

2.

Similar to (7), this yields a bilinear relation between µ1, µ2, given by

(a2 − a1)
2 − 2µ1(a2 − a1) · e1 − 2µ2(a2 − a1) · e2 + 2µ1µ2(e1 · e2 − 1) = 0. (9)
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In order to determine a cone pair within the one parameter set of solutions we can

either choose b1(λ1) and compute b2(λ2) or choose v1(µ1) and compute v2(µ2). We

see that both mappings b1 7→ b2 and v1 7→ v2 are projective maps. The connecting

rulings v1v2 therefore lie in a ruled quadric Φ. According to Fuhs and Stachel [9],

Φ is a hyperboloid of revolution, which touches the sphere Σ along a circle, which

the connecting points c of the spherical biarcs are lying on (Fig. 7). The tangent

Figure 7: Spherical biarc

planes of Σ (and Φ) along the circle c are the tangent planes of the cone pairs at their

junction generators; they envelope a cone of revolution. Discussing degeneracies and

special cases later, we summarize:

Theorem 1. Given two G1 elements (ei, τi) in general position, there is a one pa-

rameter family of cone pairs interpolating these data. The cones possess a common

inscribed sphere Σ. The junction generators of the cone pairs form a set of rulings on

a hyperboloid of revolution Φ, which touches Σ along a circle. The generators e1, e2

lie in the second set of rulings of Φ. The tangent planes of Σ and Φ along this circle

are the junction tangent planes of the cone pairs.

Let us now discuss some special solutions within the one parameter family we

have obtained so far.

In case that the surface to be approximated possesses a generator ei whose sin-

gular point is at infinity, we might want to find a solution in which vertex vi of the

cone pair is at infinity and thus the first of the two cone segments is a cylindrical
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segment. In view of (9) this occurs if

µ2 =
(a2 − a1) · e1

e1 · e2 − 1
. (10)

The cones which the two segments of a pair are taken from are congruent, if

µ1 = µ2. Hence, these cone pairs belong to solutions of the quadratic equation, which

arises from (9) with µ1 = µ2. It always has two real solutions, which is in accordance

with a result by Fuhs and Stachel [9] on spherical biarcs consisting of circles of equal

radius.

As practically useful cone pairs we identified those with (locally) minimal vertex

distance ‖v2 − v1‖ = |µ1 + µ2|. Writing equation (9) in the form

µ2 =
Aµ1 + B

Cµ1 + D
, (11)

this cone pair belongs to a solution of

C2µ2

1 + 2CDµ1 + AD + D2 − BC = 0. (12)

Equation (12) always has two real solutions: According to Theorem 1, we have to

find those rulings of the hyperboloid Φ, which intersect the generators ei in points

vi with minimal distance from each other. Using the top view of Φ, the images of

all rulings of Φ are tangent to the circular silhouette u′ of Φ. As all rulings of Φ are

constantly sloped, one only has to find those with minimal distance v′

1v
′

2 (Fig. 8).

These special solutions of junction generators v1v2 can also be characterized by the

Figure 8: Minimal vertex distance v1v2

fact that the generator v1v2 defines the same angle with both generators ei. One has

to take attention that only one of the two solutions leads to a cone pair useful for

applications. This does not always have to be the one with absolute minimal distance,

however.
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Special cases

Important special cases arise if the developable surface Γ to be approximated (locally)

is a general cone, a general cylinder or a surface of constant slope, that is the tangent

surface of a curve whose tangent vectors enclose a constant angle with some plane π

(Fig. 9). Any osculating cone ∆i of a developable surface of constant slope has its

Figure 9: Surface of constant slope

axis normal to π. For any two tangent planes τi, i = 1, 2 touching Γ along ei we have

pi parallel to π and the normal vectors ni enclose a constant angle with π.

In the following we look at two consecutive G1 elements (ei, τi), i = 1, 2. Using

these data only, we characterize the special cases and derive algorithms to interpolate

the given boundary elements with a pair of cone or cylinder segments. These algo-

rithms will prove to be similar to the general case discussed in the previous section.

The cone case

The generators e1, e2 intersect in a point v. If additionally τ1 = τ2, we interpolate

with a part of τ1. Otherwise, two cone segments with common vertex v will be used

which intersect a sphere Σ centered in v in a spherical biarc. The one parameter set

of solutions is determined by the end points ai = ei ∩ Σ and end tangent vectors pi.

The missing Bézier points b1 = a1 + λ1p1, c,b2 = a2 − λ2p2 can be computed using

formulae (7) and (8).

The cylinder case

The generators e1, e2 are parallel and have the same orientation. This case is similar

to the first one, with v being a point at infinity. We interpolate with a planar
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surface in case of τ1 = τ2, otherwise with a pair of right orthogonal cylinder segments.

Intersecting (ei, τi) with a plane normal to ei we get Hermite elements (ai,pi) that

can be interpolated by a one parameter set of planar arc splines. Obviously (7) and

(8) can be used for calculating the inner Bézier points of the planar arc splines.

Surfaces of constant slope

In the following the generators e1, e2 have no point in common.

Given two G1 Hermite elements in general position we found the center m of

a common inscribed sphere as intersection of three planes which had normal vectors

p1,p2 and n1−n2, according to equations (5) and (6). This calculation is not possible

if

det(p1,p2,n1 − n2) = 0, (13)

i.e., the three planes do not intersect in a point. Equation (13) is equivalent to

(p1 × p2) · n1 = (p1 × p2) · n2.

Assuming det(p1,p2) 6= 0 for the moment, the normal vectors n1,n2 enclose the

same angle with a plane π spanned by p1 and p2. We will now interpolate the given

boundary generators by a cone pair with parallel axes, both being normal to π. The

cone pair intersects π in a planar biarc (Fig. 10) with ai = ei ∩ π as end points

and tangent vectors pi. Admissible Bézier points b1, c,b2 again follow from (7) and

Figure 10: Pair of cone segments

(8). The vertices v1 and v2 are the intersection points of the generators e1 and e2

with ν : (x − c) · (b2 − b1) = 0, which is the plane through the junction point

c perpendicular to the junction tangent in c. One can also compute the vertices
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directly, using v1 = a1 + µ1e1,v2 = a2 − µ2e2 and equation (9). Minimizing the

vertex distance with formula (12) provides congruent cone segments.

In the case of det(p1,p2) = 0, which was excluded above, the plane π has to be

spanned by p1 and n1 − n2. The remaining algorithms stay the same.

Examples

The first example shall demonstrate the general case. Figure 11 shows a tangent

surface Γ. Using four Hermite elements (ei, τi) of Γ as input data we get an approx-

(a) (b)

Figure 11: (a) Tangent surface, (b) its approximation with 3 cone pairs

imation by three cone pairs. From the one parameter set of solutions those with

minimal vertex distance are chosen. Connecting the six vertices of the cone segments

to a polygon we obtain the locus of all the singular points of the cone spline surface.

Although the line of regression was not used in the computation of the cone spline,

one can see that this curve is approximated perfectly by the vertex polygon.

(a) (b)

Figure 12: (a) Surface of constant slope, (b) its approximation with 3 cone pairs
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The second example illustrates one of our special cases and shows the approxi-

mation of the tangent surface of a helical curve (Fig. 12). The approximation of this

surface of constant slope with only a small number of cone segments is again very

good.

OSCULATING CONE SPLINES

Recently, Meek and Walton [18] have studied the approximation of plane curves with

osculating arc splines. These are circular splines which contain a sequence of seg-

ments of osculating circles of the curve to be approximated. Between two consecutive

osculating circles one circle segment is built in. It has been shown that the method

results in curves with a smaller error than those produced from biarcs (see [17, 18]).

We will now investigate the analogue for cone spline surfaces. Given a developable

surface Γ that is neither a conical or cylindrical surface nor a surface of constant slope,

we compute a sequence of osculating cones ∆i and smoothly join consecutive cones

by a cone ∆.

Let us assume that ∆1, ∆2 are not cylinders. If a cone ∆ smoothly joins these

two cones, we may perform translations which take their vertices to the origin. The

resulting three cones Λ1, Λ, Λ2 are again smoothly joined. The relevant segments

intersect the unit sphere Σ in a spherical triarc, formed by segments of circles c1, c, c2

(Fig. 13). From the given cones ∆i we can compute the planes Ui of the circles ci.

Figure 13: Joining cones ∆i and Λi

The poles Qi of Ui with respect to Σ are the vertices of cones Λ∗

i which touch Σ along

the circles ci. If c1 is touched by a circle c, the pole Q of the plane U of c must

lie on Λ∗

1. Therefore the vertex Q of a cone which touches Σ along a filling circle

c, must lie on the intersection curve l of the cones Λ∗

1, Λ
∗

2. Because of the common

inscribed sphere of these two cones, their intersection curve is, in general, composed

of two conics l1 and l2. Projecting the conics li from the origin yields two quadratic

cones whose generators are the axes of possible intermediate cones Λ.
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In case of Λ∗

1 and Λ∗

2 touching each other at a common generator the intersection

curve consists of a conic l1 and the common generator l2. Points Q of l2 do not lead

to useful solutions of intermediate cones ∆.

To compute the planes Vi of the conics li, we first note that they must lie in the

pencil spanned by U1 = (u10 : u11 : u12 : u13) and U2 = (u10 : u11 : u12 : u13), hence

Vi = U1 + λiU2.

With Figure 14 one verifies that the cross ratio cr(U1,U2,V1,V2) equals −1 and that

V1,V2 are conjugate with respect to Σ, i.e., the pole of V1 with respect to Σ lies in

V2. This leads to

λ1,2 = ±

√

√

√

√

u2
11 + u2

12 + u2
13 − u2

10

u2
21 + u2

22 + u2
23 − u2

20

.

The orientation of the set of generators of the osculating cones ∆i in the sense of

increasing parameters leads to orientations of ci. Thus only one of the two conics li,

say l1, can lead to suitable solutions.

Figure 14: Construction of corresponding generators c1(t), c2(t)

The computation of l1 and the resulting cones Λ and ∆ may proceed as follows.

We represent any segment of the circle c1 as a rational quadratic Bézier curve (see

Piegl and Tiller [20]). Its Bézier points shall have the correctly normalized homoge-

neous coordinates B1
i , i = 0, 1, 2. Then a homogeneous representation of the circle is
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given by

C1(t) = (1 − t)2B1

0 + 2t(1 − t)B1

1 + t2B1

2.

We use a projective parameter line P 1 described by homogeneous parameters t0, t1

with t = t1/t0 and parameterize the entire circle by

C1(t0, t1) = (t0 − t1)
2B1

0 + 2t1(t0 − t1)B
1

1 + t21B
1

2.

Projecting C1 from the center Q1 onto the plane V1 yields the conic l1. Using the

projective invariance of the rational Bézier representation, we can represent l1 by

applying the projection with matrix A1 to the Bézier points B1
i . We get the Bézier

points Bl
i = A1 · B1

i of l1. The projection from the plane V1 to U2 with center

Q2 yields a Bézier representation of the circle c2 with Bézier points B2
i . To each

t = t1 : t0, the points C1(t),C2(t) determine the generators with vectors c1(t), c2(t),

along which a joining cone Λ(t) with axis vector l1(t) is touching the cones Λ1, Λ2.

If we translate the cones Λi back to their position ∆i, not all Λ(t) lead to solutions

∆ of our problem. For a solution cone ∆, the generators vi + uci(t), u ∈ R of the

cones ∆i must intersect at the vertex v of ∆. Thus, only those t which satisfy the

intersection condition

det(c1(t), c2(t),v1 − v2) = 0 (14)

belong to possible joining cones ∆. Equation (14) is a homogeneous quartic polyno-

mial in t0, t1, which has up to four real solutions t = t1 : t0. Note that it is necessary

to work with homogeneous parameters, since t = 1 : 0 may lead to a useful solution.

We will now look at the four possible solutions in detail. If c1(t) = c2(t) is the

vector of a common generator of Λ1 and Λ2 we get a solution for equation (14) which

cannot be used to construct a joining cone ∆ of ∆i, though. As there are two common

points of the two circles c1, c2, counted algebraically, there only remain two solutions

for joining cones ∆ which need not be real for arbitrary spatial position of cones ∆i.

In our problem the cones ∆i are osculating cones of a given developable surface Γ,

however, touching Γ along generators ei. It can be shown that for any generator

e1 = e(u1) to parameter u1 there is an interval of generators e2 = e(u1 + ∆u) such

that the corresponding osculating cones ∆i can be joined by a cone ∆. Additionally

this solution is consistent with the present approximation problem, meaning that the

joining generators vi +uci(t) of ∆ and ∆i lie appropriate on the cones ∆i in the sense

of increasing parameters (see Figure 13).

To complete the discussion of the general case, we consider the case of ∆i, say

∆1, being an osculating cylinder. Let c1 determine the direction of its generators.

The line λc1, λ ∈ R can be interpreted as a degenerated cone Λ1 which intersects Σ

in the point Q1. Λ∗

1 degenerates into the tangent plane of Σ at Q1. The intersection
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curve l1 = Λ∗

1 ∩ Λ∗

2 contains the points Q corresponding to filling circles c. Again a

projective mapping of corresponding generators of ∆1 and ∆2 is determined which

leads to the solutions for ∆.

Special cases

The present investigation also contains a treatment of spherical osculating arc splines.

As in the planar case, there is a one parameter set of intermediate arcs between con-

secutive osculating circles. In analogy to Meek and Walton [18], one could show that

appropriate choices within this solution set will yield a high accuracy approximation

scheme.

Of course, this spherical scheme is appropriate for approximating general cones

with cone spline surfaces and the planar scheme can be used for approximating cylin-

drical surfaces as well as surfaces of constant slope (Fig. 9). In the last case all

osculating cones ∆i have parallel axes and the same opening angle. Two consecutive

cones ∆1, ∆2 in general intersect in a conic l1, which contains the possible vertices of

connecting cone segments.

Examples

We apply the algorithm of osculating cone splines to the example in Figure 11. Using

four generators ei plus osculating cones ∆i of our tangent surface as input data, we

compute the three filling cone segments and get an approximation of Γ with seven

cone segments (Fig. 15), one more than we got using four Hermite elements (ei, τi).

(a) (b)

Figure 15: Approximation of the developable surface of Fig. 11(a) with (a) 4, (b) 2

osculating cones as input data

Note that the vertices vi of the given cones ∆i must lie on the line of regression.

Using only two osculating cones ∆1, ∆2 of the same surface Γ results in a satisfying

approximation quality even with few input data.
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BENDING SEQUENCES AND DEVELOPMENT

One major advantage of approximating a given developable surface by a cone spline

surface is the simple development that does not need numerical integration. A cone

segment Λ0 is determined by the angle α0 between generators and axis and the seg-

ment angle ϕ0 (Fig. 16). The development of such a cone segment can be realized

Figure 16: Cone segment

by a continuous set of cone segments Λi with segment angle ϕi and angle αi → 0,

satisfying

ϕi sin αi = ϕ0 sin α0.

Let Λn be the development of Λ0, i.e., sin αn = 1, then we get

ϕn = ϕ0 sin α0.

Figure 17 shows a bending sequence of a cone spline surface in which all segments

are flattened out simultaneously. The distance between successive vertices stays the

same and a spatial arc spline as boundary curve is transferred into a planar arc spline

of the development.

FUTURE RESEARCH

Our Hermite–type approximation algorithms are based on data coming from a devel-

opable surface that shall be approximated by a cone spline. We need to study good

choices for this input. This is one of our current research topics and is connected to

error estimates, for which we have some preliminary results.

Another topic are other Hermite-like schemes. One might for example interpolate

two tangent planes plus generators and points of regression with three cone segments.

There is a two parameter set of solutions for this triple and appropriate selection

algorithms may lead to good approximation results.
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(a) (b)

(c) (d)

Figure 17: Bending sequence

A natural extension of the above ideas would be to find a class of low degree

rational developable surfaces with elementary development which allows to model G2

surfaces or at least G1 surfaces with a G1 line of regression. In the classical geometric

literature, there appear — apart from the trivial case of certain cones and cylinders —

just a few examples of rational surfaces with elementary development, namely certain

developable surfaces of constant slope [3, 19, 21]. We are not aware of an investigation

of surfaces with elementary development from the geometric design point of view.

Recent work on surface design with rational plane rolling motions [24] contains ideas

to achieve this goal. The methods come from theoretical kinematics and line geometry.
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[21] Pottmann, H., Zur Geometrie höherer Planetenumschwungbewegungen, Monatsh.

Math. 97 (1984), 141–156.

[22] Pottmann, H., Studying NURBS curves and surfaces with classical geometry, in Math-

ematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche and L.L. Schumaker,

eds., Vanderbilt University Press, Nashville, 1995, 413–438.

[23] Pottmann, H., Farin, G., Developable rational Bezier and B–spline surfaces, Computer

Aided Geometric Design 12 (1995), 513–531.

[24] Pottmann, H. and Wagner, M., Principal surfaces, in The Mathematics of Surfaces

VII, T.N.T. Goodman, ed., Information Geometers Ltd., 1997.

[25] Redont, P., Representation and deformation of developable surfaces, Computer Aided

Design 21 (1989), 13–20.

[26] Schneider, M., Approximation von Blechhalterflächen mit Torsen in B–Spline Darstel-

lung, Diplomarbeit, TH Darmstadt, 1996.

[27] Weiss, G. and Furtner, P., Computer–aided treatment of developable surfaces, Com-

puters & Graphics 12 (1988), 39–51.

[28] Vatter, R., Approximation von Datenpunkten mit Torsen in B–Spline Darstellung,

Diplomarbeit, TH Darmstadt, 1996.

22


