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Abstract

Based on classical geometric concepts we discuss
the computational geometry of envelopes. The
main focus is on envelopes of planes and natural
quadrics. There, it turns out that projective duality
and sphere geometry are powerful tools for devel-
oping efficient algorithms. The general concepts
are illustrated at hand of applications in geometric
modeling. Those include the design and NURBS
representation of developable surfaces, canal sur-
faces and offsets. Moreover, we present applica-
tions in NC machining, geometrical optics, geo-
metric tolerancing and error analysis in CAD con-
structions.
Keywords: envelope, duality, sphere geometry,
NURBS surface, developable surface, canal sur-
face, geometric tolerancing.

1 Introduction

2 Definition and computa-
tion of envelopes

2.1 First order analysis

We will define and discuss envelopes at hand of a
spatial interpretation. Let us first illustrate this ap-
proach with a simple special case. Consider a sur-
face in Euclidean 3-space

� 3 , which has the regular
parameterization

X � u � v ����� x1 � u � v ��� x2 � u � v ��� x3 � u � v ����	

Here and in the sequel, we always assume suffi-
cient differentiability. The curves u � const and
v � const form two one-parameter families of
curves (‘parameter lines’) on the surface. Under
a projection, e.g. the normal projection onto the
plane x3 � 0, each family of parameter lines is
mapped onto a one-parameter set of planar curves.
The envelope of each of these two curve families
is the silhouette s of the surface X (see Fig.1). It
is defined as follows: On the surface X , we search

for points, whose tangent plane maps to a line un-
der the projection. These points form the so-called
contour of the surface with respect to the given
projection; the image of the contour is the silhou-
ette. Since the tangent t at a point p of the silhou-
ette is the projection of the tangent plane at a sur-
face point, both the u-curve and the v-curve passing
through p have t as tangent there. This shows the
envelope property. Points on the envelope are also
called characteristic points.
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Figure 1: The silhouette of a surface as envelope of
the projections of the parameter lines

For an analytic representation we note that the
tangent plane of the surface is spanned by the tan-
gent vectors to the parameter lines, which are the
partial derivatives with respect to u and v,

∂X
∂u

� : Xu � ∂X
∂v

� : Xv 	

Under the normal projection onto the plane x3 � 0,
the tangent plane has a line as image iff it is par-
allel to the x3-axis. In other words, the projections
xu � xv of the two vectors Xu � Xv must be linearly de-
pendent, i.e.,

det � xu � xv �
� 0 �
�
����

x1 � u x2 � u
x1 � v x2 � v

���� � 0 	 (1)

The computation of the silhouette (envelope) s
is therefore equivalent to finding the zero set of
a bivariate function. This is done with a stan-
dard contouring algorithm, a special case of a



surface/surface intersection algorithm (see [21]).
Let us recall that (1) characterizes the envelope
of two curve families, described by x � u � v � �
� x1 � u � v ��� x2 � u � v ��� : the set of u-lines (where u is the
curve parameter and v is the set parameter) and the
set of v-lines (where v is the curve parameter and u
is the set parameter).

Given any one-parameter set of curves in the
plane with a parametric representation x � u � v � , we
can interpret it as projection of a surface onto that
plane; it is sufficient to set x3 � u � v � � v. If the curve
family is given in implicit form,

f � x1 � x2 � v ��� 0 �

we interpret it again as projection of a surface with
the level curves f � x1 � x2 � v � � 0 in the planes x3 � v.
The tangent planes of this surface f � x1 � x2 � x3 �
� 0
are normal to the gradient vectors

∇ f ��� ∂ f
∂x1

� ∂ f
∂x2

� ∂ f
∂x3

��	

Hence, a tangent plane is projected onto a line iff
the gradient vector is normal to the x3-axis, i.e.

∂ f
∂x3

� 0 	

We see that the silhouette (= envelope) is the solu-
tion of the system (we set again x3 � v),

f � x1 � x2 � v �
� 0 � ∂ f
∂v
� x1 � x2 � v ��� 0 	 (2)

This is a well-known result. Its computational
treatment can follow our derivation: one has to
compute a projection of the intersection of two
implicit surfaces (see [21]). An implicit rep-
resentation of the envelope follows by elimina-
tion of v from (1). A parametric representation
� x1 � v ��� x2 � v ��� is obtained by solving for x1 and x2.
By the spatial interpretation, various algorithms for
computing silhouettes may also be applied [1, 21].

With the understanding of this special case, it
is straightforward to extend the results to the gen-
eral case. It concerns envelopes of k-parameter sets
of n-dimensional surfaces in

� d (n �
d). We set

k � n � d, since otherwise there is in general no
envelope.

Let us start with the parametric representation in
the form

� u1 ��	�	�	 � un � λ1 ��	�	�	 � λk ����
f � u1 ��	�	�	 � un � λ1 ��	�	�	 � λk ��� � d 	 (3)

The ui are the parameters of the n-dimensional sur-
faces and the λk are the set parameters. We inter-
pret this set of surfaces as normal projection of a
hypersurface Φ in

� k 	 n 	 1 onto
� d (xd 	 1 � 	�	�	 �

xk 	 n 	 1 � 0). At any point of Φ, the tangent hyper-
plane is spanned by the partial derivatives with re-
spect to u1 ��	�	�	 � un � λ1 ��	�	�	�� λk. Their projections are
the partial derivatives of f . At a point of the sil-
houette (= envelope), these derivative vectors must
span at most a hyperplane in

� d . This yields the
envelope condition

rank � ∂ f
∂u1

��	�	�	 � ∂ f
∂un

� ∂ f
∂λ1

��	�	�	 � ∂ f
∂λk

� � d 	 (4)

It characterizes points on the envelope by a rank
deficiency of the Jacobian matrix of f .

Analogously, we find the following known re-
sult. The envelope of a k-parameter set of hyper-
surfaces in

� d , analytically represented by

f � x1 ��	�	�	 � xd � λ1 ��	�	�	 � λk �
� 0 � (5)

is the solution of the system

f � x1 ��	�	�	 � λk �
� 0 � (6)

∂ f
∂λ1

� x1 ��	�	�	 � λk ��� 0 ��	�	�	 � ∂ f
∂λk

� x1 ��	�	�	 � λk �
� 0 	

The envelope conditions elucidate the computa-
tional difficulties: we have to solve a nonlinear sys-
tem of equations.

In special cases, a variety of methods are avail-
able. Let us give an important example. For a one-
parameter set of surfaces in

� 3 (n � 2 � k � 1), equa-
tion (4) can be formulated as

det � ∂ f
∂u1

� ∂ f
∂u2

� ∂ f
∂λ1

��� 0 	

Hence, we have to compute the zero set of a trivari-
ate function, which can be done, for example, with
marching cubes [31]. The solution is the preim-
age of the envelope in the parameter domain, and
application of f to it results in the envelope itself.

For systems of polynomial or rational equations,
one can use algorithms which employ the subdi-
vision property of Bézier and NURBS representa-
tions [10, 25, 56]. In more general situations one
realizes the lack of algorithms for geometric pro-
cessing in higher dimensions.

2.2 Singularities, curvature com-
putation and approximation of
envelopes

Let us continue with the special case of a one-
parameter family of curves in the plane and its en-
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velope, viewed as silhouette of a surface in
� 3 . It

is well known in classical constructive geometry
[6] that the silhouette of a surface possesses a cusp
if the projection ray is an osculating tangent at the
corresponding point of the contour. Therefore, the
condition for cusps follows by expressing that the
x3-parallel projection ray has contact of order two
with the surface.

Let us work out this condition in case that the
curve family (surface in

� 3 ) is given in implicit
form f � x1 � x2 � v � � 0. We pick a point � x0

1 � x0
2 � v0 �

on the surface and express that the projection ray
� x0

1 � x0
2 � v0 � t ��� t � � , has contact of order two

at this point. We use the Taylor expansion at
� x0

1 � x0
2 � v0 � ,

f � x1 � x2 � v ��� (7)

∂ f
∂x1

� x1 � x0
1 � �

∂ f
∂x2

� x2 � x0
2 � �

∂ f
∂v
� v � v0 � �

1
2

�
∂2 f

∂x2
1

� x1 � x0
1 � 2 � 	�	�	 �

∂2 f
∂v2 � v � v0 � 2 � � ��� ��	

Here, all partial derivatives are evaluated at
� x0

1 � x0
2 � v0 � and (*) denotes terms of order � 3. In-

serting v0 � t for v, we must get a threefold zero at
t � 0 in order to have second order contact. Using
the fact that � x0

1 � x0
2 � v0 � is a point on the contour,

this requires in addition

∂2 f
∂v2 � x0

1 � x0
2 � v0 �
� 0 	 (8)

Analogously, we can investigate singular points
on the envelope surface of a one-parameter family
of surfaces in

� 3 . These points, if they exist at all,
form in general a curve, which is called an edge
of regression. Planar intersections of the envelope
surface possess (in general) a cusp at points of the
edge of regression. Points of the edge of regression
solve the system

f � x1 � x2 � x3 � v �
� 0 � (9)

∂ f
∂v
� x1 � x2 � x3 � v ��� 0 � ∂2 f

∂v2 � x1 � x2 � x3 � v �
� 0 	

The characteristic curves, along which the surfaces
f � x1 � x2 � x3 � v � � 0 touch the envelope, are tangent
to the regression curve. Thus, the regression curve
may be seen as envelope of the family of character-
istic curves on the envelope surface. As an exam-
ple, Fig. 6 shows the envelope surface of a family
of planes. The characteristic curves are lines which
touch the curve of regression. Note also the cusp
in a planar intersection of the surface. The figure

also shows cusps at the curve of regression. They
are additionally satisfying

∂3 f
∂v3 � x1 � x2 � x3 � v ��� 0 	

The transition to higher dimensions is straightfor-
ward: A one-parameter family of hypersurfaces in� d , written as

f � x1 ��	�	�	 � xd � v ��� 0 �
has an envelope hypersurface which also satisfies

∂ f
∂v
� x1 ��	�	�	 � xd � v �
� 0 	

On this envelope, we have a � d � 2 � -dimensional
surface of singular points characterized by

∂2 f
∂v2 � x1 ��	�	�	�� xd � v ��� 0 	

The singularities of this surface possess vanishing
third derivative of f , and so on. Clearly, the enve-
lope and the singular sets need not be real.

For a reliable approximation of envelope
curves/surfaces, the computation of singularities
is an important subtask. More generally, we can
use results of constructive differential geometry to
compute curvatures. These results concern curva-
ture constructions for silhouettes [6]. An example
of an application of such a formula to envelope
curves has recently been given by Pottmann et al
[50]. We will briefly address it in section 7.

There is still a lot of room for future research
in this area. Reliable approximation of envelopes
is one of our current research topics. It involves
a segmentation according to special points of the
envelope, curvature computations and approxima-
tion schemes based on derivative information up to
second order at discrete points.

3 Kinematical applications

Classical kinematical geometry studies rigid body
motions in the plane and in 3-space [5, 23, 24].
Because of their appearance in applications such
as the construction of gears, simulation and veri-
fication for NC machining, collision avoidance in
robot motion planning, etc., envelopes have re-
ceived a lot of attention in this area. We will briefly
address some main ideas and point to the literature.

Let us start with a one-parameter motion in the
plane

� 2 and consider a curve c � u � in the mov-
ing plane Σ; its position in the fixed plane Σ0 at
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time t shall be c � u � t � . Any point c � u0 � of the curve
generates a path c � u0 � t � in the fixed plane Σ0. By
equation (1) we get an envelope point, if the tan-
gent vector ∂c � ∂t to the path (velocity vector) is
tangent to the curve position (linearly dependent to
∂c � ∂u (see Fig. 2). The construction is simplified
by looking at the velocity distribution at a time in-
stant t. We either have the same velocity vector
at all points (instantaneous translation) or we have
an instantaneous rotation, where the velocity vec-
tor of a point x is normal to the connection with the
instantaneous rotation center p (pole) and its length
is proportional to � p � x � (Fig. 2). With two veloc-
ity vectors the pole can be constructed and then the
envelope points are the footpoints of the normals
from the pole to the curve position. For derivations
and further studies of this approach we refer to the
literature [5, 24]. There, one also finds a variety of
applications, in particular the construction of gears.
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Figure 2: Envelope construction for a motion in the
plane

Example: Let us consider the special case of a
translatory motion in the plane. It is completely
defined by prescribing the trajectory of one point,
say the path a � t � of the origin of the moving sys-
tem. A curve c � u � in the moving system then has
at time t the position

c � u � t ��� a � t � � c � u ��	

At any instant t, we have an instantaneous transla-
tion parallel to the derivative vector da � dt. Enve-
lope points are characterized by parallelity of the
vectors

d
dt

a � t ��� d
du

c � u ��	

Thus, we search on the curves a � t � and c � u � for
points a � t0 ��� c � u0 � with parallel tangents and per-
form the addition a � t0 � � c � u0 � . Since the curvature
computation depends just on derivatives up to sec-
ond order, we can replace the curve a by its osculat-
ing circle at a � t0 � , and analogously we compute the
osculating circle of c at c � u0 � . If we translate two
circles along each other, the envelope is formed of
two circles. Taking orientations into account and
respecting signs of the curvature radii ρ0

a and ρ0
c

(defined as the sign of the curvature), we see that
the envelope has curvature radius

ρ � ρ0
a � ρ0

c 	 (10)

This is illustrated in Fig.3. Recall that the envelope
is the silhouette of a surface, which is in the present
special case a translational surface. In case that the
two given curves are the boundaries of convex do-
mains A and C, the outer part of the envelope is
convex. It is the boundary of the Minkowski sum
A � B of the two domains A � B. The Minkowski
sum is defined as locus of all points x � y with
x � A and y � B. For the computational treatment
of Minkowski sums, we refer to Kaul and Farouki
[27]. In the non convex case, the extraction of those
parts of the envelope, which lie on the boundary
of the sum A � B, is a subtle task (see Lee et al.
[30]). Farouki et al. [12] transformed another en-
velope problem occurring at so-called Minkowski
products to the present one.
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Figure 3: Envelope construction for a translatory
motion in the plane

For an instant of a one-parameter motion in 3-
space, the velocity distribution is also quite simple
[5, 24]. The velocity vector v � x � of a point x can be
expressed with two vectors c � c̄ in the form

v � x �
� c̄ � c � x 	 (11)

This is in general the velocity field of a helical
motion, whose axis is parallel to the vector c. In
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special cases we have an instantaneous rotation or
translation. In order to construct the envelope sur-
face of a surface in the moving system, one has
to find on the positions Φ � t � of the moving sur-
face those points, where the velocity vector touches
Φ � t � .

The computation of the envelope of a moving
surface occurs for example in NC machining simu-
lation and verification [35]. The cutting tool gener-
ates under its fast spinning motion around its axis
a rotational surface (surface of revolution), which
is the ’cutter’ from the geometric viewpoint. Un-
der the milling operation, the cutter removes ma-
terial from the workpiece. The thereby generated
surfaces are (parts of the) envelopes of the moving
surface of revolution (see Fig. 4).

Figure 4: Envelopes in NC simulation

A simple geometric method for the computation
of points on the envelope is as follows (see Fig.
5): Consider a position Φ � t � of the moving surface
of revolution and pick a circle c on it. We search
for the envelope points (characteristic points) on c.
Along the circle, the surface is touched by a sphere
Σ. Hence, along c, the surfaces Σ and Φ � t � have
the same tangent planes and thus the same charac-
teristic points (points where the velocity vector is
tangent to the surface). All characteristic points of
the sphere form a great circle in the plane Π nor-
mal to the velocity vector of the sphere center (see
also section 6). Hence, this normal plane Π inter-
sects c in its characteristic points. Of course, they
need not be real, and one has to take those circles
of Φ � t � , where one gets real characteristic points.
For more details on this approach and on a graph-
ics related method (extension of the z-buffer), we
refer to Glaeser and Gröller [16]. A survey on the
computation of envelope surfaces has been given
by Blackmore et al. [2].

Kinematical geometry has also investigated mo-
tions where the positions of the moving system
are not congruent to an initial position, but simi-
lar or affine to it (see, e.g., the survey [44]). One
has again a linear velocity field, and this simpli-
fies the envelope computation. We focussed here
on one-parameter motions. However, k-parameter
motions, where the positions of the moving system
depend on k � 1 real parameters, have been studied
as well [44].
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Figure 5: Constructing characteristic points on a
moving surface of revolution

4 Bézier representations

A wide class of practically interesting cases of en-
velopes can be discussed if we assume representa-
tions in Bézier form. These work in arbitrary di-
mensions, but we are confining here to envelopes
in
� 3 . Moreover, it is clear that the transition to

B-spline representations is straightforward.
We first consider a one-parameter family of sur-

faces, written in tensor product Bézier form

f � u � v � t �
�
l

∑
i � 0

m

∑
j � 0

n

∑
k � 0

Bl
i � u � Bm

j � v � Bn
k � t � bi jk 	 (12)

We do not necessarily restrict the evaluation to the
standard interval � 0 � 1 � , as is usually done when dis-
cussing Bézier solids [21]. Depending on which
variables we consider as set parameters and which
as curve or surface parameters, equation (12) is a
representation of

� three one-parameter families of surfaces, ob-
tained by viewing u or v or t as set parameter
( � v � t � or � u � t � or � u � v � as surface parameters,
respectively)

� three two-parameter families of curves, ob-
tained by viewing u or v or t as curve param-
eter ( � v � t � or � u � t � or � u � v � as set parameters,
respectively)
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All these families have the same envelope surface.
It is obtained via equation (4),

det � ∂ f
∂u
� ∂ f
∂v
� ∂ f

∂t
�
� 0 	 (13)

Inserting representation (12) and using the linear-
ity of a determinant in each of its variables, we
see: The preimage of the envelope in the � u � v � t � -
parameter space is an algebraic surface Ω of or-
der 3 � l � m � n � 1 � . Of course, the algebraic order
may reduce in special cases. It might be convenient
to write the surface Ω as zero set of a TP Bézier
polynomial of degrees � 3l � 3m � 3n � and then apply
a subdivision based approach of finding the solu-
tion [10, 25].

It has to be pointed out that part of the envelope
can appear at the boundary of the corresponding
TP Bézier solid (parameterized over � 0 � 1 � 3), see
[25].

There are other trivariate Bézier representations
as well [21]. For our purposes, a one-parameter
family of surfaces in triangular Bézier form is in-
teresting,

f � u � v � w � t �
� ∑
i � j � k � l

Bm
i jk � u � v � w � Bn

l � t � bi jkl 	 (14)

Here, u � v � w � � u � v � w � 1 � are barycentric coor-
dinates for the triangular surface representations,
and t is the set parameter. Again, we do not
just have a one-parameter family of surfaces (set
parameter t), but also a two-parameter family of
curves (curve parameter t), which have the same
envelope. The envelope computation is performed
as above. Restricting the evaluation to � u � v � w � in
the domain triangle (u � v � w � 0) and to t � � 0 � 1 � ,
equation (14) parameterizes a ‘deformed pentahe-
dron’, which is called a pentahedral Bézier solid of
degree � m � n � [21]. Part of the envelope can appear
at the boundary of this solid.

In case we are working with implicit represen-
tations, a Bézier form may be present in the co-
efficients of the surface equations. For example,
we can discuss a one-parameter family of algebraic
surfaces Φ � t � of order m,

f � x � y � z � t � � ∑
i � j � k

ai jkxiy jzk � 0 � i � j � k
�

m �

ai jk �
n

∑
l � 0

Bn
l � t � bi jkl 	 (15)

We then have to form the partial derivative with
respect to t, which is in general again an algebraic
surface Φ̇ � t � of order m, and intersect with the orig-
inal surface Φ � t � . This results (for each t) in the

Figure 6: Tangent surface of a curve on an ellipsoid

characteristic curve c � t � along which the surface
Φ � t � touches the envelope. By Bezout’s theorem,
the characteristic curve is in general an algebraic
curve of order 2m.

In the following sections we will discuss a vari-
ety of interesting examples for envelopes computed
from Bézier type representations.

5 Envelopes of planes

The simplest case of a one-parameter family of al-
gebraic surfaces is that of a family of planes U � t � ,
written in the form

U � t � : u0 � t � � u1 � t � x � u2 � t � y � u3 � t � z � 0 	 (16)

Its envelope is found by intersecting planes U � t �
with the first derivative planes

U̇ � t � : u̇0 � t � � u̇1 � t � x � u̇2 � t � y � u̇3 � t � z � 0 	 (17)

For each t, this yields a straight line r � t � . Hence,
the envelope surface Φ is a ruled surface which
is tangent along each ruling r � t � to a single plane
(namely U � t � ). It is well-known in differential ge-
ometry [9] that this characterizes the surface as de-
velopable surface. It can be mapped isometrically
into the Euclidean plane. Because of this property,
developable surfaces possess a variety of applica-
tions, for example in sheet metal based industries.

Continuing the general concepts from section 2,
we compute the curve of regression. With the sec-
ond derivative plane

Ü � t � : ü0 � t � � ü1 � t � x � ü2 � t � y � ü3 � t � z � 0 � (18)

its points are the intersection points c � t � � U � t ���
U̇ � t ��� Ü � t ��	 In special cases c � t � can be fixed (Φ
is a general cone) or the system does not have a so-
lution (c � t � is a fixed ideal point and Φ is a general
cylinder surface). In the general case, the tangents
of c � t � are the rulings r � t � and thus Φ is the tan-
gent surface of the regression curve c � t � (cf. the
example in Fig. 6).

5.1 Dual representation of curves
and surfaces

The coefficients � u0 ��	�	�	 � u3 � in the plane equation
(16) are the so-called homogeneous plane coordi-
nates of the plane U � t � . Here and in the sequel,
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we will also denote the vector � u0 ��	�	�	�� u3 � � � 4 by
U � t � .

Within projective geometry, we can view planes
as points of dual projective space. Thus, in dual
space a one-parameter family of planes is seen as a
curve and we can apply curve algorithms to com-
pute with them. This point of view has been very
fruitful for computing with developable surfaces in
NURBS form [3, 4, 22, 48, 52].

A planar curve, represented as envelope of its
tangents, is said to be given in dual representa-
tion (curve in the dual projective plane). Analo-
gously, a surface in 3-space, viewed as envelope of
its tangent planes, is said to be in dual representa-
tion. If the set of tangent planes is one-dimensional
(curve in dual projective space), the surface is a
developable surface. Otherwise, we have a two-
dimensional set of tangent planes and thus also a
surface in dual space.

Dual representations in the context of NURBS
curves and surfaces, have been first used by
J. Hoschek [20]. To illustrate some essential ideas,
we briefly discuss the dual representation of planar
rational Bézier curves.

A rational Bézier curve possesses a polyno-
mial parameterization in homogeneous coordinates
C � t � � � c0 � t ��� c1 � t ��� c2 � t ��� , which is expressed in
terms of the Bernstein polynomials,

C � t ���
n

∑
i � 0

Bn
i � t � Pi 	 (19)

The coefficients Pi are the homogeneous coordi-
nate vectors of the control points. The tangents
U � t � of the curve connect the curve points C � t �
with the derivate points Ċ � t � . This shows that
the set of tangents U � t � also possesses a polyno-
mial parameterization in line coordinates, i.e., a
dual polynomial parameterization. It can be ex-
pressed in the Bernstein basis, which leads to the
dual Bézier representation,

U � t ���
m

∑
i � 0

Bm
i � t � Ui 	 (20)

We may interpret this set of lines as a curve in
the dual projective plane. Thus, by duality we ob-
tain properties of dual Bézier curves, i.e. rational
curves in the dual Bézier representation.

When speaking of a Bézier curve we usually
mean a curve segment. In the form we have writ-
ten the Bernstein polynomials, the curve segment
is parameterized over the interval [0,1]. For any
t � � 0 � 1 � , equation (20) yields a line U � t � . The

Figure 7: Dual Bézier curve

curve segment we are interested in, is the envelope
of the lines U � t ��� t � � 0 � 1 � .

As an example for dualization, let us first discuss
the dual control structure (see Fig.7). It consists of
the Bézier lines Ui � i � 0 ��	�	�	 � m � and the frame lines
Fi, whose line coordinate vectors are

Fi � Ui � Ui 	 1 � i � 0 ��	�	�	�� m � 1 	 (21)

From (21) we see that the frame line Fi is concur-
rent with the Bézier lines Ui and Ui 	 1. This is dual
to the collinearity of a frame point with the adja-
cent two Bézier points. We use frame lines – dual
to the frame points – instead of weights, since the
latter are not projectively invariant. A projective
formulation is important for application of projec-
tive duality.

The complete geometric input of a dual Bézier
curve consists of the m � 1 Bézier lines and m
frame lines. Given these lines, each of it has a one-
dimensional subspace of homogeneous coordinate
vectors with respect to a given coordinate system.
It is possible to choose the Bézier line coordinate
vectors Ui such that (21) holds. This choice is
unique up to an unimportant common factor of the
vectors U0 ��	�	�	 � Um. Now (20) uniquely defines the
corresponding curve segment.

For a Bézier curve, the control point P0 is an end
point of the curve segment and the line P0 � P1 is
the tangent there. Dual to this property, the end
tangents of a dual Bézier curve are U0 and Um,
and the end points are the intersections U0 � U1 and
Um � 1 � Um, respectively.

To evaluate the polynomial (20), one can use the
well-known recursive de Casteljau algorithm. It
starts with the control lines Ui � U0

i and constructs
recursively lines U k

i � t � via

Uk
i � t ����� 1 � t � U k � 1

i � t � � tUk � 1
i 	 1 � t ��	 (22)

At the end of the resulting triangular array, we get
the line U � t � . However, usually one would like to
get the curve point C � t � . It is also delivered by the
de Casteljau algorithm, if we note one of its prop-
erties in case of the standard representation: in step
m � 1, we get two points Cm � 1

0 � t ��� Cm � 1
1 � t � , which

lie on the tangent at C � t � . Dual to that, the lines
Um � 1

0 � t � and Um � 1
1 � t � intersect in the curve point

C � t � . Hence, we have

C � t �
� Um � 1
0 � t � � Um � 1

1 � t ��	
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Note that the curve point computation based on the
dual form has the same efficiency as the computa-
tion based on the standard form.

The above procedure leads via

Um � 1
0 � t � �

m � 1

∑
i � 0

Bm � 1
i � t � Ui �

Um � 1
1 � t � �

m � 1

∑
j � 0

Bm � 1
j � t � U j 	 1 �

to the following formula for conversion from the
dual Bézier form U � t � of a rational curve segment
to its standard point representation C � t � ,

C � t �
�
2m � 2

∑
k � 0

B2m � 2
k � t � Pk (23)

with

Pk � 1� 2m � 2
k � ∑

i 	 j � k

�
m � 1

i
� �

m � 1
j

� Ui � U j 	 1 	

We see that C � t � possesses in general the degree
2m � 2. For more details, degree reductions, fur-
ther properties and applications, we refer to the lit-
erature [20, 43, 46, 45, 53].

5.2 Developable NURBS surfaces
as envelopes of planes

The fact that developable surfaces appear as curves
in dual space indicates the computational advan-
tages of the dual approach. We will briefly describe
a few aspects of computing with the dual form.

A developable NURBS surface can be written as
envelope of a family of planes, whose plane coor-
dinate vectors U � t � � � 4 possess the form

U � t ���
n

∑
i � 0

Nm
i � t � Ui 	 (24)

The vectors Ui �
� 4 are homogeneous plane co-

ordinate vectors of the control planes, which we
also call Ui (Fig. 8). To get a geometric input, we
additionally use the frame planes with coordinate
vectors Fi,

Fi � Ui � Ui 	 1 � i � 0 ��	�	�	�� n � 1 	 (25)

For several algorithms it is convenient to con-
vert (24) into piecewise Bézier form and then per-
form geometric processing on these Bézier seg-
ments. Therefore, we will in the following re-
strict our discussion to such segments, i.e., to de-
velopable Bézier surfaces. In the dual form, they
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Figure 8: Control planes of a developable Bézier
surface

are expressed as

U � t ���
m

∑
i � 0

Bm
i � t � Ui � t � � 0 � 1 � 	 (26)

Like in the study of planar rational curves in dual
Bézier form, we can easily obtain insight into the
behaviour of the dual control structure by dualiza-
tion. Let us start with the behaviour at the interval
end points t � 0 and t � 1. A rational Bézier curve
possesses at its end points the tangents P0 � P1 and
Pm � 1 � Pm. Dual to that, the end rulings of the
developable surface (26) are r � 0 � � U0 � U1 and
r � 1 � � Um � 1 � Um (Fig. 8). The osculating plane
of a Bézier curve at an end point is spanned by
this point and the adjacent two control points. Dual
to an osculating plane (connections of curve point
with the first two derivative points) is a point of re-
gression (intersection of tangent plane with the first
two derivative planes). Hence, the end points of the
curve of regression c � t � of the developable Bézier
surface are

c � 0 ��� U0 � U1 � U2 � c � 1 ��� Um � 2 � Um � 1 � Um 	
The computation of rulings and points of regres-

sion is based on the algorithm of de Casteljau ap-
plied to the dual form (26). Stopping this algo-
rithm one step before the last one, there are still
two planes in the triangular array. Their intersec-
tion is a ruling. One step earlier, we still have three
planes, which intersect in the point of regression.

Finally, we note the dual property to the well-
known result that any central projection of a ratio-
nal Bézier curve c yields a rational Bézier curve c �
whose control points and frame points are the im-
ages of the control points and frame points of c.

Proposition: The intersection curve of a devel-
opable Bézier surface U � t � with a plane P is a
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rational Bézier curve C � t � . The control lines and
frame lines of C � t � are the intersections of the con-
trol planes and frame planes of U � t � with P.

Figure 9: Control net of the surface patch in Fig. 8

This property is very useful for converting the
dual representation into a standard tensor product
form (see Fig. 9 and [48]). For other algorithms
in connection with developable NURBS surfaces
(interpolation, approximation (see Fig. 10), con-
trolling the curve of regression, etc.) we refer the
reader to the literature [3, 4, 22, 48, 52].

Figure 10: Approximation of a set of planes by a
developable surface

5.3 Developable surfaces via pen-
tahedral Bézier solids

A pentahedral Bézier (PB) solid of degree � 1 � n �
is formed by a one-parameter family of triangles,
whose planes envelope a developable surface. We
now show how to derive the dual representation of
the envelope.

In the special case m � 1 of (14), we set

b100l � : Al � b010l � : Bl � b001l � : Cl �

and obtain the representation of the PB solid,

F � u � v � w � t �
�
n

∑
l � 0

Bn
l � t � � uAl � vBl � wCl ��	 (27)

We assume a rational representation and therefore
the involved vectors F � Al � Bl � Cl are homogeneous
coordinate vectors, i.e., vectors in

� 4 . The solid is
generated by a one-parameter family of triangles in
planes U � t � ,

U � t � : � A � t � � B � t � � C � t ��� (28)

with A � t ���
n

∑
l � 0

Bn
l � t � Al ��	�	�	 � C � t �
�

n

∑
l � 0

Bn
l � t � Cl 	

Note that the rational Bézier curves A � t ��� B � t ��� C � t �
are edge curves of the pentahedral solid (see Fig.
11).

Given the homogeneous coordinate vectors
A � B � C of three points, the plane coordinates of
the spanning plane are given by the vector prod-
uct A � B � C (in

� 4 !). This yields for the plane
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Figure 11: Family of planes generated by a penta-
hedral Bézier solid of degree (1,2)

family (28),

U � t ��� A � t � � B � t � � C � t � �
3n

∑
l � 0

B3n
l � t � Ul � (29)

with

Ul : � 1� 3n
l � ∑

i 	 j 	 k � l

�
n
i
� �

n
j
� �

n
k
� � Ai � B j � Ck ��	

Thus, the generated envelope is in general of
dual degree 3n. Degree reductions are possible.
They occur if for some t0 the vector U � t0 � is zero.
Then, all polynomial coordinate functions of U � t �
are divisible by � t � t0 � , which explains the degree
reduction. We omit a detailed study of these reduc-
tions and their geometric meaning.

Example: The simplest example belongs to n � 1.
As envelope Φ we get in general a developable sur-
face of dual degree 3. It is well known that these
surfaces are tangent surfaces of rational cubics. In
case of degree reductions, Φ may be a quadratic
cone, or it degenerates to a line (all planes of the
family pass through this line). If we use an integral
representation (equation (14) with inhomogeneous
coordinates and n � 1), Φ is either the tangent sur-
face of a polynomial cubic, a parabolic cylinder or
a line (which may be at infinity, i.e., all planes of
the family are parallel).

6 Envelopes of spheres and
natural quadrics

We will study envelopes of spheres and cones and
cylinders of revolution, called natural quadrics. In
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particular we focus on rational families. The enve-
lope of a one-parameter family of spheres is called
canal surface. If the family consists of congru-
ent spheres (constant radius), the envelope is called
pipe surface.

6.1 One-parameter families of
spheres

First we start discussing one parameter families of
spheres. Let S � t � and Ṡ � t � denote the spheres and
its derivatives,

S � t � :
3

∑
i � 1
� xi � mi � t ��� 2 � r � t � 2 � 0 � (30)

Ṡ � t � :
3

∑
i � 1
� xi � mi � t ��� ṁi � t � � r � t � ṙ � t ��� 0 �

where M � t ����� m1 � m2 � m3 � � t � and r � t � denote cen-
ters and radii of S � t � . The envelope Φ is tan-
gent to S � t � in points of the characteristic curves
c � t �
� S � t � � Ṡ � t � . Since Ṡ are planes, c � t � consists
of circles. Φ consists of real points if and only if

� M � t � � 2 � r � t � 2 � 0

holds. The envelope possesses singular points if
S̈ � t ��� c � t � consists of real points. S̈ � t � is again a
plane, such that each circle c � t � can possess at most
two singular points.

If M � t � is a rational center curve and r � t � is ratio-
nal, S � t � shall be called rational family of spheres
with rational radius function. It is proved in [38]
that the envelope Φ possesses rational parametriza-
tions. Thus it is representable as a NURBS surface.
Additionally, all offset surfaces Φd at distance d
are rational, since they are also canal surfaces with
rational center curve and rational radius function.

Let Q � t � be a one-parameter family of spheres
represented in the form (15). Equivalently, we have

Q � t � : a � x2
1 � x2

2 � x2
3 � � bx1 � cx2 � dx3 � e � 0 �

(31)
where the coefficients a ��	�	�	�� e are rational func-
tions or polynomials in t. Q � t � shall be called ra-
tional family of spheres. One can verify that the
centers M � t � of spheres Q � t � form a rational curve
but its radius r � t � is just the square root of a ra-
tional function. But also in this case it is proved
([38]) that the envelope Φ of the family Q � t � pos-
sesses rational parametrizations. This implies that
the general cyclides (see [37]), which are algebraic
surfaces of order four, are rational. By the way,
the offset surfaces are in general not rational since

their radius function r � t � will not be a square root
of a rational function.

Corollary 6.1 The envelope Φ of a rational fam-
ily of spheres is rationally parametrizable. If the
family has rational radius function then all offset
surfaces Φd of Φ are rational, too.PSfrag replacements
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Figure 12: Geometric properties of a canal surface

Figure 12 shows also that the envelope Φ is tangent
to a cone of revolution D � t � at the characteristic
circle c � t � . Thus, Φ is also part of the envelope of
the one-parameter family of cones D � t � .

PSfrag replacements
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Figure 13: Rational canal surface

6.2 One-parameter families of
cylinders and cones of revolu-
tion

Next we will study envelopes of a one-parameter
family of cylinders or cones of revolution. In the
following it is not necessary to distinguish between
cones and cylinders and we speak simply of cones
of revolution. Let D � t � be such a family. Its deriva-
tive Ḋ � t � defines in general a family of regular
quadrics. It can be proved that each surface Ḋ � t �
contains the vertex v � t � of D(t). The characteris-
tic curves c � t � � D � t � � Ḋ � t � are in general rational
curves of order four with v � t � as singular point. Let
D � t � be given by an implicit quadratic equation in
the coordinates xi,

D � t � :
3

∑
i � j � 1

ai j � t � xix j �
3

∑
i � 1

bi � t � xi � c � t � � 0 	 (32)
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The coefficients ai j � bi � c are functions of the pa-
rameter t. Additionally we always can assume that
A � � ai j � is a symmetric 3 � 3-matrix. D � t � is a
cone of revolution if the matrix ai j possesses a
twofold eigenvalue and the extended matrix���

�
c b1 b2 b3

b1 a11 a12 a13

b2 a12 a22 a23

b3 a13 a23 a33

� ��
�

has rank 3. D � t � defines cylinders of revolution if
additionally A has rank 2. D � t � is called a ratio-
nal family, if the coefficients in (32) are rational
functions of t. In particular, its vertices v � t � form a
rational curve.

In view of rational parametrizations of offset
surfaces, special rational families of cones of rev-
olution are of interest. Let v � t � be a rational curve
and S � t � be a rational family of spheres with ra-
tional radius function, as discussed in section 6.1.
The unique family of cones of revolution D � t � join-
ing v � t � and S � t � shall be called rational family
with rational radius function. By the way, there
is a one-parameter family of spheres (with ratio-
nal radius function) being inscribed in each cone.
Note that the general rational family (32) has ratio-
nal vertices v � t � but no further spheres S � t � with
rational radii. If a surface Φ is enveloped by a
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Figure 14: Rational family of cones with rational
radius function

one-parameter family of cones (cylinders) of rev-
olution D � t � , its offset surface Φd at distance d
is also enveloped by a one-parameter family of
cones(cylinders) of revolution Dd � t � , the offset sur-
faces of D � t � . Then, the following theorem holds.

Theorem 6.1 The envelope Φ of a rational one-
parameter family of natural quadrics D � t � pos-
sesses rational parametrizations. If additionally,
D � t � has rational radius function then all off-
sets Φd of Φ at distance d are also rationally
parametrizable.

A one-parameter family of cones of revolution
D � t � enveloping a canal surface is a special case,
since the characteristic curve c � t � of order four de-
composes into a circle and a not necessarily real
pair of lines.

Since the property of possessing rational
parametrizations is invariant under projective
transformations, first part of theorem 6.1 holds for
one-parameter families of general quadratic cones
(we drop the double eigenvalue condition). The
property of having rational offsets is not preserved
by projective transformations but by similarities
and more generally by sphere-preserving geomet-
ric transformations, see [38].

In section 5 we introduced the dual representa-
tion of curves in the plane and surfaces in space.
Since a natural quadric D is a developable surface,
it is enveloped by a one parameter family of planes

U � s � : u0 � s � � u1 � s � x1 � u2 � s � x2 � u3 � s � x3 � 0 �
(33)

where we can assume that ui � s � are quadratic poly-
nomials. Thus, the problem of constructing ratio-
nal parametrization of a family D � t � is equivalent
to the problem of finding a representation of the
form

U � s � t � : u0 � u1x1 � u2x2 � u3x3 � 0 (34)

with bivariate polynomials ui � s � t � such that
U � s � t0 � represents the tangent planes of the cone
D � t0 � .

The envelope Φ of the family D � t � is enveloped
by the tangent planes U � s � t � . The points of contact
are obtained by

p � s � t ��� U � s � t � � ∂U
∂s
� s � t � � ∂U

∂t
� s � t ��	 (35)

6.3 Offset surfaces of regular
quadrics

It is known that the offset curves of a conic in the
plane are in general not rational algebraic curves
of order 8. Besides the trivial case of a circle, only
the offset curves of parabolas are rational curves of
order 6. Surprisingly it can be proved the following
result, see also [32].
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Theorem 6.2 The offset surfaces of all regular
quadrics in space can be rationally parametrized.

The reason is that any regular quadric can be repre-
sented as envelope of a rational family of cones of
revolution with rational radius function. Details on
the parametrization and low degree representations
of the offsets can be found in [38].

Figure 15: Quadric of revolution and outer offset
surface

6.4 Envelope of congruent cylin-
ders of revolution

A special example of a surface enveloped by a one-
parameter family of natural quadrics is the enve-
lope of a moving cylinder of revolution. These sur-
faces appear in applications as results of a (five-
axis) milling procedure with a cylindrical cutter.
The axes of the one-parameter family of cylinders
(cutting tool) generate a ruled surface R, the axes
surface. In general, R is a non-developable ruled
surface which says that the tangent planes at points
of a fixed generating line of R vary. In particu-
lar, the relation between contact points and tan-
gent planes of a fixed generator is linearly. A de-
velopable ruled surface possesses a fixed tangent
plane along a generating line.

A cylinder of revolution D can be considered as
envelope of a one-parameter family of congruent
spheres, centered at the axis of D. Then it is ob-
vious that the envelope Φ of a moving cylinder of
revolution D � t � is an offset surface of R. The dis-
tance between R and Φ � Rd equals the radius of
the cylinders D � t � . In general, the characteristic
curve where D � t � and Φ are in contact, are rational
curves of order four, as mentioned in section 6.2.

If the axis surface R is developable such that the
axes are tangent lines of the curve of regression c of
R, the envelope Φ of the family D � t � decomposes
into the offset surface Rd of R and into the pipe sur-
face, interpreted as offset surface of the curve of

regression c. The reason is that the characteristic
curve c � t � of order four decomposes into a circle
and two lines. The circle is located in the normal
plane to the curve of regression c. Thus, it gener-
ates the pipe surface. The lines generate the offset
surface Rd of R which is again a developable sur-
face.

Let D � t � be a rational one-parameter family of
congruent cylinders. Theorem 6.1 says that their
envelope Φ is rational and possesses rationally
parametrizable offsets. More precisely, if the axes
surface R is a rational non-developable ruled sur-
face then Φ and its offsets are rational. If R is a ra-
tional developable surface, its offsets Rd need not
to be rational, but the pipe surface, centered at the
line of regression c of R, and its offset pipes are ra-
tional. Details on the computation can be found in
the survey [55] and in [26]).

Corollary 6.2 The envelope Φ of a one-parameter
family of congruent cylinders of revolution is an
offset surface of the axes surface R. If R is ra-
tional and non-developable then Φ admits rational
parametrizations.
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Figure 16: Envelope of a one-parameter family of
congruent cylinders of revolution

6.5 Two-parameter families of
spheres

One-parameter families of spheres can envelop a
canal surface, but also two-parameter families of
spheres may have an envelope. Let S � u � v � be such
a family and let Su � u � v � and Sv � u � v � be its partial
derivatives with respect to u � v. Thus, we have

S � u � v � :
3

∑
i � 1
� xi � mi � u � v ��� 2 � r � u � v � 2 � 0 �
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Su � u � v � :
3

∑
i � 1
� xi � mi � miu � rru � 0 �

Sv � u � v � :
3

∑
i � 1
� xi � mi � miv � rrv � 0 	 (36)

Points p of the envelope Φ have to satisfy all equa-
tions. Since Su and Sv are planes, p has to lie on
the line of intersection g � Su � Sv. There might be
two, one or no intersection point. If the number of
intersection points is two or zero, then Φ consists
locally of two or no components. The case of g
being tangent to S can hold for isolated points or a
two dimensional set of points; usually it is satisfied
for a one-parametric family of points.

We want to address a special case. If the ra-
dius function r � u � v � is constant, then the envelope
of S � u � v � is the offset surface of the surface M
traced out by the centers � m1 � m2 � m3 � at distance
r. If mi � u � v � are rational functions, then M is a ra-
tional surface. In general, its offset surfaces will
not be rational. Of course, there are several sur-
faces possessing rational offsets; see section 6.2.
Since a cone or cylinder of revolution can be en-
veloped by a one-parameter family of spheres, one-
parametric families of cones are special cases of
two-parametric families of spheres. A sphere ge-
ometric approach to rational offsets and envelopes
of special two-parameter families of spheres can be
found in [38] and [41].

6.6 Two-parameter families of cir-
cles in the plane

A one-parameter family of circles in the plane can
possess an envelope. In particular, congruent cir-
cles will envelope the offset curve of its centers.
But also a two-parametric family of circles c � u � v �
can have an envelope. Let its centers and radii be
m � u � v �
��� m1 � m2 � � u � v � and r � u � v � , respectively.

To enlighten this geometrically, we will use a
mapping ζ which associates a point ζ � c � � � 3 to
each circle in the following way,

c �� ζ � c ����� m1 � m2 � r ��� � 3 	 (37)

We will assume r � u � v � being a signed radius.
The transformation ζ is called cyclographic map-
ping. The inverse mapping ζ � 1 maps points p �
� p1 � p2 � p3 ��� � 3 to circles in

� 2 ,

ζ � 1 � p � : � x1 � p1 � 2 � � x2 � p2 � 2 � p2
3 	

We identify points in
� 2 with circles with zero

radii. The cyclographic image ζ � c � of one or two-
parametric families of circles are curves or surfaces
in
� 3 .

Given a point p � � 3 , the circle ζ � 1 � p � is the
intersection of the cone of revolution γ � p � with

� 2 ,
where γ � p � has p as vertex and its inclination angle
with

� 2 is π � 4 � 45 � . Thus, all tangent planes of
γ � p � enclose an angle of π � 4 with

� 2 .
Applying ζ � 1 to a curve p � t � � � 3 , one ob-

tains a one-parameter family of circles ζ � 1 � p � t ��� .
The envelope of the one-parameter family of cones
γ � p � t ��� is a developable surface Γ � p � t ��� . Thus, the
envelope of the family of circles ζ � 1 � p � t ��� is the
intersection of Γ � p � t ��� with

� 2 .
Given a two-parametric family of circles c � u � v � ,

it may have an envelope. Its cyclographic image
ζ � c � u � v ��� is a surface in

� 3 . If this surface pos-
sesses tangent planes τ enclosing an angle of π � 4
with

� 2 , then c � u � v � will possess an envelope.
Let us assume that c � u � v � has an envelope. Then

there exists a curve p � t � � ζ � c � u � v ��� whose tan-
gent planes τ � p � t ��� have slope π � 4. These planes
τ � p � t ��� envelope a developable surface Γ � c � . Thus,
we finally obtain the envelope of c � u � v � by inter-
secting Γ � c � with

� 2 .
We will discuss some examples. At first, let

p � u � v � � � 3 be the parametrization of a plane g,
enclosing an angle of π � 4 with

� 2 . The envelope
of the family of circles ζ � 1 � p � u � v ��� is simply the
intersection g �

� 2 .
At second, let p � u � v � � � 3 be a sphere. The set

of points q � t � possessing tangent planes with slope
π � 4 are two circles. These tangent planes envelope
two cones of revolution, being tangent to the sphere
in points of these circles. Finally, the envelope of
ζ � 1 � p � u � v ��� consists of two circles if p � u � v � is not
centered in

� 2 . Otherwise it is one circle.

6.7 Families of spheres in space

Analogously to two-parametric families of cir-
cles in the plane are three-parametric families of
spheres in space. Since a sphere is determined by
its center M � � m1 � m2 � m3 � and its radius r, we will
define a cyclographic mapping ζ,

S �� ζ � S ����� m1 � m2 � m3 � r ��� � 4 � (38)

which maps the spheres in
� 3 onto points of

� 4 .
We will again assume that r is a signed radius. A
three-parametric family of spheres in

� 3 is mapped
to a hypersurface in

� 4 . If we apply an analogous
construction as done in section 6.6 we arrive at a
geometric interpretation of the computation of the
envelope of a three-parametric family of spheres.
Let their image hypersurface in

� 4 be denoted by
p � u � v � w � . If this hypersurface possesses tangent
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hyperplanes (3-spaces) enclosing an angle of π � 4
with

� 3 , then there exists an envelope of the family
of spheres ζ � 1 � p � . We will not go into details here.

The cyclographic mapping is also helpful for
constructing envelopes of two-parameter families
of spheres. Details about these constructions with
an emphasis on rational families of spheres and
surfaces possessing rational offset surfaces can be
found in [41, 51]. In connection with tolerance
analysis, the cyclographic mapping was fruitfully
applied in [50].

6.8 Two-parameter families of
lines and cylinders

We have discussed in section 6.4 that the axes of
a one-parameter family of congruent cylinders of
revolution form a ruled surface and the envelope
of the cylinders itself is an offset surface of this
ruled axis-surface. In case that we have a two-
parameter family of congruent cylinders of revolu-
tion, the situation is much more involved. First of
all we will study two-parameter families of lines
(axes), since this will partially answer the question
how to compute the envelope of a two-parameter
family of cylinders D � u � v � .

A two-parameter family of straight lines C
is called line congruence. It shall be defined
by the following parametrization. Let M �
� m1 � m2 � m3 � � u � v � a smooth surface in 3-space and
E � � e1 � e2 � e3 � � u � v � a vector field. We may assume
that � E � � 1 for all � u � v � �

U . Then,

M � u � v � � wE � u � v ��� w � � (39)

parametrizes a two-parameter family of lines. The
points of a fixed line are parametrized by w ��

. Since the direction vectors E � u � v � are nor-
malized, E � u � v � parametrizes a domain in the unit
sphere. We will assume that this domain is two-
dimensional and does not degenerate to a single
curve or a single point. Mathematically this is
guaranteed by linearly independence of the partial
derivatives ∂E � ∂u and ∂E � ∂v.

Let L � M � u0 � v0 � � wE � u0 � v0 � be a fixed line in
the congruence and let Ru : M � u � v0 � � wE � u � v0 � be
a ruled u-surface passing through the fixed chosen
line L. Analogously, let Rv : M � u0 � v � � wE � u0 � v �
be the ruled v-surface passing through L. We want
to study the distribution of the tangent planes of Ru

and Rv along L. It is an elementary computation
that the surface normals Nu and Nv of the ruled sur-
faces Ru, Rv are

Nu � � ∂M
∂u

� E � w
∂E
∂u

� E ���

Nv � � ∂M
∂v

� E � w
∂E
∂v

� E ��	

The tangent planes of the surfaces Ru and Rv co-
incide if and only if the normals Nu � Nv (which are
assumed to be not zero) are linearly dependent,

Nu � Nv ��� 0 � 0 � 0 ��	
Elaborating this one obtains the following
quadratic equation

w2 det � ∂E
∂u
� E � ∂E

∂v
� � w � det � ∂E

∂u
� E � ∂M

∂v
� �

det � ∂M
∂u

� E � ∂E
∂v
� � � � ∂M

∂u
� E � ∂M

∂v
�
� 0 	 (40)

Depending on the number 2 � 1 or 0 of real solu-
tions, the line L is called hyperbolic, parabolic or
elliptic. If L is hyperbolic or elliptic this property
holds for lines in the congruence C being close to
L. So we might say that the congruence C itself
is hyperbolic or elliptic. There might be isolated
parabolic lines as well as one or two-dimensional
domains of parabolic lines of the congruence. In
the following we will focus at the hyperbolic case.
We want to note that if the congruence C consists
of normals of a smooth surface (different from a
plane or a sphere), then C is always hyperbolic.

If (40) has two real solutions w1 � w2, they cor-
respond to points with coinciding tangent planes.
These points generate the so called focal surfaces

Fi � M � u � v � � wiE � u � v ��� i � 1 � 2 	
We return to the previous problem of computing

the envelope of a two-parameter family of congru-
ent cylinders of revolution D � u � v � . These cylinders
have axes A � u � v � which form a line congruence.
If the congruence is hyperbolic, the axes envelop
the focal surfaces F1 � F2. Thus, the envelope of the
cylinders itself contains the offset surfaces G1 � G2

of F1 � F2 at distance d, which equals the radii of
the cylinders D � u � v � . The offset surfaces admit the
following representation

Gi � Fi � u � v ��� dN0
i � u � v �

with N0
i � u � v � � N0

u � u � v � wi � � N0
v � u � v � wi � as unit

normal of the corresponding focal surface Fi. If the
congruence is parabolic, the envelope contains just
one surface G being the offset of the single focal
surface F . In case of an elliptic congruence there
exists no real envelope.

Theorem 6.3 The envelope of a two-parameter
family of congruent cylinders of revolution, whose
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Figure 17: Focal surfaces of the line congruence
formed by the normals of a surface

axes lie in a hyperbolic (parabolic?) congruence
of lines, consists of the offset surfaces of the focal
surfaces of the congruence.

A Bézier representation of a rational line congru-
ence is obtained by taking a trivariate tensor prod-
uct Bézier representation

P � u � v � w �
�
1

∑
k � 0

m

∑
i � 0

n

∑
j � 0

B1
k � w � Bm

i � u � Bn
j � v � bi jk �

which is linear in the parameter w. Evaluating
P at w � 0 gives the surface M, evaluation at
w � 1 gives M � E, which are both � m � n � -tensor
product surfaces. Bézier representations of a two-
parametric family of congruent cylinders can be
found in [61].

Remark: Since parameter values wi are com-
puted as solutions of a quadratic equation, the fo-
cal surfaces are in general not rational. It seems
to be quite difficult to study rational line congru-
ences with rationally parametrizeable focal sur-
faces, whose offset surfaces are also rationally
parametrizeable.

6.9 Geometrical optics

Geometrical optics has a close relation to line con-
gruences and sphere geometry. The geometric
properties of light rays are found by studying ge-
ometric properties of two-parametric families of
lines (line congruences). In particular, those fam-
ilies are important which intersect a given surface
Φ1 orthogonally. In this context, the theorem of

Malus-Dupin is of great interest which states the
following.
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Figure 18: Theorem of Malus-Dupin

Theorem 6.4 (Malus-Dupin) Given a two-
parameter family of lines L1 being perpendicular
to a surface Φ1. If this family of lines is refracted
at an arbitrary smooth surface S in such a way
that this refraction satisfies Snellius law, then
the refracted two-parameter family of lines L2 is
again perpendicular to a surface Φ2.

There are several methods to prove this theorem.
We will give a sphere-geometric proof, since it is
closely related to envelopes. Actually, the proof is
done by a careful study of figure 18. Let L1 be a
line which intersects Φ1 perpendicularly in a point
p1. This line shall be refracted at s � S according
to Snellius law. It says that the sin-values of the
angles φ1 � φ2 of incoming and refracted rays L1 � L2

formed with the normal N at s � S are proportional,

sinφ1 � k sinφ2 � k � const 	

Let S1 be a sphere, centered at s and tangent to
Φ1 at p1. Its radius is r1. The tangent planes
T1 � Ts of Φ1 and S intersect in a line A. The angle
φ1 ��� � L1 � N � equals the angle � � T1 � Ts � . We cen-
tre a second sphere at s whose radius is r2 � r1 � k.
Further, let T2 be a plane which is tangent to S2 and
passes through A. The angles φi between Li and
N also occur between the tangent planes Ti and Ts.
Thus it follows that

sinφ1

sinφ2
� r1

r2
� k 	
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Since there are two planes which are tangent to S2

and pass through A, we pre-arrange that positive k
shall define equally oriented angles phi1 � φ2. Fig-
ure 18 shows an example for k

� 0. So, choosing
this plane T2 determines the line L2 carrying the re-
fracted ray. It intersects perpendicularly S2 at the
point p2.

The surface Φ1 is enveloped by the two-
parameter family of spheres S1 and the family S2

envelopes a surface Φ2, being perpendicular to the
lines L2. Φ2 is called anticaustic of refraction
with respect to the illumination perpendicular to
Φ1 (and vice versa). �

Additionally we note that all offset surfaces of
Φ2 are also perpendicular to lines L2 � L2. From
the previous section we know that both families of
lines L1 and L2 may envelope focal surfaces. Ac-
tually it can be proved that for line congruences
which are perpendicular to a surface, equation (40)
always possesses real zeros which imply reality of
the focal surfaces.

For some more information and relation of geo-
metric optics and sphere geometry we like to refer
to [51].

7 Envelopes in geometric
tolerancing and error anal-
ysis in CAD constructions

Basic concepts without analytic details; just
brief description of linear constructions (including
Bezier).

Acknowledgement
This work has been supported in part by grant No.
P13648-MAT of the Austrian Science Fund. We
would like to thank B. Odehnal for his help with
the figures.

References
[1] F. Benichou and G. Elber. Output sensitive extrac-

tion of silhouettes from polygonal geometry. In
Proc. Pacific Graphics, pages 60–69, Seoul, Ko-
rea, 1999.

[2] D. Blackmore, M. C. Leu, L.P. Wang, and H. Jiang.
Swept volume: a retrospective and prospective
view. Neural, Parallel & Scientific Computations,
5:81–102, 1997.

[3] R. M. C. Bodduluri and B. Ravani. Geomet-
ric design and fabrication of developable surfaces.
ASME Adv. Design Autom., 2:243–250, 1992.

[4] R. M. C. Bodduluri and B. Ravani. Design of
developable surfaces using duality between plane
and point geometries. Computer-Aided Design,
25:621–632, 1993.

[5] O. Bottema and B. Roth. Theoretical Kinematics.
Dover Publ., New York, 1990.

[6] H. Brauner. Lehrbuch der konstruktiven Geome-
trie. Springer, Wien – New York, 1986.

[7] H. I. Choi, C. Y. Han, H. P. Moon, K. H. Roh,
and N.S. Wee. Medial axis transform and off-
set curves by Minkowski Pythagorean hodograph
curves. Comp. Aided Design, 31:59–72, 1999.

[8] J.L. Coolidge. A Treatise on the Circle and the
Sphere. Clarendon Press, Oxford, 1916.

[9] M.P. do Carmo. Differential Geometry of Curves
and Surfaces. Prentice Hall, Englewood Cliffs,
New York, 1976.

[10] G. Elber. Rational constraint solver using multi-
variate spline functions. Technical report, Tech-
nion, Haifa, 12 1999.

[11] G. Farin. Curves and Surfaces for Computer Aided
Geometric design. Academic Press, Boston, 1992.

[12] R. Farouki, H. Moon, and B. Ravani. Algo-
rithms for Minkowski products and implicitly–
defined complex sets. Advances in Comp. Math,
submitted, 2000.

[13] R. Farouki and T. Sakkalis. Pythagorean
hodographs. IBM J. Res. Develop., 34:736–752,
1990.

[14] R.T. Farouki. Pythagorean-hodograph curves in
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with Laguerre geometry. Comput. Aided Geom.
Design, 17(2):101–126, 2000.

[30] I.K. Lee, M.S. Kim, and G. Elber. Polyno-
mial/rational approximation of Minkowski sum
boundary curves. Graphical Models and Image
Processing, 60:136–165, 1998.

[31] W.E. Lorensen and H.E. Cline. Marching cubes: a
high resolution 3D surface construction algorithm.
In Computer Graphics (SIGGRAPH), volume 21,
pages 163–169, 1987.

[32] W. Lu. Rational parametrizations of quadrics and
their offsets. Computing, 57:135–147, 1996.

[33] C. Madrigal and K. Joy. Generating the envelope of
a swept trivariate solid. In Proc. IASTED Intl. Conf.
Computer Graphics and Imaging, Palm Springs,
California, 1999.

[34] T. Maekawa. An overview of offset curves and sur-
faces. Computer Aided Design, 31:165–173, 1999.

[35] K. Marciniak. Geometric Modeling for Numer-
ically Controlled Machining. Oxford University
Press, New York, 1991.
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