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Abstract

Variational interpolation in curved geometries has many applica-
tions, so there has always been demand for geometrically meaning-
ful and efficiently computablesplinesin manifolds. We extend the
definition of the familiar cubic spline curves and splines in tension,
and we show how to compute these on parametric surfaces, level
sets, triangle meshes, and point samples of surfaces. This list is
more comprehensive than it looks, because it includes variational
motion design for animation, and allows the treatment of obstacles
via barrier surfaces. All these instances of the general concept are
handled by the same geometric optimization algorithm, which min-
imizes an energy of curves on surfaces of arbitrary dimension and
codimension.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object represen-
tations

Keywords: variational curve design, splines in manifolds, geo-
metric optimization, motion design, obstacle avoidance

1 Introduction

Computing energy minimizing curves which are restricted to a sur-
face and which fulfill interpolation and/or approximation conditions
is a basic problem of Geometric Computing. Its applications go far
beyond the most obvious task of designing a curve on a surface in
ordinary Euclidean space — there are many nonlinear geometric
settings of higher dimension which have manifestations in the fa-
miliar case of three dimensions. An efficient method for variational
curve design on surfaces, where neither the dimension of the sur-
face, nor the dimension of ambient space are restricted to two or
three, provides a basic tool usable e.g. for energy minimizing rigid
body motions, or the handling of obstacles.

1.1 Previous Work

Spline curves in Euclidean spaces which minimize theL2 norm of
the second derivative and related functionals are well understood
and comprise one of the basics of Geometric Modeling. For a com-
prehensive discussion of the theory and computational issues refer
to [Hoschek and Lasser 1993]. The classical energy functionals are
quadratic, which makes minimization easy. Geometric functionals
which require nonlinear minimization techniques and their applica-
tion to curve design have been studied e.g. by [Brunnett et al. 1993]
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Figure 1: Energy-minimizing splines on triangle meshes with and
without boundary.

and [Moreton and Sequin 1993]. Variational curve design has also
been performed within the framework of subdivision [Kobbelt and
Schr̈oder 1998], an approach we only touch briefly in Remark 6.

Variational design of curves on surfaces has received much less
attention. A substantial amount of research focuses on the quater-
nion 3-sphere because of its well-known relationship with rigid
body motions [Barr et al. 1992; Brunnett and Crouch 1994; Jüttler
and Wagner 2002; Park and Ravani 1997; Ramamoorthi and Barr
1997]. Minimizing theL1 or L2 norm of thefirst derivative of
curves is a classical problem of Differential Geometry and leads
to the geodesic lines of surfaces. Applications of this in Com-
puter Vision and Image Processing are given in [Caselles et al.
1997; Khaneja et al. 1998; Malladi 2002; Memoli and Sapiro 2001;
Sapiro 2001]. A series of contributions addresses intrinsically cubic
splines in manifolds, i.e., the minimizers of the covariant accelera-
tion [Camarinha et al. 2001; Gabriel and Kajiya 1985; Noakes et al.
1989; Noakes 2003].

In this paper we concentrate on anextrinsic formulation of
energy-minimizing curves in embedded manifolds; its definition
uses the ambient space. We minimize classical quadratic energy
functionals involving first and second derivatives, but with the non-
linear side condition that the solution curves are confined to sur-
faces. Forparametricsurfaces inR3, this is the topic of H. Bohl’s
thesis [1999], who proves the existence of a solution and computes
it by quasi-Newton iteration. Pottmann and Hofer [2003] charac-
terize interpolating and approximating minimizers on surfaces of
arbitrary finite dimension and codimension. The main results of
that paper are briefly summarized in Section 2.

The optimization procedure used in this paper is related to re-
search on active curves [Blake and Isard 1998; Kass et al. 1987],
geometric flows of curves on surfaces [Cheng et al. 2002]), and
snakes on surfaces [Lee and Lee 2002].



1.2 Overview

We discuss computation and applications of splines on surfaces
based on a variational principle, where the dimension of neither
surface nor ambient space is restricted. By discretization the prob-
lem is reduced to minimizing a quadratic function in a so-called
constraint manifold: A sequencep1, . . . ,pM of points on a given
surfaceS, with Scontained inRn, is seen as one point(p1, . . . ,pM),
havingD = n ·M coordinates. The constraint manifold consists of
these new points and is a surface inR

D.
The minimization algorithm we propose has been designed hav-

ing in mind the high dimensionality of the problem. It works by
gathering as little discrete curvature information as possible and
is applicable to all kinds of surface representations: the paramet-
ric form, implicit representations, a mesh, or a dense point cloud.
These two properties make it widely applicable. We illustrate ap-
plications of the concept of energy-minimizing splines in Computer
Graphics by means of selected applications.

This paper is organized as follows: After a review of known re-
sults in Section 2 and discussing computation in Section 3, we show
applications to variational design and the smoothing of rigid body
motions in Section 4. Section 5 shows how to compute energy min-
imizing splines in the presence of obstacles, which is done by creat-
ing a sequence of auxiliary barrier surfaces and working with those.
The same principle applies to motion planning.

2 Characterization of Energy-Minimizing

Splines in Manifolds

Let S be ak-dimensional regular surface, embedded in Euclidean
R

n, k < n. Moreover, a sequence of pointspi ∈ S, i = 1, . . . ,N and
real numbersu1 < · · · < uN are given. We are seeking a curvec(u)
on S, which interpolates the given data,c(ui) = pi , and minimizes
some energy functional.

Surface Counterparts of Cubic Splines

Recall that a cubicC2 spline curve arises as minimizer of the energy

E2(x) =
∫ uN

u1

ẍ(u)2du, (1)

under interpolation conditions,x(ui) = pi . The case where the ad-
missible curvesx(u) are restricted to the given manifoldS has re-
cently been studied in [Pottmann and Hofer 2003]. We summarize
the most important results, since they provide a basis for the numer-
ical approach and give us further insight into certain applications
discussed later.

When we speak of a curve segment in this section, we always
mean its part between two interpolation pointspi ,pi+1; it is pa-
rameterized over the interval[ui ,ui+1]. Moreover, the following as-
sumptions are made:S isC4 andwithout boundary(i.e.,S is closed
or extends to infinity; boundaries are discussed in Section 5). Ad-
missible curves lie onS, haveC4 segments, satisfy the interpolation
conditionsx(ui) = pi , and are at leastC1 at the data points.

In [Pottmann and Hofer 2003] it has been proved thatamong all
admissible curvesx, a minimizer of the functional E2 of Equ. (1)
is C2 and possesses segments whose fourth derivative vectors are
orthogonal to S. Moreover, at the end points of the solution curve,
the second derivative vector is orthogonal to S.

This result refers to the case of natural end conditions. Other
end conditions and closed curves require modifications analogous
to spline theory [Hoschek and Lasser 1993].

The minimizers possess a characterization which is very similar
to the familiar cubicC2 splines: The fourth derivative of a cubic

S

Figure 2: (Left) Counterpart to aC2 cubic spline curve on a surface:
the fourth derivative vectors (blue) are in direction of the surface
normals (yellow). (Right) Curves minimizingE2 (blue), Et (red),
andE1 (green) interpolating the same points on a surface.

vanishes and so does the tangential component of the fourth deriva-
tive of spline segments inS(see Fig. 2). These segments cannot be
computed explicitly in general, but only numerically, see Sect. 3.
Existence of minimizers follows from results of [Bohl 1999].

Geodesics

Let us prescribe just two pointsp1,p2 on a surfaceS and look for
a curve segment onS, which joinsp1 andp2 and minimizes theL2

norm of the first derivative,

E1(x) =
∫ uN

u1

ẋ(u)2du. (2)

It is well known that the second derivative vectorsc̈ of the mini-
mizer c are orthogonal toS and thatc is a geodesic(shortest path
on S) parameterized with constant speed. Note that minimizing the
functional (1) also optimizes the parametrization. There are no sim-
ple global uniqueness results for geodesics, so we cannot expect
such results for the more involved case of splines.

Splines in Tension in Manifolds

In the unrestricted (classical) case, minimizing a linear combination
of energies (1) and (2),

Et(x) =
∫ uN

u1

(ẍ2 +wẋ2)du, w = const> 0, (3)

leads to the well knownsplines in tension[Schweikert 1966]. Their
counterparts in manifolds have the property that the vector field
c(4)(u)−wc̈(u) is orthogonal toS; otherwise, they are character-
ized in the same way as minimizers ofE2. Increasingw moves the
spline closer to the curve which minimizesE1, i.e., the curve com-
posed by geodesic segments which connect the pointspi . Hence,
the parameterw controls the tension of the curve.

In [Pottmann and Hofer 2003], the authors provide analogous
results for the surface counterparts ofsmoothing splines, which ap-
proximate the given data, or toquintic splines(minimizers of the
L2 norm of the third derivative). The algorithms below can handle
these cases as well, but we will concentrate on cubic splines and
splines in tension.

3 Computing Energy-Minimizing Splines in

Manifolds

We are minimizingquadratic functionalssuch asE2 or Et . Af-
ter discretization we obtainquadratic functions. The restriction of



the curves to a surface yields constraints, and thus the numerical
computation of splines in manifolds requires an algorithm for the
constrained minimization of a quadratic function. For this purpose
we propose a projected gradient algorithm, whose stepsize control
is guided by a geometric interpretation of an error estimate.

3.1 The Basic Geometric Optimization Algorithm

Consider minimization of a quadratic function

F : R
D → R, F(x) = xT ·Q·x+2qT ·x+q,

with a symmetric positive definite matrixQ, under the constraint
thatx lies in some surfaceΦ ⊂ R

D. We assume thatΦ has dimen-
sionmand that it is smooth in the area we work in.

The geometric approach to this minimization problem views the
matrix Q as matrix of the inner product〈x,y〉 := xT ·Q · y, of a
Euclidean metric inRD. F assumes its minimum in the pointp =
−Q−1 ·q. Up to an unimportant additive constant,F then equals

F(x) = (x−p)T ·Q· (x−p).

This is the squared distance‖x−p‖2 of pointsp andx in the Eu-
clidean norm mentioned above. Here, and in this entire section,
‘distance’, ‘orthogonality’, and related concepts refer to the met-
ric defined by the matrixQ. The minimum ofF on the surfaceΦ
is attained at the pointp∗, which is closest top. p∗ is the normal
footpoint ofp on Φ.

We propose the following iterative procedure for minimizingF .
It consists of repeated application of the following two steps (see
Fig. 3): xc (the current point) is initialized with an initial guessx0
for the minimizer.

1. Compute the tangent spaceTm of Φ at the current iteratexc
and project the pointp orthogonally intoTm, which results in
the pointpT .

2. Compute an appropriate stepsizes and projectxs := xc +
s(pT −xc) ontoΦ; this yields the next iteratex+.

Convergence Analysis

The choice of the stepsizes requires a discussion of error estimates.
We briefly summarize results here and omit proofs, which can be
found in [Pottmann and Hofer 2004].

Under the assumption thatΦ has derivatives up to third order,
the current errorec := xc − p∗ and the error at the next iteration
stepe+ = x+ −p∗ are related via

‖e+‖ ≤ |1−s+sdκmax| ‖ec‖+C ‖ec‖
2. (4)

d equals the distance ofp andp∗. κmax is the largest (in the sense
of absolute values) normal curvature of the surfaceΦ in the point
p∗, with respect to the normal vectorn := p−p∗. C is a constant.

Sincep−xc is the negative gradient of the squared distance func-
tion 1

2‖x−p‖2 at xc, the method is a projected gradient algorithm.

Remark 1. The normal curvatureκ of a curvel in Φ throughp∗,
with respect to the normal vectorn, has the following interpreta-
tion: Connectingp with l yields a cone (Fig. 3). By developing this
cone into the plane,l is transformed into a planar curvel̃, whose
(ordinary) curvature is preciselyκ [do Carmo 1976; Spivak 1975].

Φ

Tmxc

x0

xs
pT

x+

p∗

p p

p∗

Φ

Figure 3: (Left) Footpoint computation with a projected gradient
algorithm. (Right) Footpoint cone.

Remark 2. The projectionxs 7→ x+ is of marginal importance as
regards local convergence. A sufficiently smooth projection only
influences the constant factorC in Equ. (4). All projections dis-
cussed later meet this condition.

We proceed with the discussion of (4). Convergence of the algo-
rithm depends on the constant

C1 := |1−s+sdκmax|.

We have linear convergence ifC1 < 1. The goal is a strategy for
selecting the stepsizessuch thatC1 becomes as small as possible.

The normal vectorn has been chosen such that it points fromp∗

to p. We haved ≥ 0, but we cannot assume thatκmax ≥ 0. Two
cases have to be discussed:

(a) dκmax> 1: Then 1−s+sdκmax> 1 and no choice ofswould
guarantee convergence. Fortunately, this case does not arise
in our setting: it can be shown to occur only ifp∗ is a local
minimizer, but not a global one.

(b) dκmax < 1: In this case any choice ofswith

0 < s<
2

|d κmax−1|
(5)

gives a constantC1 < 1, i.e.,linear convergence.

Note thatd = 0 together withs = 1 yields the optimal situation
C1 = 0, i.e., aquadratically convergent algorithm.

Stepsize Selection

To show the idea behind our selection of stepsize, we first look at
the simple case thatΦ is a curvewith curvatureκ = κmax (in the
sense of Remark 1) at the footpointp∗. If we choose

s=
1

|dκ −1|
, (6)

we getC1 = 0 in (4), which meansquadratic convergence.
In practice, however, we do not knowd andκ . In the follow-

ing we show how to extend this idea from the curve to the surface
case, and how to estimate the unknown valuesd andκ from data
collected at previous iteration steps.

Remark 3. Equation (6) becomes intuitively clear for a planar
curve, which for purposes of second order analysis is replaced by
its osculating circle of radius 1/κ at the footpoint (Fig. 4). The
point xs is chosen as close as possible top∗, but still on the tangent
at xc. It is elementary to verify Equ. (6) for this choice ofxs.
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Figure 4: Visualization of stepsize selection.

In order to utilize the curve case for a general surfaceΦ, we con-
sider a curvec f on Φ, containing the individual iterates in our pro-
jected gradient algorithm. Computingp’s footpoint inc f yields the
same pointp∗ as computing the footpoint onΦ. This means that
we could just as well have applied the entire iteration toc f , which
however is not known.

In view of Remark 1, we now estimate the stepsizes via devel-
oping thefootpoint coneΓ f , which connectsp andc f . An approxi-
mation of this development in a neighborhood of the current iterate
xc can be computed from the mutual distances of the three points
xc, the previous iteratex−, andp.

Algorithm 1 estimates the stepsize s via an approximate planar
development of a part of the footpoint coneΓ f (see Fig. 5):

1. Using the distances‖pT − xc‖, ‖pT − p‖, ‖x− − p‖, ‖x− −
xc‖ we develop the trianglespxcpT and pxcx− into a plane
as shown by Fig. 5. Development is indicated by a tilde.

2. In the planar coordinate system of Fig. 5, letx̃− have coor-
dinates(ξ ,η). The circle k, which passes through̃x− and
touches the linẽxcp̃T at x̃c, has centerm = (0,ρ) and radius
ρ = (ξ 2 + η2)/(2ξ ). We letκ := 1/ρ and d:= | ‖p̃−m‖−
|ρ| |. We plug these values into (6) to get the stepsize s.

Note that there are two ways to attach the trianglesp̃x̃cp̃T and
p̃x̃cx̃− to each other. One way is shown by Fig. 5. The other pos-
sibility is obtained by reflecting the first one in the linep̃x̃c. Of
course, we take the possibility which gives the smaller distortion of
the spatial distance‖pT −x−‖.

Summary of the Optimization Algorithm

Algorithm 2 computes the minimizerp∗ of a quadratic function
with positive definite matrix Q (and unconstrained minimizerp) un-
der the constraint thatp∗ lies on a given m-dimensional surface
Φ ⊂ R

D: Starting with an initial guessxc = x0 for the minimizer,
iteratively apply the following two steps.

1. Compute a basis{c1, . . . ,cm} of Φ’s tangent space at the cur-
rent iteratexc, and the Gramian matrix G= (gi j ) = (〈ci ,c j 〉)
of that basis with respect to the inner product〈x,y〉 :=
xT ·Q · y. Further compute the vectorr = (r1, . . . , rm) with
r j = 〈p− xc,c j 〉. Define the tangent vectort = ∑i vici where
v = (v1, . . . ,vm) is the solution of the linear system G·v = r.

2. With distance computations based on the norm‖x − y‖2 =
〈x− y,x− y〉 and the stepsize strategy of Algorithm 1, com-
pute a stepsize s and the pointxs = xc +st. Projectxs ontoΦ
to obtain the next iteratex+.

The projection in step 2 depends on the chosen representation of
Φ, and shall be discussed in connection with the individual appli-
cations.

xcx−
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pT
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p̃T
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|ρ|

k

Figure 5: (Left.) Distances inRD. (Right.) Approximate planar
development of a part of the footpoint cone.

In the very first iteration step, Algorithm 1 does not work and we
must be content with a safely small stepsizes, whose validity can be
tested with a standard strategy, e.g., the Armijo rule [Kelley 1999].
Such a strategy should be added to each step anyway, in particular
if large curvature changes unbalance our stepsize selection. In the
applications shown later in this paper, such changes have been de-
tected by means of the footpoint cone: we observe the change of
curvature as iteration progresses.

Later during iteration, pointsx− andxc will be too close to be
used for curvature estimation; in such a case we revert to the last
available valid estimate forκ .

The optimization algorithm presented here is very well suited
for high dimensional applications, since it reduces curvature related
computations (Algorithm 1) to the minimum which is necessary to
achieve fast convergence.

Remark 4. The stepsize selection (5) can be seen as one step in
a Newton iteration for computingp’s footpoint on a circle, which
approximates the footpoint curvec f atxc. Other curves can be used
for that purpose as well. E.g. a method proposed by [Hartmann
1999] for computing footpoints on parametric and implicit surfaces
in R

3 uses a certain parabola. The difference to our method is that
the auxiliary curve used in each round of iteration does not use the
approximate footpoints computed in previous rounds. Its extension
to other surface representations is possible by using the ideas of
the present paper. It turns out that the performance of Hartmann’s
method is similar to ours, but it is stable only for smalld.

3.2 Splines in Manifolds

Computing energy minimizing curves on surfaces requires dis-
cretization. We describe a solution to the interpolation problem:
The unknown curvec must pass through given points, so we assume
that we are given parameter valuesu1, . . . ,uN and pointsp1, . . . ,pN,
such thatc(ui) = pi . The curve itself is represented by a point se-
quence which contains the pointspi (cf. Fig. 6):

p1,q1,1,q1,2, . . . ,q1,M1
,p2,q2,1, . . . ,pN,

with Mi new points in betweenpi and pi+1. We assume that
evaluating the unknown curvec at parameter valuesui + j(ui+1−
ui)/(Mi +1) yieldsqi, j . In our implementation, the parameter val-
uesui of the data pointspi are estimated such that∆ui equals the
arc length of the segment betweenpi andpi+1 on the initial curve.
In case of heavy changes of the length of certain segments during
the optimization, we recompute the parameters.

The new pointsqi, j are the unknowns in the minimization prob-
lem. Their number equalsM := M1+ . . .+MN−1. We rename them
(x1, . . . ,xM) in order to establish the connection with the previous
section and collect them in a new pointX ∈ R

Mn. The constraint
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Figure 6: (Left.) Notation for the discretized spline. (Right.) Ele-
mentary view of an iteration step of the optimization algorithm.

manifoldΦ is the set ofX’s, such that the singlexk’s are contained
in the given surface. It is a surface whose dimension equalsM times
the dimension of the original surface.

Our optimization algorithm as described in the previous section
employsΦ’s tangent spaces and orthogonal projection onto them.
It is therefore necessary to give bases of these spaces. Suppose that
for each pointxk, the original surface’s tangent space is spanned by
vectorsck,l . Then the long vector(0, . . . ,0,ck,l ,0, . . . ,0) with ck,l in
the place ofxk is tangent toΦ; andΦ’s tangent space is spanned by
those vectors, ask runs in 1, . . . ,M andl runs in 1, . . . ,n.

The next step is to describe the quadratic functionF . We use the
difference of successive points as a discrete first derivative, anda
difference of such differences as a discrete second derivative. By
replacing integration by summation, any of the functionalsE1, E2,
Et is thus converted into a quadratic function, and we directly apply
Algorithm 2.

Note that this essentially means projecting gradients of an energy
function, where the projection is defined via the orthogonality given
by the energy itself. This is a discrete version of aSobolev gradient.
The efficiency of Sobolev gradient methods for geometric optimiza-
tion problems has been pointed out by Renka and Neuberger (see
[Neuberger 1997]).

An elementary view of the algorithm is the following: We dis-
place the (non fixed) verticesxk,c of the polygon to the current it-
erate in their respective tangent spaces ofS, such that the displaced
polygon minimizes the chosen energyE; then these displacement
vectors are scaled by the stepsizes, and the resulting pointsxk,s are
projected to pointsxk,+ of S(see Fig. 6).

Among the many possible ways to compute aninitial guessof
the spline, we list the following two. Other choices will be men-
tioned later in connection with special representations ofSor spe-
cific applications.

1. Compute the unrestricted energy minimizing spline through
the given pointspi (with estimates for their parameter values
ui as suggested in the literature [Hoschek and Lasser 1993])
and project it onto the surfaceS. The projection has to be per-
formed efficiently and therefore depends on the representation
of S. This is discussed below.

2. Use an approximation to a piecewise geodesic curve.

The latter choice can be built into ahomotopy method: For the min-
imization ofE2 or Et (with weightw), we start with the minimiza-
tion of Et with high weightw′, and during the iteration we perform
an appropriate reduction ofw′ down to the desired valuew (w = 0
for E2).

Remark 5. The algorithm can be used also forsmoothingor fair-
ing of a given curvec0 (see Fig. 7): We fix some points of it, define
c0 as initial position and run a few (small) steps in the optimization.
Of course, this works for any representation ofS and any of the
applications discussed below (see Fig. 11).

S
c0

Figure 7: Smoothing curves on surfaces.

Remark 6. Inserting onlyonepoint qi ∈ Sbetween two consec-
utive pointspi ,pi+1 can be seen as one round ofvariational curve
subdivisionin a manifold. This is a generalization of [Kobbelt and
Schr̈oder 1998]. The presented version improves and stabilizes the
algorithm in [Hofer et al. 2003] by controlling the stepsize factors.

Algorithm 2 is sufficiently general so as to work for any representa-
tion of the surfaceS. In the following, we will restrict ourselves to
surfaces inR3, and discuss the computation of splines for various
representations ofS.

Parameterized Surfaces

If Sis given in a parametric representations(r1, r2), the basesci, j in
the tangent spaces ofSat xi can be taken as the first partial deriva-
tivess,1, s,2 at the pointxi with respect to the surface parameters.

An initial position of the curve to be optimized can be chosen
by means of the surface parameterization, for example by choosing
s(r1(t), r2(t)) with piecewise linear functionsr i(t). Throughout the
computation, it is important to respect periodicity conditions in case
of closed surfaces.

The projection onto the constraint manifoldΦ is done via lin-
earization of the parametric representation. Letri,c be the vectors
of parameter values of the polygon verticesxi,c in the current it-
erate. Then, the step vectorst of Algorithm 2 is composed of a
sequence of tangential displacement vectorsvi = vi,1s,1 +vi,2s,2 of
the verticesxi,c. Now, the parameter vectors of the next iterates
xi,+ are taken to beri,+ = ri,c +(vi,1,vi,2). Thus, the projection is
actually not present, in accordance with the fact that the optimiza-
tion problem may be seen as an unconstrained problem over the
parameter domain. Examples are shown by Fig. 2.

Implicit Surfaces

Implicitly defined surfaces play a prominent role in Computer
Graphics, and even more so since a variety of simulation and shape
optimization problems can be solved efficiently with the level set
method [Osher and Fedkiw 2002].

For an implicitly defined surfaceF(x) = 0, the tangent space of
S in the pointxi is spanned by two independent vectorsci,1,ci,2,
which are orthogonal to the gradient∇F(xi) at xi .

The projection of a displaced vertexxi,s onto S requires a few
steps of a Newton iteration for the search of a zero ofF along the
line xi,s+λ∇F(xi).



Figure 8: Energy minimizing splines on (left) an implicit surface,
and (right) a point cloud.

Triangle Meshes and Point Cloud Surfaces

Our algorithm is also applicable for curve design on a triangle mesh
or even a point cloud (see Fig. 8). In view of the energies we use
for curve design, the mesh or point cloud should be representing
a smooth surface. [Adamson and Alexa 2003; Alexa et al. 2003]
use a moving least squares method to associate a smooth surface
with a given point cloud. This surface is locally represented in
implicit form. Its smoothness depends on the smoothness of the
weight function used by that method. Thus, point clouds appear as
a special case of implicitly defined surfaces. Noisy triangle meshes
can be smoothed in the same way. In both cases, for the actual
implementation we need to compute tangent planes and – for the
projection – intersection points with a straight line. For smoothed
meshes this is standard. For computing the tangent plane of a point
cloud or a noisy mesh, we use the associated surface. Intersection
with and projections onto point clouds are treated in [Adamson and
Alexa 2003; Alexa et al. 2003; Levin 2004; Pauly et al. 2003].

Currently the algorithm does not handle spline curves which go
over sharp edges, unless one of the given interpolation points is on
that edge. One way to handle edges would be to break spline curves
on edges.

4 Variational Design of Rigid Body Mo-

tions

The design of smooth motions of a rigid body inR
3 is one of the

most prominent applications of splines in manifolds. Unlike most
contributions to motion design, we do not use the quaternion unit
sphere as a model of SO(3), but consider the group of Euclidean
congruence transformations as a surface, following [Belta and Ku-
mar 2002] and [Hofer et al. 2003].

4.1 The Group of Euclidean Motions Embedded in

the Affine Group

Consider a rigid body moving inR3. We use Cartesian coordinates
and denote points of the moving systemΣ0 by x0,y0, . . . , and points
of the fixed system byx,y, and so on. A rigid body transformation

α maps pointsx0 ∈ Σ0 to positionsx in the fixed system via

x = a0 +A·x0. (7)

We speak of the image also as ‘position’Σ; it is determined by the
pair (a0,A), consisting of a vectora0 (the position of the origin)
and the rotation matrixA. If a0(u) andA(u) depend smoothly onu,
which can be thought of as time, we speak of a smooth motion, or
sometimes simply of a motion. Our goal is the design of motions
which interpolate given positionsΣ(ui) at time instancesui .

If we do not impose any restriction on the matrixA in (7), we
get anaffine mapα(u) and anaffine positionΣ(u). Let us denote
the three column vectors ofA asa1,a2,a3. Now we associate with
the affine mapα apoint in 12-dimensional affine spaceR

12, repre-
sented by the vectorA = (a0, . . . ,a3). Because of the orthogonality
condition imposed onA, the image points of rigid body transforma-
tionsα lie in a 6-dimensional manifoldM6 ⊂ R

12.
A meaningfulmetric in R

12 can be introduced by means of a
collectionX of pointsx0

1,x
0
2, . . . ,x

0
K in the moving system (body),

which are calledfeature points. The squared distance‖α − β‖2

of affine mappingsα andβ from each other is defined as sum of
squared distances∑i ‖α(x0

i )− β (x0
i )‖

2 of the corresponding fea-
ture point positions. One does not have to use unit point masses at
a discrete number of feature points. Instead, we could work with
another mass distribution (positive measure) on the moving body.

It can be shown (see e.g. [Hofer et al. 2003]) that this distance
measure introduces a Euclidean metric inR

12, which only depends
on the barycentersx = (1/K)∑i x0

i and on the inertia matrix

J := ∑
i

x0
i ·x

0
i

T
(8)

of the feature points. By a well-known result from mechanics, we
can replace the set of feature points by the six vertices of their iner-
tia ellipsoid, without changing the barycenter and the inertia matrix
of X. To do so, we choose the barycenter as the origin in the moving
system and the eigenvectors ofJ as coordinate axes. Then the six
points have coordinates(± f1,0,0),(0,± f2,0),(0,0,± f3), where
2 f 2

i are the eigenvalues ofJ. Now,‖α−β‖2, i.e., the above defined
squared distance of the pointsA = (a0, . . . ,a3) andB = (b0, . . . ,b3)
from each other is given by the formula

‖A−B‖2 = 6(a0−b0)
2 +2

3

∑
i=1

f 2
i (ai −bi)

2. (9)

c

Figure 9: Comparing shortest motions between two positions in the
sense of the metric (9) (blue) and in the quaternion sense (orange).
The former is the free motion of a rigid body and tends to generate
shorter pathsc for points close to the moving object.



Figure 10: Energy minimizing cyclic motions: (Left)E2, (Center)Et , (Right)E1.

Figure 11: (Top) Input motion and (Bottom) smoothed version, ob-
tained through application of a few steps of the algorithm for mini-
mization ofE2.

4.2 Computation of Energy-Minimizing Motions

Variational motion design is seen as curve design with energy min-
imizing splines onM6 ⊂ R

12, using the metric (9). For motions,
the meaning of minimizing one of the functionalsE1, E2, or Et , is
that the total energy of the feature point trajectories is minimized.
It makes sense to base motion design on trajectories of points on
the moving body. We view this as an advantage over the known
purely intrinsic formulations, which are neglecting shape and mass
properties of the moving body (see also Fig. 9).

Recall that the numerical computation of energy minimizing
splines is based on a discretization. This means that the final motion
is discretely resolved by a certain number of positions, including the
input positions. The optimization algorithm in each step computes
a tangent vectorst and requires projectingxs = xc +st ontoΦ. Ac-
tually bothxc andxs are sequences of positions, and the tangent
vectort is a sequence of tangent vectors toM6. We project the se-
quencexs by projecting each single position orthogonally ontoM6.
This is a known algebraic problem of degree four. For details, see
e.g. [Belta and Kumar 2002; Horn 1987].

For a geometric characterization of the motions which are com-
puted in this way, we use the concept of a balanced force system
from statics. A system of forcesfi , attached to pointspi , is in bal-

ance, if both, the sum of force vectors and the sum of moment vec-
tors, vanish, i.e.,∑i fi = 0, and∑i pi × fi = 0. At an arbitrary time
instantu of a sufficiently smooth motion, thek-th derivative vectors
at the feature point positions define thek-th derivative force system
Sk. Now motions arising from the minimization ofE2 are character-
ized as follows:The energy minimizing spline motion is C2, at each
time instant u6= ui the 4-th derivative force systemS4(u) is in bal-
ance, and at the end positions, the systemsS2(u1),S2(uN) of sec-
ond derivatives are in balance. In particular, the trajectory of the
barycenter of the feature points is an interpolating cubic C2 spline.
For a proof, one uses the results of [Pottmann and Hofer 2003] and
shows that thek-th derivative vector of a curveC on M6 at a point
C(u) is orthogonal toM6 if the k-th derivative force system of the
corresponding position inR3 is in balance. The spline property of
the barycenter trajectory follows immediately from (9) and the def-
inition of E2; therefore, the motion computation described above in
R

12 can be decomposed into the computation of this special trajec-
tory (in R

3) and the computation of the rotational part (inR
9).

Analogous results hold for the other spline functionals. The case
of E1 belongs to geodesics onM6. The corresponding motions have
a balanced force systemS2(u) of second derivatives. The trajectory
of the barycenter of the feature point set is a straight line traced
with constant speed. These motions are well-known in mechanics
as free motions of a body [Arnol’d 1989], see Fig. 9.

5 Splines in the Presence of Obstacles

So far, we did not mention curve design on surfaces with bound-
aries, such as surface patches in CAD applications. In this section
we consider an even more general problem, namely variational de-
sign of curves which avoid a finite number of obstaclesOi .

Although this problem has a variety of practical applications,
there are not many contributions dealing with it. We point to work
on interpolation with cubic spline functions under linear inequality

Figure 12: Variational curve design in the presence of obstacles.



Figure 13: Spline computation in the presence of obstacles: Barrier surface with decreasing rounding radius during the iteration, and resulting
planar spline curve.

constraints [Opfer and Oberle 1988], CAD related work on con-
strained curve design without energy minimization [Meek et al.
2003], and in particular to Bohl’s contribution to splines on para-
metric surfaces [1999]. We will see that we can get rid of the obsta-
cle constraints by introducing an appropriate unbounded auxiliary
surfaceM and working with that.

Let us start with curve design in the planeR
2. As a geometric

interpretation of thebarrier methodfrom constrained optimization
[Fletcher 1987], we embedR2 as the planez= 0 into R

3 and re-
move the interior of each obstacleOi . We now attach, to each ob-
stacle boundarybi , a cylindrical surface withz-parallel rulings and
smooth out the edge alongbi which is generated by this procedure.
This results in a smooth surfaceM. Given input pointspi , which do
not lie in any obstacle, are lifted ontoM in z-direction; only points
near obstacle boundaries will be changed by this lifting.

Now we design an interpolating curvēc onM; its projection onto
z= 0 is the desired curve. During the optimization,M is not kept
fixed. The blending radius is reduced so that it tends to zero, see
Fig. 13. Therefore, the final curvec is a minimizer of the chosen
energy under the given constraints. The general results of Sect. 3
imply that c is C2 and piecewise cubic where it does not lie in a
boundary curve. There can be parts ofc along a boundary curve
bi ; the parametrization ofc alongbi has its 4th derivative vectors
orthogonal tobi .

In view of the obvious extension toR3, we construct the blend-
ing areas ofM with help of distance fields to the obstacles. We use
an algorithm from [Tsai 2002] for distance field computation, since
it stores the normal footpoints; this is helpful for the projection onto
M. Let di(x,y) be the signed distance of the point(x,y) from the
obstacleOi . Then, the corresponding blending surface is given im-
plicitly by the equationf (di(x,y),z) = 0, where f describes the
shape of the blend profile (Fig. 13).

Note that the initial curve already determines thecombinatorial
type of the final spline curve. In our current implementation we

Figure 14: (Left) Computing the initial position via backward gra-
dient flow on the distance field in the presence of obstacles. (Right)
The path through the tunnel is shorter but has higher energy.

use as initial curve a curve composed of geodesics (in the presence
of obstacles) between consecutive pointspi ,pi+1. These are com-
puted by propagating the distance field originating inpi within M.
As soon as the propagating wave reachespi+1 andpi−1, we trace
back with a gradient descent method, see Fig. 14. The distance
propagation is done with an adapted version of Zhao’s sweeping al-
gorithm [Zhao 2004], where grid nodes inside obstacles get a flag
and are not used for the propagation.

The spline through the channel shown by Fig. 14, right, also
shows that corners do not cause problems: at a convex corner,
the blend is smooth; at a concave corner, a blend as defined above
would have a sharp edge, but a smooth spline never reaches a con-
cave corner. Moreover, this figure also illustrates a second, combi-
natorially different solution; it is longer than the path through the
channel, but has a smaller energyE2.

Figure 15: One curve avoids the solids.

Figures 12 and 15 show 3D examples of spline curves in the
presence of obstacles. Figure 16 presents an example for varia-
tional motion design in the presence of obstacles, where we have
combined the methodologies from Sect. 4 and 5: the path of the
barycentersx of the moving body is a spline, which does not come
closer to the obstacles than a distancer; herer is the maximum
distance of points on the moving body tosx. This method guar-
antees a smooth motion and avoids the obstacles in a conservative
way. Consideration of the precise shape of the moving object can
in principle be done with our algorithm using a configuration space
approach. However, the efficient computation of the corresponding
barrier surface remains a challenging problem for future research.

Fig. 1, left, shows a spline on a surface with boundary. Here,
the obstacle is the set of all points inR3, whose distance from the
surface exceedsε. The spline is designed within the remaining thin
layer, and is finally projected onto the surface. This method is sim-



Figure 16: Motion design in the presence of obstacles: Motion minimizingE2 (Left) unconstrained (Center, Right) avoiding 5 obstacles.

ilar to the computation of geodesics in [Memoli and Sapiro 2001].
It is independent of the type of surface representation we use, since
for all of them distance fields can be computed efficiently.

Performance

We implemented our algorithms inMatlaband tested them on a PC
with 1.8GHz. All spline curves and motions computed in this paper
were computed within 0.5–5 seconds (not counting distance field
computation). The table below shows computation timet per posi-
tion for variational motion design. The caseM = 45 (M is the num-
ber of optimized positions of the discretized motion), corresponds
to Fig. 10.

M 45 94 149 191 247 288
t .0016s .0018s .0025s .0032s .0042s .005s

6 Conclusion

We have discussed the computation of energy minimizing spline
curves in ak-dimensional manifold based on a geometrically moti-
vated algorithm for constrained minimization of a quadratic func-
tion. Splines in manifolds possess a variety of interesting applica-
tions in Computer Graphics and related areas. This has been illus-
trated by means of computing splines on various surface representa-
tions, by motion design, and by spline computation in the presence
of obstacles.

The essential component of the computational approach is not
restricted to curves; its use for the generation of spline surfaces in
manifolds seems straightforward. This is one of the many possible
extensions of our results.

The concept ofimage manifold[Kimmel et al. 2000] makes it
possible to develop image sensitive drawing tools. Such an ap-
proach includes images defined on surfaces. An example where
not color or texture information, but the surface normals comprise
the image, is given by Fig. 17, where design in the image manifold
means feature-sensitive design in the original surface. This type
of image manifold has been employed in [Pottmann et al. 2004]
for the development of feature sensitive morphological operators
on surfaces.
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JÜTTLER, B., AND WAGNER, M. 2002. Kinematics and ani-
mation. In Handbook of Computer Aided Geometric Design,
G. Farin, M. S. Kim, and J. Hoschek, Eds. Elsevier, 723–748.

KASS, M., WITKIN , A., AND TERZOPOULOS, D. 1987. Snakes:
Active contour models.Intl. J. of Comp. Vision 1, 321–331.

KELLEY, C. T. 1999.Iterative Methods for Optimization. SIAM.

KHANEJA, N., MILLER , M. I., AND GRENANDER, U. 1998.
Dynamic programming generation of curves on brain surfaces.
IEEE PAMI 20, 11, 1260–1265.

K IMMEL , R., MALLADI , R., AND SOCHEN, N. 2000. Images
as embedded maps and minimal surfaces: movies, color, texture,
and volumetric medical images.Int. J. of Comp. Vision 39, 111–
129.
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