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Abstract

An active contour model to surface approximation is presented. It adapts to the
model shape to be approximated with help of local quadratic approximants of the
squared distance function. The approach completely avoids the parametrization
problem. The concept is open for inclusion of smoothing operators and shape con-
straints.
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1 Introduction

Approximating a given surface (in any representation) or an unstructured
cloud of points by a B-spline surface is a widely investigated problem. The
main approach uses a least squares formulation with a regularization term
that expresses the fairness of the final result (see e.g. [14,19,20]).

The principle is as follows. Let pk, k = 1, . . . , N, be the given data points
or samples on a given model surface. We are looking for an approximating
B-spline surface or another parametric surface with a representation of the
form

x(u, v) =
n

∑

i=1

Bi(u, v)di. (1)
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The basis functions Bi(u, v) are usually polynomial, piecewise polynomial or
piecewise rational. We assume that the functions Bi are given or precomputed
from the input; thus weights or knots are already determined. Then, one esti-
mates the surface parameters (uk, vk), k = 1, . . . , N, of those points x(uk, vk)
on the approximant which should be close to the corresponding data points
pk. The approximant is computed as minimizer of a functional

F =
∑

k

‖x(uk, vk) − pk‖
2 + λFs. (2)

The first part is a quadratic function in the unknown control points di,

∑

k

‖x(uk, vk) − pk‖
2 =

∑

k

[

n
∑

i=1

Bi(uk, vk)di − pk

]2

.

The second part Fs in (2) is a smoothing term (see e.g. [7]). A frequently used
example is the simplified thin plate energy, a quadratic function in the second
partial derivatives,

Fs =
∫ ∫

(x2

uu + 2x2

uv + x2

vv)dudv. (3)

It is also quadratic in the unknowns di and thus the minimization of F is the
minimization of a quadratic function and amounts to the solution of a linear
system of equations.

It is a difficult task to estimate the parameters (uk, vk). This parameter choice
largely effects the result (see e.g. [28] and the references therein). Therefore,
iterative parameter correction procedures have been suggested [19]. The final
approximant should exhibit error vectors x(uk, vk)− pk which are orthogonal
to the approximating surface x(u, v).

A different approach to the approximation of curves and surfaces are active
contour models, which are mainly used in Computer Vision and Image Pro-
cessing. The origin of this technique is the seminal paper by Kass et al. [24],
where a variational formulation of parametric curves, coined snakes, is pre-
sented for detecting contours in images. There are various other applications
and a variety of extensions of the snake model (see e.g. [4]).

Instead of a parametric representation of a curve, one may use an implicit
form as zero set (level set) of a bivariate function. The formulation of active
contour models via level sets goes back to Osher and Sethian [34]. The level
set method [33,46] has been successfully applied to the solution of a variety of
problems, e.g. for segmentation and analysis of medical images [31]. There are
also several extensions to surfaces. An application to the surface fitting prob-
lem to scattered data sets has been given by Zhao et al. [52,53]. In [13] active
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implicit surfaces are used for visualization of discrete particles and morphing
of surfaces. Other approaches to surface reconstruction via implicit surfaces
define a signed distance function to the data set and denote the zero isocon-
tour of the signed distance function as the reconstructed implicit surface [1,6].
For the fitting of algebraic tensor-product spline surfaces to scattered data see
e.g. the recent paper of Jüttler and Felis [23].

An elegant formulation of curve and surface reconstruction and segmentation
problems is the concept of geodesic active contours [8,9,43]. There, the curve
to be reconstructed, e.g. from a medical image, is found as geodesic in a Rie-
mannian space whose metric is derived from the input (image). Analogously,
surface reconstruction is reformulated as minimal surface computation in a
Riemannian space. The literature on this highly interesting topic is rapidly
increasing. A good overview of the methods is found in the book by G. Sapiro
[43].

The implicit function, whose zero set is obtained in the level set method as
a representation of an evolving shape S, is in general not the signed distance
function of S [2]. As an alternative method to the Hamilton-Jacobi equation,
Gomes and Faugeras [17] and Zhao et al. [51] introduced a PDE formulation
where the implicit representation always remains a distance function. An anal-
ogous concept has been presented by Faugeras and Gomes [15] for the evolu-
tion of objects of arbitrary dimension and codimension. The distance function
preservation has several advantages from the geometric and numerical point
of view [17,51].

In the present investigation, we assume as input a rather dense cloud of points
or even a given surface representation. We refer to it as model shape. The first
situation arises when we are processing data of modern 3D scanners, or if we
would like to fit a surface to a dense mesh. A surface Φ as input may arise when
the representation of Φ is not in the desired parametric representation. For
example, we may have as input an implicit representation or a B-spline surface
with a too high degree or too many knots. Thus, we are also contributing to
the problems of spline conversion, degree reduction and knot removal [19,36].
Moreover, surfaces derived from a given surface in various ways might not be in
the desired form. A well-known example are offset surfaces of NURBS surfaces,
which are usually not NURBS surfaces themselves. The present approach is
very well suited for offset surface approximation [30]. The topics of degree
reduction and offset approximation within our framework of active B-spline
approximation have been addressed in [39].

Our method is an active contour model in the sense that an initial shape, e.g.
a B-spline surface with a regularly arranged set of control points, is iteratively
deformed so that it better approximates the given model shape. This is done
with help of local quadratic approximants of the squared distance function d2
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to the model shape. The local approximants help to move the active surface
x(u, v) to lower levels of d2, without having to specify which point x(u, v)
should move to which point of the model shape. Thus, we are avoiding the
parametrization problem.

The shrink wrapping algorithm presented by Kobbelt et. al [26] takes a similar
approach to the approximation of polygonal surfaces by subdivision surfaces.
A coarse base mesh is refined step by step such that the finer levels adapt
to the shape of the target surface. The flow of the active subdivision surface
is not guided by the distance function to the target shape, however, but a
projection method is used to find point-point correspondences.

The organization of our paper is as follows. In section 2, we review our recent
work on local quadratic approximants of the squared distance function d2

to curves and surfaces [37], since it is a basic building block for the new
approximation technique. In section 3, the new concept for approximation is
outlined. It is illustrated at hand of examples in section 4. There, we also
show that problems which are rather complicated in the traditional approach
may become much simpler within the new framework. This is demonstrated
with the approximation of a given surface or point cloud by a ruled surface,
a problem which appears in wire electric discharge machining (EDM) and
peripheral NC machining with a cylindrical cutter [10,21,27]. Finally, in section
5, we describe possible extensions and indicate directions for future research.

2 Local quadratic approximants of the squared distance function

to curves and surfaces

The algorithmic concept we are proposing heavily relies on local quadratic
approximants to the squared distance function of the surface Φ or point cloud
to which we would like to fit a B-spline surface.

Let us first consider the distance function to a curve or surface Φ, which
assigns to each point p of the embedding space the shortest distance of p to
Φ. A variety of contributions deals with the computation of this function; in
many cases this computation aims towards the singular set of the function,
i.e., towards points where the function is not smooth since those points lie on
the medial axis (or skeleton) of the input shape.

Early work on the geometry of the distance function comes from the classical
geometric literature of the 19th century. One looks at its graph surface, which
consists of developable surfaces of constant slope and applies results of classical
differential geometry, line and sphere geometry (for a modern presentation,
see e.g. [41]). Recent work on the closely related medial axis transform comes
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from H.I. Choi [11,12], especially the decomposition result for the efficient
computation, which also appears in Kimmel et al [25]. Also in a discrete setting
(pixel plane, voxel space), distance transforms and the skeleton received a lot
of attention (see e.g. [32,44,45,48]).

The distance function is also the (viscosity) solution of the so-called eikonal
equation. Its numerical computation is not trivial because it is a hyperbolic
equation and an initially smooth front may develop singularities (shocks) as it
propagates. Precisely the latter belong to the medial axis and are of particular
interest. The computation of viscosity solutions with the level set method of
Osher and Sethian [33,34] proved to be a very powerful approach (see e.g.
[43,46,47]).

For our approach to surface approximation, not the distance function itself
but the squared distance function is important. We are especially interested in
local quadratic approximants of that function. For a derivation and proofs of
the following results we refer the reader to [37]. For a better understanding,
we first present local quadratic approximants to planar curves and then move
to surfaces and space curves.

2.1 Local quadratic approximants of the squared distance function to a planar
curve

In a Euclidean plane, we consider a C2 curve c(t) with parameterization
(c1(t), c2(t)). The Frenet frame at a curve point c(t) consists of the unit tan-
gent vector e1 = ċ/‖ċ‖ and the normal vector e2(t). The two vectors form a
right-handed Cartesian system in the plane.

We are interested in the squared distance function d2 which assigns to each
point p in π the square of its shortest distance to the curve c(t). In the
following we give the formula for a local quadratic (Taylor) approximant of
the squared distance function with respect to a local Frenet coordinate system.
Note that the squared distance funtion is not smooth at points of the medial
axis. Thus, we will not compute local quadratic Taylor approximants for points
on the medial axis.

Consider a point p in π whose coordinates in the Frenet frame at the normal
footpoint c(t0) are (0, d). The curvature center k(t0) at c(t0) has coordinates
(0, ρ). Here, ρ is the inverse curvature 1/κ and thus has the same sign as the
curvature, which depends on the orientation of the curve.

In the Frenet frame, the second order Taylor approximant Fd of the squared
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distance function d2 at (0, d) is given by

Fd(x1, x2) =
d

d − ρ
x2

1 + x2

2. (4)

For a derivation of this result and a discussion of the different types of the
graph surface Γd of Fd we refer the reader to [37].

2.2 Local quadratic approximants of the squared distance function to a sur-
face

Consider an oriented surface s(u, v) with a unit normal vector field n(u, v) =
e3(u, v). At each point s(u, v), we have a local right-handed Cartesian system
whose first two vectors e1, e2 determine the principal curvature directions. The
latter are not uniquely determined at an umbilical point. There, we can take
any two orthogonal tangent vectors e1, e2. We will refer to the thereby defined
frame as principal frame Σ(u, v). Let κi be the (signed) principal curvature
to the principal curvature direction ei, i = 1, 2, and let ρi = 1/κi. Then,
the two principal curvature centers at the considered surface point s(u, v)
are expressed in Σ as ki = (0, 0, ρi). The quadratic approximant Fd to d2 at
(0, 0, d) is the following.

Proposition 1 The second order Taylor approximant of the squared distance
function to a surface at a point p is expressed in the principal frame at the
normal footpoint via

Fd(x1, x2, x3) =
d

d − ρ1

x2

1 +
d

d − ρ2

x2

2 + x2

3. (5)

Let us look at two important special cases.

• For d = 0 we obtain
Fd(x1, x2, x3) = x2

3.

This means that the second order approximant to d2 at a surface point p

is the same for the surface Φ and for its tangent plane at p. Thus, if we
are close to the surface, the squared distance function to the tangent plane
at the closest point to the surface is a very good approximant. At least at
first sight it is surprising that the tangent plane, which is just a first order
approximant, yields a second order approximant when we are considering
the squared distance function d2, to surface and tangent plane, respectively.

• For d = ∞ we obtain

F∞(x1, x2, x3) = x2

1 + x2

2 + x2

3.
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This is the squared distance to the footpoint on the surface.

We see that distances to normal footpoints are just good if we are in the
’far field’ of the surface Φ. In the near field it is much better to use other
local quadratic approximants. The simplest one is the squared distance to the
tangent plane at the normal footpoint.

Remark 2 The Taylor approximants may be indefinite. As shown in [37] we
can use as appropriate nonnegative quadratic approximants

F+

d (x1, x2, x3) =
d

d + ρ1

x2

1 +
d

d + ρ2

x2

2 + x2

3, (6)

where d, ρ1, ρ2 are taken as positive. Points beyond the principal curvature
centers are ruled out, but they do not arise anyway when we consider global
distances.

2.3 Local quadratic approximants of the squared distance function to a space
curve

In case that boundary curves of surfaces are involved, it is also useful to know
about the function d2 for a space curve.

Given a point p in R
3, the shortest distance to a C2 space curve c(t) occurs

along a normal of the curve or at a boundary point of it. The latter case
is trivial and thus we exclude it. At the normal footpoint c(t0) we form a
Cartesian system with e1 as tangent vector and e3 in direction of the vector
p − c(t0). This canonical frame can be viewed as limit case of the principal
frame for surfaces, when interpreting the curve as pipe surface with vanishing
radius. By this limit process, we can also show the following result.

Proposition 3 The second order Taylor approximant of the squared distance
function to a space curve c(t) at a point p is expressed in the canonical frame
Σ at the normal footpoint via

Fd(x1, x2, x3) =
d

d − ρ1

x2

1 + x2

2 + x2

3. (7)

Here, (0, 0, ρ1) are the coordinates (in Σ) of the intersection point of the cur-
vature axis of c(t) at the footpoint c(t0) with the perpendicular line pc(t0)
from p to c(t).
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3 Approximation with an active surface in the ‘squared distance

field’

Our approach to surface approximation has as input a model shape M . This
can be a sufficiently dense point cloud or a surface in any mathematical repre-
sentation. From the model shape, we compute – for example with help of sec-
ond order Taylor approximants – local quadratic approximants of the squared
distance function d2 to the model shape M . Thus, for any point p ∈ R

3, we
have a way to compute such a local quadratic approximant Fd,p. In order
to apply Equ. (5) or (6) we need to compute the closest point to p on M ,
and the principal curvature directions and principal curvatures in this surface
point. Since finding the foot-point of p on the target surface M is a rather
time-consuming task, our algorithm can be speeded up considerably by pre-
computing the local quadratic approximants Fd. In our very recent paper [40]
the space surrounding M is partitioned in an appropriate octree cell structure
with smaller cells in the near field and larger cells in the far field of M . Each
cell C carries a (nonnegative) quadratic function Fd,C and for each point p

inside C we define Fd,p = Fd,C . The fast computation of the functions Fd,C

in [40] is based on the evaluation of the distance function of M on a hierar-
chical grid. Here we used a variant of Zhao’s sweeping algorithm [54] which
is an improvement of the Fast Marching Method introduced by Sethian [46].
Example 4 in Sec.4 was calculated with such an underlying octree cell struc-
ture. A similar data structure for adaptively sampled distance fields has been
introduced by Frisken et al. [16].

In its simplest formulation, the method outlined below assumes that the local
quadratic approximants Fd,p are nonnegative quadratic functions (cf. Remark
2). In a general coordinate system (applying a coordinate transformation on
the local coordinates used in section 2) we have

Fd,p(x) = xT Apx + bT
p
x + cp (8)

with a symmetric, positive semidefinite Matrix Ap.

The active surface model we are using shall be of the following nature. It
is governed by control points di, i = 1, . . . , n, and there is a linear relation
which computes from the control point set a larger set of surface points sk, k =
1, . . . , N, or points on a refined model. For example, we may have a B-spline
surface of the form (1), and compute the surface points

sk = x(uk, vk) =
n

∑

i=1

Bi(uk, vk)di,

for a regular grid of points (uk, vk) in the parameter domain. Another example
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is a subdivision surface: The points di can be the vertices of a coarse level
and the points sk can be vertices of a refined model, after application of a few
steps of the subdivision rule [49]. The set of points sk must be large enough
to well capture the shape of the active surface. In the following we use the
notation

sk = Lk(d1, . . . , dn) (9)

to express the linear computation of sk from the control points di.

The key idea now is to iteratively change the input control points di so that
the active surface deforms towards the model shape M . We do not use the
gradient flow in the squared distance field but solve in each step a minimization
problem which ensures that we quickly move to lower levels of the function
d2.

The method now proceeds in the following steps.

(1) Initialize the active surface and determine the boundary conditions. This
requires the computation of an initial set of control points di, i =
1, . . . , n, the proper treatment of boundaries (such as fixing vertices of a
patch) and the avoidance of model shrinking during the following steps.
More details are described after the outline of the algorithm.

(2) Repeatedly apply the following steps a.-c. until the approximation error
or change in the approximation error falls below a user defined threshold.
In our examples we have terminated the algorithm when in a certain
iteration the improvement of the mean squared approximation error was
less then 0.5%. The steps a.-c. are:
a. With the current control points di, compute, for k = 1, . . . , N , the

active surface point sk = Lk(d1, . . . , dn) and a local quadratic ap-
proximant Fd,sk

=: F k
d of the squared distance function to the model

shape M at the point sk. This has to be a nonnegative quadratic
function, F k

d (x) ≥ 0,∀x ∈ R
3.

b. Compute displacement vectors ci, i = 1, . . . , n, for the control points
di by minimizing the function

F =
N

∑

k=1

F k
d (Lk(d1 + c1, . . . , dn + cn)) + λFs. (10)

Thus, our goal is that the new surface points

s∗k = Lk(d1 + c1, . . . , dn + cn),

which are linear combinations of the new control points d∗

i = di + ci,
are closer to the model shape than the old model points sk. The
functional Fs is a smoothing functional which shall be quadratic in
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the control points of the active surface. Thus it is a quadratic funtion
in the new control points di + ci, and also quadratic in the unknowns
ci. We see that this step requires the minimization of a quadratic
function F in the displacement vectors ci of the control points. This
amounts to the solution of a linear system of equations.

c. With ci from the previous step, the updated control points are di+ci.PSfrag replacements

d0 = d∗

0

d1

d2

d3 = d∗

3

d∗

1

d∗

2

sk

s∗k

c1

c2

M

s(t)

Fig. 1. One step in the curve approximation procedure. The curve M is approxi-
mated by a B-spline curve.

See Fig. 1 for an illustration of a lower-dimensional example. The model shape
M is a curve that shall be approximated by a B-spline curve. Fig. 1 shows
an initial position of the B-spline curve s(t), with control points di, and the
updated B-spline curve, with control points d∗

i , after one iteration step. In
particular, for one of the sample points sk the local quadratic approximant F k

d

of the squared distance function is indicated by three of its level sets which
are concentric ellipses.

In each iteration step we have to solve a linear system of equations for the
unknown displacement vectors ci, i = 1, . . . , n. For the task of B-spline surface
approximation we will summarize in more detail how the linear system for the
minimization problem looks like:

The model points sk are certain evaluation points of the active B-spline sur-
face, i.e.,

sk =
∑

i

Bi,kdi,

where Bi,k denotes the B-spline basis function Bi evaluated at (uk, vk). The
new position s∗k of sk after the current iteration step will be

s∗k =
∑

i

Bi,k(di + ci) = sk +
∑

i

Bi,kci.
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For each of the model points sk we have a local quadratic approximant F k
d of

the squared distance function, i.e.,

F k
d (x) = xT Akx + bT

k x + ck,

with a symmetric and positive semidefinite matrix Ak.

The quadratic function F , Equ. (10), which shall be minimized in the current
iteration step is (without the smoothing term λFs)

F =
∑

k

(s∗Tk Aks
∗

k + bT
k s∗k + ck) =

∑

k

[

(
∑

i

Bi,kci)
T Ak(

∑

i

Bi,kci) + (2Aksk + bk)
T (

∑

i

Bi,kci) +

(sT
k Aksk + bT

k sk + ck)
]

,

which is quadratic in the unknown vectors ci.

After collecting all the variables ci, i = 1, . . . , n, into the column vector C =
(c1, c2, . . . , cn), we can rewrite above function as

F = CT AC + bT C + c,

with a 3n×3n-matrix A, a 3n column vector b, and a scalar c. The minimiza-
tion of F amounts to the solution of the linear system

2AC + b = 0.

Let us now look at some details, improvements and refinements which are
important for a successful implementation of the proposed method:

(1) The choice of the initial shape is not critical, but it must fulfil the fol-
lowing criteria. The initial surface must possess enough flexibility (e.g., a
sufficient number of control points) to represent the model shape within
the required accuracy. Furthermore, the initial shape must already ex-
hibit the correct topology. A change in topology is not possible with a
subdivision surface or parametric surface. It would be possible if we view
the active surface as level set of a trivariate function; this is the approach
taken in the level set method [46] which has been applied to surface ap-
proximation by Zhao et al. [52,53].

(2) One has to impose appropriate boundary conditions. For example, we may
want to fix the vertices of a surface patch or want to approximate bound-
ary curves of the model shape. One way to do this is to apply the curve
analogue of the present method in a first step; then we keep corresponding
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control points fixed in the surface approximation procedure. However, it
can be possible to reach an overall better surface quality at some sacrifice
of accuracy at the boundary. Then it is better to add the functional for
boundary approximation as a penalty term to F of equation (10). We
show an example in section 4.

(3) In a totally unrestricted flow, the active surface may shrink to a single
point of the model surface and then in a trivial way yield the minimal
approximation error zero. Strategies for shrinking avoidance depend on
the special situation. It can be handled by appropriate boundary condi-
tions which avoid shrinking. It can also be approached by an appropriate
quadratic penalty function Fp added to F in equation (10). For a closed
surface, we can start with an initial shape which lies entirely outside
the model shape M . The active surface then deflates towards the model
shape, if we forbid that it traverses the interior. We can define in R

3 a
trivariate potential function P (x, y, z), which assumes high values in the
interior of M and small values near the surface and outside M . We then
compute at each control point dk a local quadratic approximant Qk

p of
the penalty function P and consider the new functional

F ∗ = F + µ
∑

Qk
p(dk + ck).

This will avoid that the control points enter the forbidden region. In a
refined version one can use the model points sk instead of the control
points: With Qk

p as quadratic approximant to the penalty function at sk

one considers the minimization of

F ∗ = F + µ
∑

Qk
p(Lk(d1 + c1, . . . , dn + cn)).

In both cases, we add a quadratic function in the unknowns cj and thus
we remain within our principle of minimizing a quadratic function in each
iteration step.

(4) If we have an active B-spline surface or another parametric surface and
get model points sk by evaluation, it is not necessary to keep the param-
eter values (uk, vk) at which we evaluate fixed. An adaptive evaluation
which guarantees a nearly uniform distribution over the active surface, or
emphasizes especially important regions with help of more model points,
will be useful. Moreover, we can introduce further knots and thus more
control points during the algorithm if the desired accuracy cannot be
reached with the coarser model. One sees that the method naturally sup-
ports a multiresultion modeling strategy. For the lower-dimensional case
of B-spline curve approximation there is an excellent paper of Yang et.al.
[50] which addresses control point insertion and removal for our active
B-spline approximation scheme.

(5) The assumption of nonnegativity of the approximants F k
d of the squared

distance function to M can be avoided if the change of control points
(and thus model points) is restricted. This can be achieved by adding
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a term to F which expresses the distance of the new control points to
the old ones, e.g.

∑

‖ci‖
2. It might, however, be difficult to make sure

that the corresponding model points sk do not move outside the positive
region of their local quadratic approximants.

(6) The smoothing term λFs in Equ. (10) is especially important in the first
iteration steps. Without this term the active B-spline surface may develop
a bad parametrization or even small loops. In later iterations — when the
active surface is already close to the desired shape M — the smoothing
term is less important. Thus the smoothing factor λ is decreased from
iteration to iteration.

For Fs we can use any quadratic smoothing functional. It may change
in each iteration step. Thus, we can also build Greiner’s method for the
minimization of nonlinear fairness functionals [18] into our surface ap-
proximation technique.

(7) Further improvements in the parametrization of the active surface x(u, v)
can be achieved by adding a weighted function µFt to F in equation (10)
where

Ft =
∫ ∫

(x2

u + x2

v) dudv.

This function is quadratic in the unknowns ci, and its minimization favors
a surface x(u, v) whose isoparametric lines are traced with constant speed.

4 Examples

In the following we give several examples for the approximation of a given
surface by a B-spline surface. An important special case is the surface approx-
imation by ruled B-spline surfaces.

4.1 Approximation with B-spline surfaces

Example 1 In the first example, see Fig. 2, left, the initial position of the
active B-spline surface patch (dark gray) is chosen as the bilinear patch con-
necting the corner vertices of the model surface (light gray). The active B-
spline is of degree (3, 3) with 8 × 6 control points. The result of our algorith
after only seven iterations is shown in Fig. 2, right. As a boundary condition,
the four vertices of the model patch have been fixed, all the other 44 B-spline
control points have three degrees of freedom. In order to approximate the
boundaries of the patch as well, one can first apply our algorithm just to the
boundary curves, using quadratic approximants of the squared distance func-
tion to these space curves. This determines the boundary control points of
the B-spline patch. In a second step the active surface flow towards the model
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Fig. 2. Surface approximation by a B-spline patch, fixing the corner vertices. Left:
initial position, Right: final position after 7 iteration steps — with boundary curve
approximation.

surface is computed while keeping all the boundary control points fixed, see
Fig. 2, right.

The deviations between the model surface M and the active B-spline surface
are declining quickly from iteration to iteration. Several termination criteria
based on average or maximum deviation can be used. In all our examples
presented here we have stopped the algorithm when in a certain iteration
step the improvement of the mean squared error was below 0.5%. Based on a
scaling of the model surface to a bounding box of unit size 1, a mean squared
distance deviation of 6.25 · 10−9 and a maximum squared distance deviation
of 2.25 · 10−7 is reached after 7 iterations.

Example 2 In this example the model surface has a feature across the patch.
Again the active B-spline surface is initialized bilinearly, see Fig. 3. The surface
is of degree (3, 3) and is initialized with 6× 4 control points. We illustrate the
two ways of boundary curve approximation mentioned in Sec. 3.

Method A. As described in Example 1 one may first approximate the boundary
curves, and thus determine the boundary control points of the B-spline surface.
The 8 inner control points remain unchanged (Fig. 4, left). Afterwards all
the boundary control points are fixed and only the inner control points are
displaced iteratively, such that the active surface flows closer to the model
surface (Fig. 4, right).

Method B. It is also possible to use a weighted sum of the quadratic functionals
for boundary and surface approximation, respectively. In this way the displace-
ment vectors of all of the control points (except the fixed patch vertices) are
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Fig. 3. Surface with feature and initial position of approximating B-spline surface.

Fig. 4. Boundary curve approximation, Method A.

computed simultaneously, see Fig. 5.

Fig. 5. Boundary curve approximation, Method B.

Both methods yield similar results. The surface parameter lines in Fig. 4 and
Fig. 5 are the isoparametric lines of the active B-spline surface. The feature
of the given surface turns out to be modelled approximately in isoparametric
direction.

Remark The present concept of an active surface under the influence of the
squared distance function of a model surface is also well suited for offset surface
approximation, see [39]. This is a widely investigated topic, see e.g. [19,30,35]
for surveys on offset surfaces.
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For a point p ∈ R
3, we have Eq. (5) to describe a quadratic approximant of

the squared distance function to a surface s(u, v), expressed in the principal
frame e1, e2, e3 at the normal footpoint. Let us consider s’s one-sided offset
surface s∗(u, v) = s(u, v) + α · e3(u, v) to distance α. In corresponding points
s(u, v) and s∗(u, v) the principal directions ej, j = 1, 2, 3, and the two principal
curvature centers are the same. With respect to the principal frame with origin
in s∗(u, v) we have coordinates p = (0, 0, d − α) and ki = (0, 0, ρi − α), cf.
subsection 2.2. The second order Taylor approximant of the squared distance
function to the offset surface s∗(u, v) at a point p is expressed in the principal
frame at the normal footpoint via

F ∗

d (x1, x2, x3) =
d − α

d − ρ1

x2

1 +
d − α

d − ρ2

x2

2 + x2

3. (11)

With the quadratic approximant (5) of the squared distance function to a
surface s(u, v) it is therefore simple to derive the corresponding quadratic
approximant for its offset surface s∗(u, v) to distance α.

4.2 Approximation with ruled surfaces

Example 3 In several applications including CAD, architectural design, wire
EDM and NC milling with a cylindrical cutter one has to solve the following
problem: approximate a given surface (or point cloud) by a ruled surface. With
traditional concepts this is a tackling problem [10,21].

We will illustrate the approach of the present paper at hand of an example
surface s(u, v) that was already used as a test surface in [10]. Distortion terms
have been applied to a ruled surface to generate this test surface s(u, v), see
Fig. 6.

Fig. 6. Distorted ruled surface s(u, v).

The ruled B-spline surface which shall approximate s(u, v) is of degree (n, 1)
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and its m×2,m > n, control points are initially chosen in a regular planar grid,
see Fig. 7, left, for n = 3,m = 7. The boundary rulings of the active surface

Fig. 7. Surface approximation with ruled surface. Left: initial position of ruled
surface (dark gray) and model surface s(u, v) (light gray). Right: final position of
ruled surface after 5 iterations.

(dark gray) are initially positioned at some distance to the model surface
s(u, v) (light gray). These boundary rulings are kept fixed in the iterative
surface flow. The shape of the active surface is influenced by the squared
distance function to s(u, v) and by the smoothing term Fs. The final position
of the approximating ruled surface is given in Fig. 7, right. Although no special
care has been taken in choosing the fixed boundary rulings appropriately, the
generated ruled surface fits well in the trimmed region of the model surface,
see the close-up in Fig. 8.

Fig. 8. Surface approximation of model surface (light gray) with ruled surface
(dark gray). Detail of Fig. 7, right.

Note that during the iterative surface flow not all active surface points are in
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the influence region of the model surface s(u, v): If the closest model point
to an active surface point lies on the boundary of s(u, v), this active surface
point is classified as outlier and is discarded. This outlier detection has to
be repeated in each iteration step and may be speeded up by threshholding
techniques.

4.3 Approximation of a triangulated point cloud

Example 4

In the last example the model surface M is a triangulated point cloud, see
Fig. 9, left. The data has been obtained by scanning an architectural design,

Fig. 9. Approximation of a model surface (triangulated point cloud, left) with a
closed tensor product B-spline surface (right).

namely a clay model of a tower. In the lower left part of the model you may
note a small gap in the model. This is a local artifact where the laser based
data capturing failed. Topologically the surface M is a cylindrical patch. This
surface shall be approximated by a B-spline surface which is closed in u-
parameter direction, see Fig. 9, right. The initial position of the active B-
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spline surface was chosen as in Fig. 10, left. The B-spline surface is bicubic,
i.e., degree (3, 3), with 24 × 6 control points.

As a boundary condition, two planes ε0 and ε1 have been chosen where the
closed boundary curves v = v0 and v = v1 of the active surface patch are
lying in. During the iterative surface approximation procedure, the control
points corresponding to these two boundary curves are only allowed to move
within ε0 and ε1, respectively. This side condition is linear in the unknown
displacement vectors of the control points. All other control points have their
full three degrees of freedom. The number of sample points sk on the active
B-spline surface was increased from iteration to iteration, beginning with 500
sample points and ending with 3000.

Although the model surface and its squared distance function are rather com-
plex, the approximation algorithm converges after only 20 iterations. Fig. 10,
left, shows the final result as an overlay of Fig. 9, left and right. The de-

Fig. 10. Approximation of a model surface (triangulated point cloud) with a closed
tensor product B-spline surface. Left: initial position of active B-spline. Right: final
position of active B-spline after 20 iterations.

viations between the triangulated model and the active B-spline surface are
given in Fig. 11 for each iteration step. The upper diagram shows the mean
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squared distance deviation (our method tempts to minimize this quantity in
each iteration), the lower diagram gives the maximum squared distance de-
viation. The triangulated object is scaled to a bounding box of unit size 1.
Then a mean squared distance deviation of 2.2 ·10−6 and a maximum squared
distance deviation of 1.5 · 10−5 is reached after 20 iterations.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−4

Iterations

M
S

 e
rr

or

Mean squared distance deviation

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10−3

Iterations

M
ax

 s
qu

ar
ed

 e
rr

or

Maximum squared distance deviation

Fig. 11. Mean squared error (upper diagram) and maximum squared error (lower
diagram) for the surface approximation of Example 4.

5 Conclusion and future research

We have presented an active contour model for surface approximation which
avoids the parametrization problem. According to the nonlinearity of the sur-
face approximation problem, it is an iterative method. It solves in each itera-
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tion step a linear system of equations, which arises from the minimization of
a quadratic function. The new idea is that in this quadratic function we use
local quadratic approximants of the squared distance function to the model
shape which shall be approximated. In the present paper, we just outlined the
idea and demonstrated its use at hand of some examples. There is a lot of
room for extensions and future research directions. Let us mention a few of
them:

• We need more research on the initial choice of the control points of the
active B-spline surface. Furthermore it is important to adjust the number
of control points dynamically, i.e., from iteration to iteration. For the planar
curve case this is treated in [50] but the methods presented there are not
directly applicable to surface approximation.

• The concept is applicable to approximation with subdivision surfaces. One
can use an initial shape as in [29], but other choices and an appropriate
handling of details require a lot of future research.

• An interesting extension concerns the incorporation of shape constraints
such as convexity. For example, we can use the sufficient linear convexity
conditions which have been derived by B. Jüttler for surface fitting with
convex tensor-product splines [20,22]. In our framework, we would then
have to solve a quadratic programming problem in each iteration step.

• Another interesting topic is the approximation with special surface classes.
We have shown this at hand of ruled surfaces. A further important topic
is surface approximation with translational surfaces. This has applications
in architecture and other areas where a simple generation of the designed
surface is desired for its practical realization.

• The surface parametrization problem is a correspondence problem. One has
to find correspondences between points on the parameter domain and the
model shape. Our present approach avoids to deal with this correspondence.
Another correspondence problem is the registration problem in Computer
Vision: Suppose that we have a CAD model from which a workpiece has been
produced. This workpiece has been scanned with some 3D measurement
device (laser scanning, light sectioning, . . .) resulting in a 3D data point
cloud from the surface of this workpiece. Thereby, the CAD model shall
describe the ‘ideal’ shape of the object and will be available in a coordinate
system that is different to that of the 3D data point set. For the goal of shape
inspection it is of interest to find the optimal Euclidean motion (translation
and rotation) that aligns, or registers, the point cloud to the CAD model.
This makes it possible to check the given workpiece for manufacturing errors
and to visualize and classify the deviations.

A well-known standard algorithm to solve such a registration problem is
the iterative closest point (ICP) algorithm of Besl and McKay [3]. It defines
to each point of the current position of the data point set a corresponding
point, namely the closest point on the model shape. Then, ICP finds the
best match in a least squares sense and iterates this procedure. However,
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the correspondences used are usually wrong, which increases the number
of iterations. Using a motion of the data point set in the squared distance
field with help of local quadratic approximants, avoids the correspondence
problem and appears as promising direction for real time surface inspection
[38].

• A broad area for future research is the investigation of algorithms for the
solution of other geometric optimization problems. There, we believe it is
important not to use an optimization algorithm as a black box, but adapt
an optimization concept (Newton, quasi-Newton, sequential quadratic pro-
gramming [5],...) in a geometric way to the special problem.
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[23] Jüttler, B., Felis, A., Least-squares fitting of algebraic spline surfaces, Advances
in Computational Mathematics 17 (2002), 135–152.

[24] Kass, M., Witkin, A., Terzopoulos, D., Snakes: Active contour models, Intern.
J. Computer Vision 1 (1988), 321–332.

23



[25] Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A., Skeletonization via
distance maps and level sets, Computer Vision and Image Understanding 62

(1995) 382–391.

[26] Kobbelt, L., Vorsatz, J., Labsik, U., Seidel, H.-P., A shrink wrapping approach
to remeshing polygonal surfaces, Computer Graphics Forum 18 (1999),
Eurographics ’99 issue, C119–C130.

[27] Lee, Y.S., Koc, B., Ellipse offset approach and inclined zig-zag method for
multiaxis roughing of ruled surface pockets, Comp. Aided Design 30 (1998),
957–971.

[28] Ma, W., Kruth, J. P., Parametrization of randomly measured points for the
least squares fitting of B-spline curves and surfaces, Computer Aided Design
27 (1995), 663–675.

[29] Ma, W., Zhao, N., Catmull-Clark surface fitting for reverse engineering
applications, in: Proc. Geometric Modeling and Processing, Hong Kong, 2000,
pp. 274–283.

[30] Maekawa, T., An overview of offset curves and surfaces, Comp. Aided Design
31 (1999), 165–173.

[31] Malladi, R., Sethian, J. A., Vemuri, B. C., Shape modeling with front
propagation: A level set approach, IEEE Trans. Pattern Anal. and Machine
Intell. 17 (1995), 158–175.

[32] Nikolaidis, N., Pitas, I., 3-D Image Processing Algorithms, Wiley, 2001.

[33] Osher, S., Fedkiw, R., Level set methods: an overview and some recent results,
J. Comp. Physics 169 (2001), 463–502.

[34] Osher, S. J., Sethian, J. A., Fronts propagating with curvature dependent speed:
Algorithms based on Hamilton-Jacobi formulation, Journal of Computational
Physics 79 (1988), 12–49.

[35] Patrikalakis, N. M., Maekawa, T., Shape Interrogation for Computer Aided

Design and Manufacturing, Springer, Berlin, 2002.

[36] Piegl, L, Tiller, W., The NURBS book, Springer Verlag, New York, 1995.

[37] Pottmann, H., Hofer, M., Geometry of the squared distance function to
curves and surfaces, In: Hege, H.-C. and Polthier, K., eds., Visualization and
Mathematics III, Springer, pp. 223–244.

[38] Pottmann, H., Leopoldseder, S., Hofer, M., Registration without ICP, Technical
report 91, Institute of Geometry, Vienna University of Technology, February
2002.

[39] Pottmann, H., Leopoldseder, S., Hofer, M., Approximation with active B-spline

curves and surfaces, Proc. of Pacific Graphics 2002, Beijing, IEEE Computer
Society, pp. 8–25.

24



[40] Pottmann, H., Leopoldseder, S., Zhao, H.K., The d2-tree: A hierarchical
representation of the squared distance function, Technical report 101, Institute
of Geometry, Vienna University of Technology, 2003.

[41] Pottmann, H., Wallner, J., Computational Line Geometry, Springer, 2001.

[42] Rusinkiewicz, S., Levoy, M., Efficient variants of the ICP algorithm, in Proc. 3rd
Int. Conf. on 3D Digital Imaging and Modeling, Quebec, 2001, Springer-Verlag,
2001.

[43] Sapiro, G., Geometric Partial Differential Equations and Image Analysis,
Cambridge Univ. Press, Cambridge, 2001.

[44] Serra, J., Image Analysis and Mathematical Morphology, Academic Press,
London, 1982.

[45] Serra, J., Soille, J., eds., Mathematical Morphology and its Applications to Image

Processing, Kluwer, Dordrecht 1994.

[46] Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge
University Press, 1999.

[47] Siddiqi, K., Tannenbaum, A., Zucker, S.W., A Hamiltonian approach to the
eikonal equation, Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, 1999, pp. 1–13.

[48] Toriwaki, J., Yokoi, S., Distance transformations and skeletons of digitized
pictures with applications, Progress in Pattern Recognition, L.N. Kanal and
A. Rosenfeld, eds., North Hollang, 1981, pp. 187–264.

[49] Warren, J., Weimer, H, Subdivision Methods for Geometric Design: A

Constructive Approach, Morgan Kaufmann Series in Computer Graphics, San
Francisco, 2001.

[50] Yang, H., Wang, W., Sun, J., Control Point Adjustment for B-Spline Curve

Approximation, submitted to CAD.

[51] Zhao, H.K., Chan, T., Merriman, B., Osher, S., A variational level set approach
to multiphase motion, J. Comp. Physics 127 (1996), 179–195.

[52] Zhao, H.K., Osher, S., Merriman, B., Kang, M., Implicit, non-parametric
shape reconstruction from unorganized data using variational level set method,
Computer Vision and Image Understanding 80 (2000), 295–314.

[53] Zhao, H.K., Osher, S., Fedkiw, R., Fast surface reconstruction and deformation
using the level set method, Proc. IEEE Workshop on Variational and Level Set
Methods in Computer Vision, Vancouver, 2001.

[54] Zhao, H.K., Fast Sweeping Method for Eikonal Equations I, submitted to SIAM

Numerical Analysis.

25


