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Abstract

Given a set of data points as measurements from a developable surface, the present
paper investigates the recognition and reconstruction of these objects. We investi-
gate the set of estimated tangent planes of the data points and show that classical
Laguerre geometry is a useful tool for recognition, classification and reconstruc-
tion of developable surfaces. These surfaces can be generated as envelopes of a
one-parameter family of tangent planes. Finally we give examples and discuss the
problems especially arising from the interpretation of a surface as set of tangent
planes.
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1 Introduction

Given a cloud of data points pi in R3, we want to decide whether pi are
measurements of a cylinder or cone of revolution, a general cylinder or cone or
a general developable surface. In case where this is true we will approximate
the given data points by one of the mentioned shapes. In the following we
denote all these shapes by developable surfaces. To implement this we use
a concept of classical geometry to represent a developable surface not as a
two-parameter set of points but as a one-parameter set of tangent planes and
show how this interpretation applies to the recognition and reconstruction of
developable shapes.

Points and vectors in R3 or R4 are denoted by boldface letters, p,v. Planes and
lines are displayed as italic capital letters, T, L. We use Cartesian coordinates
in R3 with axes x, y and z. In R4 the axes of the Cartesian coordinate system
are denoted by u1, . . . , u4.
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Developable surfaces shall briefly be introduced as special cases of ruled sur-
faces. A ruled surface R carries a one parameter family of straight lines L.
These lines are called generators or generating lines. The general parametriza-
tion of a ruled surface R is

x(u, v) = c(u) + ve(u), (1)

where c(u) is called directrix curve and e(u) is a vector field along c(u). For
fixed values u, this parametrization represents the straight lines L(u) on R.

The normal vector n(u, v) of the ruled surface x(u, v) is computed as cross
product of the partial derivative vectors xu and xv, and we obtain

n(u, v) = ċ(u)× e(u) + vė(u)× e(u). (2)

For fixed u = u0, the normal vectors n(u0, v) along L(u0) are linear combi-
nations of the vectors ċ(u0) × e(u0) and ė(u0) × e(u0). The parametrization
x(u, v) represents a developable surface D if for each generator L all points
x ∈ L have the same tangent plane (with exception of the singular point on
L). This implies that the vectors ċ×e and ė×e are linearly dependent which
is expressed equivalently by the following condition

det(ċ, e, ė) = 0. (3)

Any regular generator L(u) of a developable surface D carries a unique singular
point s(u) which does not possess a tangent plane in the above defined sense,
and s(u) = x(u, vs) is determined by the parameter value

vs = −(ċ× e) · (ė× e)

(ė× e)2
. (4)

If e and ė are linearly dependent, the singular point s is at infinity, otherwise
it is a proper point. In Euclidean space R3 there exist three different basic
classes of developable surfaces:

(1) Cylinder: the singular curve degenerates to a single point at infinity.
(2) Cone: the singular curve degenerates to a single proper point, which is

called vertex.
(3) Surface consisting of the tangent lines of a regular space curve s(u), which

is the singular curve of the surface.

In all three cases the surface D can be generated as envelope of its one pa-
rameter family of tangent planes. This is called the dual representation of D.
A cylinder of revolution is obtained by rotating a plane around an axis which
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is parallel to this plane. A cone of revolution is obtained by rotating a plane
around a general axis, but which is not perpendicular to this plane. Further, it
is known that smooth developable surfaces can be characterized by vanishing
Gaussian curvature. In applications surfaces appear which are composed of
these three basic types.

There is quite a lot of literature on modeling with developable surfaces, see
[1–6] and their references. B-spline representations and the dual representation
are well known. The dual representation has been used for interpolation and
approximation of tangent planes and generating lines. Pottmann and Wall-
ner [5] study approximation of tangent planes, generating lines and points.
The treatment of the singular points of the surface is included in the ap-
proximation with relatively little costs. To implement all these tasks, a local
coordinate system is used for the representation of developable surfaces such
that their tangent planes T (t) are given by T (t) : e4(t) + e1(t)x + ty − z = 0.
This concept can be used for surface fitting too, but the representation is a
bit restrictive.

We note a few problems occurring in surface fitting with developable B-spline
surfaces. In general, for fitting a B-spline surface

b(u, v) =
∑

Ni(u)Nj(v)bij

with control points bij to a set of unorganized data points pk, one estimates
parameter values (ui, vj) corresponding to pk. The resulting approximation
leads to a linear problem in the unknown control points bij. For surface fitting
with ruled surfaces we might choose the degrees n and 1 for the B-spline
functions Ni(u) and Nj(v) over a suitable knot sequence. There occur two main
problems in approximating data points by a developable B-spline surface:

• For fitting ruled surfaces to point clouds, we have to estimate in advance
the approximate direction of the generating lines of the surface in order to
estimate useful parameter values for the given data. To perform this, it is
necessary to estimate the asymptotic lines of the surface in a stable way.

• We have to guarantee that the resulting approximation b(u, v) is developable,
which is expressed by equation (3). Plugging the parametrization b(u, v)
into this condition leads to a highly non-linear side condition in the control
points bij for the determination of the approximation b(u, v).

1.1 Contribution of the article

To avoid above mentioned problems, we follow another strategy. The recon-
struction of a developable surface from scattered data points is implemented
as reconstruction of a one-parameter family of planes which lie close to the
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estimated tangent planes of the given data points. Carrying out this concept
we can automatically guarantee that the approximation is developable. This
concept avoids the estimation of parameter values and the estimation of the
asymptotic curves. The reconstruction is performed by solving curve approx-
imation techniques in the space of planes.

The proposed algorithm can also be applied to approximate nearly developable
surfaces (or better slightly distorted developable surfaces) by developable sur-
faces. The test implementation has been performed in Matlab and the data
has been generated by scanning models of developable surfaces with an opti-
cal laser scanner. Some examples use data generated by simulating a scan of
mathematical models.

The article is organized as follows: Section 2 presents basic properties con-
cerning the Blaschke image (Blaschke model) of the set of planes in R3 which
is relevant for the implemention of the intended reconstruction. Section 3 tells
about a classification, and Section 4 discusses the recognition of developable
surfaces in point clouds using the Blaschke image of the set of estimated tan-
gent planes of the point set. Section 5 describes the concept of an algorithm
for reconstruction of these surfaces from data points. Finally, we present some
examples and discuss problems of this approach and possible solutions.

2 The Blaschke model of oriented planes in R3

Describing points x by their Cartesian coordinate vectors x = (x, y, z), an
oriented plane E in Euclidean space R3 can be written in the Hesse normal
form,

E : n1x + n2y + n3z + d = 0, n2
1 + n2

2 + n2
3 = 1. (5)

We note that n1x + n2y + n3z + d = dist(x, E) is the signed distance between
the point x and the plane E. In particular, d is the origin’s distance to E. The
vector n = (n1, n2, n3) is the unit normal vector of E. The vector n and the
distance d uniquely define the oriented plane E and we also use the notation
E : n · x + d = 0.

The interpretion of the vector (n1, n2, n3, d) as point coordinates in R4, defines
the Blaschke mapping

b : E 7→ b(E) = (n1, n2, n3, d) = (n, d). (6)

In order to carefully distinguish between the original space R3 and the im-
age space R4, we denote Cartesian coordinates in the image space R4 by
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(u1, u2, u3, u4). According to the normalization n2 = 1 and (6), the set of
all oriented planes of R3 is mapped to the entire point set of the so-called
Blaschke cylinder,

B : u2
1 + u2

2 + u2
3 = 1. (7)

Thus, the set of planes in R3 has the structure of a three-dimensional cylinder,
whose cross sections with planes u4 = const. are copies of the unit sphere S2

(Gaussian sphere). Any point U ∈ B is image point of an oriented plane in R3.
Obviously, the Blaschke image b(E) = (n, d) is nothing else than the graph of
the support function d (distance to the origin) over the Gaussian image point
n.

Let us consider a pencil (one-parameter family) of parallel oriented planes
E(t) : n · x + t = 0. The Blaschke mapping (6) implies that the image points
b(E(t)) = (n, t) lie on a generating line of B which is parallel to the u4-axis.

2.1 Incidence of point and plane

We consider a fixed point p = (p1, p2, p3) and all planes E : n · x + d = 0
passing through this point. The incidence between p and E is expressed by

p1n1 + p2n2 + p3n3 + d = p · n + d = 0, (8)

and therefore the image points b(E) = (n1, n2, n3, d) in R4 of all planes passing
through p lie in the three-space

H : p1u1 + p2u2 + p3u3 + u4 = 0, (9)

passing through the origin of R4. The intersection H ∩B with the cylinder B
is an ellipsoid and any point of H ∩B is image of a plane passing through p.
Fig. 1 shows a 2D illustration of this property.

2.2 Tangency of sphere and plane

Let S be the oriented sphere with center m and signed radius r, S : (x −
m)2 − r2 = 0. The tangent planes TS of S are exactly those planes, whose
signed distance from m equals r. Therefore, they satisfy

TS : n1m1 + n2m2 + n3m3 + d = n ·m + d = r. (10)
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Fig. 1. Blaschke images of a pencil of lines and of lines tangent to an or. circle.

Their Blaschke image points b(TS) thus lie in the three-space

H : m1u1 + m2u2 + m3u3 + u4 − r = 0, (11)

and b(TS) are the points of the intersection H ∩B, which is again an ellipsoid.

This also follows from the fact that S is the offset surface of m at signed
distance r. The offset operation, which maps a surface F ⊂ R3 (as set of
tangent planes) to its offset Fr at distance r, appears in the Blaschke image
B as translation by the vector (0, 0, 0, r), see Fig. 1.

Conversely, if points q = (q1, q2, q3, q4) ∈ B satisfy a linear relation

H : a0 + u1a1 + u2a2 + u3a3 + u4a4 = 0,

q = b(T ) are Blaschke images of planes T which are tangent to a sphere in
case a4 6= 0. Center and radius are determined by

m =
1

a4

(a1, a2, a3), r =
−a0

a4

.

If a0 = 0, the planes b(T ) pass through the fixed point m. If a4 = 0, the planes
T form a constant angle with the direction vector a = (a1, a2, a3) because of
a · n = −a0, with n = (u1, u2, u3).

Here it would lead to far to explain more about Laguerre geometry, the geom-
etry of oriented planes and spheres in R3 and we refer to the literature [7–9]
for more details.
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2.3 The tangent planes of a developable surface

Let T (u) be a one-parameter family of planes

T (u) : n4(u) + n1(u)x + n2(u)y + n3(u)z = 0

with arbitrary functions ni, i = 1, . . . , 4. The vector n(u) = (n1, n2, n3)(u) is a
normal vector of T (u). Excluding degenerate cases, the envelope of T (u) is a
developable surface D, whose generating lines L(u) are

L(u) = T (u) ∩ Ṫ (u),

where Ṫ (u) denotes the derivative with respect to u. The generating lines
themselves envelope the singular curve s(u) which is the intersection

s(u) = T (u) ∩ Ṫ (u) ∩ T̈ (u).

Taking the normalization n2
1 +n2

2 +n2
3 = n(u)2 = 1 into account, the Blaschke

image b(T (u)) = b(D) of the developable surface D is a curve on the Blaschke
cylinder B. This property will be applied later to fitting developable surfaces
to point clouds.

3 The classification of developable surfaces according to their im-
age on B

This section will characterize cylinders, cones and other special developable
surfaces D by studying their Blaschke images b(D).

Cylinder: D is a general cylinder if all its tangent planes T (u) are parallel
to a vector a and thus its normal vectors n(u) satisfy n ·a = 0. This implies
that the image curve b(T (u)) = b(D) is contained in the three-space

H : a1u1 + a2u2 + a3u3 = 0. (12)

Cone: D is a general cone if all its tangent planes T (u) pass through a fixed
point p = (p1, p2, p3). This incidence is expressed by p1n1+p2n2+p3n3+n4 =
0. Thus, the Blaschke image curve b(T (u)) = b(D) is contained in the three-
space

H : p1u1 + p2u2 + p3u3 + u4 = 0. (13)

There exist other special types of developable surfaces. Two of them will be
mentioned here.
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The surface D is a developable of constant slope, if its normal vectors n(u)
form a constant angle φ with a fixed direction vector a. Assuming ‖a‖ = 1,
we get cos(φ) = a · n(u) = γ = const. This implies that the Blaschke images
of the tangent planes of D are contained in the three-space

H : −γ + a1u1 + a2u2 + a3u3 = 0. (14)

The developable surface D is tangent to a sphere with center m and radius r,
if the tangent planes T (u) of D satisfy n4 + n1m1 + n2m2 + n3m3 − r = 0,
according to (11). Thus, the image curve b(D) is contained in the three-space

H : −r + u1m1 + u2m2 + u3m3 + u4 = 0. (15)

3.1 Cones and cylinders of revolution

For applications it is of particular interest if a developable surface D is a cone
or cylinder of revolution.

Let D be a cylinder of revolution with axis A and radius r. The tangent planes
T of D are tangent to all spheres of radius r, whose centers vary on A. Let

S1 : (x− p)2 − r2 = 0, S2 : (x− q)2 − r2 = 0

be two such spheres with centers p,q. According to (11), the images b(T ) of
the tangent planes T satisfy the relations

H1 :−r + u1p1 + u2p2 + u3p3 + u4 = 0, (16)

H2 :−r + u1q1 + u2q2 + u3q3 + u4 = 0.

Since p 6= q, the image curve b(D) lies in the plane P = H1 ∩H2 and b(D) is
a conic.

Cones of revolution D can be obtained as envelopes of the common tangent
planes of two oriented spheres S1, S2 with different radii r 6= s. Thus, b(D) is
a conic contained in the plane P = H1 ∩H2 which is defined by

H1 :−r + u1p1 + u2p2 + u3p3 + u4 = 0, (17)

H2 :−s + u1q1 + u2q2 + u3q3 + u4 = 0.

Conversely, if the Blaschke image b(D) of a developable surface is a planar
curve ⊂ P , how can we decide whether D is a cone or cylinder of revolution?
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Let b(D) = b(T (u)) be a planar curve ⊂ P and let P be given as intersection
of two independent three-spaces H1, H2, with

Hi : hi0 + hi1u1 + hi2u2 + hi3u3 + hi4u4 = 0. (18)

Using the results of Section 2.2, the incidence relation b(T (u)) ⊂ H1 implies
that T (u) is tangent to a sphere, or is passing through a point (h10 = 0), or
encloses a fixed angle with a fixed direction (h14 = 0). The same argumentation
holds for H2.

Thus, by excluding the degenerate case h14 = h24 = 0, we can assume that
P = H1 ∩H2 is the intersection by two three-spaces H1, H2 of the form (16)
or (17).

(1) Let the plane P = H1 ∩H2 be given by equations (16). Then, the devel-
opable surface D is a cylinder of revolution. By subtracting the equations
(16) it follows that the normal vector n(u) of T (u) satisfies

n · (p− q) = 0.

Thus, the axis A of D is given by a = p− q and D’s radius equals r.
(2) Let the plane P = H1∩H2 be given by equations (17). The pencil of three-

spaces λH1 + µH2 contains a unique three-space H, passing through the
origin in R4, whose equation is

H :
3∑

i=1

ui(spi − rqi) + u4(s− r) = 0.

Thus, the tangent planes of the developable surface D are passing through
a fixed point corresponding to H, and D is a cone of revolution. Its vertex
v and the inclination angle φ between the axis A : a = p − q and the
tangent planes T (u) are

v =
1

s− r
(sp− rq), and sin φ =

|s− r|
‖q− p‖

.

4 Recognition of developable surfaces from point clouds

Given a cloud of data points pi, this section discusses the recognition and
classification of developable surfaces according to their Blaschke images. The
algorithm contains the following steps:

(1) Estimation of tangent planes Ti at data points pi and computation of the
image points b(Ti).
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(2) Analysis of the structure of the set of image points b(Ti).
(3) If the set b(Ti) is curve-like, classification of the developable surface which

is close to pi.

4.1 Estimation of tangent planes

We are given data points pi, i = 1, . . . , N , with Cartesian coordinates xi, yi, zi

in R3 and a triangulation of the data with triangles tj. The triangulation
gives topological information about the point cloud, and we are able to define
adjacent points qk for any data point p.

The estimated tangent plane T at p shall be a plane best fitting the data
points qk. T can be computed as minimizer (in the l1 or l2-sense) of the vector
of distances dist(qk, T ) between the data points qk and the plane T . This leads
to a set of N estimated tangent planes Ti corresponding to the data points pi.
For more information concerning reverse engineering, see the survey [10].

Assuming that the original surface with measurement points pi is a devel-
opable surface D, the image points b(Ti) of the estimated tangent planes Ti

will form a curve-like region on B, see also [10]. To check the property ’curve-
like’, neighborhoods with respect to a metric on B will be defined. Later we
will fit a curve c(t) to the curve-like set of image points b(Ti), and this fitting
is implemented according to the chosen metric.

4.2 A Euclidean metric in the set of planes

Now we show that the simplest choice, namely the canonical Euclidean metric
in the surrounding space R4 of the Blaschke cylinder B, is a quite useful metric
for data analysis and fitting. This says that the distance dist(E, F ) between
two planes E, F

E : e1x1 + e2x2 + e3x3 + e4 = 0, F : f1x1 + f2x2 + f3x3 + f4 = 0,

with normalized normal vectors e = (e1, e2, e3) and f = (f1, f2, f3) (‖e‖ =
‖f‖ = 1) is defined to be the Euclidean distance of their image points b(E)
and b(F ). Thus, the squared distance between E and F is defined by

dist(E, F )2 = (e1 − f1)
2 + (e2 − f2)

2 + (e3 − f3)
2 + (e4 − f4)

2. (19)

To illustrate the geometric meaning of dist(E, F )2 between two planes E and
F we choose a fixed plane M(= F ) in R3 as x − m = 0. Its Blaschke image
is b(M) = (1, 0, 0,−m). All points of the Blaschke cylinder, whose Euclidean
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distance to b(M) equals r, form the intersection surface S of B with the three-
dimensional sphere (u1−1)2 +u2

2 +u2
3 +(u4 +m)2 = r2. Thus, S is an algebraic

surface of order 4 in general. Its points are Blaschke images b(E) of planes E
in R3 which have constant distance r from M and their coordinates ei satisfy

(e1 − 1)2 + e2
2 + e2

3 + (e4 + m)2 − r2 = 0. (20)

The coefficients ei satisfy the normalization e2
1 + e2

2 + e2
3 = 1. If we consider a

general homogeneous equation E : w1x1 + w2x2 + w3x3 + w4 = 0 of E, these
coefficients wi are related to ei by

ei =
wi√

w2
1 + w2

2 + w2
3

, i = 1, 2, 3, 4.

We plug this into (20) and obtain the following homogeneous relation of degree
four in plane coordinates wi,

[(2− r2 + m2)(w2
1 + w2

2 + w2
3) + w2

4]
2 = 4(w1 −mw4)

2(w2
1 + w2

2 + w2
3).(21)

Hence, all planes E, having constant distance dist(E, M) = r from a fixed
plane M , form the tangent planes of an algebraic surface b−1(S) = U of class
4, and U bounds the tolerance region of the plane M . If a plane E deviates
from a plane M in the sense, that b(E) and b(M) have at most distance r,
then the plane E lies in a region of R3, which is bounded by the surface U
(21).

For visualization we choose the 2D-case. Figure 2 shows the boundary curves
of tolerance regions of lines M : x = m, for values m = 0, 1.25, 2.5 and radius
r = 0.25. The lines Mi are drawn dashed. The largest perpendicular distance
of E(‖ M) and M within the tolerance regions is r. The largest angle of E
and M is indicated by the asymptotic lines (dotted style) of the boundary
curves. For m = 0, the intersection point of the asymptotic lines lies on M0,
but for increasing values of |m| this does not hold in general and the tolerance
regions will become asymmetrically. For large values of |m| this intersection
point might even be outside the region, and the canonical Euclidean metric in
R4 is then no longer useful for the definition of distances between planes.

The tolerance zone of an oriented plane M is rotationally symmetric with
respect to the normal n of M passing through the origin. In the planes through
n there appears the 2D-case, so that the 2D-case is sufficient for visualization.

The introduced metric is not invariant under all Euclidean motions of the
space R3. The metric is invariant with respect to rotations about the origin,
but this does not hold for translations. If the distance d = m of the plane
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Fig. 2. Boundary curves of the tolerance regions of the center lines Mi.

M to the origin changes, then the shape of the tolerance region changes, too.
However, within an area of interest around the origin (e.g. |m| < 1), these
changes are small and thus the introduced metric is useful.

In practice, we uniformly scale the data in a way that the absolute values
of all coordinates xi, yi, zi are smaller than c = 1/

√
3. Then the object is

contained in a cube, bounded by the planes x = ±c, y = ±c, z = ±c and the
maximum distance of a data point pi to the origin is 1. Considering planes
passing through the data points pi, the maximum distance dist(O,E) of a
plane E to the origin is also 1.

According to the normalization e2
1 + e2

2 + e2
3 = 1, the distance of the Blaschke

image b(E) to the origin in R4 is bounded by 1. This is also important for a
discretization of the Blaschke cylinder which we discuss in the following.

4.3 A cell decomposition of the Blaschke cylinder

For practical computations on B we use a cell decomposition of B to define
neighborhoods of image points b(T ) of (estimated) tangent planes T . We recall
that B’s equation is u2

1+u2
2+u2

3 = 1. Any cross section with a plane u4 = const.
is a copy of the unit sphere S2 in R3. In order to obtain a cell decomposition
of B, we start with a triangular decomposition of S2 and lift it to B.

A tessellation of S2 can be based on the net of a regular icosahedron. The
vertices vi, i = 1, . . . , 12, with ‖vi‖ = 1 of a regular icosahedron form twenty
triangles tj and thirty edges. All edges have same arc length. This icosahedral
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net is subdivided by computing the midpoints of all edges (geodesic circles).
Any triangle tj is subdivided into four new triangles. The inner triangle has
equal edge lengths, the outer three have not, but the lengths of the edges to
not vary too much. By repeated subdivision one obtains a finer tessellation of
the unit sphere.

The cell decomposition of the Blaschke cylinder consists of triangular prismatic
cells which are lifted from the triangular tessellation of S2 in u4-direction. Since
we measure distances according to (19), the height of a prismatic cell has to
be approximately equal to the edge length of a triangle. When each triangle of
the tessellation is subdivided into four children, each interval in u4-direction
is split into two subintervals.

According to the scaling of the data points pi, the coordinates of the image
points b(E) on B are bounded by ±1. We start with 20 triangles, 12 vertices
and 2 intervals in u4-direction. The test-implementation uses the resolution
after three subdivision steps with 1280 triangles, 642 vertices and 16 intervals
in u4-direction. In addition to the cell structure on B we store adjacency
information of these cells.

Remark concerning the visualization: It is easy to visualize the spherical image
(first three coordinates) on S2, but it is hard to visualize the Blaschke image
on B. We confine ourself to plot the spherical image on S2, and if necessary, we
add the fourth coordinate (support function) in a separate figure. This seems
to be an appropriate visualization of the geometry on the Blaschke cylinder,
see Figures 3, 4, 5, 6, 7.

4.4 Analysis and classification of the Blaschke image

Having computed estimates Ti of the tangent planes of the data points and
their images b(Ti), we check whether the Blaschke image of the considered sur-
face is curve-like. According to Section 4.3, the interesting part of the Blaschke
cylinder B is covered by 1280× 16 cells Ck. We compute the memberships of
image points b(Ti) and cells Ck and obtain a binary image on the cell structure
C of B. Let us recall some basic properties of the Blaschke image of a surface.

(1) If the data points pi are contained in a single plane P , the image points
b(Ti) of estimated tangent planes Ti form a point-like cluster around b(P )
on B.

(2) If the data points pi are contained in a developable surface, the image
points b(Ti) form a curve-like region in B, see Figures 3, 4, 5, 6.

(3) If the data points pi are contained in a doubly curved surface S, the
image points b(Ti) cover a two-dimensional region on B.

(4) If the data points pi are contained in a spherical surface S, the image
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points b(Ti) cover a two-dimensional region on B which is contained in a
three-space.

In the following we assume that the data comes from a smooth developable
surface. Since the estimation of tangent planes gives bad results on the bound-
ary of the surface patch and near measurement errors, there will be outliers in
the Blaschke image. To find those, we search for cells Ck carrying only a few
image points. These cells and image points are not considered for the further
computations. The result is referred to as cleaned Blaschke image. In addition,
a thinning of the Blaschke image can be performed.

After having analyzed and cleaned the Blaschke image from outliers we are
able to decide whether the given developable surface D is a general cone or
cylinder, a cone or cylinder of revolution, another special developable or a
general developable surface.

So, let Ti, i = 1, . . . ,M be the reliable estimated tangent planes of D after
the cleaning and let b(Ti) = bi be their Blaschke images. As we have worked
out in Section 3 we can classify the type of the developable surface D in the
following way.

To check if the point cloud bi on B can be fitted well by a hyperplane H,

H : h0 + h1u1 + . . . + h4u4 = 0, h2
1 + . . . + h2

4 = 1. (22)

we perform a principal component analysis on the points bi. This is equivalent
to computing the ellipsoid of inertia of the points bi. It is known that the best
fitting hyperplane passes through the barycenter c = (

∑
bi)/M of the M data

points bi. Using c as new origin, the coordinate vectors of the data points are
qi = bi − c and the unknown three-space H has vanishing coefficient, h0 = 0.
The signed Euclidean distance d(bi, H) of a point qi and the unknown three-
space H is

d(qi, H) = h1qi,1 + . . . + h4qi,4 = h · qi, (23)

where h = (h1, . . . , h4) denotes the unit normal vector of H. The minimization
of the sum of squared distances,

F (h1, h2, h3, h4) =
1

M

M∑
i=1

d2(qi, H) =
1

M

M∑
i=1

(qi · hi)
2. (24)
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with respect to h2 = 1 is an ordinary eigenvalue problem. Using a matrix
notation with vectors as columns, it is written as

F (h) = hT · C · h, with C :=
1

M

M∑
i=1

qi · qT
i . (25)

The symmetric matrix C is known as covariance matrix in statistics and as
inertia tensor in mechanics. Let λi be an eigenvalue of C and let vi be the
corresponding normalized eigenvector (v2

i = 1). Then, λi = F2(vi) holds and
thus the best fitting three-space V1 belongs to the smallest eigenvalue λ1. The
statistical standard deviation of the fit with V1 is

σ1 =
√

λ1/(n− 4). (26)

The distribution of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λ4 of the covariance
matrix C (and the corresponding standard deviations σ1 ≤ · · · ≤ σ4) gives
important information on the shape of the surface D:

(1) Two small eigenvalues λ1, λ2 and different coefficients h10, h20, (|h10 −
h20| > ε): The surface D can be well approximated by a cone of revolu-
tion, compare (17). The vertex and the inclination angle are computed
according to Section 3.

(2) Two small eigenvalues λ1, λ2 but nearly equal coefficients h10, h20, (|h10−
h20| ≤ ε): The surface D can be well approximated by a cylinder of
revolution, compare with (16). The axis and the radius are computed
according to Section 3.

(3) One small eigenvalue λ1 and small coefficient h10 (compare with (13)):
The surface D is a general cone and its vertex is

v =
1

h14

(h11, h12, h13).

(4) One small eigenvalue λ1 and small coefficients h10 and h14 (compare
with (12)): The surface D is a general cylinder and its axis is parallel
to the vector

a = (h11, h12, h13).

(5) One small eigenvalue λ1 and small coefficient h14 (compare with (14)):
The surface D is a developable of constant slope. The tangent planes of D
form a constant angle with respect to an axis. The angle and the axis are
found according to formula (14). An example is displayed in Figure 4.

(6) One small eigenvalue λ1 characterizes a developable surface D whose
tangent planes Ti are tangent to a sphere (compare with (15)). Its center
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Fig. 3. Left: General cylinder. Middle: Triangulated data points and approximation.
Right: Original Blaschke image (projected onto S2).

and radius are

m =
1

h14

(h11, h12, h13), r =
−h10

h14

.

Fig. 4. Left: Developable of constant slope (math. model). Middle: Triangulated
data points and approximation. Stars represent the singular curve. Right: Spherical
image of the approximation with control points

For this classification we need to fix a threshold ε, to decide what small means.
This value depends on the accuracy of the measurement device, the number
of data points per area unit and the accuracy of the object. Some experience
is necessary to choose this value for particular applications.

5 Reconstruction of developable surfaces from measurements

In this section we describe the construction of a best-fitting developable sur-
face to data points pi or to estimated tangent planes Ti. In addition we ad-
dress some problems, in particular the control of the singular curve of the
approximation. First we note some general demands on the surface D to be
approximated.
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(1) D is a smooth surface not carrying singular points. D is not necessar-
ily exactly developable, but one can run the algorithm also for nearly
developable surfaces (one small principal curvature).

(2) The density of data points pi has to be approximately the same every-
where.

(3) The image b(Ti) of the set of (estimated) tangent planes Ti has to be a
simple, curve-like region on the Blaschke cylinder which can be injectively
parameterized over an interval.

According to the made assumptions, the reconstruction of a set of measure-
ment point pi of a developable surface D can be divided into the following
tasks:

(1) Fitting a curve c(t) ⊂ B to the curve-like region formed by the data
points b(Ti).

(2) Computation of the one-parameter family of planes E(t) in R3 and of the
generating lines L(t) of the developable D∗ which approximates measure-
ments pi.

(3) Computation of the boundary curves of D∗ with respect to the domain
of interest in R3.

5.1 Curve fitting on the Blaschke cylinder B

We are given a set of unorganized data points b(Ti) ∈ B and according to
the made assumptions these points form a curve-like region on the Blaschke
cylinder B. The aim is to fit a parametrized curve c(t) ⊂ B to these points.
In order to satisfy the constraint c(t) ⊂ B we have to guarantee that

c1(t)
2 + c2(t)

2 + c3(t)
2 = 1, (27)

which says that the projection c′(t) = (c1, c2, c3)(t) of c(t) = (c1, c2, c3, c4)(t)
to R3 is a spherical curve (in S2). The computation of a best fitting curve
to unorganized points is not trivial, but there are several methods around.
Estimation of parameter values or sorting the points are useful ingredients to
simplify the fitting. We do not go into detail here but refer to the moving least
squares method to estimate parameter values and to the approach by Lee [11]
who uses a minimum spanning tree to define an ordering of the points. These
methods apply also to thinning of the curve-like point cloud.

After this preparation we perform standard curve approximation with B-
splines and project the solution curve to the Blaschke cylinder B in order
to satisfy the constraint (27). If the projection c′ ⊂ S2 of c(t) is contained
in a hemisphere of S2 and if additionally the fourth coordinate c4(t) does not

17



vary to much, it is appropriate to perform a stereographic projection so that
we finally end up with a rational curve c(t) on B. For practical purposes it
will often be sufficient to apply a projection to B with rays orthogonally to
u4, the axis of B.

Figure 5 shows a curve-like region in S2 with varying width, an approximating
curve c′(t) to this region and the approximation c4(t) of the support function
to a set of image points b(Ti) ⊂ B.

We mention here that the presented curve fitting will fail in the case when
inflection generators occur in the original developable shape, because inflection
generators correspond to singularities of the Blaschke image. Theoretically, we
have to split the data set at an inflection generator and run the algorithm for
the parts separately and join the partial solutions. In practice, however, it is
not so easy to detect this particular situation and it is not yet implemented.

Fig. 5. Blaschke image (left) (projected onto S2), approximating curve to thinned
point cloud (right) and support function (fourth coordinate)
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5.2 Biarcs in the space of planes

We like to mention an interesting relation to biarcs. Biarcs are curves com-
posed of circular arcs with tangent continuity and have been studied at first in
the plane, see e.g. [12]. It is known that the G1-Hermite interpolation problem
of Hermite elements (points plus tangent lines) P1, V1 and P2, V2 possesses a
one-parameter solution with biarcs which can be parameterized over the pro-
jective line. Usually one can expect that suitable solutions exist, but for some
configurations there are no solutions with respect to a given orientation of the
tangent lines Vj.

The construction of biarcs can be carried out on quadrics too, see [13], in
particular on the sphere S2 or on the Blaschke cylinder B. If we consider a biarc
(elliptic) c = b(D) ⊂ B then the corresponding developable surface D in R3

is composed of cones or cylinders of revolution with tangent plane continuity
along a common generator, see [14,15]. To apply this in our context we sample
Hermite elements Pj, Vj, j = 1, . . . , n from an approximation c(t) ⊂ B of the
set b(Ti). Any pair of Hermite elements Pj, Vj and Pj+1, Vj+1 is interpolated by
a pair of elliptic arcs on B with tangent continuity. Applying this concept, the
final developable surface is composed of smoothly joined cones of revolution.
This has the advantage that the development (unfolding) of the surface is
elementary.

5.3 A parametrization of the developable surface

Once we have computed a curve c(t) ⊂ B that approximates the image points
b(Ti) well, the one-parameter family E(t) determining the approximating de-
velopable surface D∗ is already given by

E(t) : c4(t) + c1(t)x + c2(t)y + c3(t)z = 0.

The generating lines L(t) of D∗ are the intersection lines E(t) ∩ Ė(t). We
assume that there exist two bounding planes H1 and H2 of the domain of
interest in a way that all generating lines L(t) intersect H1 and H2 in proper
points. The intersection curves fi(t) of L(t) and Hi, i = 1, 2 are computed by

fi(t) = E(t) ∩ Ė(t) ∩Hi, (28)

and the final point representation of D∗ is

x(t, u) = (1− u)f1(t) + uf2(t). (29)
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Figures 3, 4, 6 and 7 show developable surfaces which approximate data points
(displayed as dots).

The deviation or distance between the given surface D and the approximation
D∗ can be defined according to distances between estimated planes Ti, i =
1, . . . , N (with corresponding parameter values ti) and the approximation E(t)
by

d2(D, D∗) =
1

N

∑
i

dist2(Ti, E(ti)). (30)

If more emphasis is on the deviation of the measurements pi from the devel-
opable D∗, one can use

d2(D, D∗) =
1

N

∑
i

dist2(pi, E(ti)), (31)

with respect to orthogonal distances between points pi and planes E(ti).

Fig. 6. Left: Developable surface approximating the data points. Right: Projection of
the Blaschke image onto S2, approximating curve with control polygon and support
function.

5.4 Fitting developable surfaces to nearly developable shapes

The proposed method can be applied also to fit a developable surface to data
which comes from a nearly developable shape. Of course, we have to specify
what nearly developable means in this context. Since the fitting is performed
by fitting a one-parameter family of tangent planes, we will formulate the
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requirements on the data pi in terms of the Blaschke image of the estimated
tangent planes Ti.

If the data points pi are measurements of a developable surface D and if the
width in direction of the generators does not vary too much, the Blaschke
image b(D) = R will be a tubular-like (curve-like) region on B with nearly
constant thickness. Its boundary looks like a pipe surface.

Putting small distortions to D, the normals of D will have a larger variation
near these distortions. The Blaschke image b(D) possesses a larger width lo-
cally and will look like a canal surface. As long as it is still possible to compute
a fitting curve to b(D), we can run the algorithm and obtain a developable
surface approximating D. Figures 5 and 7 illustrate the projection of b(D)
onto the unit sphere S2.

The analysis of the Blaschke image b(D) gives a possibility to check whether
D can be approximated by a developable surface or not. By using the cell
structure of the cleaned Blaschke image b(D), we pick a cell C and an appro-
priately chosen neighborhood U of C. Forming the intersection R = U ∩ b(D),
we compute the ellipsoid of inertia (or a principal component analysis) of R.
The existence of one significantly larger eigenvalue indicates that R can be
approximated by a curve in a stable way. Thus, the point set corresponding
to R can be fitted by a developable surface.

Since approximations of nearly developable shapes by developable surfaces are
quite useful for practical purposes this topic will be investigated in more detail
in the future.

5.5 Singular points of a developable surface

So far, we did not pay any attention to singular points of D∗. The control and
avoidance of the singular points within the domain of interest is a complicated
topic because the integration of this into the curve fitting is quite difficult.

If the developable surface D∗ is given by a point representation, formula (4)
represents the singular curve s(t). If D∗ is given by its tangent planes E(t), the
singular curve s(t) is the envelope of the generators L(t) and so it is computed
by

s(t) = E(t) ∩ Ė(t) ∩ Ë(t). (32)

Thus, the singular curve s(t) depends in a highly nonlinear way on the coor-
dinate functions of E(t).
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Fig. 7. Left: Nearly developable surface and developable approximation. Right: Pro-
jection of the original Blaschke image onto S2 and thinned Blaschke image with
approximating curve.

In order to compute the singular curve s(t), let n = c∧ ċ∧ c̈, where ∧ denotes
the vector product in R4. The Cartesian coordinates of the singular curve are
then found by

s(t) =
1

n4(t)
(n1(t), n2(t), n3(t)). (33)

Zeros of the function n4 correspond to points at infinity of s(t). In Section 4.2
we have assumed that all coordinates of data points are bounded by ±c such
that we have ‖pi‖ ≤ 1. In order to approximate the data with singularity-free
developable surfaces, we have to guarantee

‖s(t)‖ > 1, (34)

when we fit curves c(t) to image points b(Ti) ∈ B of estimated tangent planes
Ti. Since the data comes from a developable surface without singularities, we
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can expect that there exist solutions satisfying (34).

Assuming that the curve c(t) ∈ B fitted to the data b(Ti) is composed of
biarcs, we obtain the following: For two consecutive Hermite elements Pj, Vj

and Pj+1, Vj+1 there exists a one-parameter family of interpolating pairs of
arcs and condition (34) leads to a quadratic inequality. Thus, solutions can be
computed explicitly. However, as we have mentioned in Section 5.2, there is no
guarantee that feasible solutions exist and the construction clearly depends on
the choice of the Hermite elements which have been sampled from an initial
solution of the curve fitting.

5.6 Conclusion

We have proposed a method for fitting a developable surface to data points
coming from a developable or a nearly developable shape. The approach ap-
plies curve approximation in the space of planes to the set of estimated tangent
planes of the shape. This approach has advantages compared to usual surface
fitting techniques, like

• avoiding the estimation of parameter values and direction of generators,
• guaranteeing that the approximation is developable.

The detection of regions containing inflection generators, and the avoidance of
singular points on the fitted developable surface have still to be improved. The
approximation of nearly developable shapes by developable surface is an inter-
esting topic for future research. In particular we will study the segmentation of
a non-developable shape into parts which can be well approximated by devel-
opable surfaces. This problem is relevant in certain applications (architecture,
ship hull manufacturing), although one cannot expect that the developable
parts will fit together with tangent plane continuity.
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Computer Aided Geometric Design 12 (1995) 513–531.

[5] H. Pottmann, J. Wallner, Approximation algorithms for developable surfaces,
Computer Aided Geometric Design 16 (1999) 539–556.
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