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Abstract

We describe a method for segmentation and modeling of
approximately rotationally symmetric objects in 3D ultra-
sound. The proposed algorithm is based on 2D segmenta-
tion of several slices of an ultrasound volume dataset. It re-
quires semiautomatic 2D segmentation of only two slices by
an interactive process which is based on a discrete dynamic
contour. A tiling algorithm leads to a 2D starting contour
in every slice. A fully automatic segmentation process is
then performed to all slices simultaneously. The result is a
triangular mesh of the segmented object.

1. Introduction

Segmentation is a task of fundamental importance for
several diagnostic problems in ultrasound imaging: E.g., in
assisted reproductive therapy, repeated measurement of the
size of follicles is essential for an effective treatment of in-
fertility. In urology, diagnosis of hyperplasia of the prostate
gland requires a precise estimation of its volume. In radi-
ation therapy, prostate boundaries form the basis for treat-
ment planning. In either case, segmentation is necessary for
a quantitative analysis. Manual outlining of the contours of
an organ is a tedious as well as time consuming task for 3D
data sets. Thus, there is a need for a semiautomatic segmen-
tation system, motivating recent publications on this topic.

Hu et al. present an algorithm for semiautomatic seg-
mentation of the prostate from 3D ultrasound images [1].
The algorithm uses an initialization based on six points pro-
vided by the user. Subsequent mesh refinement using a de-
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formable model yields the final model of the prostate. Al-
though their algorithm produces results of relatively high
accuracy (average difference in volumes was found to be
7.2%), we think that more precise results could be obtained
by a different user interface based on semiautomatic seg-
mentation of a limited number of slices of the data set, e.g.,
as suggested by Ghanei et al. [2]. In their approach the au-
thors also use a deformable model of vertices forming tri-
angle facets in the 3D space. The authors propose a method
for initialization of the model from a number of initial con-
tours, drawn on several 2D images from a stack of parallel
slices. Subsequently, internal and external forces propagate
the vertices iteratively until the model converges to an equi-
librium state. For higher robustness and better convergence,
the entire model is applied in a multiscale scheme.

The approach by Ghanei et al. is closely related to our
approach. Their approach requires the user to outline an
initial contour in several 2D cross-sections extracted from
the data set. In our approach, depending on the shape of
the organ, the number of slices used for initialization is
much lower. Further, we aid segmentation in these slices
by a segmentation algorithm similar to the one used for
3D segmentation. Finally, our algorithm does not require a
(computationally demanding) fully 3D propagation of ver-
tices, but propagates vertices more efficiently only within
slices. Thus, we obtain results of similar accurracy with
much lower computational effort. We further enhance effi-
ciency of our algorithm by avoiding a multiscale approach.
Instead, we use an active image, introduced in [3], an ap-
proach related to recent work by Sarti et al. [4]. The active
image is a geometric model and a computational method for
segmentation of images with missing boundaries. In many
situations, the human visual system fills in gaps in edges
and boundaries, building and completing information that
is not present. Ultrasound data is especially prone of miss-



ing contours. The active image aims at substituting missing
image information by using spatial information.

The content of this paper is structured as follows: In Sec-
tion 2 we give an overview on interactive 2D segmentation
of ultrasound images by our concept of an active image.
Section 3 shows the concept of our active polygon model
that builds together with the active image the basis of the
segmentation algorithm. Section 4 introduces an efficient
tiling technique to obtain starting contours in every slice
used by the active polygon algorithm. In Section 5 we ex-
tend the concept of the 2D active polygon of section 3 to
the 3D framework and finally in Section 6 we show some
results to demonstrate the quality of the 3D models.

2. 2D interactive segmentation

The main feature making ultrasound images difficult to
handle is their inherent noise. Although there are great dif-
ferences in image quality, even the best ultrasound images
contain a high level of noise and speckle artefacts. This
makes it extremely difficult to perform a segmentation of
ultrasound images.

Therefore it is a key idea of our approach not to base the
computation directly on pure image information. Instead
we build up an auxiliary function, composed of a spatial
and a textural component, which we call active image. This
active image is then used to perform a segmentation task by
means of an active polygon.

2.1. Active Image

The active image is a function that determines a distance
for each image pixel to a user defined position. The user
input can be either a single point P or an ordered set of
input points P; (which describes a whole input region R) in
the target area.!

The first component of the active image is the spatial
component.

2.1.1. Spatial Distance Function. The spatial distance
function assigns to each image pixel the square root of the
shortest distance of that pixel to an input region. For our
present application it is sufficient to compute an approxi-
mation of this distance function as follows:

The graph of the distance function to a fixed point is de-
picted in Fig. 1. The graph of the distance function of an-
other point is obtained by translation of this function. We
obtain the distance function for an input region R by com-
puting the minimum distance to every point P € R (see
Fig. 2). A sufficiently dense sequence of points is neces-
sary to obtain a smooth function. We achieve this by an
interpolatory subdivision scheme, see [5].

Reliabality and accurracy of every segmentation scheme
heavily depends on the image features which drive the seg-
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Figure 1. Graph of the square root of the distance
to one single point

Figure 2. Graph of a the square root of the dis-
tance function to an input region R

mentation. Therefore, careful feature selection is necessary.

2.1.2. Texture Component. A variety of different meth-
ods for texture extraction is avaliable, and all fit nicely into
the suggested framework. A frequently-used way to extract
textural features are co-occurrence matrices, originally pro-
posed by Haralick et al. [6].

Co-occurrence matrices comprise a statistical method for
describing texture in a form suitable for pattern recogni-
tion. Their evaluation provides a feature vector of proper-
ties which represents a point in a high-dimensional feature
space.

Haralick et al. suggested a set of 28 textural features.
Because of the close relation between some of the features
we selected a subset consisting of angular second moment,
contrast, and correlation.



After setting up the feature space corresponding to the
sonographic image we now have to introduce a proper mea-
sure of similarity between the texture within the region R
defined by points P; entered by the user and the remaining
image. We do this in order to infer which regions, from
a textural point of view, are similar to patches within the
target area and which are not. An appropriate calculation of
this similarity is an essential component of the active image.

For convenience, we refer to the set of feature vectors
corresponding to patches within the reference region R as
F..t, whereas F is the set of feature vectors of the entire
image. Obviously, F s is a subset of F. Now, we aim at a
distance function d(f;), f; € F which assigns a low value to
f; if f; is similar in texture to any fief € Fier. On the other
hand, the distance function d shall obtain larger values if f;
represents different texture.

In order to compute d(f;) in an efficient way, we translate
F such that the barycenter of F.¢ is in the origin. This
allows to use a Euclidean distance to the origin as a measure
of textural similarity.

The canonical Euclidean metric has the drawback of
prefering features with larger ranges of values, whereas fea-
tures with only subtle differences have only minor influ-
ence. Therefore, we pass over to a more general metric: The
canonical Euclidean distance is a special form of a general

Euclidean metric
d=+/fi-A-£7. (1)

Choosing A = E, E the unity matrix, we obtain the canoni-
cal Euclidean distance of vector f; from the origin. A metric
taking different variances of the components into account is
the Mahalanobis metric. In this case of Equ. 1 we choose
A = X1 ¥ the covariance matrix of F ¢,

d=\/fi- =1 £,

By computing the Mahalanobis distance of every f; € F we
obtain an image It which captures the textural similarity
with respect to the texture within the seed region R.

Y = cov(Fref). 2)

2.1.3. Combination of spatial and textural components.
The active image I, is the result of the combination of the
spatial component Ig and the textural component It. We
suggest a combination of the form

In = (It + \)Is. 3)

The parameter A is of great importance because it deter-
mines the resulting active image to a high degree. The
higher A, the more the spatial component Ig determines the
active image I . Thus, it is reasonable to set A according to
image quality. In images with distinct textural properties of
the target area we set A to small values in order to increase
the influence of It. If texture evaluation does not yield a

distinct discrimination of the target area from the surround-
ing tissue, we set A to larger values to obtain a higher in-
fluence of Is. In these situations, Ig is absolutely neces-
sary since otherwise a final segmentation technique such as
active contours will hardly yield any useful result. A sug-
gestion for an automatic determination of A can be found in
[3].

Now we are able to combine the spatial and the texural
distance function to obtain the active image. See Fig.3 for
an example of the components and their combination.

(a) Spatial distance (b) Textural distance

(c) Resulting active image

Figure 3. Components of the active image

Note, that we did not incorporate the original image data.
However, an appropriately filtered or modified original im-
age as third component might make sense.

3. Active Polygon Algorithm

The key idea of our 3D segmentation approach is that
we rotate an image plane about a rotation axis. This leads
to several slices of the volume data each of them providing
a different 2D section of the object. Within these sections
we apply a 2D active polygon segmentation.



In two orthogonal slices we perform a semiautomatic
segmentation based on the input of starting contours. These
contours are used twofold: for setting up the active image
and as starting contours of the active polygon algorithm.

In the first step we prepare the contours by scaling them
down to 85% of their original size. This ensures that all
vertices are located inside the target area which is neces-
sary for the computation of the active image. The vertices
will be used for the spatial component and define the tex-
tural reference area R for evaluating the textural distance
function.

3.1. Concept

The method of active polygons is based on vertices mov-
ing according to

e gradient information drawn from the active image at

points defined by the vertices (stopping term),

o current shape of the polygon that influences the “mov-
ing direction” of each polygon vertex (external force),

e discrete version of affine curvature flow [7], which has
a smoothing effect on the shape of the polygon (inter-
nal force).

The propagation of the polygon is given by

Vinove (’U) = IB(U) * [Fmt ('U) + oFegt ('U)] “4)
where V,,, v 1S the movement vector of each vertex, (3 is the
stopping term, Fj,. is the internal force, F,,; is the exter-
nal force, and « is a parameter that affects the propagation
speed.

3.2. Stopping Term

The stopping term is similar to Perona-Malik-type
diffusivity-terms ([8]),

1

Blv) = 14 L0 [VIa0) ®)
AZ

where I4(v) is the value of the active image at the position
of vertex v, VI4 (V) is the gradient of I4 at the position of
vertex v, and A defines the sensitivity of the stopping term.

The stopping term is the only part that uses image infor-
mation by means of the active image steering the polygon
propagation.

3.3. External Force

The external force is responsible for propagation of the
active polygon. It is not based on any image information.
Instead the direction of the external force is determined by
the bisector of the two adjacent edges (see Fig.4). The mov-
ing speed is a constant value a (see Equ.4) that influences
the number of iterations required.

Figure 4. Direction of external force at each vertex

3.4. Internal Force

The aim of the internal force is to reduce the curvature
of the active polygon in order to achieve a smooth contour.
The direction of the internal force vector of each vertex is
towards the centre of mass of the triangle which is set up
by two adjacent edges (see Fig.5). The norm of the internal
force vector is given by

1—cos ¢

52
”Flnt(v)” =1- e_b_2+ 2sin (6)

where b denotes the base of the triangle which is set up by
the two adjacent edges of the polygon of vertex v, s denotes
the length of the vector towards the center of mass, and ¢ is
given by ¢ = 2n/N with N the number of vertices of the
current polygon.

vertex v

20 intermal
force

Figure 5. The internal force vector in a 2D context

The final result of the active polygon algorithm is a
2D segmentation of two orthogonal slices of the volume
dataset.

4. Tiling

In the previous section we explained a method to obtain a
semiautomatic segmentation of two slices of a volume data
set (see Fig. 6). The results are two polygons Syer1 and
Sref2. We now present a method to obtain a rough esti-
mation of contours in the remaining slices. This is done
by rotating .Syc¢1 and Syc¢2 about the rotation axis into a



common plane. The following tiling algorithm yields an in-
terpolated polygon for each in-between slice and finally a
very simplified 3D model of the object.

Figure 6. User input - 2D segmentation in two per-
pendicular slices

For the polygon interpolation some ideas of tiling ([9])
are adopted to our needs. First of all a correspondence be-
tween the vertices of the given polygons has to be defined.
Subsequently we interpolate between the locations of cor-
responding vertices.

4.1. Correspondence Between Polygon Vertices

A correspondence between the vertices of two polygons
P and @ (where the number of vertices of P is m and num-
ber of vertices of ) is n and m > n) is defined as follows:

Let P and @ both be parameterised over the parameter
t, with 0 <t < 1. Let p; be the i-th vertex of P and g; the
j-thvertex of Q with1 < i <mand1 < j < n and let ¢;
be the parameter value of p;. We define a correspondence

c(p;) as:

c(pi) = g if
llg(t:) — a)ll < l1(q(t:) — qr)ll
V1<k<n, k#j (7)

Many other methods for computing correspondences
have been proposed in the context of tiling algorithms; the
suggested one being among the computationally most effi-
cient.

The interpolation between corresponding vertices can be
done as follows: Each correspondence line is linearly pa-
rameterised over a parameter s, with 0 < s < 1. With
s = 0 we get the source polygon P, with s = 1 we obtain
the target polygon ). Therefore, for any parameter value
0 < s < 1, we get an “in-between polygon” (see Fig. 7).

Figure 7. Two contours P and Q with correspon-
dence lines and the vertices of an interpolated
polygon with parameter s = 0.5

Figure 8. User input (solid lines) and tiling result
(dotted lines) of all slices in 3D

5. 3D Segmentation by 2D Active Polygons

Having computed initializations for both, the active im-
age and the active contour by a tiling scheme, we may ob-
tain a 3D segmentation of the volume data set by using the
2D active polygon from section 3 in every slice.

Since the external force and the stopping term use both
information based only on 2D information we have to in-
corporate 3D information into the internal force model to
induce coherent propagation of neighbouring slices.

Instead of the 2D vector to the center of mass of a trian-
gle we use the umbrella vector (see [10]), the vector from
the considered point 7' to the barycenter of a set of neigh-
boring points B;:

1
U:EZ(Bi—T). ®)



Remark:

The norm of the umbrella vector is a measure of the
mean curvature under certain conditions: At each point T
of a surface ®, there exists an approximating paraboloid
I', which agrees at T' with ® up to second order. This
paraboloid can be written in a locally adapted coordinate
system with origin at T" as

K1 o K2 o

z= 5 T+ B y°. 9
Here, ki1,k2 denote the principal curvatures of ¢ and
I' at T. We now work directly with I' and arrange
points B; on I' around T in a rather special way. The
projections B] of the points B; onto the tangent plane
z = 0 at T shall form a regular hexagon with center
T. Hence, these points B] have as first two coordinates
(£rcosp, £rsing,2)T, (£rcos(p + 7/3),£rsin(p +
7/3),2)T, and (£r cos (p — 7/3), £rsin (¢ — 7/3), 2)T.
We compute the z-coordinates of the points B; with (9) and
find for the umbrella vector according to (8),

12 K1 + Ko
= — . 1
w5 (257) (10)

Thus, the norm of the umbrella vector does not depend on
the rotational angle ¢, but just on the mean curvature (k1 +
K2)/2 and on the square of the distance r.

End of remark

In our case, the B; consist of three vertices with shortest
distance to T' of each neighbouring plane N; and Ns. The
B; do not necessarily lie in a plane. Therefore the norm
of the umbrella vector gives only a rough estimation of the
mean curvature at T'. Generally, the umbrella vector of ver-
tex T does not lie in the slice plane of T'. In our case, we
use the shortest rotation of the umbrella vector into the slice
plane (see Fig.9) to finally obtain the internal force vector
F;,s for propagation of all active contours.

As discussed above, the umbrella vector is a measure of
the mean curvature only in the case that the base of the pyra-
mid is an approximately regular hexagon. Therefore an ap-
proximately regular triangulation is necessary.

5.1. Stopping Criterion

‘When the active contour algorithm is in progress we have
to make sure to stop propagation of the polygons at the op-
timal position i.e. the result polygon meeting the boundary
of the target area in all slices. In our approach we compare
the area of the polygons Sycf1, Srep2 Obtained by the ini-
tial segmentation according to section 3 with the area of the
propagated polygons S; and S5 in these sections during it-
eration. If the area of the polygon of the relevant slices is

N | P N,

Figure 9. Umbrella vector at a vertex of triangu-
lated points. Plane P is the (2D)-polygon plane, the
neighbouring planes are N; and N,, respectively

smaller than the area of Sy,cf1 Or Syeyp2 respectively, poly-
gons of all slices are propagated. If one of the polygons
Sy or Sy reaches the area size of Syef1 or Syefa , propaga-
tion is stopped by setting the external force to 0. The sec-
ond user input polygon keeps its original external force. We
propagate the polygons of the remaining slices by an exter-
nal force of interpolated magnitude. In Fig.10 the polygons
S1 and S are denoted by the solid lines and the remaining
polygons by dotted lines. The propagation finally stops as
soon as both, S; and S, reach their original area size.
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Figure 10. By dynamically changing the magni-
tude of the external force propagation stops

6. Results

We demonstrate the results one can obtain by the sug-
gested framework by segmentation of a 3D data set of a
prostate gland. The prostate is an organ of roughly rota-
tionally symmetric shape, hence our approach is applica-



ble. Segmentation starts in two orthogonal slices, depicted
in Fig. 11, leftmost column. The final 3D segmentation re-
sult by concurrent fully automatic segmentation in all slices
is depicted in Fig. 12 and Fig. 15. The contour propagation
in intermediate slices stops at the border of the target region,
see Fig. 11, middle and right column, for some examples.

Another example of approximately rotationally symmet-
ric objects are cancers. In Fig. 13 and Fig. 14 the segmen-
tation and model of an ovary cancer can be seen.

It should be mentioned that all figures show the results of
our approach without any postprocessing step. Due to the
fact that in some cases the 3D models contain some “rough-
ness” at the surface caused by the slice based evolution of
the active contours, it will be very useful to apply some kind
of smoothing to avoid these artefacts.

7. Conclusions

We presented an efficient method for segmentation of ap-
proximately rotationally symmetric objects from 3D data
sets. Our approach uses highly efficient methods of compu-
tational geometry such as an active image, polygon tiling,
interpolating subdivision, mean curvature estimation by an
umbrella vector approach, and a 2D active polygon for the
segmentation.

It is important to note that an extension of the basic idea
of our scheme to objects with different geometric properties
is possible in a straightforward way. Similar applications
are surfaces where the intersections with planes of a pen-
cil are simply connected. A sufficient but not mandatory
condition is a star shaped surface. Another interesting ap-
plication is the use of parallel slices, see 16. Thus, in com-
puter tomography the application of the proposed method is
possible with only minor modifications.

Another important point is the runtime performance of
the algorithms. Computation on a P4-2260 takes about 15
seconds for a complete segmentation in all slices and the
generation of the 3D-model. By further optimization it can
be expected that the computation time will be beneath 10
seconds in the near future. This makes our algorithms of 3D
model generation a highly preferable method in practical
applications.
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