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Abstract. Dupin cyclides are algebraic surfaces of order three and four
whose lines of curvature are circles. These surfaces have a variety of in-
teresting properties and are aesthetic from a geometric and algebraic
viewpoint. Besides their special property with respect to lines of curva-
ture they appear as envelopes of one-parameter families of spheres in a
twofold way. In the present article we study two families of canal surfaces
with rational lines of curvature and rational principal curvatures, which
contain the Dupin cyclides of order three and four as special instances
in each family. The surfaces are constructed as anticaustics with respect
to parallel illumination and reflection at tangent planes of curves on a
cylinder of rotation.

Keywords: rational lines of curvature, canal surface, envelope of spheres,
anticaustic by reflection

1 Introduction

Dupin cyclides are among the famous surfaces studied in classical geometry and
date back to the nineteenth century, see [4, 6]. These surfaces are characterized
by the fact that their lines of curvature are circles. These two families of circles
lie in two pencils of planes and the tangent planes along a fixed circle envelope
a cone of revolution. Dupin cyclides are special instances of the larger class
of Darboux cyclides which denote algebraic surfaces of order four having the
ideal conic x2 + y2 + z2 = 0 as double curve. The image surfaces of quadrics in
R3 with respect to inversion x′ = x/‖x‖2 are typically Darboux cyclides. The
inverse images of a cone or a cylinder of revolution or a torus is typically a Dupin
cyclide.

Dupin cyclides are also quite popular in Computer Aided Geometric Design,
in particular their applications for blending surfaces, see [13]. They are special
instances of double Blutel conic surfaces [5], also known as supercyclides [1, 14].
These surfaces carry two families of conics being contained in two pencils of
planes where tangent planes along the conics form quadratic cones. The images
of Dupin cyclides with respect to projective mappings are supercyclides.
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A Dupin cyclide is the envelope of two one-parameter families of spheres,
whose centers are contained in a pair of confocal conics. Moreover, Dupin cy-
clides are rational surfaces having rational offset surfaces. Thus they admit ra-
tional parameterizations with rational unit normal vectors. This property holds
for all rational canal surfaces (envelopes of one-parameter families of spheres)
but typically it is difficult to characterize canal surfaces with rational lines of
curvature. Rational offset surfaces with rational nets of planar lines of curvature
have been investigated in detail in [12]. According to this contribution there exist
two classes of rational surfaces with planar lines of curvature. Their construction
is based on orthogonal families of circles in the unit sphere S2. With regard to
these networks of circles in S2, the surfaces are given by rational solutions of
particular second order partial differential equations.

Contribution: We present two families of rational canal surfaces generalizing
Dupin cyclides with regard to their property of having rational lines of curvature.
A surface Φ of the first family possesses a rational center curve C on a rotational
cylinder G and its spheres touch a cross section plane of G. Dupin cyclides of
order four are obtained for ellipses C ⊂ G as center curves, thus C is a planar
section of G. The surfaces Φ of the second family generalize the Dupin cyclides
of order three in a similar way. Their center curves are rational plane curves and
their spheres touch a given plane which is perpendicular to the carrier plane of
the center curve. All these rational canal surfaces Φ have rational offset surfaces,
rational lines of curvature and rational principal curvatures. This implies that Φ
has rational focal surfaces and rational Gaussian and mean curvature. Rational
parameterizations of these surfaces Φ and the mentioned invariants are given
explicitly.

1.1 Geometric Preliminaries

Let a surface Φ be given by the parameterization f(u, v), where (u, v) are coor-
dinates in R2. Denoting the partial derivatives by fu(u, v) and fv(u, v), a normal
vector of f(u, v) is computed by n(u, v) = fu(u, v)× fv(u, v). The first fundamen-
tal form of f(u, v) is based on the scalar products of its partial derivatives,

‖df‖2 = ‖fudu+ fvdv‖2 = ‖fu‖2du2 + 2fu · fvdudv + ‖fv‖2dv2. (1)

Using the abbreviations E = ‖fu‖2, F = fu · fv, and G = ‖fv‖2, it is written as

‖df‖2 = Edu2 + 2Fdudv +Gdv2 = (du, dv) ·
(
E F
F G

)
· (du, dv)T

= (du, dv) · I(f) · (du, dv)T . (2)

The right hand side of (2) defines a local metric on the surface Φ and serves to
measure lengths and areas in Φ.

Assuming n(u, v) to be a unit normal vector of f(u, v), the coefficients of the
second fundamental form are L = n · fuu, M = n · fuv, and N = n · fvv. Since the
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identities fu ·n = fv ·n = 0 hold, L can also be expressed by −fu ·nu. Analogous
expressions hold for M and N and we note that nu and nv are tangent vectors
of Φ. The second fundamental form of f(u, v) reads

Ldu2 + 2Mdudv +Ndv2 = (du, dv) ·
(
L M
M N

)
· (du, dv)T

= (du, dv) · II(f) · (du, dv)T . (3)

The principal directions of f(u, v) are eigenvectors of II(f) with respect to I(f)
and the principal curvatures κ1 and κ2 are the respective eigenvalues. Consider-
ing a general rational surface, these functions are typically not rational.

A geometric characterization of lines of curvature on a given surface is as
follows: A curve C on a surface Φ is a line of curvature if and only if the normals
of Φ along C form a developable ruled surface. Lines of curvature are also char-
acterized as surface curves having a Darboux frame which is rotation-minimizing
with respect to the tangent vector of the curve, see [2].

We consider a parameterization f(u, v) of Φ with respect to lines of curvature
which means that the u-lines as well as the v-lines are lines of curvature, thus
fu · fv = 0. Consider the developable ruled surface f(u, v?) + tn(u, v?) formed
by the normals along a u-line f(u, v?) with v? = const., and assume ‖n‖2 =
1. The last condition implies n · nu = 0, and we have det(fu,n,nu) = 0 and
consequently nu · fv = 0. Analogous considerations for the normals along v-lines
lead to nv · fu = 0. These properties imply that n(u, v) is an orthogonal net of
curves in the unit sphere S2. In case of rational offset surfaces with rational lines
of curvature, n(u, v) is a rational orthogonal net of curves in S2.

2 Canal Surfaces with Cylindrical Center Curve

Consider the cylinder of rotation Z : x2 + y2 = 1. A rational curve M on Z is
parameterized by

m(u) =
(

1− f(u)2

1 + f(u)2
,

2f(u)
1 + f(u)2

, r(u)
)
, (4)

with rational functions f(u) and r(u). The substitution λ(u) = 2 arctan f(u)
implies

cosλ(u) =
1− f(u)2

1 + f(u)2
, sinλ(u) =

2f(u)
1 + f(u)2

, and λ̇(u) = 2
ḟ(u)

1 + f(u)2
. (5)

Thus, any rational curve on Z can be parameterized by

m(u) = (cosλ(u), sinλ(u), r(u)) . (6)

We show that the envelope Φ of the one-parameter family of spheres

S(u) : ‖x−m(u)‖2 − r(u)2 = 0 (7)

is a rational offset surface with rational lines of curvature. The Dupin cyclides
of order four will appear as surfaces Φ for planar center curves M , see Fig. 1(b).
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2.1 Parameterization of the Surfaces

Φ

E

m

f

ly

S

ṁ

c
(a) Anticaustic mapping

m

Φ

(b) Dupin cyclide of degree four

Fig. 1. Dupin cyclide and anticaustic construction

The spheres S(u) touch the plane E : z = 0 along the cross section curve
C : c(u) = (cosλ(u), sinλ(u), 0). The characteristic circles S(u) ∩ Ṡ(u) of Φ are
the u-lines of the final parameterization f(u, v) and touch E : z = 0 in points of
C. Φ is constructed as anticaustic by reflection with respect to light rays parallel
to z. To perform this construction, we reflect points c(u) of C at the pencils
of planes passing through the tangent lines of M , see Fig. 1(a). Here and in
the following the derivatives of functions x(u) are denoted by ẋ whereas partial
derivatives of bivariate functions x(u, v) are denoted by xu and xv. Derivatives
of functions x(v) are denoted by xv.

Let ṁ(u) = (−λ̇ sinλ, λ̇ cosλ, ṙ)(u) be a tangent vector of m(u). To perform
the mentioned reflection one needs to parameterize the pencil of planes through
the tangent line m + tṁ. A normal vector of a plane of the pencil is a linear
combination of two vectors orthogonal to ṁ, for instance

a(u) = (− cosλ,− sinλ, 0)(u), and
b(u) = ṁ× a = (ṙ sinλ,−ṙ cosλ, λ̇)(u).

Thus these normal vectors are parameterized by y(u, v) = γ(u, v)a(u) + b(u),
with some function γ(u, v) to be determined. The reflection of c(u) at planes
through the tangent lines of M is consequently given by

f(u, v) = c + 2
y · (m− c)
‖y‖2

y. (8)

We still have to find a suitable function γ(u, v) for the parameterization of
y(u, v). The function f(u, v) is a parameterization with respect to lines of cur-
vature if and only if the function γ(u, v) satisfies

ṙλ̇2 − γuλ̇+ λ̈γ = 0. (9)
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One obtains the solution γ(u, v) = λ̇(u)(r(u) + g(v)), with some function g(v).
Using the abbreviation α = ṙ2 + λ̇2(1 + (g + r)2), a representation of the canal
surface Φ with respect to lines of curvature is

f(u, v) =
1
α

 (ṙ2 + λ̇2(1 + g2 − r2)) cosλ+ 2rṙλ̇ sinλ
(ṙ2 + λ̇2(1 + g2 − r2)) sinλ− 2rṙλ̇ cosλ

2rλ̇2

 . (10)

Consider rational functions r(u), f(u) and g(v). The substitution (5) implies
that (10) is a rational parameterization of Φ with respect to its rational lines
of curvature. The corresponding rational unit normal vector n(u, v) of f(u, v)
satisfying nu · nv = 0 is explicitly given by

n(u, v) =
1
α

2λ̇(λ̇(r + g) cosλ− ṙ sinλ)
2λ̇(λ̇(r + g) sinλ+ ṙ cosλ)

(ṙ2 + λ̇2(−1 + (r + g)2)

 . (11)

Corollary 1. Let Z be a rotational cylinder and let E be a plane perpendicular
to the generating lines of Z. Consider a rational curve M ⊂ Z and the family of
spheres S(u) centered at M and touching E. Then the canal surface Φ enveloped
by the spheres S(u) is a rational offset surface with rational lines of curvature,
explicitly represented by (10).

m(u) Z

Φ

c(u)
(a) Canal surface Φ with center curve m on
a rotational cylinder Z

Φ
p1(u)

(b) Parabolic curve p1 on Φ

Fig. 2. Canal surfaces with cylindrical center curve and parabolic line

Remark: The function g(v) in y(u, v) = λ̇(u)(r(u) + g(v))a(u) + b(u) is re-
sponsible for the parameterization of the v-lines of f(u, v). We might set g(v) =
v. By this simple choice the parameterization f(u, v) misses the cross section
c(u) = (cosu, sinu, 0). This can be corrected by replacing g(v) by the quotient
g(v)/h(v). We omitted this here to keep the formulas as simple as possible, but
we will return to this idea when computing the parabolic lines of Φ in equa-
tion (16).
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2.2 Fundamental Forms and Curvatures

Since f(u, v) is a parameterization with respect to lines of curvature, the first and
second fundamental form are both represented by diagonal matrices. With the
abbreviations α = ṙ2+λ̇2(1+(r+g)2) and β = λ̇3(1+g2−r2)+λ̇ṙ2+2r(ṙλ̈−r̈λ̇),
these matrices are

I(f) =
1
α2

(
β2 0
0 4λ̇4r2g2

v

)
, and

II(f) =
1
α2

(
2(ṙλ̈− r̈λ̇− λ̇3(r + g))β 0

0 4λ̇4rg2
v

)
. (12)

The characteristic circles S ∩ Ṡ of Φ are the v-lines of f(u, v) and are thus con-
tained in the planes Ṡ : −xλ̇ sinλ+yλ̇ cosu+zṙ = 0. These planes lie in a bundle
with vertex (0, 0, 0) and thus they envelope a rational cone. The eigenvalues of
II with respect to I are the principal curvatures

κ1 =
1
r
, κ2 =

2(ṙλ̈− r̈λ̇− λ̇3(r + g))
β

. (13)

It is clear that κ1 does not depend on v and is simply the reciprocal value of the
radius r(u) of the spheres S(u), since one family of principal curvature centers
is the center curve m(u) itself. In case of Dupin cyclides of order four, m(u) is
an ellipse.

The product and the mean of the principal curvatures are known to be the
Gaussian curvature and the mean curvature, and are given by

K = κ1κ2 =
2(ṙλ̈− r̈λ̇− λ̇3(r + g))

rβ
, (14)

H =
κ1 + κ2

2
=
β + 2r(ṙλ̈− r̈λ̇− λ̇3(r + g))

2rβ
.

The set of principal curvature centers of a surface typically forms two surfaces,
the focal surfaces Q1 and Q2. These focal surfaces are obtained by measuring
the reciprocal values of κ1 and κ2 on the surface normals f + tn, with ‖n‖ = 1.
In case of a canal surface Φ, one focal surface becomes the center curve m(u).
If both focal surfaces degenerate to curves, Φ is a Dupin cyclide, thus a canal
surface in a twofold way. For canal surfaces Φ, parameterized by (10) we thus
obtain the center curve q1(u) = f(u, v)− r(u)n(u, v) = (cosλ, sinλ, r)(u) as first
component and a typically two-dimensional surface Q2 as second component
parameterized by

q2(u, v) = f(u, v)− 1
κ2(u, v)

n(u, v) (15)

=
1

ṙλ̈− r̈λ̇− λ̇3(g + r)

 (ṙλ̈− r̈λ̇) cosλ− ṙλ̇2 sinλ
(ṙλ̈− r̈λ̇) cosλ+ ṙλ̇2 cosλ
1
2 (λ̇3(−1 + g2 − r2) + λ̇ṙ2 + 2r(ṙλ̈− r̈λ̇))

 .
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A point on a surface is called parabolic if one of its principal curvatures
vanishes. The parabolic points typically form the parabolic curves which separate
regions with elliptic and hyperbolic surface points. Since κ1(u) only vanishes at
the poles of r(u) we investigate the parabolic lines corresponding to the zeros
of κ2(u, v). For g = (ṙλ̈− r̈λ̇− rλ̇3)/λ̇3, and with the abbreviation δ = λ̇4(ṙ2 +
λ̇2) + (r̈λ̇− ṙλ̈)2 − 2rλ̇3(r̈λ̇− ṙλ̈) we obtain the parameterization

p1(u) =
1

λ̇4(ṙ2 + λ̇2) + (ṙλ̈− r̈λ̇)2

 δ cosλ+ 2rṙλ̇5 sinλ
δ sinλ− 2rṙλ̇5 cosλ

2rλ̇6

 (16)

of a parabolic line on Φ, see Fig. 2(b). We obviously have lost the solution
p2(u) = c(u) = (cosu, sinu, 0). This is corrected by replacing g(v) by g(v)/h(v)
in κ2(u, v). Its numerator becomes 2h(h(ṙλ̈− r̈λ̇)− λ̇3(rh+ g)) and the second
parabolic line c(u) is obtained for h = 0.

Theorem 1. Let Φ be a rational canal surface given by equation (10). Φ is a ra-
tional offset surface with rational lines of curvature and the principal curvatures
as well as the focal surfaces are rational. These surfaces carry two parabolic
curves, the cross section C and the curve given by equation (16). The Dupin
cyclides of order four are obtained for planar center curves.

3 Canal Surfaces with Planar Center Curve

As the last section generalizes Dupin cyclides of order four, we now deal with
generalizations of Dupin cyclides of order three. These cyclides are canal surfaces
in a twofold way as the previous ones, but their focal curves or center curves of
the families of spheres are a pair of confocal parabolas.

Consider a rational curve M in the plane Z. Without loss of generality we
assume Z : y = 0 and let M be parameterized by

m(u) = (q(u), 0, r(u)), (17)

with rational functions q(u) and r(u). The construction of the family of surfaces
generalizing the cubic Dupin cyclides follows similar lines as the construction
presented in Section 2.

3.1 Parameterization of the Surfaces

These surfaces Φ are constructed as envelopes of a one-parameter family of
spheres

S(u) : ‖x−m(u)‖2 − r(u)2 = 0, (18)

with center curve M and radius function r. To construct Φ as anticaustic of
reflection at M with respect to light rays parallel to z, one needs to span the
normal plane of ṁ by two independent vectors

a(u) = (0, 1, 0), and
b(u) = ṁ× a = (ṙ, 0,−q̇).
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The general normal vector of the center curve is thus found by y(u, v) = γ(u, v)a+
b, with a rational function γ(u, v). To obtain a parameterization f(u, v) of Φ,
one performs a reflection of c(u) = (q(u), 0, 0) at all planes passing through the
tangents of M , which is realized by

f(u, v) = c(u) + 2
y · (m− c)
‖y‖2

y. (19)

This parameterization is a representation of Φ with respect to lines of curvature
if and only if γ(u, v) = g(v)q̇(u). The explicit parameterization reads

f(u, v) =
1

ṙ2 + q̇2(1 + g2)

 (ṙ2 + q̇2(1 + g2))q − 2rṙq̇
−2rgq̇2

2rq̇2

 , (20)

and it is not difficult to see that these surfaces have planar lines of curvature,
where one family is contained in the planes y+gz = 0. The second family are the
characteristic circles S(u)∩ Ṡ(u) and these are contained in Ṡ(u) : q̇x+ ṙz = qq̇.

As in the previous section, g(v) realizes the parameterization of the char-
acteristic circles. Since we set y(u, v) = g(v)q̇(u)a(u) + b(u) we miss the line
(q(u), 0, 0) in f(u, v). This can be corrected by replacing g(v) by a quotient
g(v)/h(v). We omit this here to keep formulas simple but apply it later for the
computation of the parabolic line.

The unit normals of f(u, v) are

n(u, v) =
1

ṙ2 + q̇2(g2 + 1)

 2q̇ṙ
2gq̇2

ṙ2 + q̇2(g2 − 1)

 (21)

This parameterization of S2 is also obtained by applying a stereographic projec-
tion σ : R2 → S2 with center (0, 0, 1) to the parameterization (ṙ/q̇, g) of R2. The
normal vectors n(u, v) form an orthogonal net of circles in S2, passing through
the common point (0, 0, 1) and having orthogonal tangents there. The following
result is also contained in [12] which gives a full classification of rational offset
surfaces with planar rational lines of curvature.

Corollary 2. Let Φ be a rational canal surface parameterized by (20), whose
center curve M is a plane rational curve (q(u), 0, r(u)) and whose spheres touch
a line c(u) = (q(u), 0, 0). Then Φ is a rational offset surface with rational planar
lines of curvature.

3.2 Fundamental Forms and Curvatures

Analogously to Section 2, the first and second fundamental forms are both rep-
resented by diagonal matrices. Using the abbreviations α = (ṙ2 + q̇(g2 +1))2 and
β = (−q̇3(1 + g2)− q̇ṙ2 + 2r(q̇r̈ − q̈ṙ), these matrices are
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Φ
m

(a) Dupin cyclide of degree three

Φ

m

(b) Canal surface Φ with nodal
cubic m as center curve

Fig. 3. Dupin cyclide of degree three and canal surface with planar center curve

I(f) =
1
α

(
β2 0
0 4r2g2

v q̇
4

)
, and II(f) =

1
α

(
2(q̇r̈ − q̈ṙ)β 0

0 4rg2
v q̇

4

)
. (22)

The principal curvatures, the Gaussian and the mean curvature of Φ are

κ1 =
1
r
, κ2 =

2(q̇r̈ − q̈ṙ)
β

, K =
2(q̇r̈ − q̈ṙ)

rβ
, and H =

β + 2r(q̇r̈ − q̈ṙ)
2rβ

. (23)

The set of focal points contains the curve Q1 = M and the two-parametric
surface Q2 which is parameterized by

q2(u, v) = f− 1
κ2

n =
1

(q̇r̈ − q̈ṙ)

 q(q̇r̈ − q̈ṙ)− ṙq̇2
−gq̇3
1
2 (q̇3(1− g2)− q̇ṙ2 + 2r(q̇r̈ − q̈ṙ))

 . (24)

Through the simple choice g(v) for the parameterization of the characteristic
circles we have lost the parabolic line c(u) = (q(u), 0, 0). By replacing g(v)
by g(v)/h(v) in κ2(u, v), its numerator becomes −2h2(q̇r̈ − q̈ṙ) and thus the
parabolic line c(u) is obtained for h = 0.

Theorem 2. Let Φ be a canal surface given by equation (20). Φ is a rational
offset surface with rational lines of curvature and the principal curvatures as well
as the focal surfaces are rational. The x-axis c(u) appears as parabolic line on
Φ. The Dupin cyclides of order three are obtained for parabolas with z-parallel
axes as center curves m(u) in equation (17).

Conclusion

We studied particular rational canal surfaces with rational lines of curvature.
These properties are invariant with respect to Möbius transformations, for in-
stance the inversion g : x′ = x/‖x‖2. Möbius transformations are conformal and
preserve spheres, where planes in R3 are also counting as spheres (with infinite



10 M. Peternell

radius). Applying g to the first family of canal surfaces, one obtains canal sur-
faces g(Φ) with rational center curve g(M) on a Dupin cyclide g(Z), where the
spheres g(S) generating g(Φ) touch a fixed sphere g(E) which is perpendicular
to g(Z).

Canal surfaces Φ of the second family are mapped under g to canal surfaces
g(Φ) with rational spherical center curve g(M) since g(Z) is a sphere. The spheres
g(S) defining g(Z) touch a fixed sphere g(E) being perpendicular to g(Z).
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