
Registration without ICP

Helmut Pottmann, Stefan Leopoldseder, Michael Hofer
Geometric Modeling and Industrial Geometry Group, Vienna Univ. of Technology

Wiedner Hauptstraße 8–10, A-1040 Wien
Email: pottmann@geometrie.tuwien.ac.at, stefan@geometrie.tuwien.ac.at,

hofer@geometrie.tuwien.ac.at

Version: 5-Mar-04

We present a new approach to the geometric alignment of a point cloud to a surface and

to related registration problems. The standard algorithm is the familiar ICP algorithm.

Here we provide an alternative concept which relies on instantaneous kinematics and on the

geometry of the squared distance function of a surface. The proposed algorithm exhibits

faster convergence than ICP; this is supported both by results of a local convergence

analysis and by experiments.

Key Words: registration, instantaneous kinematics, squared distance function,
geometric optimization

1. INTRODUCTION

We investigate the following registration problem. Suppose that we have a
CAD model from which a workpiece has been produced. This workpiece has been
scanned with some 3D measurement device (laser range scanning, light sectioning,
. . .) resulting in a 3D data point cloud from the surface of this workpiece. Thereby,
the CAD model shall describe the ‘ideal’ shape of the object and will be available in
a coordinate system that is different to that of the 3D data point set. For the goal of
shape inspection it is of interest to find the optimal Euclidean motion (translation
and rotation) that aligns, or registers, the point cloud to the CAD model. This
makes it possible to check the given workpiece for manufacturing errors and to
visualize and classify the deviations.

A well-known standard algorithm to solve such a registration problem is the
iterative closest point (ICP) algorithm of Besl and McKay [1], which we will briefly
summarize in Sec. 1.1. For an overview of the recent literature on this topic we refer
to [5, 6, 19, 20]. ICP is an iterative algorithm which in each step applies a motion
to the current position of the point cloud. The motion is such that the points move
in a least squares sense as close as possible to their closest points on the model
shape. In Sec. 2, we investigate the squared distance function d2 to a surface and
see that ICP actually works with local quadratic approximants to d2 which are very
good for points far away from the surface, but not good at all for points close to
the surface. In Sec. 3, we review basic facts from instantaneous kinematics. Our
alternative approach to the registration problem, which is based on instantaneous
kinematics and local quadratic approximants to d2, is presented in Sec. 4. The
new method shows a faster convergence behavior and is also applicable for other
types of registration and positioning problems. This is demonstrated at hand of a
number of examples. Theoretical support for the fast convergence is given in Sec. 5,

1

where we survey the main results of a detailed study of the rate of convergence of
registration algorithms [14]. Finally, in Sec. 6 we outline the many directions for
future research which are opened by the present concept.

1.1. The ICP Algorithm

The iterative closest point (ICP) algorithm has been introduced by Besl and
McKay [1]. Independently, Chen and Medioni [4] proposed a similar algorithm,
which we will address later on in this paper. An excellent summary with new
results on the acceleration of the ICP algorithm has been given by Rusinkiewicz
and Levoy [20], who also suggest that iterative corresponding point is a better
expansion for the abbreviation ICP than the original iterative closest point.

The point set (‘data’ shape) is rigidly moved (registered, positioned) to be in
best alignment with the CAD model (‘model’ shape). This is done iteratively:
In the first step of each iteration, for every data point the closest point on the
surface (‘normal footpoint’) of the CAD model is computed. This is the most
time consuming part of the algorithm and has to be implemented efficiently. As
a result of this first step one obtains a point sequence Y = (y1,y2, . . .) of closest
model shape points to the data point sequence X = (x1,x2, . . .). Each point xi

corresponds to the point yi with the same index.
In the second step of each iteration the rigid motion m is computed such that

the moved data points m(xi) are closest to their corresponding points yi, where
the objective function to be minimized is

F =

N
∑

i=1

‖m(xi) − yi‖
2. (1)

This least squares problem can be solved explicitly, see e.g. [1, 10]. The translational
part of m brings the center of mass of X to the center of mass of Y . The rotational
part of m can be obtained as the unit eigenvector that corresponds to the maximum
eigenvalue of a symmetric 4 × 4 matrix. The solution eigenvector is nothing but
the unit quaternion description of the rotational part of m.

After this second step the positions of the data points are updated via Xnew =
m(Xold). Now step 1 and step 2 are repeated, always using the updated data points,
until the change in the mean-square error falls below a preset threshold. Since the
value of the objective function decreases both in step 1 and 2, the ICP algorithm
always converges monotonically to a local minimum.

2. LOCAL QUADRATIC APPROXIMANTS OF THE SQUARED DISTANCE
FUNCTION TO CURVES AND SURFACES

The algorithm we are proposing heavily relies on local quadratic approximants
to the squared distance function of the surface Φ to which the point cloud should be
registered. For a derivation and proofs of the following results we refer the reader to
[17]. For a better understanding, we first present local quadratic approximants to
planar curves and then generalize the obtained results to surfaces and space curves.

2

PSfrag replacements

e1

e2

c(t)

c(t0)

k(t0)

p

FIG. 1 Planar curve c(t) with Frenet frame e1, e2 in c(t0). The squared distance
function d2 to this curve and the local quadratic approximant of this function in
the point p are visualized by level sets.

2.1. Local Quadratic Approximants of the Squared Distance Function

to a Planar Curve

In Euclidean 3-space R
3, we consider a planar C2 curve c(t) with parameteri-

zation (c1(t), c2(t), 0). The Frenet frame at a curve point c(t) consists of the unit
tangent vector e1 = ċ/‖ċ‖ and the normal vector e2(t), see Fig. 1. The two vectors
form a right-handed Cartesian system in the plane. With e3 = e1 × e2 = (0, 0, 1)
this system is extended to a Cartesian system Σ in R

3. Coordinates with respect
to Σ are denoted by (x1, x2, x3). The system Σ depends on t and shall have the
curve point c(t) as origin.

At least locally, the shortest distance of a point p = (0, d, 0) on the x2-axis
(curve normal) is its x2-coordinate d. For each t, locally the graph points (0, d, d2)
of the squared distance function form a parabola p in the normal plane of c(t).
The graph surface Γ of the squared distance function d2 of c(t) therefore contains
parabolas in the cross-sections with vertical planes orthogonal to the curve c(t).
The distance function d2 of a smooth curve c(t) is smooth except for the points
of the medial axis of the curve c(t). This can be seen very clearly for the graph
surface Γ of d2 in Fig. 2.

When we now study local quadratic (Taylor) approximants of the squared dis-
tance function d2 in a point p, we exclude points of the medial axis of c(t). For
points p of the medial axis the closest footpoint on the curve c(t) is not unique,
and the distance function d2 is not differentiable.

3

PSfrag replacements
c(t)

c(t0)

(

p, d2(p)
)

Γ

Γd

FIG. 2 Axonometric view of Fig. 1. Planar curve c(t), graph surface Γ of its
squared distance function d2, and graph surface of a local quadratic approximant
at the point p.

Consider a point p in π whose coordinates in the Frenet frame at the normal
footpoint c(t0) are (0, d), see Fig 1. The curvature center k(t0) at c(t0) has coor-
dinates (0, ρ). Here, ρ is the inverse curvature 1/κ and thus has the same sign as
the curvature, which depends on the orientation of the curve.

Proposition 1. In the Frenet frame, the second order Taylor approximant Fd

of the squared distance function d2 at (0, d) is given by

Fd(x1, x2) =
d

d − ρ
x2

1 + x2
2. (2)

For a derivation of this result and a discussion of the different types of the graph
surface Γd of Fd we refer the reader to [17]. In Fig. 1 and Fig. 2, the second order
Taylor approximant Fd at the point p is depicted. The graph surface Γd of Fd and
the graph surface Γ of d2 have second order contact in the point

(

p, d2(p)
)

.

2.2. Local Quadratic Approximants of the Squared Distance Function

to a Surface

Consider an oriented surface s(u, v) with a unit normal vector field n(u, v) =
e3(u, v). At each point s(u, v), we have a local right-handed Cartesian system whose
first two vectors e1, e2 are determined by the principal curvature directions. The
latter are not uniquely determined at an umbilical point. There, we can take any
two orthogonal tangent vectors e1, e2. We will refer to the thereby defined frame as

4

principal frame Σ(u, v). Let κi be the (signed) principal curvature to the principal
curvature direction ei, i = 1, 2, and let ρi = 1/κi. Then, the two principal curvature
centers at the considered surface point s(u, v) are expressed in Σ as ki = (0, 0, ρi).
The quadratic approximant Fd to the squared distance function d2 at p = (0, 0, d)
is the following.

Proposition 2. The second order Taylor approximant of the squared distance
function of a surface at a point p is expressed in the principal frame at the normal
footpoint via

Fd(x1, x2, x3) =
d

d − ρ1

x2
1 +

d

d − ρ2

x2
2 + x2

3. (3)

Let us look at two important special cases.

• For d = 0 we obtain

F0(x1, x2, x3) = x2
3. (4)

This means that the second order approximant to d2 at a surface point p

is the same for the surface Φ and for its tangent plane at p. Thus, if we
are close to the surface, the squared distance function of the tangent plane
at the closest point to the surface is a very good approximant. At least at
first sight it is surprising that the tangent plane, which is just a first order
approximant, yields a second order approximant when we are considering the
squared distance function d2, to surface and tangent plane, respectively.

• For d = ∞ we obtain

F∞(x1, x2, x3) = x2
1 + x2

2 + x2
3. (5)

This is the squared distance to the footpoint on the surface.

We see that distances to normal footpoints, which are used in ICP, are just good
if we are in a greater distance to the surface Φ. In the vicinity of the surface,
it is much better to use other local quadratic approximants. The simplest one is
the squared distance to the tangent plane at the normal footpoint. Registration
typically starts with a rough guess of the correct position obtained for example via
principal component analysis, matching special surface features or taking into ac-
count some preknowledge on surface and point cloud. Hence, for optimal alignment
we typically need several iteration steps in the vicinity of the surface. This is the
reason why we are not minimizing distances to the normal footpoints.

For our alignment algorithm, cf. Sec. 4, we prefer the Taylor approximants to be
nonnegative, because then we are guaranteed to minimize positive definite quadratic
functions in each iteration step. Thus, if one of the coefficients d/(d − ρi) in (3) is
negative we replace it by zero or by |d|/(|d| + |ρi|), see [17] for details.

2.3. Local Quadratic Approximants of the Squared Distance Function

to a Space Curve

In case that boundary curves of surfaces are involved, it is also useful to know
about local quadratic approximants of the squared distance function d2 to a space
curve. Given a point p in R

3, the shortest distance to a C2 space curve c(t)

5

occurs along a normal of the curve or at a boundary point of it. The latter case is
trivial and thus we exclude it. At the normal footpoint c(t0) we form a Cartesian
system with e1 as tangent vector and e3 in direction of the vector p − c(t0). This
canonical frame can be viewed as limit case of the principal frame for surfaces,
when interpreting the curve as a pipe surface with vanishing radius. By this limit
process, we can also show the following result.

Proposition 3. The second order Taylor approximant of the squared distance
function of a space curve c(t) at a point p is expressed in the canonical frame Σ at
the normal footpoint via

Fd(x1, x2, x3) =
d

d − ρ1

x2
1 + x2

2 + x2
3. (6)

Here, (0, 0, ρ1) are the coordinates (in Σ) of the intersection point of the curvature
axis of c(t) at the footpoint c(t0) with the perpendicular line pc(t0) from p to c(t).

3. INSTANTANEOUS KINEMATICS

For the algorithm we propose, some knowledge about kinematics is essential.
Thus, in this section we briefly outline the basic facts we are using later on. Consider
a differentiable one-parameter rigid body motion in Euclidean 3-space. Introducing
Cartesian coordinate systems in the moving system Σ and in the fixed system Σ0,
the time dependent position x0(t) of a point x ∈ Σ in the fixed system is given by

x0(t) = a(t) + M(t)x. (7)

Here, the time dependent orthogonal matrix M(t) represents the spherical compo-
nent of the motion, and a(t) describes the trajectory of the origin of the moving
system. All arising functions shall be C1. By differentiation we get the velocity
vectors. It is well-known that the velocity vector field is linear at any time instant.
More precisely, at any time instant there exist vectors c, c̄ such that the velocity
vector v(x) of any point x of the moving body can be computed as

v(x) = c̄ + c × x. (8)

Note that in this formula all arising vectors are represented in the same system;
this may be the moving or the fixed system. The meaning of c, c̄ is as follows: c̄

represents the velocity vector of the origin, and c is the so-called Darboux vector
(vector of angular velocity).

It is well-known that only very special one-parameter motions have a constant,
i.e., time-independent velocity vector field. These motions are

• A translation with constant velocity (if c = 0)

• A uniform rotation about an axis (if c · c̄ = 0)

• A uniform helical motion (if c · c̄ 6= 0)

Thus, up to the first differentiation order, any motion agrees locally with one of
these motions. The most general case is that of a uniform helical motion, which
is the superposition of a rotation with constant angular velocity about an axis G
and a translation with constant velocity parallel to G. If the moving body rotates

6

about an angle α, the translation distance is p ·α. The constant factor p is referred
to as pitch of the helical motion. For more details on helical motions and the close
relations to line geometry we refer to [18]. The Plücker coordinates (g, ḡ) of the
axis G, the pitch p and the angular velocity ω are computed from c, c̄ as

g =
c

‖c‖
, ḡ =

c̄ − pc

‖c‖
, p =

c · c̄

c2
, ω = ‖c‖. (9)

Recall that the Plücker coordinates of a line G consist of a direction vector g and
the moment vector ḡ = p × g, where p represents an arbitrary point on G.

4. REGISTRATION OF A POINT CLOUD TO A CAD MODEL USING
INSTANTANEOUS KINEMATICS AND QUADRATIC APPROXIMANTS

OF THE SQUARED DISTANCE FUNCTION

In the ICP algorithm the data points xi are moved towards their closest points
yi on the model surface Φ. Instead of moving xi towards yi we aim at bringing the
points just closer to the surface Φ. For this, we employ local quadratic approximants
of the squared distance function of Φ. As we have seen in Sec. 2.2, the squared
distance functions to the tangent planes of Φ approximate the squared distance
function of Φ very well in the vicinity of the surface. The aim is the same as for
ICP. We would like to apply a motion to the point cloud such that the sum

f =

N
∑

i=1

d2(m(xi),Φ) (10)

of squared distances of the displaced points m(xi) to the model surface Φ becomes
minimal. Let us first give an overview of the proposed algorithm and then study the
individual steps in more detail. The new algorithm iteratively applies the following
steps:

1. To each point xi of the current position of the point cloud, compute a local
quadratic approximant Fi of the squared distance function of the surface Φ,
as outlined in Sec. 2. In the simplest case, take as Fi the squared distance
function of the tangent plane at the point yi ∈ Φ, which is closest to xi. This
step is used to quadratically approximate the function f to be minimized.

2. Compute a velocity vector field, which attaches to each point a velocity vector
v(xi) such that the quadratic function

∑

Fi(xi + v(xi)) assumes a minimal
value. This step estimates a motion towards the model surface, but does not
yet represent a Euclidean motion. From the point of view of optimization, we
use a quadratic approximation of f and a linearization of the constraint (i.e.,
displacement by a rigid body motion), but we do not yet fulfil the constraint.

3. From the velocity field we compute a Euclidean displacement which displaces
the points xi in nearly the same way as the velocity vectors (used for the
minimization in the previous step) would do. In terms of optimization, this
is the step where we project onto the constraint manifold.

The details to the individual steps are as follows.

7

Step 1. We explain this step for squared tangent plane distances, and comment
on more general quadratic approximants of the squared distance function later on.
For each data point xi ∈ X determine the nearest point yi of the surface of the
CAD model and determine the tangent plane there. Let ni denote a unit normal
vector of this tangent plane in yi. If yi is no boundary point of the surface, xi

lies on the surface normal in yi, i.e., xi = yi + dini with di denoting the oriented
Euclidean distance of xi to yi.

In case that yi is a boundary point, one will define ni = (xi − yi)/‖xi − yi‖,
i.e., ni is orthogonal to the boundary curve in yi, pointing in the direction of xi.
Again we have xi = yi + dini.

Note that depending on the application one may reject a data point xi in the
minimization process, if its closest surface point yi lies on the boundary. This is
necessary, for instance, when partial scans of the same object are registered.

For a triangulated surface one may estimate the tangent plane at yi by local
methods, e.g. as a local regression plane, and thus define the surface normal vector
ni. Then, the data point xi will not lie exactly on the surface normal in yi and we
have xi = yi + dini + ti, where ti is a vector parallel to the tangent plane in yi.
Since we are here interested in squared tangent plane distances only, this tangential
component ti does not matter. All the following formulae of Step 2. are still valid.

Step 2. A linearization of the motion is equivalent to the use of instantaneous
kinematics. The use of instantaneous kinematics for registration appears in other
papers as well (see e.g. [3, 5]), maybe for the first time in [2].

The velocity vector field of an instantaneous helical motion is given by v(x) =
c̄ + c × x. To each point xi we attach a velocity vector v(xi) = c̄ + c × xi. The
distance of xi + v(xi) to the tangent plane of the parametric surface in the point
yi is given by

di + ni · (c̄ + c × xi). (11)

Now, minimization of the objective function (which is quadratic in c, c̄)

F (C) := F (c, c̄) =
∑

i

(di + ni · (c̄ + c × xi))
2, (12)

yields the pair (c, c̄) that determines the helical motion whose velocity vector field
we are using. The minimization can be solved using a system of linear equations.
For that we rewrite (11) as

di + ni · c̄ + (xi × ni) · c = di + (xi × ni,ni)
(c

c̄

)

= di + AiC, (13)

where Ai and C := (c, c̄)T are one–by–six and six–by–one matrices respectively.
We use this notation to rewrite the objective function (12) as

F (C) =
∑

i

(di + AiC)2

=
∑

i

d2
i + 2

∑

i

diAiC +
∑

i

CT AT
i AiC

= D + 2BT C + CT AC (14)

where A is a symmetric, in general positive definite six–by–six matrix, B is a column
vector with six entries, and D is just some scalar.

8

It is well-known that the unique minimum of the quadratic function F (C) solves
the linear system

AC + B = 0. (15)

Remark 1. Instantaneous kinematics as described in Sec. 3 has been used in the
context of reverse engineering of ’kinematic surfaces’, i.e., planes, general cylinders,
surfaces of revolution, and helical surfaces (cf. [16, 18]). These surfaces are char-
acterized by the fact that there exists a vector field v(x) = c + c̄× x such that for
each surface point p the vector v(p) is tangential to the surface in p.

In the context of registration, these kinematic surfaces play a special role as
well. After the registration of a point cloud to such a surface, the point cloud can
still be moved tangentially to the surface without increasing the objective function
F (C) in Eq. (14). Thus, in the special case of kinematic surfaces the linear system
(15) gets ill-conditioned. Whereas the standard ICP algorithm heavily punishes
tangential movement (which slows the convergence behavior), minimizing F (C) in
Eq. (14) does not restrict tangential movement at all.

It is straightforward to combine the functional F (C) with a functional

F ′(C) :=
∑

i

(xi − yi + c̄ + c × x̄i)
2,

which describes the sum of squared distances of the points xi +v(xi) to the normal
footpoints yi. Minimizing the quadratic functional F̄ (C) = F (C) + ωF ′(C), where
ω is a small but positive weight, again leads to the solution of a linear system.

Step 3. Moving each point xi by v(xi), i.e., xi 7→ xi + v(xi), (as we have
assumed for the minimization) would not yield a Euclidean rigid body motion, but
an affine one. Therefore we use the underlying helical motion determined by (c, c̄)
from which we can calculate axis G and pitch p with Eq. (9).

We apply a rotation about this axis G through an angle of α = arctan ‖c‖ and
a translation parallel to G by the distance p · α (see Fig. 3). This motion brings
each point xi to a position x′

i close to xi + v(xi) which has been used for the
minimization in (12).

Using the underlying helical motion is furthermore justified by the fact that for
xi we do not know the exact corresponding point on the surface anyway, we are
moving the point closer to the tangent plane, and we iterate the whole procedure
to find the optimal match.

PSfrag replacements

G

xi

xi + v(xi)
x′

i

α

p · α

FIG. 3 New position x′

i of a point xi.

9

As a termination criterion for the iteration we use the change in the mean
squared distances of xi to the surface. We terminate the algorithm if this value
falls below a certain threshold.

Example 1. The main application we have in mind is the quality inspection
of industrial products. Here, the goal is to find the best alignment between the
(exact) CAD model of a given workpiece, and a dense point cloud which has been
obtained from the workpiece with a 3D scanning device.

In our first example the technical object is an air intake, which is represented
as a triangulated surface model. The size of the object is approximately 0.25 ×
0.24× 0.18 units. Let us first take a set of data points X (containing 2000 points),
generated synthetically, where no Gaussian noise is added. Theoretical results
on the convergence behavior of our algorithm are discussed in Sec. 5, and our
experimental results support the results of quadratic convergence in case of a zero
residual problem, i.e., in the case of X fitting exactly onto the target surface.

FIG. 4 Registration of a point cloud to a surface. Initial position (point cloud
displaced to the upper left), and final position (point cloud in correct alignment
with surface model).

Fig. 4 shows the the triangulated surface model, together with the initial posi-
tion of the point cloud X and its final position after twelve iteration steps of our
algorithm. In each iteration step, a helical motion (cf. Fig. 3) is applied to the data
points, until the point cloud reaches its final position.

The next section, Sec. 5, is devoted to the evaluation of the convergence rate
of our algorithm and of the standard ICP algorithm. Let Xj = {xi,j} denote the
position of the data point cloud X after iteration j, and X∗ = {x∗

i } the final position

10

our algorithm standard ICP

j E(j) E(j)
E(j−1)

E(j)

E(j−1)2
E(j) E(j)

E(j−1)
E(j)

E(j−1)2

0 0.303740 — — 0.303740 — —
1 0.193313 0.6364 2.0953 0.067109 0.2209 0.7274
2 0.099390 0.5141 2.6596 0.042261 0.6297 9.3837
3 0.055732 0.5607 5.6417 0.030992 0.7333 17.3532
4 0.041180 0.7389 13.2581 0.024573 0.7928 25.5829
5 0.031754 0.7711 18.7247 0.019396 0.7893 32.1200
6 0.025268 0.7957 25.0590 0.014387 0.7417 38.2431
7 0.019248 0.7617 30.1473 0.010413 0.7237 50.3015
8 0.010184 0.5290 27.4857 0.007595 0.7293 70.0463
9 0.002835 0.2784 27.3398 0.005602 0.7376 97.1224
10 1.43e-4 0.0505 17.8300 0.004199 0.7495 133.7838
11 2.28e-7 0.0015 11.1393 0.003191 0.7600 180.9824
12 1.40e-13 6.23e-7 2.7254 0.002470 0.7740 242.5067
. . . — — —
100 — — — 7.46e-12 0.8003 8.63e+10

TABLE 1
Root mean squared errors for zero residual problem. Quadratic convergence for

our algorithm and linear convergence of standard ICP algorithm.

(minimizer). For the convergence rate analysis we use the root mean squared error

E(j) =

√

√

√

√

1

N

N
∑

i=1

‖xi,j − x∗

i ‖
2.

Note that E(j) defines a distance of the point cloud Xj to the final position X∗, i.e.
an error measure in the sense of optimization. E(j) is not the value of the objective
function F of Eq. (14) which is minimized in each iteration step of the algorithm.

In Table. 1 the errors E(j) for our algorithm and for the standard ICP algorithm
are given. Our algorithm stops after twelve iterations with an error E(12) = 1.4e-13,
whereas ICP still has E(100) = 7.46e-12 after 100 iterations. Furthermore we
have clear numerical evidence that our algorithm exhibits quadratic convergence
for a zero residual problem, whereas ICP shows linear convergence in this case,
see Sec. 5 for details. The quotient E(j)/E(j − 1)2 is approximately constant
for our algorithm, whereas it tends to infinity for the ICP algorithm. For ICP the
quotient E(j)/E(j−1) is approximately a constant (smaller than 1), showing linear
convergence.

After looking at the zero residual case we will now consider data points with
Gaussian noise. Here we expect linear convergence both in our algorithm and in the
ICP algorithm, according to Sec. 5. We take the same surface model and the same
initial position of the point cloud (again 2000 data points), but now Gaussian noise
(σ = 0.0005) is added. Except for the noise there is no difference to the situation
in Fig. 4.

Table 2 shows the convergence behavior for the disturbed data set which yields
linear convergence both for our algorithm and for the ICP algorithm. Our algorithm
stops after seventeen iterations. Still the quotient E(j)/E(j − 1) is lower for our
algorithm, except for the first iteration step. This is not surprising, since in the

11

our algorithm standard ICP

j E(j) E(j)
E(j−1)

E(j)

E(j−1)2
E(j) E(j)

E(j−1)
E(j)

E(j−1)2

0 0.303180 — — 0.303180 — —
1 0.176332 0.5816 1.9184 0.064936 0.2142 0.7064
2 0.073704 0.4180 2.3704 0.040396 0.6221 9.5800
3 0.032686 0.4435 6.0171 0.029369 0.7270 17.9972

.
15 1.39e-10 0.2264 3.67e+8 1.33e-3 0.8088 4.93e+2
16 2.93e-11 0.2099 1.50e+9 1.07e-3 0.8092 6.09e+2
17 8.42e-12 0.2876 9.82e+9 8.74e-4 0.8131 7.57e+2
. . . — — —
100 — — — 2.76e-10 0.7856 2.23e+9

TABLE 2
Root mean squared errors for point data with Gaussian noise. Linear convergence

both for our algorithm and for the standard ICP algorithm.

first iteration almost no tangential movement is necessary, thus the ICP algorithm
is superior. In the later iterations of the registration there is usually a substantial
tangential movement involved, and this slows down the ICP algorithm considerably.

Remark 2. We have described the algorithm in its simplest form. There are
many ways to improve it, and actually many ideas for improvement of ICP and
related registration algorithms (cf., e.g., [20, 22]) work as well. For example, we
will not work in each step with all data points, but just with a random sample. Of
course, more sophisticated sampling methods, e.g. by choosing data points with a
good distribution of estimated normals (cf. [9, 20]), can be applied as well. Fur-
thermore one may reject a chosen data point, e.g., if its distance to the normal
footpoint exceeds some threshold. Moreover, it is straightforward to extend the
objective function (12) to a weighted scheme. There are 3D measurement devices
that supply for each data point a tolerance for the occurring measurement er-
rors. These can be included in the objective function to downweight outliers. This
is especially important for a precise final alignment, but has less impact on the
convergence speed of the iterative registration algorithm. The inclusion of more
complete knowledge on the measurement error properties (see [13]) seems to be
possible; this is an interesting topic for future research.

As indicated above, we can further improve the quadratic approximation of f
by the use of second order Taylor approximants, say Fi, to the squared distance
function at the current data point position xi. In view of subsection 2.2, it is
more complicated to compute these Fi’s, but the remaining part of the algorithm
is the same. In step 2, we still have to minimize a quadratic function F , and
in step 3 we perform the same position correction. Working with general Taylor
approximants Fi is more subtle, however. To make sure that F is positive definite,
we use nonnegative quadratic approximants to d2. One way to compute those has
been presented in [17].

Example 2. In the second example, data points have been taken from a human
face by a data aquisition method using color-coded structured light. This data
contains 102761 points but only 300 randomly chosen points are taken in each

12

iteration step to determine the iterative motion. The point data shall be aligned
with a model shape of a ’generic’ face, which is given as a triangulated mesh, see
Fig. 5. The goal of this application is to bring the point data of the faces in a
standard position such that further processing steps can be applied to the data.

FIG. 5 Registration of a 3d laser scan data of a human face to a model shape.
Initial position (left), and final position (right) of the point data.

Note that the face data points and the triangulated model shape do not come
from the same face, so the data will not necessarily fit to the model very well. One
further important point is, that the point data set and the model surface are given
in different scales, the size of the model surface is approximately 0.85 times the size
of the point data. Therefore an extension of our algorithm is used which allows
a uniform scaling, i.e., a similarity. This is only a minor change in the presented
algorithm, since the velocity vector field is still linear and just has one more real
parameter σ,

v(x) = σx + c̄ + c × x. (16)

In this application of face registration, many different face data sets might be
registered with one fixed model shape. Here it is especially appropriate to pre-
compute the distance information of the model shape and store it in a hierarchical
spatial data structure, that will be briefly discussed in the following. After this
preprocessing step we have a computation time for the registration of less than one
second for a (non-optimized) test implementation on a PC with 1.6 MHz. In gen-
eral there are about 10-20 iterations necessary till convergence of our registration
algorithm.

The spatial data structure mentioned above shall be called d2-tree henceforth.
The main idea is to decompose the surrounding space of the model shape into cubes
that form an octree data structure, the d2-tree. In each of the cube cells of the
octree we store a quadratic approximant of the squared distance function d2 of the
model shape. One way to construct the d2-tree in a top-down fashion is described
in [12] but there is still enough room for improvement. In order to be memory
efficient the data structure must be hierarchical, with smaller cells in the near field
of the model surface and also in the areas of the medial axis of the model surface.

The d2-tree allows fast registration for industrial inspection, because the nec-
essary quadratic approximants of the given model shape can be quickly retrieved
from that structure. For each sample point one just takes the quadratic approx-

13

imant which is stored in the smallest cell containing the sample point. It is no
longer necessary to compute footpoints of sample points in each iteration of the
registration procedure.

In Fig. 6 a planar slice of the octree data structure of the face model shape is
depicted. One can see that smaller cells are used near the surface and larger cells
further away. For reasons of visualisation, the depth of the octree has been limited.

On the left of Fig. 6 one node cell of the octree has been marked. The local
quadratic approximant stored in this marked cell is evaluated within the planar
slice and is depicted by several of its level sets. The local quadratic approximant is
a function defined on the whole surrounding space and is not restricted to the cell
where it is stored. On the right of Fig. 6 all the local quadratic approximants are
depicted but each of them is drawn only in its corresponding cell.

FIG. 6 Planar slices through the octree data structure d2-tree. Level sets of
one local quadratic approximant of d2 (left), and level sets of all local quadratic
approximants, restricted to their defining cells (right).

5. CONVERGENCE BEHAVIOR

The examples given above provide some experimental evidence on the different
convergence behavior of various registration algorithms. For a theoretical founda-
tion of these results and a better understanding, it is necessary to study registration
from the viewpoint of optimization. This has recently been done by the first author
of the present paper [14]. We summarize here those results, which are important
in the present context; proofs are given in [14].

The minimization of the objective function (10) is a constrained optimization
problem, or more precisely, a constrained nonlinear least squares problem [8, 11].
Throughout this discussion we denote the current and next position of the data
point cloud by Xc and X+, respectively. The final position (minimizer) is X∗. The
individual points of these clouds are denoted by xi,c, xi,+, x∗

i . The squared distance
between two positions, say Xc and X∗, is defined as sum of squared distances of

14

the corresponding data points,

‖Xc − X∗‖2 :=

N
∑

i=1

‖xi,c − x∗

i ‖
2.

Convergence of ICP

The ICP algorithm of Besl and McKay turns out to be a kind of gradient descent
and exhibits linear convergence: The distance of the iterates to the minimizer X∗

decreases according to
‖X+ − X∗‖ ≤ C‖Xc − X∗‖, (17)

for some constant C ∈ (0, 1). The direction, from which the minimum is approached
influences the constant C. Tangential moves of X along Φ give rise to a constant
C close to 1, and thus to poor convergence.

Convergence of refined algorithms without rigidity constraint

A numerical algorithm relies on certain approximations of f and the constraints.
In order to separate the effects caused by the approximation of f from the rigidity
constraint, we first consider affine registration. This means that the displacement
m of the data point cloud is not a rigid body motion, but an affine map. For affine
registration, the displacement vector field v(x) is a general linear vector field, of
the form

v(x) = c̄ + A · x,

with a regular matrix A. It is used in Step 2 of our algorithm instead of the velocity
field of a rigid body motion; Step 3 is not necessary.

In this way, one gets rid of the rigidity constraint. In fact, this simplification
is well motivated if the model shape does not allow affine transformations in itself
and if the deviation between data point cloud and model shape is close to zero (in
optimization, one speaks of a small residual problem). Now, the actually desired
minimum X∗ with rigidity constraint is also an isolated minimum within the affine
group. This means that one can remove the rigidity constraint; in practice one will
consider rigidity only in the last iteration and make sure that the final position X∗

results via rigid body motion of the initially given cloud X of measurement points.
For affine registration, we have the following convergence behavior:

• Registration based on squared tangent plane distances, which has been pro-
posed already by Chen and Medioni [4], corresponds to a Gauss-Newton it-
eration, one of the most prominent optimization methods for the solution
of nonlinear least squares problems [11]. For a good initial position and a
zero residual problem (X fits exactly onto Φ), the algorithm has quadratic
convergence, i.e., there is a constant K such that

‖X+ − X∗‖ ≤ K‖Xc − X∗‖2. (18)

It is also well-known that the method works well for small residual problems
and good initial positions. This corresponds very nicely to our experimental
results.

15

• Using Taylor approximants of the squared distance function, the method is
a Newton algorithm, and thus it converges quadratically, even for a larger
residual (X does not fit well onto Φ). It is good that we use nonnegative
quadratic approximants, because this avoids an indefinite Hessian of f , which
could lead to divergence.

Convergence of refined algorithms with rigidity constraint

Let us now include the rigidity constraint. Then, the algorithms discussed above
behave as follows:

• Linearization of the motion with help of a velocity field and projection onto
the constraint manifold with help of a helical motion according to Sec. 4
does not affect the convergence behavior, if we have a zero residual problem.
Thus, both squared tangent plane distances and more general local quadratic
approximants of the squared distance function result in an algorithm with
quadratic convergence. This also explains the good performance for small
residual problems.

• For a larger residual problem, one has to modify the helical motion in Step
3 of each iteration. We propose to use the Armijo rule [11] to define a factor
by which one reduces the rotation angle φ (and the translational part accord-
ingly) if an iteration does not yield sufficient reduction in the value of the
objective function f . This, however, gives just linear convergence.

• It is described in [14] how a second order motion approximant together with
the squared distance field approximants of the present paper yield quadratic
convergence even for a problem with a larger residual. This requires just a
few simple modifications of the algorithm proposed in the present paper.

6. CONCLUSION AND FUTURE RESEARCH

A geometric analysis of the ICP algorithm reveals the following fact: Using
closest points on the model surface as corresponding points will rarely give fast
convergence. This is so since the approximation of the squared distance function
of the model shape with the help of squared distance functions to surface points
does not work well in the vicinity of the surface. As an alternative, we provided a
new framework for registration using better quadratic approximants of the squared
distance function and instantaneous kinematics. Further work has to be done in
order to satisfy the practical needs. Here is a list of some extensions.

• In extension of [17], we have to investigate other quadratic approximants of
the squared distance function of a surface. In particular, we need an efficient
way of computing local quadratic approximants if the model shape is just
given as a point cloud. One way is to convert the point cloud into a trian-
gulated manifold, see e.g. [21] for point sets from very noisy measurements.
Another approach is working directly on the point cloud. The simplest way
to accomplish this is to use a fast sweeping technique to compute the distance
function d of the model shape [23, 24] on a grid and then derive local quadratic
approximants of d2 from it. An alternative, on which we are currently work-
ing, propagates the entire required information (distance, canonical frame and

16

principal curvatures at the closest point) with a sweeping method through the
grid. This information shall be stored in a spatial hierarchical data structure,
such that the necessary quadratic approximants can be quickly computed
from that structure.

• Related to the previous item, it seems to be interesting to look at a hierarchical
representation of the quadratic approximants of d2, and use it efficiently in
the various iteration steps of the registration procedure.

• The use of instantaneous kinematics allows us to extend the idea to the si-
multaneous registration of more than two geometric objects (partial scans);
this has been outlined in [15], but requires further studies.

ACKNOWLEDGMENTS

Part of this research has been carried out within the Competence Center Advanced

Computer Vision and has been funded by the Kplus program. This work was also sup-
ported by the Austrian Science Fund under grant P16002-N05 and by the innovative
project “3D Technology” of Vienna University of Technology. H. Pottmann is grateful for
support by the Institute of Mathematics and Its Applications at the University of Min-
nesota; main ideas of the present work could be developed during a stay at IMA in spring
2001.

REFERENCES

[1] Besl, P. J., McKay, N. D. (1992), A method for registration of 3D shapes,
IEEE Trans. Pattern Anal. and Machine Intell. 14, 239–256.

[2] Bourdet, P., Clément, A. (1976), Controlling a complex surface with a 3 axis
measuring machine, Annals of the CIRP 25, 359–361.

[3] Bourdet, P., Clement, A. (1988), A study of optimal-criteria identification
based on the small-displacement screw model, Annals of the CIRP 37, 503–
506.

[4] Chen, Y., Medioni, G. (1992), Object modelling by registration of multiple
range images, Image and Vision Computing 10, 145–155.

[5] Eggert, D. W. Fitzgibbon, A. W. Fisher, R. B. (1998), Simultaneous regis-
tration of multiple range views for use in reverse engineering of CAD models,
Computer Vision and Image Understanding 69, 253–272.

[6] Eggert, D. W., Larusso, A., Fisher, R. B. (1997), Estimating 3-D rigid body
transformations: a comparison of four major algorithms, Machine Vision and
Applications 9, 272–290.

[7] Faugeras, O. D. Hebert, M. (1986), The representation, recognition, and lo-
cating of 3-D objects. Int. J. Robotic Res. 5, 27–52.

[8] Geiger, C., Kanzow, C. (2002), Theorie und Numerik restringierter Opti-
mierungsaufgaben, Springer, Heidelberg.

17

[9] Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M. (2003), Geometrically
stable sampling for the ICP algorithm, Proc. 4th International Conference on
3D Imaging and Modeling (3DIM), 260-267.

[10] Horn, B. K. P. (1987), Closed form solution of absolute orientation using unit
quaternions, Journal of the Optical Society A 4, 629–642.

[11] Kelley, C. T., (1999), Iterative Methods for Optimization, SIAM, Philadelphia.

[12] Leopoldseder, S., Pottmann, H., Zhao, H.K., (2003), The d2-tree:
a hierarchical representation of the squared distance function, Tech.
Rep. 101, Institute of Geometry, Vienna University of Technology, http://
www.geometrie.tuwien.ac.at/leopoldseder/t rep101.pdf.

[13] Okatani, I. S., Deguchi, K., (2002), A method for fine registration of multiple
view range images considering the measurement error properties, Computer
Vision and Image Understanding 87, 66–77.

[14] Pottmann, H., (2004), Geometry and convergence analysis of registration al-
gorithms, Tech. Rep. 117, Institute of Geometry, Vienna University of Tech-
nology. http://www.geometrie.tuwien.ac.at/ig/papers/tr117.pdf.

[15] Pottmann, H., Leopoldseder, S., Hofer, M., (2002), Simultaneous registration
of multiple views of a 3D object, Intl. Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Vol. XXXIV, Part 3A, Commission
III, pp. 265–270.

[16] Pottmann, H., Randrup, T. (1998), Rotational and helical surface reconstruc-
tion for reverse engineering. Computing 60, 307–322.

[17] Pottmann, H., Hofer, M. (2003), Geometry of the squared distance function
to curves and surfaces. In Visualization and Mathematics III, H.-C. Hege and
K. Polthier, eds., Springer, Heidelberg, pp. 221–242.

[18] Pottmann, H., Wallner, J. (2001), Computational Line Geometry, Springer-
Verlag Berlin Heidelberg New York.

[19] Rodrigues, M., Fisher, R., Liu Y., eds., (2002), Special issue on registration
and fusion of range images, Computer Vision and Image Understanding 87,
1–131.

[20] Rusinkiewicz, S., Levoy, M. (2001), Efficient variants of the ICP algorithm. in
Proc. 3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec.

[21] Sara, R., Bajcsy, R. (1998), Fish-Scales: Representing Fuzzy Manifolds, Proc.
IEEE Conf. ICCV 98, 811–817.

[22] Simon, D.A. (1996), Fast and Accurate Shape-Based Registration, Ph.D. The-
sis, Carnegie Mellon University.

[23] Tsai, R. (2002), Rapid and accurate computation of the distance function using
grids, J. Comput. Physics 178, 175–195.

[24] Zhao, H. K. (2004), A fast sweeping method for eikonal equations, Mathematics
of Computation 73, to appear.

18

