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Zusammenfassung

Das ursprüngliche Ziel dieser Arbeit war das Studium von rationalen Flächen im eukli-
dischen dreidimensionalen Raum, die rationale Parallelflächen (PN Flächen) besitzen.
Ferner sollten diese Flächen von einem gewissen praktischen Interesse sein, das heißt, eine
einfache geometrische Erzeugung gestatten. Angeregt wurde diese Arbeit einerseits durch
die Arbeiten von Prof. Farouki über polynomiale PH Kurven, andererseits durch die Ar-
beiten meines Lehrers Prof. Pottmann, der unter Benützung der dualen Darstellung ebener
Kurven und Flächen im Raum eine allgemeine Beschreibung rationaler PH Kurven und
PN Flächen angegeben hat.

Die ersten Untersuchungen betrafen Kanalflächen mit rationaler Mittenlinie und ra-
tionaler Radiusfunktion. Der Beweis, daß diese Flächen rationale Parallelflächen be-
sitzen, benützt aber nur, daß sie Einhüllende einer rationalen einparametrigen Schar
von Drehkegeln, mit rationaler Radiusfunktion, sind. Damit ist eine wesentlich größere
Flächenklasse mit obiger Eigenschaft gefunden.

Im ersten Kapitel werden jene Flächen im projektiven dreidimensionalen Raum studiert,
die eine rationale einparametrige Schar von Kegelschnitten tragen. Es stellt sich heraus,
daß diese Flächen rational sind. Dies bietet eine geometrische Grundlage für weitere Un-
tersuchungen.

Das zweite Kapitel ist, aus projektiver Sicht, dual zum ersten. Aber für die Anwen-
dungen ist es trotzdem nützlich die Hüllflächen einer rationalen einparametrigen Schar
von quadratischen Kegeln zu studieren. Denn eine Unterfamilie bilden jene rationalen
Kanalflächen, die durch rationale Kurven im vierdimensionalen Möbiusmodell der Kugeln
des dreidimensionalen Raumes gegeben sind.

Das dritte Kapitel bietet eine kurze Einführung in die euklidische Laguerre Geometrie.
Erstens, weil das Studium von PN Flächen einfacher ist, wenn man sie als Menge von ori-
entierten Tangentialebenen auffaßt, und zweitens weil eine Fläche und ihre Parallelflächen
laguerregeometrisch äquivalent sind.

Weiters wird gezeigt, daß alle PN Flächen Reflexionsantikaustiken von rationalen
Flächen bei Parallelbeleuchtung sind.

Im vierten Kapitel werden dann PN Flächen studiert. Es gibt im wesentlichen zwei be-
merkenswerte Ergebnisse. Das eine ist mehr theoretischer Natur und besagt, wie schon
oben erwähnt, daß die Hüllflächen einer einparametrigen rationalen Schar von Drehkegeln
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mit rationaler Radiusfunktion, PN Flächen sind. Damit zeigt man auch, daß die Hy-
perzykliden PN Flächen sind. Diese, von W. Blaschke angegebenen Flächen, beinhalten
zum Beispiel die Parallelflächen der regulären Quadriken. Eine weitere Folgerung ist die
Rationalität der Parallelflächen von rationalen Regelflächen.

Das zweite, eher praktischere Ergebnis bietet eine allgemeine Konstruktionsmöglichkeit
für PN Flächen. Jede rationale Fläche im isotropen Modell der euklidischen Laguerre
Geometrie bestimmt eine PN Fläche. Dies wurde dazu verwendet, ein Flächenmodel-
lierungsschema, das PN Flächen benutzt, zu entwickeln.

Im fünften und letzten Kapitel werden gewisse Verallgemeinerungen im n–dimensionalen
projektiven und euklidischen Raum studiert. Die Hüllflächen von Drehkegelscharen lassen
sich auf diverse Arten verallgemeinern, eine davon ist hier beschrieben. Weiters stellt sich
heraus, daß die Parallelhyperflächen von rational parametrisierbaren k+1 Regelflächen PN
Flächen sind, falls die k + 1 Regelfläche keine Hyperfläche ist, die konstante Tangential-
räume längs der Erzeugenden besitzt.

Hier möchte ich meinem Lehrer, Prof. Helmut Pottmann für seine außerordentlich gewis-
senhafte Betreuung dieser Dissertation danken. Seine Ideen und Anregungen haben
wesentlich zum guten Gelingen dieser Dissertation beigetragen.

Weiters gebührt mein Dank allen meinen Kollegen und Lehrern des Institutes für
Geometrie an der Technischen Universität Wien, im besonderen Herrn Prof. Hellmuth
Stachel. Teile diese Arbeit waren auch Inhalt eines vom Fonds zur Förderung der wis-
senschaftlichen Forschung (FWF) finanzierten Projekts über ’Rationale B–Spline Darstel-
lungen funktioneller Formen für die CAD/CAM Technik’ (P09790–MAT).

Wien, Oktober 1997 Martin Peternell
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Preface

The original aim of this work was the study of rational surfaces in Euclidean 3–space, which
possess rational offset surfaces (PN surfaces). Mainly such surfaces should be studied,
which possess an almost simple geometric generation, such that they are of practical interest
and use in CAD/CAM. This was mainly motivated by articles of Prof. Farouki about PH
curves and by articles of my teacher, Prof. Pottmann, who used the dual representation
of curves and surfaces to obtain a general representation of PH curves and PN surfaces.

First of all, canal surfaces determined by a rational center curve and a rational radius
function were studied. The proof, that those are rational surfaces with rational offsets
admitted the following generalization: envelopes of rational one parameter families of cones
of revolution with rational radius function are PN surfaces.

The first chapter presents a much wider class of rational surfaces, which form the geometic
background of this work. Those are surfaces generated by a real, rational one parameter
family of conics.

The second chapter is mainly dual to the first one. Envelopes of a real, rational one
parameter family of arbitrary quadratic cones are studied. A special subclass are rational
canal surfaces, determined by a rational curve in the 4–dimensional Möbius model of
spheres in Euclidean 3–space.

The third chapter mainly prepares for the study of PN surfaces. It is very helpful to use
classical Laguerre geometry and several models. Many geometric properties of PN surfaces
are easier understood in these models. This chapter also presents the general result, that
PN surfaces are reflectional anticaustics of rational mirror surfaces under illumination with
parallel light rays.

In the fourth chapter, PN surfaces are studied in detail. There are two remarkable results.
The first one, more theoretically and also mentioned above, says that the envelope of a
real rational one parameter family of cones of revolution with constant radius function is
in general a PN surface. This also proves that hypercyclides, introduced by W. Blaschke,
are PN surfaces. This family of surfaces include offsets of regular quadrics. A further
consequence is that the offsets of rational ruled surfaces are PN surfaces.

The second one, more practically, says that any rational surface in the isotropic model
of Euclidean Laguerre geometry determines a PN surface in Euclidean 3–space. This result
was used to derive a surface modeling scheme, using PN surfaces.
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The fifth chapter describes certain generalizations of results of previous chapters to Eu-
clidean and projective n–space. PN surfaces are generalized to PN hypersurfaces. In
particular, envelopes of a certain type of quadratic hypercones are discussed. Finally we
have the result that offsets of (nearly all) rationally parameterizable ruled k+1–manifolds
are PN hypersurfaces.

Here I want to thank Prof. Helmut Pottmann for supervising this work. His ideas, sug-
gestions and comments were very helpful that this work turned out well. I also want to
thank all members of the Institute of Geometry at the University of Technology in Vienna,
especially Prof. Hellmuth Stachel. Additionally, this work was partly supported by the
Austrian Science Foundation through project P09790–MAT.

Vienna, October 1997 Martin Peternell



Chapter 1

One Parameter Families of Conics

In this chapter, some important geometric properties of surfaces, generated by one param-
eter families of conics, so called conic surfaces shall be described. For a detailed description
of conic surfaces see [9], [10], [11] and [48]. Further we will prove that a real rational family
of conics generates a rational surface.

1.1 Geometric Properties of Conic Surfaces

Let x = (x0, . . . , x3) be homogeneous coordinates of points and X = (X0, . . . , X3) be ho-
mogeneous coordinates of planes with respect to an arbitrary, but fixed coordinate system
in real projective 3–space P3(R). Let C = cjk be a symmetric matrix. A quadratic equation

c :
3∑

j,k=0

cjkXjXk = 0, with cjk = ckj. (1.1)

defines a (not necessarily regular) quadric in P3 as set of tangent planes. The quadric is
called singular, if det(C) = 0. In detail, if rk(C) = 3, c is a conic as set of tangent planes
(see Figure 1.1). The case rk(C) = 2 characterizes a pair of bundles of planes and finally
rk(C) = 1 defines a double counted bundle of planes.

Since the coefficients cjk are only determined up to a real common factor, they can
be interpreted as homogeneous coordinates of a point C in P9. A mapping P3 → P9 can
be defined, which maps a quadric of P3 to a point of P9. Thus we identify points in P9

and symmetric matrices describing quadrics in P3. A line λC + µD in P9 corresponds to
a pencil of quadrics λc + µd in P3, where c and d are quadrics determined by matrices
cjk and djk. The image points of singular quadrics, especially conics, are contained in an
algebraic variety M of dimension 8 and degree 4, given by the equation det(C) = 0. Since
the rank of a matrix cjk is invariant under projective mappings in P3 special subvarieties
of M are of interest. They are defined by

D : rk(C) ≤ 2 and V : rk(C) = 1. (1.2)
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Figure 1.1: Conic as set of tangent planes

It can be shown that D consists of all singular points of M . Considering D as algebraic
variety, V consists of all singular points of D.

It follows that V is a Veronese surface, namely the image of P3 under a quadratic
Veronese map. The projective mappings in P3 induce in P9 automorphic projective map-
pings of these varieties. The set M −D corresponds to conics c in P3.

Let c(t) be a one parameter family of regular conics, defined by functions cjk(t) de-
pending on a real parameter t, which varies in an interval I ⊂ R. This defines a curve
C(t) on M and we require that C(t) shall be sufficiently smooth. If the conics c(t) are not
contained in a fixed plane they generate a surface Φ ⊂ P3. These surfaces are called conic
surfaces, and the curves c(t) are called generating conics. A conic surface Φ can be defined
as envelope of common tangent planes of the pencils of dual quadrics λc(t) + µċ(t). These
tangent planes are solutions of

c(t) :
3∑

j,k=0

cjk(t)XjXk = 0 and ċ(t) :
3∑

j,k=0

ċjk(t)XjXk = 0, (1.3)

and define for a fixed t ∈ R a developable surface Dc(t). Let γ(t) be the plane containing
c(t). The homogeneous coordinates (γ0, . . . , γ3)(t) are solutions of the homogeneous linear
system

3∑
k=0

cjk(t)Xk = 0, for i = 0, 1, 2, 3. (1.4)

If γ(t) and γ̇(t) are linearly independent, the envelope of γ(t) is a developable surface
B. Its generator lines are g(t) = γ(t) ∩ γ̇(t). Depending on the number 0, 1 or 2 of real
intersection points of c∩ g, the corresponding conic surfaces are called elliptic, parabolic or
hyperbolic. This is a local property, such that also the conic c itself shall be called elliptic,
parabolic or hyperbolic. See Figures 1.2 and 1.3.

The plane γ satisfies
∑3

k=0 cjkγk = 0 for each j and also
∑3

j,k=0 cjkγjγk = 0 identically



for all t ∈ I. The derivative with respect to t is∑
j,k

ċjkγjγk +
∑
j,k

cjkγ̇jγk +
∑
j,k

cjkγj γ̇k = 0. (1.5)

Since the last two terms are zero, the identity∑
j,k

ċjkγjγk = 0 (1.6)

holds, which implies that γ is tangent to all regular dual quadrics of the pencil λc + µċ.
The tangent planes of Φ in points of a generating conic c are common tangent planes of
the pencil λc+µċ. The developable surface Dc(t) is rational of class 4. In the general case,
namely case A of Thomsens classification (see below), Dc(t) contains γ as double plane.

The derivative of (1.6) is∑
j,k

c̈jkγjγk +
∑
j,k

ċjkγ̇jγk +
∑
j,k

ċjkγj γ̇k = 0. (1.7)

Let p be the point of contact between γ and any arbitrary regular dual quadric of λc+µċ.
Its homogeneous coordinates are

pj =
∑

k

ċjkγk = −
∑

k

cjkγ̇k, j = 0, 1, 2, 3 (1.8)

By the way, p is also the pole of g with respect to c, considered as a planar curve in γ, see
Figure 1.2. Equation (1.7) can be read as∑

j,k

c̈jkγjγk + 2
∑

j

pj γ̇j = 0, (1.9)

which leads to a characterization of parabolic conic surfaces.

Lemma 1.1 Let c be a regular conic on Φ = {c(t), t ∈ I}. Let c, ċ be linearly independent,
and also let γ and γ̇ be independent in I. The conic surface is parabolic in c if and only if
the tangent line T = λC + µĊ is an asymptotic line of M .

Proof: If p ∈ c it follows with (1.9) that γ is tangent to c̈, and further to all quadrics
of the linear system λc + µċ + νc̈. Translating this fact to P9 it follows that the linear
subspace E = C ∨ Ċ ∨ C̈ is tangent to M in C. If E is a plane, the tangent line T = C ∨ Ċ
is an asymptotic line of M . Otherwise (C, Ċ, C̈) are linearly dependent, such that C is an
inflection point of C(t) and T is again an asymptotic line of M .

Conversely, let T be an asymptotic line of M . Either E = C ∨ Ċ ∨ C̈ span a plane,
which is tangent to M or these points are linearly dependent, such that C is an inflection
point of C(t). In both cases λC+µC̈ is a tangent line of M . It follows that the developable
defined by λc+ νc̈ contains γ and c̈ is tangent to γ. Formula (1.9) implies that p ∈ c. �



The following local classification of conic surfaces is due to Thomsen [48]. It is based
on the discussion of intersection points of the tangent line T = λC(t) + µĊ(t) with M .
Inserting a representation of T into an equation of M results in a polynomial ϕ of degree
4 in the homogeneous projective parameter (λ : µ). Since T is tangent to M , µ is a double
zero of ϕ, such that T intersects M in general in two other points B1 and B2. Let us
list the following cases, where A–C correspond to elliptic and hyperbolic conics, and D–F
correspond to parabolic conics on a conic surface.

A The polynomial ϕ possesses two distinct further zeros. Corresponding to them are
two different regular conics b1 and b2. The developable Dc is irreducible of class 4
and possesses γ as double plane.

B The polynomial ϕ possesses a further double zero, such that b1 = b2 = b. The conic b
is always regular. Further Dc contains a rational developable of class 3 and a pencil
of planes, passing through the line β ∩ γ, where β is the plane containing b.

C The tangent line T intersects M in a further singular point, which corresponds to a
singular conic b, namely to a pair of bundles of planes. The developable Dc contains
a quadratic cone and two pencils of planes. These pencils pass through the tangent
lines of c through p.

D The polynomial ϕ possesses µ as a triple zero and a further zero, which leads to a
regular conic b in the pencil of quadrics λc+µċ. The tangent line T is an asymptotic
line of M . The point of contact p, at which the quadrics λc+ µċ are tangent to γ is
contained in c. The developable Dc is of class 4.

E The polynomial ϕ possesses µ as only zero. The tangent line λC + µĊ is a special
asymptotic line of M , such that p ∈ c.

F The polynomial ϕ is identically zero for all (λ : µ), such that the tangent line λC+µĊ
is contained in M . All quadrics of the pencil λc+µċ are conics, contained in a pencil
of planes, passing through g. They possess the common point p and the common
tangent line g.

The local differential geometry of conic surfaces is well studied, mainly with respect to
the projective linear group PGL(P3). For details on this topic the reader is referred to [48],
[9] and [10]. In this report, surfaces generated by a real, rational one parameter family of
conics c(t) shall be studied from a more algebraic point of view.

Definition: A one parameter family of conics is called rational, if cjk are rational functions.
This implies that C(t) is a rational curve on M .

Since cjk are only determined up to a non zero real factor, let assume that these functions
are polynomials ∈ R[t]. Furthermore, a conic c(t) is called real, if c(t) contains real points
for each real parameter t. The number of real points has to be ≥ 2.



Figure 1.2: Local properties of an ell./hyp. conic surface

It shall be proved that these surfaces Φ possess rational parametrizations. In the first
step it shall be shown that there exist rational curves f(t) on Φ, which are different from
the generating conics c(t) and possess the following property. For all t ∈ R the point
f(t) is contained in the conic c(t). In the second step each conic c(t) can be rationally
parametrized, for instance in a parameter u, using stereographic projection with center
f(t). This will be described in Section 1.4.

1.2 Local Coordinate Systems

In local differential geometry one studies objects with help of moving frames. For conic
surfaces this is done in [9], [10]. Since we are only studying surfaces, defined by rational
functions cjk(t), the coordinate transformations and the frames are restricted to be rational.
Let us start with the elliptic and hyperbolic case. They shall be treated simultaneously
since they only differ in the reality of the intersection points c ∩ g.

1.2.1 Elliptic and Hyperbolic Conic Surfaces

Let Φ be an elliptic or hyperbolic conic surface, defined by a rational one parameter family
of conics c(t). Let c(t) be an arbitrary, but fixed conic of Φ. The following construction
is depending on the parameter value t, but we avoid to write this if it is not explicitly
necessary.

A projective frame (p, q, r, s, e) shall be defined, where p, q, r are contained in γ, s 6∈ γ
and e is an appropriate unit point. Instead of the point e one can use an appropriate
normalization of the homogeneous coordinates of the points p, q, r and s. Let p be the pole
of g with respect to c in γ, defined by formula (1.8), and further let p, q and r be points of
a polar triangle of c. This means that q and r are contained in g and are conjugate with
respect to c, see Figure 1.2. From formula (1.8) it follows that p(t) is a rational curve.
Further q(t) and r(t) can be chosen rationally.



The polarity with respect to any dual quadric of the pencil λc + µċ maps g to a line
h, passing through p. If c is of Thomsen type A let b1, b2 be conics in this pencil. They
intersect h in two, not necessarily distinct, points h1 and h2. The fourth vertex s of the
frame is usually chosen to be contained in h and determined by cr(p, s, h1, h2) = −1. So
also s is projectively invariant connected with the conic surface. Further s is uniquely
determined even in the cases B, C of Thomsens classification (see [9]).

For our purposes this special choice of s is not necessary, such that we only require
s /∈ γ, but s(t) rational. Let Xj and x̄j be coordinate vectors of planes and points with
respect to the frame (p, q, r, s, e). The conic c, interpreted as set of tangent planes is given
by the equation

c0X
2

0 + c1X
2

1 + c2X
2

2 = 0. (1.10)

The practical calculation reads as follows and shall be split up into two steps. Firstly let
γ be the plane x̄3 = 0. Coordinate vectors of planes are transformed by X = X ′T , where
X ′ are the transformed coordinate vectors and the transformation matrix is

T = (tjk) =


γ3 0 0 0
0 γ3 0 0
0 0 γ3 0
γ0 γ1 γ2 γ3

 . (1.11)

The conic c is represented by an equation X ′TCT TX ′T = 0, which is just a polynomial in
X ′

0, X
′
1, X

′
2. Note that this coordinate transformation restricted to γ is just the projection

onto x3 = 0 and of course does not work for zeros of γ3.
In the second step the construction is restricted to the plane γ. A coordinate transfor-

mation is defined by choosing p, q and r to be frame points.
The vertex p is the pole of g with respect to c, and the remaining vertices q and r are

contained in g. Let η be an arbitrary line in γ passing through p, for instance given by
(0,−p2, p1), where pi are planar coordinates of p in γ. Let q be the pole of η with respect
to c and r = g ∩ η. Then ζ = p× q is a conjugate line to η with respect to c and it is the
polar line to r. The now described coordinate transformation is given by the matrix

S = (sjk) =


g0 g1 g2 0
η0 η1 η2 0
ζ0 ζ1 ζ2 0
0 0 0 1

 . (1.12)

Further the equation of the conic c is transformed to

c(t) : X C X
T

= c0X
2

0 + c1X
2

1 + c2X
2

2 = 0, (1.13)

with C = (ST )C(ST )T . Since S and T possess only rational entries, cj are assumed to
be polynomials in t. Representation (1.13) is not unique, since q and r are just required
to be conjugate points on g with respect to c. Additionally, (1.13) defines c(t) as set of
tangent lines in the plane γ, where lines in γ are represented by homogeneous coordinates
(X0, X1, X2). This interpretation will be used for the construction of rational parametriza-
tions of Φ.
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Figure 1.3: Local coordinate system of a parabolic conic surface

1.2.2 Parabolic Conic Surfaces

Let Φ be a conic surface, defined by polynomials cjk(t). Let c be a parabolic conic. We
choose a frame (p, q, r, s, e) such that p, q, r are in γ, s /∈ γ and e is an appropriate unit
point. Instead of e again we could use an appropriate normalization of the homogeneous
coordinates of p, q, r and s.

Since p ∈ c, the points p q and r do not form a polar triangle. The first step which is
the transformation given by T , is analogously to the elliptic/hyperbolic case. To determine
S, one may proceed as follows. Let η be an arbitrary line passing through p, but η 6= g.
The pole of η with respect to c is q ∈ g. Further let ζ be the second tangent line to c
passing through q, (see Figure 1.3). The third vertex of the frame is r = η ∩ ζ. The
matrix S corresponding to this coordinate transformation possesses equivalent entries as
in (1.11), namely the rows of S are the coordinate vectors of g, η and ζ. This results in a
representation of c of the form

c02X2X0 + c11X
2

1 = 0. (1.14)

The point representation, which looks like the representation of a parabola in an affine
plane, but written in homogeneous coordinates, reads as

c11x̄0x̄2 + c02x̄
2
1 = 0. (1.15)

Note that the condition p ∈ c can be true just for finitely many values tj, but also for a non
empty interval. Consider a conic surface Φ generated by a rational family of parabolic con-
ics c(t), such that p ∈ c is an identity in an interval. Obviously Φ possesses rational curves,
for instance p(t). Rational parametrizations are constructed with help of a stereographic
projection, described in Section 1.4.

1.3 Rational One Parameter Families of Conics in the

Plane

Analogously to rational conics in P3 we need the following definition for planar families.



Definition: We call c(t) ⊂ P2 a rational one parameter family of conics, if a representation
of c(t) exists, such that the coefficients of the defining equation are rational functions.

LetX, Y and Z be homogeneous coordinates of points or lines in P2. By rational coordinate
transformations we may assume that c(t) is given by

c(t) : X2L(t) + Y 2M(t) + Z2N(t) = 0, (1.16)

where L,M and N are considered to be polynomials in R[t].
Under the assumption that c(t) possesses real points and is an irreducible conic for

almost all t except finitely many values, we will prove that there exist real polynomials
x(t), y(t) and z(t), which satisfy (1.16) identically and (x, y, z)(t) 6= (0, 0, 0). Firstly, we
prove the following.

Corollary 1.1 Let L, M and N be polynomials in R[t] \ 0 which satisfy the following
assumptions.

1. The polynomials L, M and N define by (1.16) a one parameter family of conics,
which possess real points (# ≥ 2) for all real t.

2. The polynomials L, M and N possess constant signs for all real t.

3. The polynomials L, M and N do not have multiple zeros. Further, neither L and
M , nor L and N nor M and N possess common zeros.

Then, there exist polynomials x(t), y(t) and z(t) in R[t], which satisfy (1.16) identically
and (x, y, z)(t) 6= (0, 0, 0).

The assumptions say that c(t) is a regular conic for almost all t ∈ R. For finitely many,
the conic c(t) may degenerate to a pair of lines or a double line. The polynomials L, M
and N possess even degrees, say 2l, 2m and 2n. The zeros of L, M and N shall be denoted
by

ρ1, . . . , ρ2l, σ1, . . . , σ2m and τ1 . . . τ2n ∈ C \ R.

Let

x(t) = x0 + x1t+ . . .+ xp−1t
p−1 + xpt

p,

y(t) = y0 + y1t+ . . .+ yq−1t
q−1 + yqt

q, (1.17)

z(t) = z0 + z1t+ . . .+ zr−1t
r−1 + zrt

r.

with (p+ q+ r)+3 unknown real coefficients and unknown degrees p, q and r. We will see
soon that the degrees shall be chosen to be

p = m+ n, q = l + n, r = l +m. (1.18)



For simplicity, let τ ∈ {τ1, . . . , τ2n} be a zero of N . Analogously, let ρ and σ be zeros of L
and M , respectively. Evaluating (1.16) at these zeros leads to

x(τ)2L(τ) + y(τ)2M(τ) = 0, (1.19)

y(σ)2M(σ) + z(σ)2N(σ) = 0, (1.20)

x(ρ)2L(ρ) + z(ρ)2N(ρ) = 0. (1.21)

If sgn(L(τ)) = sgn(M(τ)) the first equation (1.19) factorizes to(
x(τ)

√
L(τ) + iy(τ)

√
M(τ)

)(
x(τ)

√
L(τ)− iy(τ)

√
M(τ)

)
= 0. (1.22)

Otherwise it factorizes to(
x(τ)

√
L(τ) + y(τ)

√
M(τ)

)(
x(τ)

√
L(τ)− y(τ)

√
M(τ)

)
= 0. (1.23)

Analogously equations (1.20) and (1.21) can be factorized. Depending on the signs of L and
M , equation (1.19) is satisfied if one of the factors in (1.22) or (1.23) is zero. To determine
the coefficients xi, yj and zk, we insert the expressions(1.17) into one of the factors of
(1.22) or (1.23). And we do this for all zeros ρi, σj and τk of the given polynomials. These
are 2(l +m + n) linear homogeneous equations in 2(l +m + n) + 3 unknowns x0, . . . , xp,
y0, . . . , yq and z0, . . . , zr.

The coefficients of this linear system are complex. But since the zeros appear in con-
jugate pairs (τ, τ̄), for instance, we can form linear combinations to obtain a real linear
system. Another possibility would be to split up each equation into its real and imaginary
part.

The solutions of this linear system form an at least 3–dimensional linear space. In the
case of maximal rank the solutions can be parametrized by

xi = xi0u0 + xi1u1 + xi2u2, for i = 0, . . . , p, (1.24)

yj = yj0u0 + yj1u1 + yj2u2, for j = 0, . . . , q, (1.25)

zk = zk0u0 + zk1u1 + zk2u2, for k = 0, . . . , r, (1.26)

with parameters u0, u1 and u2. Now, consider the polynomial

P (t) : x(t)2L(t) + y(t)2M(t) + z(t)2N(t).

It is of degree ≤ 2(l +m+ n) in t and, as polynomial in t, it possesses 2(l +m+ n) zeros
at ρi, σj and τk. It clearly depends also on u0, u1, u2. If deg(P ) < 2(l + m + n) we are
already done and (x, y, z)(t) is a solution.

Otherwise, let L0, M0 and N0 be the trailing coefficients of the polynomials L, M and
N , and (L0,M0, N0) 6= (0, 0, 0). The trailing coefficient of P is

d = (
2∑

α=0

x0αuα)2L0 + (
2∑

β=0

y0βuβ)2M0 + (
2∑

γ=0

z0γuγ)
2N0.



Consider the projective plane with coordinates u0, u1 and u2. If x0α, y0β and z0γ are all
zero, P possesses a further zero at t = 0, since x, y and z possess the common factor
t. Otherwise, d = 0 is a quadratic curve and can be obtained by transforming the conic
c(t = 0) under  X

Y
Z

 =

 x00 x01 x02

y00 y01 y02

z00 z01 z02

 ·
 u0

u1

u2

 ,
which proves that d = 0 has real points. We choose (u0, u1, u2) to be a real point on d = 0.
It follows that P (t) possesses a further zero at t = 0 such that it is identically zero. This
implies that (x, y, z)(t) is a non trivial solution of (1.16). �

What can be done if the assumptions of Corollary 1.1 are not satisfied. The first one is
necessary, since it says that c(t) is irreducible for almost all t and contains real points. If
the polynomials do not possess constant signs, we can reparametrize. Let us study some
examples. Let t be a quadratic function of a new parameter s. Then, L(s), M(s) and N(s)
are polynomials of even degree.

Let τ be a real zero of N(t) with odd multiplicity. Substituting t = τ + s2 causes that
s = 0 is a zero of even multiplicity for the polynomial N(s).

Let t = a and t = b be real zeros of odd multiplicities of N(t). The interval [a, b] 6= R
can be reparametrized by

t =
a+ bs2

1 + s2
, (1.27)

such that N(s) possesses 0 and ∞ as zeros with even multiplicity.
If the polynomials possess multiple or/and common zeros, we proceed as follows. Firstly,

we discuss zeros of higher multiplicities. Let the constructions be demonstrated at zeros
of N . Zeros of L and M can be treated analogously.

1. Let τ be a real zero of N with multiplicity 2k, such that N = (t − τ)2kÑ , where Ñ
is a polynomial of degree 2(n− k). This implies that (t− τ)2k has to be a factor of
x2L+ y2M , such that we set

x(t) = (t− τ)kx̃(t), and y(t) = (t− τ)kỹ(t),

where x̃(t) and ỹ(t) are polynomials of degree m+ n− k and l+ n− k, respectively.
We determine x̃(t), ỹ(t) and z(t) such that the polynomial

P̃ (t) : x̃(t)2L(t) + ỹ(t)2M(t) + z(t)2Ñ(t)

is identically zero. This leads directly to a solution of the original problem.

2. Let τ 6= τ̄ be zeros of N with even multiplicity 2k, such that N = (t−τ)2k(t− τ̄)2kÑ ,

where Ñ is of degree 2n− 4k. Choose x and y to be

x(t) = (t− τ)k(t− τ̄)kx̃(t), and y(t) = (t− τ)k(t− τ̄)kỹ(t).

Using the same arguments as above, a solution (x, y, z)(t) is constructed.



3. Let τ 6= τ̄ be zeros of N of odd multiplicity 2k + 1, such that N = (t − τ)2k+1(t −
τ̄)2k+1Ñ , where Ñ is a polynomial of degree 2n− 4k − 2. Choose

x(t) = (t− τ)k(t− τ̄)kx̃(t), and y(t) = (t− τ)k(t− τ̄)kỹ(t),

where x̃, ỹ are of degree m + n − k and l + n − k, respectively. We may determine
x̃(t), ỹ(t) and z(t) such that the polynomial P̃ (t) : x̃2L+ ỹ2M + z2(t− τ)(t− τ̄)Ñ is
identically zero.

It remains to discuss common zeros of two polynomials, for instance L and M .

1. Let τ be a real zero of L and M with multiplicity 2k, such that

L(t) = (t− τ)2kL̃(t) and M(t) = (t− τ)2kM̃(t),

where L̃ and M̃ are polynomials of degree 2(l − k) and 2(m − k), respectively. Let
z(t) = (t− τ)kz̃(t), such that z̃(t) is of degree l+m− k. We calculate x(t), y(t) and
z̃(t) such that

P̃ (t) : x(t)2L̃(t) + y(t)2M̃(t) + z̃(t)2N(t)

is identically zero. With analogous arguments as above, (x, y, z)(t) is a solution of
the original problem.

2. Let τ 6= τ̄ be common zeros of L and M with even multiplicity 2k. Let again

L(t) = (t− τ)2k(t− τ̄)2kL̃(t), and M(t) = (t− τ)2k(t− τ̄)2kM̃(t).

Choose z(t) = (t− τ)k(t− τ̄)kz̃(t) and the rest is clear.

3. Let τ 6= τ̄ be common zeros of L(t) and M(t) with odd multiplicity 2k + 1. Let

L(t) = (t− τ)2k+1(t− τ̄)2k+1L̃(t) and M(t) = (t− τ)2k+1(t− τ̄)2k+1M̃(t),

where L̃(t) and M̃(t) are polynomials of degree 2l−4k−2 and 2m−4k−2, respectively.
Multiply equation (1.16) by (t− τ)(t− τ̄), such that L(t) and M(t) possess τ and τ̄
as zeros of even multiplicity 2k + 2. Choose z(t) = (t − τ)k+1(t − τ̄)k+1z̃(t), where
z̃(t) is a polynomial of degree l +m− k − 1. We determine x(t), y(t) and z̃(t) such
that the polynomial

P̃ (t) : x(t)2L̃(t) + y(t)2M̃(t) + z̃(t)2(t− τ)(t− τ̄)N(t)

is identically zero. Using the same arguments as above a solution (x, y, z)(t) is con-
structed.

It could be necessary to repeat applying the substitutions discussed above. For instance
in the case where τ 6= τ̄ is of multiplicity 2j for L and of multiplicity 2k+ 1 for M . But in
any case the equation X2L(t)+Y 2M(t)+Z2N(t) = 0 can be reduced such that it satisfies
the conditions of Corollary 1.1.



~

Figure 1.4: Parameterization problem of a rational family of conics

Theorem 1.1 Let c(t) be a rational one parameter family of conics in P2. If c(t) contain
real points for all t, there exist polynomials x(t), y(t) and z(t), such that the point with
homogeneous coordinates (x, y, z)(t) is contained in the conic c(t) for all t.

This will be the key idea to prove the rationality and to construct rational parameteri-
zations of conic surfaces, determined by a rational one parameter family of conics in P3

(see Section 1.5). A further technique is the stereographic projection of quadrics or conics,
which shall be discussed in the following section.

1.4 Stereographic Projection

Let c be a conic in P2 and f a real point on c. Let a frame by chosen such that c as point
set is represented by the equation

c0x
2
0 + c1x

2
1 + c2x

2
2 = 0,

where (x0, x1, x2) are homogeneous coordinates of points in the plane and f = (f0, f1, f2).
Projecting c from one of its points, for instance f , to a line g with f /∈ g, is a birational
map. The inverse map σ : g → c is called stereographic projection (see Figure 1.5). With
help of the map σ one can derive rational parametrizations of conics.

Choose a line g not passing through f , for instance by g : x0 = 0. The line g shall be
parametrized by q(u) = (0, 1, u), where u is an inhomogeneous projective parameter, thus
u ∈ R ∪∞. Let a(u) be the pencil of lines passing through f , determined by

a(u) : λf + µq(u), (1.28)

where (λ, µ) is a homogeneous projective parameter on the line a(u). The intersection
points of a(u) ∩ c are obtained for parameter values µ = 0 and

λ0 = c1 + c2u
2, µ0 = −2(c1f1 + c2f2u).
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Figure 1.5: Stereographic Projection

The point f corresponds to µ = 0. Inserting (λ0, µ0) in (1.28) leads to

c : y(u) = λ0f + µ0q(u), (1.29)

which is a quadratic parametrization of c in the parameter u.
Clearly, stereographic projections can be done for quadrics of arbitrary dimension. In

the one dimensional case, the projective line or a pencil of lines are rationally equivalent
to the points of a conic c, which lead to a parametrization of c over the projective line P1.
In the higher dimensional cases it is as follows.

Let Q be a hyperquadric in Pn, defined by its real projective normal form

Q : x2
0 + . . .+ x2

p − x2
p+1 − . . .− x2

r = 0. (1.30)

The highest dimension of subspaces being contained in Q is n − p and the dimension of
the singular set is n− r− 1. Let Pr be the projective space defined by xr+1 = . . . = xn = 0
and let q = Q ∩ Pr. Then, q is a regular quadric in Pr and its equation is (1.30).

We discuss a stereographic projection of q. Let f = (1, 0, . . . , 1) be a point in Pr, we
call it northpole of q. Its tangent hyperplane τ in Pr is defined by x0 − xr = 0. Further
let π : xr = 0. Instead of π we could choose any hyperplane not passing through f . The
tangent hyperplane τ intersects q in a singular quadric η = q ∩ τ with vertex f . The set
q̃ = q \ η is called an affine quadric and our intention is to parametrize q̃ by stereographic
projection. Let α = π \ (π ∩ τ) be the affine space corresponding to π.

Let p ∈ α and g(p) be the line, joining f and p. The stereographic projection

σ : α→ q̃ (1.31)

with center f maps points p ∈ α to points g(p) ∩ q̃ and σ is bijective. This construction
leads to the following rational parametrization of an affine quadric q̃. We choose affine
coordinate functions u := (u1, . . . , ur−1) in α. Let xi be homogeneous coordinates, the
parametrization of q̃ is

(x0, x1, . . . , xr)(u) = (u2
1 + . . .+ u2

p − u2
p+1 − . . .− u2

r−1 − 1,
−2u1, . . . ,−2ur−1, u

2
1 + . . .+ u2

p − u2
p+1 − . . .− u2

r−1 + 1).
(1.32)
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Figure 1.6: Dual stereographic projection

The parametrization does not work for points in the cone η. Usually, one forms a conformal
closure α ∪ η of the affine space α and extends the stereographic projection to a bijective
map σ̄ : α ∪ η → q. To have an example, see for instance Section 3.4.

Let us return to the parametrization of q̃. We wanted to construct a parametrization of
Q, but clearly we also have to consider an affine part Q̃ of Q, and we do this corresponding
to q̃. What remains is to extend the parametrization (x0, x1, . . . , xr) to

(x0(u), x1(u), . . . , xr(u), v1, . . . , vn−r),

where v1, . . . , vn−r are affine parameters to parametrize the subspaces, contained in Q̃.

Returning to conics, the principle of duality in the projective plane P2 can be applied, to
define parametrizations of conics as set of tangent lines (see Figure 1.6).

Let c be a conic in P2, y a real tangent line. Let a frame be chosen, such that c is
represented as set of tangent lines by the equation

c0X
2
0 + c1X

2
1 + c2X

2
2 = 0,

where Xj are homogeneous coordinates of lines in P2. Completely dual to the above
discussed construction one chooses a point p not contained in y, for instance by p : X0 = 0.
The pencil of lines with vertex p shall be parametrized by line coordinates g = (0, 1, u),
where u again is an inhomogeneous projective parameter. Let a(u) be points contained in
y, defined by

a(u) : λy + µg(u). (1.33)

The tangent lines of c passing through a(u) are obtained for parameters µ = 0 and λ0 =
c1 + c2u

2, µ0 = −2(c1y1 + c2y2u). Inserting them leads to a quadratic parametrization of c
as set of tangent lines

c : t(u) = λ0y + µ0g(u). (1.34)



1.5 Rational Parametrizations of Conic Surfaces

Now we are able to construct rational parametrizations of conic surfaces Φ = c(t) deter-
mined by rational functions cjk(t). There are two different ways to study the problem.
One way is to construct a rational curve f(t) on Φ, where for all real t the curve point f(t)
is contained in the conic c(t). The rest is done by stereographic projection. This results in
a point representation of Φ. The other way is to construct a rational developable surface
F (t) of Φ, where for all real t the plane F (t) is a tangent plane of the developable surface
Dc(t). This implies that F (t) is a tangent plane of Φ. Here the rest can be done by a dual
stereographic projection. This construction represents Φ as set of tangent planes. Both
ways shall be described.

Firstly, a rational curve f(t) and further a point representation of Φ will be constructed.
Let Φ be a real conic surface of elliptic or hyperbolic type. A moving frame is constructed
and each conic possesses a local representation (1.13). Let y(t) = (y0, y1, y2)(t) be a solution
of (1.13), which represents a tangent line of c(t), contained in γ. For each fixed t0, the
polarity with respect to c(t0) maps the tangent line y(t0) to a point f(t0). Thus, f(t) is a
rational curve on Φ.

Let Φ be a parabolic conic surface, that means c(t) is parabolic for all t ∈ R. Then
p(t), the pole of g(t), already defines a rational curve on Φ.

Theorem 1.2 A conic surface defined by a real, rational family of conics c(t) possesses a
rational curve f(t) with the property that for all t ∈ R the curve point f(t) is contained in
the conic c(t).

To obtain a rational parametrization of Φ, one just has to apply a stereographic projection
to each conic c(t) with center f(t).

Let us study the second way and let Φ be of elliptic or hyperbolic type. This con-
struction is illustrated in Figure 1.7. Again let y(t) = (y0, y1, y2)(t) be a solution of (1.13),
which represents a tangent line of the conic c(t), contained in the plane γ. Considering
c(t) as set of tangent planes, there passes a pencil of tangent planes through y(t), which is
denoted by Y (t, λ). We want to construct a tangent plane F (t) for all t, which is contained
in this pencil and is tangent to Φ. This implies that F (t) has to be tangent to the quadric
ċ(t). That means, calculate the tangent planes to ċ(t), passing through the line y(t). Since
one solution, namely γ is already known, the remaining F (t) is linearly constructed in λ
and thus rational in t. Further, F (t) is contained in the developable Dc(t), for all t ∈ R.

Let Φ be a parabolic conic surface. Let g(t) be the tangent line of c(t) in p(t). Since
ċ(t) is tangent to γ(t), there is no further tangent plane to ċ(t) through g(t). So we take
an arbitrary tangent line η(t) of c(t), which is rational in t and p /∈ η. Then η(t) carries
two tangent planes of ċ(t). One of them is γ(t) and the remaining tangent plane F (t) to
ċ(t) is rational in t and for all t ∈ R, the plane F (t) is tangent to Dc(t).

Theorem 1.3 A conic surface Φ defined by a real, rational family of conics c(t) possesses
a rational one parameter family of tangent planes F (t), which form a developable surface.
The tangent plane F (t) is contained in Dc(t), for all t ∈ R.



Figure 1.7: Construction of a rational tangent plane

To obtain the entire parametrization of Φ as set of tangent planes, one just has to apply
the dual stereographic projection, to parametrize c(t) as set of tangent lines in the plane
γ. Let these tangent lines be denoted by y(t, u). Further, the tangent planes of Φ passing
through y(t, u) are constructed, analogously denoted by F (t, u), as described above. This
results in a rational parametrization of Φ as set of tangent planes.

It depends on the kind of the application, which way will be preferable.

Theorem 1.4 A conic surface Φ defined by a real, rational one parameter family of conics
c(t) possesses rational parametrizations over an interval, where c(t) is of fixed type. Since
Φ is an algebraic surface, the entire surface Φ possesses rational parametrizations.

Remark: In algebraic geometry it is known that a rational one parameter family of
(irreducible) conics is a rational surface (see [45], p.73 f). This follows from Tsen’s Theorem
which states that an equation F (x1, . . . , xn) = 0 of degree m < n in xi, whose coefficients
are polynomials in one variable t, has a polynomial solution xi = pi(t), i = 1, . . . , n.

But since this solution pi(t) is in general not a real curve, this method will not lead
to real parametrizations of real conic surfaces, immediately. A reparametrization, which
should produce a real parametrization of a real surface, seems to be not easy.

The construction we gave above always produces real parametrizations for real surfaces.
Further, in case of Tsen’s Theorem one has to solve a possibly large polynomial system,
whereas in our case the problem is split up. Firstly, one calculates the roots of polynomials
of simpler form and secondly one solves a linear system.



Example: Let a conic surface Φ be given by XC(t)XT = 0, where C(t) is the 4×4 matrix
(1 + t2)2 (1 + t2)2 2(1 + t2)(t2 − 1)2 (1 + t2)t(−3 + t2)
(1 + t2)2 0 2(1 + t2)(t2 − 1)2 (1 + t2)t(−3 + t2)

2(1 + t2)(t2 − 1) 2(1 + t2)(t2 − 1)2 3(t− 1)4(t+ 1)4 2(t2 − 1)2t(−2 + t2)
(1 + t2)t(−3 + t2) (1 + t2)t(−3 + t2) 2(t2 − 1)2t(−2 + t2) t2(t2 − 1)(t2 − 5)

 ,
and X = [X0, X1, X2, X3] are homogeneous coordinates of planes in P3. This surface is
generated by transforming the conic

−X2
0 +X2

1 − 4X0X2 − 3X2
2 = 0

under a transformation, given by

X = X ′


1 + t2 1 + t2 0 t(1 + t2)

0 1 + t2 0 0
0 0 (1− t2)2 −2t
0 0 2t (1− t2)2

 .
Here, X ′ are coordinates of the transformed plane. Since, for small t this transformation
is near a rotation, the displayed surface of Figure (1.8) looks similar to a torus. The plane
γ carrying the conic c is γ = [−t(t2 − 1)2, 0, 2t, (t2 − 1)2]. The next step is to change the
coordinate system. So we apply a transformation, according to (1.11), which is given by

T =


(t2 − 1)2 0 0 0

0 (t2 − 1)2 0 0
0 0 (t2 − 1)2 0

−t(t2 − 1)2 0 2t (t2 − 1)2

 .
This yields that TCT T is of the form

TCT T =


(1 + t2)2 (1 + t2)2 2(t4 − 1)2 0
(1 + t2)2 0 2(t4 − 1)2 0
2(t4 − 1)2 2(t4 − 1)2 3(t2 − 1)4 0

0 0 0 0

 .
The intersection line g = γ ∩ γ̇ possesses the plane homogeneous coordinates

g =
[
(t2 − 1)3, 0, 2(3t2 + 1)

]
.

Further we calculate two conjugate lines η, ζ to g. Let, for instance, η be

η =
[
2(t2 − 1)2(t4 + 12t2 + 3),−2(t2 − 1)2(3t2 + 1),−(1 + t2)(t4 + 12t2 + 3)

]
.

We apply the transformation, given by the matrix S (see (1.12)) and obtain the diagonal
form (1.13). We prefer here to convert to the point representation of c. Let x0, x1, x2 be
homogeneous coordinates of points in γ, we obtain

−x2
0(1 + t2)2(t4 + 12t2 + 3)2 + x2

1 + x2
2(t

4 + 18t2 + 5)(t4 + 6t2 + 1) = 0. (1.35)



To solve this equation, we substitute

x0 = x̃0

x1 = x̃1(1 + t2)(t4 + 12t2 + 3)

x2 = x̃2(1 + t2)(t4 + 12t2 + 3)

and it remains the already factorized equation

(x̃0 + x̃1)(x̃0 − x̃1) = (t4 + 18t2 + 5)(t4 + 6t2 + 1)x̃2
2.

We see that
x0 = 1, x1 = (1 + t2)(6t2 + 2), x2 = 1 + t2

is a solution of (1.35). Applying a stereographic projection (1.29) we obtain polynomials
(y0, y1, y2)(t, u), which are a parametrization of the one parameter family of conics (1.35).
Transforming back to the original coordinate system we get

(ST )−1(y0, y1, y2, 0)(t, u),

which is a parametrization of the conic surface Φ in homogeneous point coordinates. Figure
(1.8) shows parameter lines of a segment of the surface. The parameter t varies in the
interval [−0.5, 0.5].



Figure 1.8: Conic surface



Chapter 2

One Parameter Families of Quadratic
Cones

In this chapter we study geometric properties of surfaces which are envelopes of one pa-
rameter families of quadratic cones. In particular we will study real rational families and
will prove that their envelope is a rational surface.

2.1 Geometric Properties of Envelopes of Quadratic

Cones

Let P3 be projective 3–space. A regular duality or correlation in P3 maps planes to points
and the set of lines of P3 to itself. If we apply such a mapping to the tangent planes of a
conic (in the sense of chapter 1), we obtain a quadratic cone as point set. This proves that
envelopes of a one parameter set of quadratic cones are dual to conic surfaces in the sense
of projective geometry and they can be treated completely analogously to conic surfaces.

With respect to a fixed coordinate system, points x and planes X are represented by
their coordinate vectors (x0, . . . , x3) and (X0, . . . , X3), respectively. A quadratic equation

c :
3∑

j,k=0

cjkxjxk = 0, cjk = ckj, (2.1)

defines a quadratic cone, if the matrix C = cjk possesses rank 3. Rank 2 defines a pair of
planes, rank 1 a double plane.

Considering cjk as functions of a parameter t, a one parameter family of quadratic cones
is defined. We can map them to a curve C(t), contained in a manifold M in P9. Let C(t)
is a smooth curve on M , such that the corresponding quadratic cones envelop a surface Φ.
Each quadratic cone c(t) is tangent to the envelope Φ in points of the intersection curves
dc(t) of the pencils of quadrics λc(t) + µċ(t). The curves dc(t) are called characteristic
curves.
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Let v(t) be the vertex of c(t). The homogeneous coordinates (v0, . . . , v3) are solutions
of the homogeneous linear system

3∑
k=0

cjkxk = 0, for i = 0, 1, 2, 3. (2.2)

If v and v̇ are linearly independent, the vertices v define a curve. Its tangent lines are
g = v ∨ v̇. Depending on the number 0, 1 or 2 of real tangent planes of c, which pass
through g, the corresponding envelopes and the corresponding quadratic cones are called
elliptic, parabolic and hyperbolic. Note that this is a local property of a cone c and its
derivative quadric ċ.

The vertex v satisfies
∑

k cjkvk = 0, for j = 0, . . . , 3, and also
∑

jk cjkvjvk = 0 identically
in t. The derivative with respect to t is∑

jk

ċjkvjvk +
∑
jk

cjkv̇jvk +
∑
jk

cjkvj v̇k = 0. (2.3)

Since the last two terms are zero, the identity∑
jk

ċjkvjvk = 0 (2.4)

holds, which implies that v is a common point of all quadrics of the pencil λc + µċ. The
derivative of (2.4) is ∑

jk

c̈jkvjvk +
∑
jk

ċjkv̇jvk +
∑
jk

ċjkvj v̇k = 0. (2.5)

Let
ϕj =

∑
k

ċjkvk = −
∑

k

cjkv̇k (2.6)

be the homogeneous coordinates of the plane ϕ, which is tangent to each arbitrary regular
quadric of the pencil λc+ µċ in the point v. Inserting (2.6) into (2.5) leads to∑

jk

c̈jkvjvk + 2
∑

j

ϕj v̇j = 0. (2.7)

Completely dual to Lemma (1.1) one finds that the parabolic quadratic cones correspond
to the asymptotic tangent lines of the manifold M .

A classification according to the singularities and multiplicities of intersection points of
the tangent line T (t) = λC(t) + µĊ(t) with M is analogous to that one for conic surfaces.
The developable Dc just is replaced by the curve dc, pencils of planes by points of a line,
and so on.



v

Figure 2.1: Local frame of a one parameter family of ell./hyp. quadratic cones

2.2 Local Coordinate Systems

As in the previous chapter it is again necessary to transform c(t) to an appropriate coor-
dinate system. Completely analogously one finds a frame, defined by planes ϕ, ψ, ρ, σ and
ε, which is connected with Φ invariantly under transformations of PGL(P3). In particular
we want to study rational families of quadratic cones.

Definition: We call c(t) ⊂ P3 a rational one parameter family of quadratic cones if a
representation exists such that the defining equation possesses only rational coefficients.

So we use only those rational projective transformations which preserve rational equations.

2.2.1 Elliptic and Hyperbolic Types

A projective frame will be determined, where ϕ, ψ and ρ pass through v and of course,
v /∈ σ. Further, ε is an appropriate unit plane. The choice of ε can be replaced by
normalizing the coordinate vectors of ϕ, ψ, ρ and σ.

Let v be the origin of the frame. Further let ϕ, ψ and ρ be pairwise conjugate planes
with respect to c, which means that, for instance, the intersection line ϕ ∩ ψ is the polar
line to ρ. Let x̄j and X̄j be homogeneous coordinates of points and planes with respect to
this frame. Then the quadratic cone c is given by the equation

c1x̄
2
1 + c2x̄

2
2 + c3x̄

2
3 = 0. (2.8)



This coordinate transformation shall be described by two steps. Firstly, let v be the origin
of the new frame. This is done by a transformation T = tjk, such that the coordinate
vectors of points are transformed as x = Tx′, and T is

T = (tjk) =


v0 0 0 0
v1 v0 0 0
v2 0 v0 0
v3 0 0 v0

 . (2.9)

It follows that x′TT TCTx′ = 0 is just a quadratic polynomial in x′1, x
′
2 and x′3. Of course,

for zeros of v0 the transformation is not defined.
In the second step the construction is restricted to the bundle v. Let ϕ be the polar

plane to g = v ∨ v̇, given by (2.6). The remaining planes ψ and ρ have to pass through
g. Since v0 6= 0 one may restrict the construction to the plane ω : x0 = 0. Let p = g ∩ ω
and q, r be vertices of a polar triangle of c(t) ∩ ω. Clearly p = (0, v̇1, v̇2, v̇3) and let q be
contained in ϕ ∩ ω, for instance by the choice q = (0,−v̇2, v̇1, 0). Further r is constructed
as intersection point of the polar lines to p and q with respect to c(t) ∩ ω, see Figure 2.1.

The second step of the coordinate transformation is given by the matrix

S = (sjk) =


1 0 0 0
0 r1 q1 p1

0 r2 q2 p2

0 r3 q3 p3

 ,
and coordinates are transformed by x′ = Sx̄. Further the equation of the quadratic cone
c is transformed to

c : x̄T C̄x̄ = c1x̄
2
1 + c2x̄

2
2 + c3x̄

2
3 = 0, (2.10)

where C̄ = (TS)TCTS. Since S and T possess only rational entries, cj are assumed to
be polynomials in t. Equation (2.10) can be considered as equation of a conic c̃, which is
contained in ω : x̄0 = 0 and obtained for c̃ = ω∩c. This interpretation will be used when we
construct rational parametrizations of rational one parameter families of quadratic cones.

2.3 Rational Parametrizations

Analogously to conic surfaces, one constructs rational parametrizations of surfaces Φ, en-
veloped by a real, rational one parameter family of quadratic cones c(t). Let Φ = c(t) be
of elliptic or hyperbolic type. Let v(t) be the vertices of the cones c(t). Further, a local
frame is used, constructed by transformations T and S according to Section 2.2, such that
each quadratic cone c(t) is represented with respect to this frame by an equation

c(t) : x̄2
1c1(t) + x̄2

2c2(t) + x̄2
3c3(t) = 0. (2.11)

One may interpret (x̄1, x̄2, x̄3) as homogeneous projective coordinate vectors of lines in the
bundle v, or of points in plane ω : x̄0 = 0. Applying the construction demonstrated in



Section (1.3) results in polynomials (y1, y2, y3)(t) which satisfy (2.11) identically. These
polynomials define a generating line y(t) of each quadratic cone c(t), we call it a rational
generator. But the solution (y1, y2, y3)(t) also defines a point in the conic c(t) ∩ ω and we
will call it a rational point.

Analogously to the case of conic surfaces there are two ways to construct rational
parametrizations of Φ. Firstly, the rational generator line y(t) is mapped under the polarity
with respect to c(t) to a rational tangent plane Y (t) of the quadratic cone c(t). This one
parameter family of tangent planes Y (t) form a rational developable surface, which is
tangent to the envelope Φ.

Corollary 2.1 An envelope of a real, rational one parameter family of quadratic cones c(t)
possesses a rational developable surface determined by a one parameter family of tangent
planes Y (t). For each fixed t ∈ R the tangent plane Y (t) is tangent to the cone c(t).

Let us derive the entire parametrization of Φ. Each quadratic cone possesses a rational
tangent plane Y (t). One has to apply a stereographic projection to c(t), to obtain a
rational parametrization. This can be done as follows. The intersection lines of tangent
planes Y (t) with ω are tangent lines of the conic c(t) ∩ ω. Apply the dual stereographic
projection (1.34) to construct a rational parametrization of c(t)∩ω as set of tangent lines,
denoted by z(t, u). Connecting these tangent lines with the vertices v(t) results in tangent
planes Z(t, u). These planes are already a dual rational parametrization of Φ.

In the second way one intents to construct a point representation of Φ. The cone c(t) is
tangent to Φ in points of the characteristic curve dc(t) = c(t)∩ ċ(t). Let y(t) be a rational
generator line of c(t) which intersects ċ(t) in v(t) and a further point f(t). This implies
that f(t) defines a rational curve on the envelope Φ, which possesses the property that for
each t ∈ R the curve point f(t) lies on the characteristic curve dc(t).

Corollary 2.2 An envelope of a real, rational one parameter family of quadratic cones
c(t) possesses a rational curve f(t). For all t ∈ R, the curve point f(t) is contained in the
characteristic curve dc(t).

To obtain a parametrization of the entire envelope, one intersects the rational generator
line y(t) with ω and applies a stereographic projection with center y(t) ∩ ω to construct
a rational parametrization of the conic c(t) ∩ ω in a real parameter u. This results in
a rational representation of all generator lines y(t, u) of the cones c(t). The intersection
points z(t, u) = y(t, u) ∩ ċ(t) are the points of contact of c(t) and Φ. This implies that
z(t, u) is a rational parametrization of Φ as set of points.

Theorem 2.1 The envelope Φ of a real, rational one parameter family of quadratic cones
c(t) possesses rational parametrizations over an interval, where c(t) is of fixed type. Since
Φ is an algebraic surface, the entire surface Φ possesses rational parametrizations.

Next, we will study a special subclass of conic surfaces in projective and Euclidean 3–space,
denoted by P3 and R3, respectively.



Let Φ be a conic surface of Thomsen type C in P3, which is characterized by the property
that the developable surface tangent to Φ in points of a generating conic c ⊂ γ contains
a quadratic cone D and further two pencils of planes. Let p be the point of contact of an
arbitrary regular quadric of the dual pencil λc + µċ with the plane γ. The two pencils of
planes from above pass through the tangent lines to c through p. The vertex v of the cone
D lies on h, the polar line to g with respect to ċ. So we can consider Φ also as envelope
of the one parameter set of quadratic cones D(t). The characteristic curves are the conics
c(t) and additionally two generator lines of D(t). These two families of lines generate two
developable surfaces, but we do not study them here in this context.

Further, such a surface Φ of type C possesses an inscribed quadric for each conic c(t)
and cone D(t). This implies that Φ can also be interpreted as envelope of a one parameter
family of quadrics q(t), where q(t) ∩ q̇(t) contains c(t) and further a quadratic rest. These
surfaces were firstly studied by Blutel [5]. See also Degen [10].

Here we only want to study the special Euclidean types of envelopes of quadrics, namely
envelopes of one parameter families of spheres, so called Euclidean canal surfaces. To do
so we will use a model, where such surfaces are represented by curves.

2.4 Euclidean Möbius Geometry

Let Rn be Euclidean n–dimensional space, let Rn+1 be n+1–dimensional Euclidean space,
such that Rn is embedded as hyperplane yn+1 = 0 ,where y1, . . . , yn+1 are Cartesian co-
ordinates in Rn+1. Further Rn+1 shall be projectively extented to Pn+1, where we use
homogeneous coordinates x0, . . . , xn+1.

Let Q be the unit hypersphere in Rn+1 represented by the equation

Q : −x2
0 + x2

1 + . . .+ x2
n+1 = 0. (2.12)

The geometry of hyperplanar intersections and points of Q is called n–dimensional Eu-
clidean Möbius geometry. Any intersection of Q by a linear subspace is called a Möbius
sphere.

Another model of Euclidean Möbius geometry can be obtained by applying an extended
stereographic projection

σ : Q→Mn = Rn ∪∞
with center N = (1, 0, . . . , 0, 1), often referred as northpole. The image of N under σ is
∞ and Mn is called conformal closure of Rn. Then, in Mn, Euclidean Möbius geometry
is the geometry of hyperspheres and hyperplanes on the one hand and points on the other
hand. The hyperplanes stem from hyperplanar intersections of Q, which pass through N .
In Mn, spheres and linear subspaces are called Möbius spheres. So we have two models
of Euclidean Möbius geometry, where Q is referred as quadric model and Mn is referred
as standard model. A detailed description of Möbius and other sphere geometries can be
found in [8].

We take a closer look to the map σ. Let p ∈ Pn+1 be a point in the exterior of Q and
let π be its polar hyperplane with respect to Q. Since any hyperplanar intersection π ∩Q



Figure 2.2: Models of Euclidean Möbius geometry

can be uniquely represented by p, we identify hyperspheres and hyperplanes in Mn with
points in Pn+1 \ Q. Note that real hyperplanar intersections correspond to points in the
exterior of Q. Let τN be the tangent space to Q in N and let p be in the exterior of Q.
We define a map µ : Pn+1 →Mn, by

µ(p) = σ(p) if p ∈ Q \N
µ(p) = π ∩ Rn if p ∈ τN \N
µ(p) = σ(π ∩Q) otherwise, but p 6= N.

At last we define µ(N) = ∞. So, µ describes the transfer from the quadric model to the
standard model. If p is in the interior of Q, the sphere µ(p) possesses a real center but the
squared radius is negative, see (2.13).

The stereographic projection σ can also be considered as central projection

σ : Pn+1 → Rn,

thus, σ can be applied also to points of Pn+1 not contained in Q. Let p = (p0, . . . , pn+1) 6=
N . The polar hyperplane π is given by the linear equation

π : −p0x0 + p1x1 + . . .+ pn+1xn+1 = 0.

If p0 6= pn+1, which means that p /∈ τN , the hypersphere µ(p) in Rn possesses σ(p) as center
and is given by the equation

µ(p) : (y1 −
p1

p0 − pn+1

)2 + . . .+ (yn −
pn

p0 − pn+1

)2 =
p2

1 + . . .+ p2
n+1 − p2

0

(p0 − pn+1)2
, (2.13)

where y1 = x1/x0, . . . , yn = xn/x0 are affine coordinates in Rn. If p ∈ τN , but p 6= N , µ(p)
corresponds to the hyperplane

π ∩ Rn : −p0 + p1y1 + . . . pnyn = 0.
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Figure 2.3: Pencil of spheres in R3 with real circle k.

On the one hand we have studied the elements of Möbius geometry, but on the other
hand it is necessary to study transformations. A Möbius transformation in the standard
model Rn is defined as bijective map both on points and on Euclidean Möbius hyperspheres.
Additionally, a Möbius transformation respects the incidence of Möbius spheres and points.

It is the main theorem of Euclidean Möbius geometry that Möbius transformations
appear in the quadric model Q ⊂ Pn+1 as automorphic projective collineations of Q. We
give a special example. Let z be a point in the exterior of Q. The perspective automorphic
collineation with center z and axis ζ, which is the polar to z with respect to Q, corresponds
to an inversion at the hypersphere µ(z), if z /∈ τN . Otherwise, if z ∈ τN , one obtains a
Euclidean reflection at the hyperplane µ(z) in the standard model.

Now we will restrict to 3–dimensional Euclidean Möbius geometry. Let c(t) in P4 be a
smooth curve. Then, the mapping µ defines a one parameter family of spheres µ(c(t)),
planes included. Our aim is to study such one parameter families and firstly, let c(t) = g
be a straight line in P4. The image µ(g) is called a pencil of spheres and depending on the
number of real intersection points of g ∩Q we have to distinguish three cases.

1. The line g intersects Q in two conjugate complex points p, p̄. The polar plane G
to g with respect to Q intersects Q in a conic, which contains real points. Further
k = σ(G ∩Q) is a circle, containing real points. The pencil of spheres µ(g) consists
of all spheres, whose centers are in σ(g) and which pass through the circle k.

2. The line g intersects Q in two real points p, q. The polar plane G to g with respect
to Q intersects Q in a conic, without any real points. Further k = σ(G ∩ Q) is a
circle, without real points. The pencil of spheres µ(g) consists of all spheres, whose
centers are in σ(g). These spheres induce in the plane σ(G) the same polarity, which
defines the circle k. Further, µ(g) contains two points σ(p) and σ(q) as limit cases of
spheres with radius zero.



3. The line g is tangent to Q in p. The pencil µ(g) consists of all spheres with centers
in σ(g) which are tangent to σ(G) in σ(p).

Let c(t) be a smooth curve in P4 ant t0 a fixed parameter value. Then, µ(c(t)) possesses
an envelope Φ in a neighbourhood of the sphere µ(c(t0)), if the tangent g = c(t0) ∨ ċ(t0)
does not intersect Q. The characteristic circle k(t0) ⊂ µ(c(t0)) is given by µ(g). If g is
tangent to Q, k(t0) degenerates to a single point. Otherwise, µ(c(t)) does not possess a
real envelope in a neighbourhood of µ(c(t0)).

2.5 Rational Canal Surfaces in Euclidean 3–Space

Let R3 be Euclidean 3–space. Points y are represented by their coordinate vectors
(y1, y2, y3) with respect to a fixed, but arbitrary frame. Let a canal surface Φ be defined
as envelope of a one parameter family of spheres S(t).

Definition: A family of spheres shall be called rational, if the defining equation of S(t)
possesses only rational coefficients.

The envelope Φ of a rational one parameter set of spheres is defined by the equations

S(t) :
3∑
1

(yj −mj(t))
2 − r(t)2 = 0 and Ṡ(t) :

3∑
1

(yj −mj(t))ṁj(t) + r(t)ṙ(t) = 0, (2.14)

where mj(t) are coordinate functions of the rational center curve m(t) of S(t). The radius
function r(t) of the spheres is not necessarily rational, but a square root of a rational
function.

The generating conics of Φ are so–called characteristic circles c = S ∩ Ṡ. The circles
contain real points, if and only if ṁ2 − ṙ2 ≥ 0. Equality holds, if the plane Ṡ is tangent to
S and c degenerates to a point. Further Φ is enveloped by a one parameter family of cones
of revolution D(t), which are tangent to Φ in points of c. The axis of D is the tangent line
of the center curve m(t).

Let λS(t)+µṠ(t) be a pencil of quadrics, where Ṡ(t) is considered to be a double plane.
The cone of revolution D(t) is a further singular quadric, contained in this pencil. The
determinant det(λS+µṠ) possesses a threefold zero at λ, which implies that D(t) is given
by an equation with rational coefficients. This proves the following Theorem.

Theorem 2.2 The real envelope Φ of a rational one parameter family of spheres S(t) can
be generated as envelope of a real rational one parameter family of cones of revolution D(t),
in the sense of Theorem 2.1.

We mention that the envelope of the one parameter family of cones of revolution D(t) also
contains two, not necessarily real developable surfaces, which are not considered in the
above Theorem. From Theorem 2.1 it is clear that Φ is a rational surface.

If we return to Möbius geometry and take the transfer mapping µ into account, we
obtain the following.
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Figure 2.4: Local properties of a canal surface

Theorem 2.3 Let c(t) in P4 be a rational curve whose tangent lines do not intersect the
Möbius quadric Q in real points. The one parameter family of spheres µ(c(t)) is a rational
family and envelops a rational canal surface.

The special case of conics c in P4 is discussed in [7]. The envelope of the one parameter
family of spheres η(c), corresponding to the conic c, is a rational canal surface of order
≤ 4. In the case of order 4, the surface passes two times through the absolute conic of
Euclidean 3–space. These canal surfaces are contained in the family of so–called Darboux
cyclides or only cyclides. A general Darboux cyclide is the envelope of a two parameter
family of spheres η(q), where q is a 2–dimensional quadric in P4.

Later, in Chapter 4, we will discuss a special case of Theorem 2.3, namely that the radius
function, defined by the family µ(c(t)), is rational too. For this, it is better to use another,
more suitable, model, namely Euclidean Laguerre space. We will prove in Theorem 4.5
that families of spheres with rational radius function envelop surfaces Φ which possess
rational offset surfaces. Further we will see that Φ possesses rational unit normals.

Remark: Analogously to 3–dimensional case we can study canal hypersurfaces in n–
dimensional Euclidean space. Let c(t) be a rational curve in Pn+1. The one parameter
family of hyperspheres µ(c(t)), with centers on the rational curve σ(c(t)), possesses a radius
function r(t), where r2(t) is rational. This means that µ(c(t)) is represented by an equation
with rational coefficients. If the tangent lines of c(t) do not intersect the Möbius quadric Q
in real points, the family µ(c(t)) envelops a real canal hypersurface Φ. The parametrization
method, described in Section 5.1, which is a straightforward generalization of that one given
in Section 1.3, proves that Φ possesses rational parametrizations.

Corollary 2.3 A real canal hypersurface in Rn, determined by a rational curve c(t) in Pn+1

whose tangent lines do not intersect the Möbius quadric Q, possesses rational parametriza-
tions.



Chapter 3

Fundamentals of Laguerre Geometry

3.1 Euclidean Laguerre Space

Let Rn be Euclidean n–space. With respect to an arbitrary Cartesian coordinate system
each point x is represented by a coordinate vector x = (x1, . . . , xn). A hyperplane e is
given by a linear equation

e0 + e1x1 + . . .+ enxn = 0.

The coefficients ei are called hyperplane coordinates, and are homogeneous coordinates in
the projective extension Pn of Rn. The vector (e1, . . . , en) is a normal vector of e. Each
coordinate vector ρ(e0, . . . , en) with ρ ∈ R \ {0} defines the same hyperplane.

Euclidean Laguerre geometry in Rn is the geometry of oriented hyperplanes and oriented
hyperspheres, including points as hyperspheres of radius zero. An oriented hyperplane is
described by a homogeneous coordinate vector ρ(e0, . . . , en), but ρ ∈ R+. Taking the nor-
malization e21 + . . .+e2n = 1 into account, any oriented hyperplane e is uniquely determined
by (e0, . . . , en). We will define the set of oriented hyperplanes as

H := {e = (e0, e1, . . . , en), ei ∈ R, e 6= (0, . . . , 0), e21 + . . .+ e2n = 1}. (3.1)

Oriented hyperspheres and points are collected to one set C and are called cycles. A cycle
c : (m1, . . . ,mn; r) is defined by its center m = (m1, . . . ,mn) and its signed radius r. Points
are obtained for r = 0. Cycles often are interpreted as set of oriented hyperplanes, such
that a cycle c is the set

c = {ρ(e0, . . . , en), ρ ∈ R+, e21 + . . .+ e2n = 1, e0 + e1m1 + . . . enmn + r = 0}. (3.2)

Both interpretations shall be used. The carrier of each cycle c is a hypersphere defined by

(x1 −m1)
2 + . . .+ (xn −mn)2 = r2.

The basic relation in Euclidean Laguerre geometry is that of oriented contact of cycle and
oriented hyperplane. A cycle c and an oriented hyperplane e are in oriented contact, if
they are tangent and the unit normals coincide at the point of contact. For a point and an
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oriented hyperplane, oriented contact equals incidence. The property of oriented contact
is defined by

e0 + e1m1 + . . .+ enmn + r = 0, (3.3)

which, of course, occurs in (3.2). Two oriented hyperplanes are in oriented contact, if their
unit normals coincide. When no ambiguity can arise, oriented hyperplanes will simply be
called hyperplanes.

Laguerre geometry is the study of properties which are invariant under Laguerre trans-
formations. A Laguerre transformation α consists of two maps

αC : C → C, αH : H → H.

These maps are bijective on C and H, respectively. Additionally, α preserves oriented
contact and non–contact between cycles c ∈ C and oriented hyperplanes ε ∈ H. For a
coordinate representation of Laguerre transformations see Section 3.2 and 3.3.

A simple, but important example of a Laguerre transformation is a dilatation λ, which
adds a constant d 6= 0 to the signed radius of each cycle and leaves its center unchanged,
such that we have

c = (m1, . . . ,mn; r) 7→ λ(c) = (m1, . . . ,mn; r + d). (3.4)

Note that λ does not preserve points. Considering a hypersurface as envelope of its oriented
tangent hyperplanes, a dilatation λ maps the hypersurface onto its one–sided offset at
distance d. This already indicates the advantage of using Laguerre geometry in connection
with surfaces and offset surfaces.

The model of Euclidean Laguerre geometry just described is also referred to as standard
model. We will study some models of Euclidean Laguerre geometry to get a better insight.
In particular, if oriented hyperplanes are of interest, the standard model is not preferable.
Additionally, the group of Laguerre transformations is easier to be understood in other
models.

3.2 The Cyclographic Model

To obtain useful coordinate representations of cycles c and oriented hyperplanes e and to
get a better insight to Laguerre transformations we do the following. Let Euclidean n–
space Rn be embedded in Rn+1 as hyperplane xn+1 = 0. For now, Rn+1 shall be considered
to be an affine space. Each oriented hyperplane e ∈ H is mapped by ζ∗ to the hyperplane
E = ζ∗(e) in Rn+1, defined by its homogeneous coordinates

ζ∗(e) = E = (e0, e1, . . . , en, 1), with e21 + . . . e2n = 1. (3.5)

Note that for each E = ζ∗(e) the Euclidean angle ∠(E,Rn) equals γ = π/4. Thus, E
is called a γ–hyperplane in Rn+1. A cycle c = (m1, . . . ,mn; r) with center m and signed
radius r is mapped to the point

ζ(c) = C = (m1, . . . ,mn, r) in Rn+1. (3.6)



Interpret c as set of tangent hyperplanes, the mapping ζ is determined by the mapping
ζ∗. All oriented hyperplanes e, which are tangent to c, are mapped to γ–hyperplanes E,
passing though the point C. That means that the property of oriented contact between
a cycle c and an oriented hyperplane e equals incidence between C and E in this model.
The coordinate representation of this property is given by (3.3). The γ–hyperplanes ζ∗(e)
that pass through ζ(c) envelope a quadratic hypercone Γ(c) with vertex ζ(c). Its generator
lines form the angle γ with Rn, see Figure 3.1.

Let Pn+1 be projective extension of Rn+1 and let ω : x0 = 0 be the ideal plane. Let Ω be
the quadric defined by

Ω : x0 = 0, x2
1 + . . .+ x2

n − x2
n+1 = 0, (3.7)

where x0, . . . , xn+1 are homogeneous coordinates in Pn+1 and we see that γ–hyperplanes
are tangent to Ω. Further, the intersection Γ(c) ∩ ω is the quadric Ω. Let a, b be two
vectors in Rn+1. The polarity with respect to Ω determines a pseudo–Euclidean (pe) scalar
product in the vector space Rn+1. It is defined by

〈a, b〉pe = aTEpeb,

where Epe = diag(1, . . . , 1,−1). By

dpe(a, b) =
√
〈a, b〉pe

a pseudo–metric or pseudo–Euclidean distance is induced in the affine space Rn+1. The
so obtained n + 1–dimensional model of n–dimensional Laguerre geometry is called cy-
clographic model. A vector space Rn+1 with a pseudo–Euclidean scalar product is often
called a Lorentz space. A vector a is said to be timelike, spacelike or lightlike, depending
on whether 〈a, a〉pe is negative, positive or zero.

A line g with timelike direction vector a is called an elliptic line. The angle ∠(g,Rn)
exceeds γ = π/4. A lightlike direction vector determines a γ–line or parabolic line and a
spacelike direction vector characterizes a hyperbolic line. Since the pe scalar product is
determined by Ω, we find equivalently to this characterization that g is an elliptic line, if
g ∩ ω is in the interior of Ω. A γ–line g is characterized by g ∩ ω ∈ Ω. Finally g is a
hyperbolic line, if g ∩ ω is in the exterior of Ω.

Let π be a subspace of Rn+1 of dimension k ≥ 2. A characterization of π is given by the
type of the polarity in π∩ω induced by the quadric Ω. The subspace π is called Euclidean,
if |Ω ∩ π| = 0. If |Ω ∩ π| = 1, that means π ∩ ω is tangent to Ω, π is said to be parabolic
or called γ–space, and otherwise π is called pseudo–Euclidean.

Let a and b be two points in Rn+1, contained in a hyperbolic line. Any common
oriented tangent hyperplane of the two cycles ζ−1(a) and ζ−1(b) touches the cycles at
points ya and yb. The Euclidean distance of d(ya, yb) equals the pe distance dpe(a, b) and
is called tangential distance of the two cycles ζ−1(a) and ζ−1(b).



For two points a, b contained in a parabolic line g, one gets dpe(a, b) = 0 and the
corresponding cycles ζ−1(a) and ζ−1(b) are tangent. Further, all cycles η(y) with y ∈ g are
tangent to a common plane in a common point which means that they possess a common
surface element.

Two points a, b on an elliptic line correspond to two cycles without common oriented
tangent hyperplanes. A tangential distance of the cycles ζ−1(a), ζ−1(b) as well as a pe
distance of the points a, b are not defined. But one may use the invariant d2

pe(a, b) < 0 of
two points on an elliptic line.

It is an important theorem of Euclidean Laguerre geometry that a Laguerre transformation
α appears in the cyclographic model as a special affine map. Using the projective extension
Pn+1 of Rn+1, α maps the quadric Ω ⊂ ω onto itself. Since Ω determines the pe scalar
product in Rn+1, Laguerre transformations are of the form

α(x) = a+ λA · x, (3.8)

where a, x ∈ Rn+1, λ ∈ R\{0} and A is a pe orthogonal matrix. These mappings are often
called Lorentz transformations. The matrix A satisfies

AT · Epe · A = Epe. (3.9)

Such an affine mapping in Rn+1 is called pe similarity. If |λ| = 1, α is called pe congru-
ence. It preserves the squared pe distance d2

pe(., .) of any two points and corresponds to a
tangential distance preserving Laguerre transformation α in Rn.

Let us look at a special example, where Laguerre transformations are used. Let π be a
Euclidean hyperplane in the projective extension Pn+1 of the cyclographic model Rn+1. It
shall be shown that there exists a Laguerre transformation α, which maps π to Rn. Firstly,
let Pn be the projective extension of Euclidean Rn. If π and Rn are parallel, α is just a
translation in Rn+1, which is obviously linear and maps Ω to itself, since α restricted to
the plane at infinity ω is the identity.

Otherwise, we take a closer look to the situation in ω. The hyperplanes π ∩ ω and
Pn ∩ ω in ω are in the exterior of Ω. Since the real projective automorphic collineation
group PGL(Ω) of a hyperquadric Ω of index 0 is transitive on the points in the interior
and in the exterior, there exists a collineation ∈ PGL(Ω), which maps π ∩ ω to Pn ∩ ω.
We can extend this collineation to a projective map in Pn+1, which fixes π ∩ Rn, and the
corresponding Laguerre transformation has the desired properties.

A Laguerre transformation α maps γ–subspaces onto γ–subspaces and pe subspaces are
mapped onto pe subspaces.

3.3 The Blaschke Model

If more emphasis is on oriented hyperplanes rather than on cycles, one might be interested
in a model where oriented hyperplanes appear as points. This can easily be done by
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Figure 3.1: Models of Euclidean Laguerre geometry

applying a duality δ : Rn+1∗ → Rn+1 (Blaschke map), which maps hyperplanes to points.
Let E be a γ–hyperplane. With respect to an appropriate coordinate system, the Blaschke
map δ is given a homogeneous coordinate representation

E = (e0, e1, . . . , en, 1) 7→ δ(E) = (1, e1, . . . , en, e0), with e21 + . . .+ e2n = 1. (3.10)

Taking the normalization in formula (3.1) into account, the set of γ–hyperplanes is mapped
to points contained in a quadratic hypercylinder ∆ ⊂ Rn+1 with equation

∆ : x2
1 + · · ·+ x2

n = 1.

This quadric possesses one dimensional generator lines, parallel to the xn+1–axis. The
images of cycles, interpreted as set of oriented tangent planes appear in ∆ as hyperplanar
sections of ∆. The points of ∆ together with its hyperplanar sections is called Blasche
model or Blaschke cylinder of Euclidean Laguerre geometry.

Let e and f be parallel oriented hyperplanes in Rn, then E = ζ∗(e) and F = ζ∗(f) are
parallel γ–hyperplanes in Rn+1. With formula (3.10) it follows that the image points δ(E)
and δ(F ) are contained in the same generator line of ∆ (see Figure 3.1).

Since a Laguerre transformation appeared in the cyclographic model as pe–similarity,
it may uniquely be extended to a projective map acting on Pn+1, which maps Ω onto itself.
This implies that δ transforms a pe–similarity to a projective automorphic map of ∆. It
is an important advantage of the Blaschke model and also of the cyclographic model, that
Laguerre transformations are represented by special projective maps in Pn+1.

One can obtain an affine space by applying a stereographic projection to ∆. Sometimes
this is preferable and is discussed in the following section.



3.4 The Isotropic Model

Let w be the generator line of ∆ containing the point W with affine coordinates
(0, . . . , 0, 1, 0) in Rn+1. Furthermore, let Rn

be the hyperplane xn = 0 in Rn+1, paral-
lel to w. In Rn

a coordinate system shall be chosen, such that the origins of Rn+1 and Rn

coincide and
y1 = x1, . . . , yn−1 = xn−1, yn = xn+1.

Let σ : ∆ \ w → Rn
be a stereographic projection with center W . Together with the

cyclographic mapping ζ∗ and the Blaschke mapping δ one obtains

σ ◦ δ ◦ ζ∗ : H → Rn
,

which maps oriented hyperplanes in Rn to points in Rn
. In coordinates it reads as

σ ◦ δ ◦ ζ∗(e) =
1

1− en

(e1, . . . , en−1, e0). (3.11)

Interpreting cycles as sets of tangent hyperplanes, we may state an important result.

Lemma 3.1 The set of tangent hyperplanes of a cycle c is mapped with σ ◦ δ ◦ ζ∗ to the
set of points of a paraboloid of revolution or a hyperplane Ψ satisfying

σ◦δ◦ζ∗(c) = Ψ : 2yn+(y2
1+. . .+y

2
n−1)(r+mn)+2y1m1+. . .+2yn−1mn−1+r−mn = 0. (3.12)

The surfaces, defined by (3.12) are called isotropic spheres. For the low dimensional case
n = 2 this is illustrated in Figure 3.1. Isotropic spheres are elementary parabolas or
straight lines. So far, oriented hyperplanes in Rn with unit normal (0, . . . , 0, 1) do not have
an image point in Rn

. This shall be improved by the so–called isotropic conformal closure
In := Rn ∪ R of Rn

. Additionally the map σ ◦ δ ◦ ζ∗ is extended to the map

Λ := σ ◦ δ ◦ ζ∗,

which maps the oriented hyperplane (e0, 0, . . . , 0, 1) ⊂ Rn onto the real number e0. To fix
the problem of missing images of exceptional oriented hyperplanes in Lemma 3.1, we have
to add the real number r+mn to the paraboloids Ψ, which equals 0 for a hyperplane Ψ. The
resulting model of Euclidean Laguerre space, where oriented hyperplanes are represented
by points and cycles appear as isotropic spheres, is called isotropic model.

Very important for our applications is the transformation Λ which describes the change
from the standard model to the isotropic model. Also the inverse map Λ−1 is of particular
interest. Let y = (y1, . . . , yn) be a point in In, the preimage in Euclidean Rn is the oriented
hyperplane given by its normalized coordinates

Λ−1(y) =
1

y2
1 + . . . y2

n−1 + 1
(2yn, 2y1, . . . , 2yn−1, y

2
1 + . . . y2

n−1 − 1). (3.13)

In In, yn–parallel lines (called isotropic lines) represent parallel oriented hyperplanes of
the standard model. For simplicity, let us now restrict to n = 3. In I3, non–isotropic



lines as well as ellipses, whose normal projection onto y3=0 are circles, and parabolas with
isotropic axis are called isotropic Möbius circles. They may be obtained as intersection of
two isotropic spheres. Thus, they are the Λ–image of the common tangent planes of two
cycles, that means the planes of a pencil or the tangent planes of a cone of revolution. This
also shows that isotropic (y3–parallel) planes as well as isotropic cylinders with a circular
cross section in y3 = 0 represent planes parallel to the planes of a pencil or to the tangent
planes of a cone of revolution.

In the isotropic model, Laguerre transformations are realized as special quadratic trans-
formations, so–called isotropic Möbius transformations. Let us consider two special cases.
A translation in the standard model, represented in hyperplane coordinates by

(e0, . . . , en) 7→ (e0 + a1e1 + · · ·+ anen, e1, . . . , en)

yields in In the transformation

(y1, . . . , yn) 7→
(
y1, . . . , yn−1, yn + a1y1 + · · ·+ an−1yn−1 +

an

2
(y2

1 + · · ·+ y2
n−1 − 1)

)
.

(3.14)
A dilatation (e0, . . . , en) 7→ (e0 + d, e1, . . . , en) appears as isotropic Möbius transformation

(y1, . . . , yn) 7→
(
y1, . . . , yn−1, yn +

d

2
(y2

1 + · · ·+ y2
n−1 + 1)

)
. (3.15)

3.5 A Dual Isotropic Model

We pick a fixed oriented hyperplane a in Rn, say xn = 0 with normal (0, . . . , 0, 1). An
arbitrary oriented hyperplane e determines a γ–hyperplane E = ζ∗(e) = (e0, . . . , en, 1). Its
intersection with ζ∗(a) = (0, . . . , 0, 1, 1) is now projected orthogonally onto Rn and yields
a (non oriented) hyperplane

Λ∗(e) = (e0, . . . , en−1, en − 1). (3.16)

It is the Euclidean bisector of e and the fixed oriented hyperplane a, namely the locus
of points possessing the same signed distance to e and a. Currently, a has no image and
the remaining oriented hyperplanes parallel to a are mapped to the hyperplane at infinity,
which shows that the projective closure is not the right one for the image space. In fact,
Λ∗ generates a dual isotropic model. To convert to the previous isotropic model, we apply
the polarity π with respect to the isotropic sphere

x2
1 + · · ·+ x2

n−1 − 2xn = 0.

Λ∗(e) is mapped to the point with inhomogeneous coordinates

π ◦ Λ∗(e) =
1

1− en

(e1, . . . , en−1,−e0).
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Figure 3.2: Anticaustic of reflection of a surface for parallel light rays

Up to a reflection at xn = 0, we get exactly Λ(e) as in (3.11). Hence, we can deduce the
properties of the present dual isotropic model from the isotropic model.

In applications discussed later, the inverse transformation (Λ∗)−1 is of particular in-
terest. Taking the normalization e21 + . . . + e2n = 1 in (3.16) into account, we find with
non–normalized homogeneous coordinates (y0, y1, . . . , yn) of the hyperplane y to be trans-
formed,

(Λ∗)−1(y) =

(
y0, . . . , yn−1,

y2
n − y2

1 − . . .− y2
n−1

2yn

)
. (3.17)

For more details on Laguerre geometry and its relation to Einstein’s theory of special
relativity, we refer to [2], [3], [4] and [8].

3.6 The Anticaustic Map

Closely related to the dual isotropic model is the anticaustic map. Let Rn be Euclidean n–
space, and a be a fixed oriented hyperplane, say xn = 0. Let Φ be a C1–hypersurface, which
is parametrized by p(u) = (p1, . . . , pn)(u) and the parameter u is u = (u1, . . . , un−1) ∈ Rn−1.
Let (m1, . . . ,mn)(u) be a not necessarily normalized normal vector of the hypersurface Φ.
Consider light rays perpendicular to a, which shall be reflected at the hypersurface Φ. Any
hypersurface, which is perpendicular to the reflected light rays, is called an anticaustic
of reflection to the given illumination. Then the anticaustics of reflection α(Φ) of the
hypersurface Φ with respect to the given light rays are parametrized by

α(Φ) : (p1, . . . , pn−1, 0)− 2(pn − c)mn

m2
1 + . . .m2

n

(m1, . . . ,mn), (3.18)

with an arbitrary constant c. The connection to the dual isotropic model is the following.
Let (y0, y1, . . . , yn)(u) be homogeneous coordinates of the tangent hyperplane of Φ, and
(m1, . . . ,mn)(u) be the normal vector of Φ as above. Then it follows immediately that



(Λ∗)−1(y) are homogeneous coordinates of the tangent hyperplanes of an anticaustic α(Φ),
see Figure 3.2.

It is not necessary that Φ is a hypersurface. Let (u1, . . . , uk) = u ∈ Rk such that p(u)
parametrizes a smooth k-dimensional manifold Ψ in Rn. What means reflecting the light
rays, perpendicular to a, at Ψ. Let Ψ be considered as set of tangent hyperplanes that
means we interpret Ψ as dual hypersurface. It can be parametrized by homogeneous plane
coordinates y(u, v), where v = (v1, . . . , vn−k−1) parametrizes the set of tangent hyperplanes
passing through a fixed point Ψ. Let m(u, v) be the surface normals of Ψ. Then we can
use formula (3.18), which maps the k-dimensional surface Ψ to an anticaustic hypersurface
α(Ψ). Additionally, formula (3.17) parametrizes an anticaustic as set of tangent hyper-
planes. An example in 3–space is the special case, discussed in Section 4.2, illustrated in
Figure 4.1.

3.7 The Cyclographic Map

Let Rn be Euclidean n–space, Rn+1 be the corresponding cyclographic model. Let C be
the set of cycles in Rn. We had the map ζ : Rn → Rn+1 in Section 3.2. Now we will study
the inverse map

η : Rn+1 → Rn. (3.19)

It maps a point x ∈ Rn+1 to a cycle η(x) with center (x1, . . . , xn) and signed radius xn+1

and is called cyclographic map. Additionally we have a map

η∗ : γ–hyperplanes → H,
E = (e0, e1, . . . , en, e

2
1 + . . . e2n) 7→ e = (e0, e1, . . . , en)

(3.20)

which maps γ–hyperplanes E to oriented hyperplanes e in Rn. Clearly, η∗ determines η
and vice versa.

It is an important question, how points p and q behave, if the cycles η(p) and η(q) are
in oriented contact.

Lemma 3.2 All points x, contained in a γ–cone Γ(p) with vertex p are mapped to cycles
η(x), which are in oriented contact to the cycle η(p) and vice versa. Further, the set of
γ–hyperplanes Ep, tangent to a γ–cone Γ(p) are mapped to oriented tangent planes η∗(Ep)
of the cycle η(p).

Let ϕ be a smooth k–dimensional manifold in Rn+1. Applying η, we obtain a k–parametric
set of cycles in Rn. The envelope of all cycles η(x), where x ∈ ϕ is called the cyclographic
image η(ϕ) of ϕ.

Consider the cyclographic image η(ϕ) as set of oriented tangent planes. Let Γ(ϕ) be the
γ–surface of ϕ, that is the envelope of all γ–hyperplanes, passing through tangent k-spaces
of ϕ. It follows from Lemma 3.2 that η(ϕ) is the intersection of Γ(ϕ) ∩ Rn. In this sense
we can denote the cyclographic image also by η∗(ϕ).

We mainly concentrate on η : R4 → R3. The sets ϕ which are mapped are smooth
curves and smooth surfaces.



3.8 The Cyclographic Image of Curves

Let R4 be cyclographic model of 3–dimensional Laguerre space R3. Let the orthogonal
projection of a set x ⊂ R4 onto R3 be denoted by x′. As first and simple case we start with
the cyclographic image of a line. Each point p ∈ g is mapped to a cycle η(p), with center
p′ ∈ g′.

Let g ⊂ R4 be a hyperbolic line. The image cycles η(p) of points p ∈ g possess a cone
of revolution Φ as real envelope with axis g′ and vertex g ∩ R3. If g is parallel to R3, the
envelope is a line or a cylinder, depending on whether the x4–coordinate of points in g is
zero or not.

The one parameter set of γ–hyperplanes E(t) passing through g intersect R3 in a set of
oriented planes e(t). These oriented planes are tangent to each cycle η(p) with p ∈ g and
are oriented tangent planes of the cone of revolution Φ.

If g is a parabolic line in R4, there is exactly one γ–hyperplane E passing through g.
Let s = g ∩R3 and e = E ∩R3. The line g′ is perpendicular to the oriented plane e. Each
point p ∈ g is mapped to a cycle, which is tangent to e in s.

If g is an elliptic line, the set of cycles η(p), with p ∈ g has no real envelope Φ. One may
use the complex extension of Euclidean 3–space. The envelope Φ is an imaginary cone of
revolution, with real vertex g∩R3 and real axis g′, such that Φ is given by a real equation.
But for our intentions this is not of particular interest.

Let C(t) be a regular C1–curve in R4, with only hyperbolic tangent lines, except isolated
parabolic ones. The cyclographic image Φ is the envelope of a one parameter family
of spheres η(C(t)), thus a real canal surface. Each cycle c(t) is tangent to Φ at the
characteristic circle k(t), which can be obtained as intersection (c ∩ ċ)(t). The hyperbolic
tangent lines C + λĊ are mapped to cones of revolution, which are tangent to Φ in points
of k(t). A parabolic tangent line is mapped to a surface element (e(t), s(t)), where e(t) is
a tangent plane and s(t) = (C + λĊ)(t) ∩ R3 is the point of contact.

Let C(t) be a C1–curve with only parabolic tangent lines. The cyclographic image η(C)
is a one parameter family of surface elements (e(t), s(t)) which is called surface strip.

Lemma 3.3 Let C(t) be a C1–curve in R4 and let Γ(C(t)) be the γ–hypersurface of C(t).
The cyclographic image η(C(t)) is the intersection Γ(C(t)) ∩ R3.

A good and non trivial example for cyclographic images of curves are Dupin cyclides.
Because of their plenty of geometric properties, they appeared quite often in the literature.
In particular, nowadays these surfaces are of certain interest for surface modeling, see for
instance [6], [30], [42], [43], [46], [47]. A detailed description of rational curves and surface
patches on Dupin cyclides is given in [29].

3.8.1 Dupin Cyclides

A conic C in R4 is called a pe circle, if its intersection points C ∩ ω are contained in the
absolute quadric Ω. This is an appropriate generalization of circles from the Euclidean
point of view. We can distinguish between three types of pe circles, depending on the type



of the plane π ⊃ C. If π is Euclidean, C is an elementary ellipse, in particular if π is
parallel to R3, C is an elementary circle. If π is pseudo–Euclidean, C is an elementary
hyperbola, and finally if π is a γ–plane, C is an elementary parabola.

A Dupin cyclide Φ can be generated as the envelope of a set of spheres, which are
tangent to three fixed spheres ai. Using an arbitrary orientation for the spheres ai, the
cycles ai are mapped to points ζ(ai) = Ai. By Lemma 3.2 it follows that all cycles, which
are tangent to ai are mapped to the intersection of the γ–cones

Γ(A1) ∩ Γ(A2) ∩ Γ(A3) = C,

where C is a pe circle.

Lemma 3.4 The cyclographic image of a pe circle C with hyperbolic tangent lines, C /∈ R3,
is a Dupin cyclide.

Consider a Dupin cyclide Φ as envelope of its oriented tangent planes. From Lemma 3.3
we know that Φ = Γ(C) ∩ R3 and Γ(C) is formed by the common tangent hyperplanes
of the pencil of dual hyperquadrics λC + µΩ. The Dupin cyclide Φ can be generated as
cyclographic image η(q) of any singular hyperquadric q of this pencil. Thus, we calculate
these singular hyperquadrics which correspond to the zeros of the polynomial det(λC+µΩ).
Two cases have to be discussed.

Firstly, let C be a pe circle in a Euclidean plane. We may apply a Laguerre transfor-
mation α, such that α(C) is given by the equation

α(C) : −aX2
0 +X2

1 +X2
2 = 0, a ∈ R+.

The polynomial det(λα(C) + µΩ) possesses λ = 0 as double zero and µ = 0 as one fold
zero. A further double zero is λ = −µ and the corresponding singular quadric is the pe
circle

α(D) : −aX2
0 −X2

3 +X2
4 = 0

Since α(D) is contained in a pe plane, the same is valid for D. The γ–hypersurface
Γ(C) = Γ(D) is of class 4. The cyclographic image Φ in R3 is also of class 4 and of order
4.

Proposition 3.1 The cyclographic image of a pe circle C with hyperbolic tangent lines,
not contained in R3 or in a γ–plane, is a Dupin cyclide Φ of order 4. Additionally, Φ is
the cyclographic image of the pe circle D, which is a further singular quadric in the pencil
λC + µΩ, different from Ω. The pe circle D is contained in a plane, pe perpendicular to
the plane containing C, their centers coincide and they possess same pe radii.

Secondly, let C be a pe circle contained in a γ–plane. Thus, C is an elementary parabola.
We may assume that C is given by the equation

C : X0(X3 +X4) + (b− a)X2
2 + a(X2

4 −X2
3 ) = 0,



such that as set of points, C is contained in the plane

x1 = 0, ax0 + x3 − x4 = 0,

and possesses the point [0, 0, 0, 1, 1] at infinity. Taking a closer look to the pencil of dual
quadrics λC + µΩ, we find further singular quadrics, contained in this pencil, namely the
pe circle D

D : X0(X3 +X4) + (a− b)X2
1 + b(X2

4 −X2
3 ) = 0.

It is contained in the plane
x2 = 0, bx0 + x3 − x4 = 0,

and possesses the same point at infinity as C. A further singular quadric of rank three is

P : X0(X3 +X4) + aX2
1 + bX2

2 = 0.

As set of points, it is a paraboloid contained in the γ–hyperplane x3−x4 = 0 and possesses
the same point at infinity as C. The γ–hypersurface Γ(c) is of class 4, but of order 3. In
Section 4.4 a further generation of a Dupin cyclide of order 3 is discussed.

Proposition 3.2 The cyclographic image of a pe circle C, contained in a γ–plane is a
parabolic Dupin cyclide Φ. It can be generated as cyclographic image of the pe circle D or
the paraboloid P , both contained in the pencil λC + µΩ.

This concept can be used to model canal surfaces composed of Dupin cyclide pieces. In
[39] a technique is described how to generate a smooth blend surface between two given
cones of revolution with two given circles on each of them. The blend surface is a pair of
Dupin cyclides and is tangent to each cone at the given circles.

3.9 Cyclographic Image of Surfaces

The cyclographic mapping of surfaces is analogous to the curve case. Let ϕ = s(u, v) be
a smooth surface in R4. In general one can define the cyclographic image Φ = η(ϕ) as
envelope of the two parameter set of cycles c(u, v) = η(s(u, v)). This envelope can contain
real and imaginary parts. Analogously to the curve case the cyclographic image can be
obtained with help of γ–hypersurfaces.

Lemma 3.5 Let ϕ be a smooth two dimensional surface in R4 and let Γ(ϕ) be the envelope
of all γ–hyperplanes, passing through tangent planes of ϕ. The cyclographic image η(ϕ) is
the intersection Γ(ϕ) ∩ R3.

Let us start with a plane ϕ, and firstly ϕ is Euclidean. If ϕ is not parallel to R3, then let
f = ϕ ∩ R3. The cyclographic image of ϕ is the pair of planes, which pass through f and
which are tangent to cycles η(x) for all points x ∈ ϕ. If ϕ is parallel to R3, the cyclographic
image consists of parallel planes with opposite orientation.



Let ϕ be a γ–plane and f = ϕ ∩ R3. There is exactly one γ–hyperplane Γ passing
through ϕ. Then η(ϕ) = Γ ∩ R3 and all cycles η(x) for x ∈ ϕ are tangent to η(ϕ) in f .

If ϕ is a pe plane, η(ϕ) consists of a conjugate complex pair of planes passing through
f = ϕ ∩ R3.

Let ϕ be a general smooth surface. We proceed as above and map its surface elements
(x, τ), where τ is the tangent plane at x ∈ ϕ. We fix one surface element. If τ is Euclidean,
then the cyclographic image consists of two surface elements (x1, τ1) and (x2, τ2), where
(τ1, τ2) is the cyclographic image of τ . The points x1, x2 are points of contact of the planes
τ1 and τ2 with the cycle η(x). The normals of these surface elements (x1, τ1) and (x2, τ2)
are the lines x1x

′ and x2x
′. If all tangent planes are Euclidean, the entire cyclographic

image consists of two sheets
η(ϕ) = η(ϕ)1 ∪ η(ϕ)2

corresponding to the surface elements (x1, τ1) and (x2, τ2). Compare Section 3.10 and see
Figure 3.3.

A particular discussion is necessary in the case of a surface ϕ all whose tangent planes
are γ–planes. Let ϕ be called a γ–surface. At each of its points, there is a unique parabolic
surface tangent line. Integrating this field of γ–tangent lines one obtains a family of γ–
curves on ϕ. Their cyclographic images are principal curvature strips of the cyclographic
image surface η(ϕ). The projection ϕ′ of s is locus of principal curvature centers, that
means one sheet of the focal surface of η(ϕ). The surface η(ϕ) possesses a second sheet
of the focal surface corresponding to the other family of principal curvature lines. The
γ–tangent lines of ϕ form a γ–hypersurface Γ(ϕ) in R4, which may also be considered as
cyclographic preimage η−1(y) of all cycles y, which are in oriented contact to the oriented
surface η(ϕ). The γ–hypersurface Γ(ϕ) possesses ϕ as set of singular points.

Let π be a hyperplane in R4, parallel to R3. The top views of all intersections Γ(ϕ)∩ π
are offset surfaces of η(ϕ) and possess edges of regression at ϕ ∩ π. This yields the well–
known fact that edges of regression of the offset surfaces to a surface are contained in its
focal surface.

3.9.1 Cyclographic Image of Quadrics

Let q be a 2–dimensional pe sphere, which can be defined to be the intersection of a
hyperplane π with a γ–cone Γ(a). For a γ–hyperplane π, the complete γ–hypersurface
Γ(q) through q is π ∪ Γ(a) and therefore η(q) is a cycle Γ(a) ∩ R3 and an oriented plane
π ∩ R3. Otherwise, there exists a pe reflection σ at π which maps Γ(a) to a second γ–
cone Γ(σ(a)) through q. The cyclographic image η(q) is the union of two cycles η(a) and
η(σ(a)), which are the intersections of Γ(a) and Γ(σ(a)) with R3.

A further discussion of the cyclographic image of quadrics q, different from pe spheres
is given in Section 4.7. There we will prove that the cyclographic image η(q) of regular
quadrics q is rational and possess rational offset surfaces.



3.9.2 Cyclographic Image of Ruled Surfaces

As mentioned in a further section, the cyclographic image of a straight line g ∈ R4 is a
cone of revolution ∆ = η(g), and degenerated cases. Let ϕ be a ruled surface, generated by
a one parameter family of lines g(t). The cyclographic image η(ϕ) is the envelope of a one
parameter family of cones of revolution ∆(t) = η(g(t)), including degenerate cases. Let
almost all generator lines be hyperbolic, except finitely many parabolic generator lines.

Firstly, let ϕ = g(t) be a non developable ruled surface. Let g0 be a fixed generator line.
The surface elements (x0, τ0) of ϕ along this fixed generator line g0 are mapped to surface
elements of the cyclographic image η(ϕ). They define the curve d0 on the cone ∆0 = η(g0),
and η(ϕ) is in oriented contact to ∆0 in points of d0. We note here that in general d0 is a
rational quartic space curve, but can take degenerate forms. In the non developable case
the curve d0 is different from a generator line of ∆0, and η(ϕ) is never developable.

If all tangent planes τ0 along the generator line g0 are Euclidean, then all surface
elements of ϕ in points of g0 possess a real cyclographic image. Otherwise there is a non
empty segment on g0, which possesses a real cyclographic image.

Secondly, let ϕ be a developable surface. Along each generator line g0 there is a fixed
tangent plane τ0. Let τ0 be Euclidean, then there are two γ–hyperplanes passing through
it. The γ–surface Γ(ϕ) is enveloped by two one parameter sets of γ–hyperplanes. With
Lemma 3.5 it follows that the cyclographic image η(ϕ) consists of two developable surfaces.
The cone ∆0 = η(g0) is tangent to η(ϕ) in points of two generator lines of ∆0. Clearly,
if τ is a γ–plane, we obtain only one generator line on ∆0 and if τ is pe, there is no real
envelope.

Consider the case, where the line of regression r of ϕ is a regular curve. As assumed, the
tangent lines of r are almost all hyperbolic, except finitely many γ–lines. The cyclographic
image η(r) is a real canal surface. As set of tangent planes, η(r) contains the developables
η(ϕ), or in other words, η(ϕ) is tangent to the canal surface η(r).

We will return to cyclographic images of ruled surfaces, when discussing envelopes of
one parameter sets of cones of revolution in Section 4.5. There we will prove that a non
developable rational ruled surface ϕ possesses a rational cyclographic image surface η(ϕ).

3.10 Optical Interpretation

Let R3 be Euclidean Laguerre space. Let ϕ be a smooth surface in the cyclographic model
R4 and let x ∈ ϕ be a point with Euclidean tangent plane τ . The cyclographic image of
the surface element (x, τ) consists of two surface elements (x1, τ1) and (x2, τ2), as discussed
above. The normals of these elements are x′x1 and x′x2, which form the same angle with
the tangent plane τ ′ to ϕ′ at x′ (see Figure 3.3).

We can now formulate an optical interpretation. Let ϕ′ be the top view of ϕ in R3, and
ϕ′ shall be a smooth surface. Consider the normals of one sheet of the cyclographic image,
say η(ϕ)1 =: ϕ1, as light rays. Then, η(ϕ)2 =: ϕ2 is a reflectional anticaustic to the mirror
surface ϕ′. If the surface ϕ is contained in a γ–hyperplane Γ, η(ϕ)1 is a := Γ ∩ R3 and
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Figure 3.3: Cyclographic image of a surface and optical interpretation

η(ϕ)2 is an anticaustic to ϕ′ for parallel light rays, perpendicular to a, see Figure 3.2. If ϕ
is contained in a γ–cone, we obtain an anticaustic for central illumination.

Note the relation between the construction of anticaustics in the case of parallel light
rays, orthogonal to a plane a and the transformation Λ∗ from the standard model of
Laguerre space to its dual isotropic model (see Section 3.5). An anticaustic for the given
illumination to a mirror surface ϕ′, which shall be interpreted as set of tangent planes, is

(Λ∗)−1(ϕ′)

and computed with formula (3.17). The point representation of an anticaustic is given
by formula (3.18). Varying the plane a in a pencil of parallel planes, one obtains all
anticaustics, which are offset surfaces of each other.



Chapter 4

Rational Surfaces with Rational
Offsets

There is a lot of literature on rational curves with rational offset curves, for instance see
([19], [16], [35], [26], [36]). Concerning rational surfaces with rational offsets we refer to
the articles [35], [25], [27], [38], [24]. In [35] the dual representation of curves and surfaces
is used to describe rational surfaces with rational offsets. Here, some geometric ideas to
generate rational surfaces with rational offsets shall be presented.

4.1 PN Surfaces in Euclidean 3–Space

Definition: Let ϕ be a rational surface in R3, parametrized by x(u, v) = (x1, . . . , x3)(u, v).
The parametrization x(u, v) is called a PN parametrization, if and only if the unit normal
vectors n(u, v) of ϕ are rational. Further, ϕ is called a PN surface, if and only if it possesses
a PN parametrization.

Let ϕ be a PN surface, then all one sided offset surfaces ϕd at an arbitrary oriented distance
d, which are parametrized by xd = x + dn, are rational. The notation PN comes from
Pythagorean Normal Vector Field and is the analogon to Pythagorean Hodograph curves,
which were introduced in [19].

We do not discuss the trivial case where ϕ is a plane. To get a better insight to rational
PN surfaces, let a surface ϕ be interpreted as envelope of its oriented tangent planes (see
[35])

(e0 + e1x1 + e2x2 + e3x3)(u, v) = 0.

A dual parametrization of ϕ is given by (non normalized) homogeneous plane coordinates
e(u, v) = (e0, . . . , e3)(u, v). Let ϕ be a PN surface. As developed in [35], ϕ admits a dual
parametrization of the form

(e0, e1, e2, e3) = (g, 2acf, 2bcf, (a2 + b2 − c2)f), (4.1)
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where a, b, c, g, f are polynomials in R[u, v], and can be assumed to have no common factor.
The not normalized surface normal is represented by (e1, e2, e3). Often it is useful to work
with oriented normalized plane coordinates

e(u, v) =

(
h,

2ac

a2 + b2 + c2
,

2bc

a2 + b2 + c2
,
a2 + b2 − c2

a2 + b2 + c2

)
, (4.2)

where h is an arbitrary rational function in R(u, v) and a, b, c are polynomials in R[u, v]
without a common factor. We see that substituting h by h + d in (4.2) parametrizes the
one sided offset surface ϕd at oriented distance d, which is again a PN surface. If ϕ is
regular as set of tangent planes, the conversion to a point representation p(u, v) is done by
intersecting the tangent plane e with its first derivative planes eu and ev and we obtain

p(u, v) = (e ∩ eu ∩ ev)(u, v).

The explicit representation in terms of a, b, c and h may be found in [35].

4.2 PN Surfaces in the Cyclographic Model

How do PN surfaces appear in the cyclographic model? Let ϕ be a PN surface, represented
in Cartesian point coordinates p = (p1, p2, p3)(u, v). Let n = (n1, n2, n3)(u, v) be the
normalized surface normal. Considering ϕ as set of oriented tangent planes

e(u, v) : (x− p) · n = 0,

we can apply the map ζ∗ and obtain in the cyclographic model a rational two–parameter
family of γ–hyperplanes

ζ∗(e)(u, v) = E(u, v) = (−n1p1 − n2p2 − n3p3, n1, n2, n3, 1)(u, v). (4.3)

The envelope of E(u, v) is a rational γ–hypersurface Γ(ϕ), and can also be considered as
preimage of ϕ with respect to the map η. Further Γ(ϕ) contains a 2–parameter family of
generating γ–lines

g(u, v) = (E ∩ Eu ∩ Ev)(u, v),

where Eu and Ev are first partial derivatives of E with respect to u and v, respectively. The
singular set ψ of Γ(ϕ), which is a γ–surface, is not necessarily rational, but the generating
lines g(u, v) depend rationally on the parameters u and v. This implies that the intersection
of Γ(ϕ) with any hyperplane is a rational surface. In particular, the intersection of Γ(ϕ)
with an arbitrary γ–hyperplane A is a rational surface m(u, v) in R4. With Lemma 3.5 it
follows that Γ(ϕ) ∩R3 is contained in the cyclographic image η(m(u, v)). Let A ∩R3 =: a
be the intersection plane of A with R3, then η(m(u, v)) = ϕ ∪ a.

The use of the cyclographic map leads to an optical interpretation. Let m′ ⊂ R3 be the
top view of m. Consider light rays perpendicular to a and consider the reflection at the
mirror surface m′. Then, the top view ψ′ of ψ is the caustic and ϕ is an anticaustic. This
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Figure 4.1: Anticaustic of reflection of a curve for parallel light rays

proves that a PN surface is anticaustic to a rational mirror surface m′ for an illumination
perpendicular to a.

Conversely, let a rational mirror surface m′ ⊂ R3 be given by a dual parametrization
in homogeneous plane coordinates

m′ : (y0, y1, y2, y3)(u, v).

The map (Λ∗)−1 maps tangent planes of m′ to oriented tangent planes of an anticaustic for
light rays perpendicular to a. Choose a : x3 = 0. Since y0, . . . , y3 are rational functions,
formula (3.17) proves that (Λ∗)−1(y) is a dual PN parametrization, such that the anticaustic
ϕ is a PN surface. A point representation of the anticaustic is given by Formula 3.18.

It is important to note the following special case. It may happen that m = Γ(ϕ) ∩ A
is just a rational curve m. Its projection m′ in R3 is interpreted as 2–parameter set of
tangent planes, which are the pencils passing through each tangent line t′ of m′. We may
also perform the reflection of light rays perpendicular to a. The anticaustic ϕ is a rational
canal surface with the constant tangent plane a. Again, ϕ∪α is the cyclographic image of
m. Figure 4.1 shows the reflection of light rays perpendicular to a at the planes of a pencil
passing through t′. The reflected light rays are perpendicular to the cycle η(m) in points
of the characteristic circle.

In [22] is is proved that rational curves with rational offsets are the anticaustics to
rational mirror curves for parallel light rays. Here we have the spatial analogon.

Theorem 4.1 PN surfaces are exactly the anticaustics of rational curves or surfaces for
parallel light rays. An anticaustic to a rational mirror curve is a rational canal surface
which is in line contact with a plane orthogonal to the light rays.

Since the cyclographic map as well as the anticaustic map (3.18) and (Λ∗)−1 in (3.17) are
formulated for arbitrary dimension n, Theorem 4.1 can be generalized to k–dimensional
surfaces in Rn. Compare the statements in Section 3.6.



4.3 Blaschke Cone and Isotropic Model

We study PN surfaces ϕ ⊂ R3 in the Blaschke model and the isotropic model of Euclidean
Laguerre space, respectively. A generalization to Rn is straightforward.

Using the cyclographic model, a PN surface ϕ ⊂ R3 is mapped to a γ–hypersurface
ζ∗(ϕ) = Γ(ϕ) and we have representation (4.3). Mapping Γ(ϕ) to the Blaschke cone
∆ results in a surface δ ◦ ζ∗(ϕ) on ∆ ⊂ P4 with representation in homogeneous point
coordinates

δ ◦ ζ∗(ϕ) = δ(E(u, v)) = (1, n1, n2, n3,−n1x1 − n2x2 − n3x3) (u, v).

Note that δ(E(u, v)) ∩ x4 = 0 is a parametrization of the Gaussian image of ϕ. Laguerre
transformations appear as projective maps in the Blaschke model and projective maps
preserve the rationality of a surface. This proves the following result.

Theorem 4.2 Laguerre transformations in R3 map PN surfaces (as sets of oriented tan-
gent planes) onto PN surfaces.

Remark: PN surfaces are also invariant under Möbius transformations in 3-space. For
the proof of this fact, it is sufficient to show invariance under inversions. Together with
the invariance under Laguerre transformations we can state that PN surfaces are invariant
under Lie transformations. For details on Lie geometry, we refer to [4] and [8].

The extended stereographic projection σ̄ defines a bijective map between rational sur-
faces on ∆ and rational surfaces in the isotropic model I3. This gives us a simple construc-
tion of PN surfaces.

Theorem 4.3 Let Λ−1 be the geometric transformation which describes the change from
the isotropic model I3 of 3–dimensional Laguerre space to the standard model R3. The
Λ−1–image of a rational curve or surface in I3 is a developable or non–developable PN
surface in R3, respectively. Every PN surface may be obtained in this way.

A degenerate case should be mentioned. Let g be an isotropic line in I3, that means g
is parallel to the y3–axis of the chosen coordinate system. It corresponds to a pencil of
parallel oriented planes in R3. A rational cylinder in I3 with isotropic generators belongs
to a 2–parameter set of planes that touch a rational curve at infinity. Moreover, if the
rational surface Ψ ⊂ I3 possesses a real curve along which it is touched by an isotropic
cylinder, the corresponding PN surface in R3 contains a real curve at infinity.

The mapping (Λ∗)−1 from the dual isotropic model to the standard model R3 is a
geometric transformation that maps a surface in I3 onto an anticaustic for parallel illumi-
nation. Therefore, Theorem 4.3 is dual to the interpretation of PN surfaces as anticaustics
in Theorem 4.1.

A PN surface appears in the isotropic model as

y(u, v) = (
a

c
,
b

c
,
g

2c2f
)(u, v), (4.4)



which follows from Formula (3.11) and (4.1). If the PN surface y(u, v) is derived from a
quadratic parametrization of the unit sphere, the polynomials a, b and c are linear in u and
v. By an appropriate reparametrization we can assume a = u, b = v and c = 1. This implies
that non–developable PN surfaces, derived from a quadratic spherical representation, are
mapped to graphs of rational functions in I3.

Theorem 4.4 A rational PN surface, derived from a dual quadratic spherical representa-
tion appears in the isotropic model as graph of a rational function.

4.4 Modeling with PN Surfaces

Let y(u, v) ⊂ I3 be the graph of a quadratic polynomial. Lemma 3.1 says that an isotropic
sphere y corresponds to a cycle in R3. Otherwise we can assume the normal form

y(u, v) = αu2 + βv2, with α 6= β,

where α or β could also be zero. The preimages Λ−1(y) of these quadratic functions are
well known PN surfaces, namely parabolic Dupin cyclides, which possess a dual normalized
parametric representation of the form

e(u, v) =
1

u2 + v2 + 1
(αu2 + βv2, 2u, 2v, u2 + v2 − 1).

This can be used to develop a surface modeling scheme using parabolic Dupin cyclides.
Let scattered data elements (Ai, αi) be given in R3, where Ai are vertices, coinciding

with the oriented planes αi. In [31] it is discussed how to construct a C1–PN surface, which
interpolates the given data and which is composed of triangular patches from parabolic
Dupin cyclides. The concept is the following.

The data (Ai, αi) are mapped by Λ to I3 and the images are scattered data elements, say
(Bi, βi), with Λ(αi) = βi. The data (Bi, βi) will be interpolated by a C1 function Ψ, which
is piecewise quadratic, using the method of Powell–Sabin [41]. Returning to the standard
model we obtain a C1 interpolating surface Λ(Ψ), composed of parabolic Dupin cyclides.
We note that in general the triangular cyclide pieces are tangent to each other along cubics
and not along circles. This already indicates that this method is rather different from other
surface modeling schemes, using (parabolic) Dupin cyclides, as [42], [46] and others.

Parabolic Dupin cyclides may also be generated with help of the optical interpretation in
Theorem 4.1. To do so, we have to convert them to the dual isotropic model. The polarity
of an isotropic sphere maps points of a paraboloid y to tangent planes of a paraboloid y∗,
in general. A special case occurs if y is a parabolic cylinder y, whose points are mapped
onto planes, which are tangent to a parabola with y3–parallel axis. Using Theorem 4.1, we
recognize that parabolic Dupin cyclides are anticaustics of paraboloids or parabolas for light
rays parallel to the axis of the mirror curve or surface. This is proved in [49]. This optical
interpretation comes into play if we generated parabolic Dupin cyclides as cyclographic
images of pe circles in Section 3.8.1.



The presented results can be used for modeling with PN surfaces based on the geometric
transformation Λ. Further, Λ preserves the order of geometric contact, but one has to take
into account that we are working with the dual representation in R3. Parabolic points of
a surface in R3 correspond to singularities of the Gauss map and therefore to singularities
in the isotropic model. Conversely, having a regular surface in the isotropic model, then
the preimage in R3 is regular as set of oriented tangent planes, but not necessarily as point
set. Note also that in Laguerre geometry a surface and its offset surfaces are equivalent,
since they are related by Laguerre transformations (dilatations, see Formula (3.4)). But
clearly, the offset surfaces of a regular surface are not necessarily regular.

4.5 Envelopes of Cones of Revolution

In this section we study surfaces, enveloped by one parameter families of cones of revolution.
In particular, PN surfaces will be constructed as envelopes of certain rational families of
cones.

Definition: A one parameter family of cycles c(t) = (m1,m2,m3; r)(t) is called rational,
if the center curve m(t) and the radius function r(t) are rational in the same parameter t.

A rational one parameter family of cycles corresponds to a rational curve in the cyclographic
image. If two cycles possess real common oriented tangent planes, they form a unique real
cone of revolution. Let two rational families of cycles c1(t), c2(t) be given, parametrized by
a common parameter t.

Definition: The common oriented tangent planes of two rational families of cycles c1(t)
and c2(t) define a rational one parameter family of cones of revolution ∆(t) with rational
radius function.

We have to point out the important difference to rational one parameter families of cones
in the sense of Chapter 2, where we only required that the cones are given by equations
with rational coefficients. See also the difference between rational one parameter families
of spheres in Section 2.5 and the above given definition of rational families of cycles.

Each cone ∆(t) shall be considered as envelope of its oriented tangent planes. Degen-
erate cases are included, for instance, let both functions r1(t) and r2(t) be identically zero.
Then, each cone ∆(t) degenerates to the line, connecting the centers of the cycles c1 and
c2. More precisely, ∆(t) consists of a pencil of planes, passing through this line.

A family ∆(t) is called real, if ∆(t) possesses real tangent planes for all t ∈ R. If ∆(t)
is real only for parameter values t contained in a real interval [a, b], one can reparametrize,
for instance by the quadratic function

t =
a+ bs2

1 + s2
.



It follows that ∆(s) is real for all s ∈ R. For finitely many parameter values ti, the
degeneracy of ∆(ti) to a surface element is allowed, which occurs if ∆(ti) is determined by
cycles c1(ti) and c2(ti) which are in oriented contact.

A real rational one parameter family of cones of revolution ∆(t) with rational radius
function is the cyclographic image of a rational ruled surface ϕ = g(t) ⊂ R4 with only
hyperbolic generator lines g(t) = ζ(∆(t)), except finitely many parabolic generator lines.

The cyclographic image of the entire surface is the envelope of ∆(t). In general, ∆(t)
is tangent to the envelope in points of a rational quartic curve ∆(t) ∩ ∆̇(t). We omit the
discussion of all cases here, but note that the quartic can be reducible, for instance consists
of a conic and two, not necessarily real generating lines of ∆(t). In this case the envelope
is reducible and consists of a surface generated by a one parameter family of conics and
additionally two developable surfaces.

A rational one parameter family c(t) of cycles envelops a canal surface. This canal
surface is also part of the envelope of a rational set of cones of revolution with rational
radius function. The canal surface is real, if

ṁ(t)2 − ṙ(t)2 ≥ 0

for all t, where equality shall hold only for finitely many parameter values. Real canal
surfaces are cyclographic images of curves C(t) without elliptic and with only finitely
many parabolic tangents. The cones of revolution ∆(t) occur as cyclographic images of
the tangent lines of the curves C(t).

We require that the envelope contains a surface, which is regular as set of tangent planes.
This means that the tangent planes and its first derivative planes are linearly independent,
or equivalently that the Gaussian image is 2–dimensional and does not degenerate to a
curve.

The technique which is used, is based on the dual representation, that means the
representation of surfaces as set of tangent planes. The parametrization only works for the
part of the envelope, which possesses a two parameter set of tangent planes. The possibly
occurring developables possess tangent planes contained in this two parameter family.

Theorem 4.5 Let Φ be the envelope of a real rational one–parameter family of cones of
revolution ∆(t) with rational radius function, degenerate cases are allowed. If Φ possesses
a regular dual parametrization, it is a PN surface.

Proof: The family ∆(t) is determined by two rational families of cycles ci(t) with centers
(mi,1(t),mi,2(t),mi,3(t)) and radii ri(t), i = 1, 2. By Lemma 3.1 the cycles, as sets of
oriented tangent planes, appear in the isotropic model as isotropic spheres,

Λ(c1(t)) = Ψ1(t) : 2y3 + (y2
1 + y2

2)(r1 +m1,3) + 2y1m1,1 + 2y2m1,2 + r1 −m1,3 = 0,
Λ(c2(t)) = Ψ2(t) : 2y3 + (y2

1 + y2
2)(r2 +m2,3) + 2y1m2,1 + 2y2m2,2 + r2 −m2,3 = 0.

(4.5)
We required that ∆(t) possesses real oriented tangent planes for all t. These planes are
mapped by Λ to the intersection curve d(t) of the two isotropic spheres Ψ1(t) and Ψ2(t).
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Figure 4.2: Parametrization problem in isotropic space I3

But this intersection is a conic, a so called isotropic Möbius circle. The projection d′(t) of
d(t) onto y3 = 0 is

d′(t) : (y2
1 + y2

2)(R +M3) + 2y1M1 + 2y2M2 +R−M3 = 0, (4.6)

where Mj := m1,j −m2,j and R := r1 − r2. If R +M3 6= 0, d′(t) is a Euclidean circle. Its
center is

(n1, n2) (t) =
−1

R +M3

(M1,M2) . (4.7)

The radius function ρ(t) is not rational, however we have

ρ2 =
1

(R +M2
3 )2

(M2
1 +M2

2 +M2
3 −R2). (4.8)

Due to our assumptions on a real rational family ∆(t), we have ρ2 ≥ 0. It follows that
all d(t) possess real points. The surface d(t) contains a one parameter family of isotropic
circles, and additionally it follows from formula (4.6) that it is a rational conic surface in
the sense of Chapter 1. We already know that a rational parametrization exists and how to
find it. But here it is better to consider the special properties of a rational one parameter
family of isotropic Möbius circles.

Firstly, we construct two rational functions ρ1(t) and ρ2(t), satisfying

ρ2
1(t) + ρ2

2(t) = ρ2(t). (4.9)

This is done by factorization over the complex field, and is equivalent to determine all
roots of the nonnegative polynomial ρ2, which is of even degree. We note that in several
applications there is not only a numerical solution of the factorization, but ρ1 and ρ2 can
be calculated explicitly. A solution of (4.9) defines the planar rational curve

f(t) = (n1 + ρ1, n2 + ρ2) . (4.10)

For each parameter value, the point f(t) is contained in the circle d′(t), see Figure 4.2.
For fixed t, let the normals of the diameters of the circle d′(t) be parametrized by c(u) =



(u, 1). To get all diameters, u has to be considered to be a inhomogeneous projective
parameter. Appropriate sampling techniques for P1 are described in [13]. We reflect f(t)
at all diameters and obtain a rational parametrization of the top view d′(t) of the conic
surface d(t) as

(y1, y2)(t, u) = f(t) + 2
(n(t)− f(t)) · c(u)

c(u) · c(u)
c(u). (4.11)

Further, by inserting (y1, y2) into a suitable equation of (4.5), we obtain

2y3(t, u) = −ri(y
2
1 + y2

2 + 1)−mi,3(y
2
1 + y2

2 − 1)− 2mi,1y1 − 2mi,2y2. (4.12)

This is a rational parameterization y(t, u) of the envelope in the isotropic model I3. The
special case R +M3 ≡ 0 is much simpler, since the rational one parameter family of lines
d′(t) is easily parametrized in rational form and again we obtain a rational parametrization
for the Λ–image of the envelope Φ. With Λ−1(y) by formula (3.13) we calculate normalized
plane coordinates of Φ and by Theorem 4.3, the envelope of ∆(t) is a PN surface. �

Remark: It follows also from Theorem 2.1 that ∆(t) envelops a rational surface. Ad-
ditionally, we could form the offsets ∆d(t) of all cones ∆(t) at distance d. This is again
a rational family of cones of revolution with rational radius function. This implies that
the envelope of ∆d(t) is again a rational surface. But note, Theorem 4.5 proves that the
envelope possesses a rational unit normal vector field. This is the main purpose why we
used laguerre geometric aspects and defined rational families of cycles and rational families
of cones of revolution with rational radius function.

We translate Theorem 4.5 into the language of Laguerre geometry.

Corollary 4.1 If a rational, non–developable ruled surface ϕ ⊂ R4 possesses a real cyclo-
graphic image η(ϕ), then this is a PN surface.

A special case occurs if ∆(t) is a one parameter family of generating lines, interpreted as
pencils of planes. This family can be parametrized by inserting radius functions ri = 0.
The envelope of ∆(t) is a ruled surface Φ. If Φ is a non–developable ruled surface, Theorem
4.5 generates a PN parametrization of Φ. This result can also be found in [38], where it is
proved in a different way. A generalization is discussed in Section 5.5.

Corollary 4.2 Non–developable rational ruled surfaces are PN surfaces. Further, La-
guerre transforms of non–developable rational ruled surfaces are PN surfaces.

However, for a developable surface, we parametrize just the edge of regression l as set of
tangent planes. The offsets are pipe surfaces with spine curve l. Laguerre transforms of pipe
surfaces are canal surfaces. Figure (4.3) shows rational parameter lines of a canal surface,
determined by a polynomial cubic spine curve and a polynomial cubic radius function.
The parametrization is of degree 5 in the parameter of the spine curve. For more details
on rational parametrizations of canal surfaces see [32]. Another proof of the rationality of
pipe surfaces may be found in [24].



Corollary 4.3 Real canal surfaces with rational spine curve and rational radius function
are rational PN surfaces. In particular, pipe surfaces, which possess a constant radius
function, to a rational spine curve are always rational.

Figure 4.3: Canal surface with cubic spine curve and radius function.

The envelope of a moving cylinder, whose axis runs on a developable surface ϕ, is the
pipe surface around the line of regression of ϕ and not the offset of ϕ. More generally, one
can show that any moving developable surface has a rational envelope [23]. Only special
rational ruled surfaces can be generated by a line under a rational motion, namely those
whose unit vectors of the generator lines define a rational curve on the unit sphere.

Corollary 4.4 Let ∆(t) be the transforms of a fixed cone of revolution ∆0 under a rational,
one parametric family of Laguerre transformations. It follows that the non developable
envelope of ∆(t) is a rational PN surface.

To have an example we may specialize these rational transformations to rational motions
or rational similarities. We will generalize this result in Section 4.6.

4.5.1 Details of the Parametrization

The parametrization derived in Theorem 4.5 depends on the choice of the coordinate system
in R3. It will turn out that by an appropriate choice of the coordinate system we obtain a
representation of lower degrees.
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Figure 4.4: Appropriate choice of the coordinate system

We take a closer look to the map Λ−1, and especially to σ̄−1 : I3 → ∆. It is a quadratic
map, such that a rational curve ϕ ⊂ I3 of order n is mapped to a rational curve q ⊂ ∆ of
order 2n in general. The parametrization (y1, y2)(t, u) in (4.11) leads to a parametrization
of the unit normals (Gauss image) of the envelope Φ, which is

n(t, u) =
1

y2
1 + y2

2 + 1
(2y1, 2y2, y

2
1 + y2

2 − 1). (4.13)

The degree of n reduces, if the numerators and the denominator of the coordinate functions
in (4.13) have a common divisor. Then also the degree of the dual parametrization of
ϕ reduces, since the missing coordinate function (4.12) is just a linear combination of
the denominator and numerator of the coordinates of n. The parametrization of Φ in
normalized plane coordinates is

Λ−1(y(t, u)) =
1

y2
1 + y2

2 + 1


−ri(y

2
1 + y2

2 + 1)−mi,3(y
2
1 + y2

2 − 1)− 2mi,1y1 − 2mi,2y2

2y1

2y2

y2
1 + y2

2 − 1

 .

(4.14)
First let M(t) = (M1,M2,M3)(t) and assume that the coordinate functions Mi(t) and
R(t) are polynomials. Otherwise we assume that the rational functions Mi and R have a
common denominator d.

Appropriate Choice of the Coordinate System

Let ω be the ideal plane in P3, the projective extension of R3. Let j be the conic in ω
defined by x2

1 + x2
2 + x2

3 = 0. The bilinear form corresponding to j is the Euclidean scalar
product x · y = x1y1 + x2y2 + x3y3 which represents the polarity with respect to j. The
construction of the frame, illustrated in Figure 4.4, depends essentially on a configuration
in ω. Complex lines are represented by dashed lines, real lines by solid lines. Complex
points are represented by circles, real points by filled circles.

Let τ, τ̄ be conjugate complex zeros or a real double zero of the definite polynomial

p = M2
1 +M2

2 +M2
3 −R2 ≥ 0,



which is the numerator of (4.8). Let v = M(τ) and v̄ = M(τ̄). The vectors v and v̄
determine conjugate complex points V, V̄ in ω. Let ai, āi for i = 1, 2 be conjugate complex
tangent lines of j, passing through V and V̄ . These lines are tangent to j in points Ai, Āi.
The homogeneous coordinates in ω are

Ai = (αi, βi, γi) = (−v1v3 ∓ iv2

√
λ,−v2v3 ± iv1

√
λ, v2

1 + v2
2), (4.15)

Āi = (ᾱi, β̄i, γ̄i) = (−v̄1v̄3 ± iv̄2

√
λ̄,−v̄2v̄3 ∓ iv̄1

√
λ̄, v̄2

1 + v̄2
2), (4.16)

where λ = v · v and λ̄ = v̄ · v̄ . Using the scalar product it follows that the lines ai and āi

are represented by

αix1 + βix2 + γix3 = 0 and ᾱix1 + β̄ix2 + γ̄ix3 = 0.

Further let Zi = ai ∩ āi and let zi be the lines connecting Ai, Āi. It is clear that Zi and
zi are real. We choose for instance the pair Z1, z1 and denote it for simplicity by Z, z.
Analogously A, Ā denote the points A1, Ā1. The point Z and the line z can be represented
by the unit vector

ζ = (ζ1, ζ2, ζ3) =
A× Ā

||A× Ā||
. (4.17)

The new coordinate system is chosen such that ζ describes the new x3-axis. Let ξ and η
be unit vectors of the new axes x1, x2. They can be chosen arbitrarily, but have to satisfy
the conditions of an orthonormal frame. This implies η = ζ × ξ, where ξ is for instance

ξ1 =
ζ2√
ζ2
1 + ζ2

2

, ξ2 = − ζ1√
ζ2
1 + ζ2

2

, ξ3 = 0.

Since this construction depends only on a configuration in ω, the coordinate transformation
is only determined up to sign changes of the basis vectors and up to arbitrary translations.
The signs will be determined later.

Degree Reductions

Firstly, we rewrite the formulae of the parametrization (4.11) in terms of Mi and R,
assumed to be polynomials. Let p1, p2 be polynomials satisfying p2

1 + p2
2 = M ·M − R2.

Then the planar rational curve f(t) (see formula (4.10)) is given by

f(t) =
1

R +M3

(p1 −M1, p2 −M2). (4.18)

Let ñi(t, u) be polynomials and let

n(t, u) =
1

ñ0

(ñ1, ñ2, ñ3)

be the rational unit normal vector of the envelope Φ. Using the following substitutions

α = M2
1 +M2

2 , β = R +M3, γ = p1M1 − p2M2, δ = p1M2 + p2M1,



the polynomials ñi are

ñ0(t, u) = u2(α+M3β + γ) + 2uδ + α+M3β − γ,

ñ1(t, u) = (−u2(M1 + p1)− 2up2 + p1 −M1)β,

ñ2(t, u) = (−u2(M2 − p2)− 2up1 − p2 −M2)β, (4.19)

ñ3(t, u) = u2(α−Rβ + γ) + 2uh+ α−Rβ − γ.

Let the frame be chosen as described in Section 4.5.1, up to the signs of the basis vectors.
Let d = (t− τ)(t− τ̄) and let π : x3 = 0. We will show that d is a common divisor of the
polynomials ñ0, . . . , ñ3.

The orthogonal projection µ : P3 → π with center Z induces a planar projection
µω : ω → z in the ideal plane. The projection µ maps v = M(τ) to µ(v) and v̄ = M(τ̄) to
µ(v̄). Further µω maps V, V̄ to A, Ā ⊂ j. Since µ(v) and µ(v̄) describe the points A and
Ā, which are contained in j, it follows that

µ(v) · µ(v) = µ(v̄) · µ(v̄) = 0.

This implies that the polynomial α = µ(M) ·µ(M) has zeros at τ and τ̄ , such that d divides
α. Since τ and τ̄ are also zeros of M ·M −R2 it follows that d divides M2

3 −R2. We choose
the orientation of ζ in (4.17) such that M3(τ) = −R(τ). This guarantees that d divides β.

Maybe after a substitution of p2 by −p2 we achieve that the real polynomial d divides
the complex polynomial (M1 + iM2)(p1 + ip2), such that d is a factor of its real and
imaginary parts, γ and δ, respectively. We summarize that all polynomials ni have the
common divisor d, which implies that the degree of the Cartesian coordinates ni = ñi/ñ0

of the unit normal n reduces. With this considerations we might give an estimation of the
polynomial degrees of the dual parameterization of an envelope.

Proposition 4.1 Let Φ be envelope of a real rational one parameter set of cones of rev-
olution with rational radius function. Let k be the degree of the polynomial center curves
mi(t) and the polynomial radius functions ri(t). Then there exists a unit normal vector
n(t, u) of Φ, which is of degree 2k − 2 in t. The resulting dual parametrization of Φ is in
general of degree 3k − 2 in t and 2 in u.

For canal surfaces with polynomial center curve and polynomial radius function we obtain
a better estimation of the degrees of the parametrization, namely 3k − 4. This is also the
degree of a point representation (see [32]).

4.6 Envelopes of Developable PN Surfaces

Let ∆ be a rational developable PN surface, given by normalized plane coordinates

(e0, . . . , e3)(t) =

(
h,

2ac

a2 + b2 + c2
,

2bc

a2 + b2 + c2
,
a2 + b2 − c2

a2 + b2 + c2

)
, (4.20)



where a, b and c are polynomials in R[t] and h is an arbitrary rational function in R(t).
Consider a rational one parameter family of Laguerre transformations in R3. They shall
be represented in the cyclographic model R4 by pe similarities α(u) (see Section 3.2). Let
these mappings α(u) be extended to projective collineations in P4, which map the absolute
quadric Ω of the cyclographic model onto itself. The oriented tangent planes e(t) of ∆ are
mapped by ζ∗ to γ–hyperplanes E(t). The dual transformation α∗(u) to α(u) maps the set
of γ–hyperplanes H onto itself. Using homogeneous coordinates, α∗(u) can be represented
by

G(t, u) = α∗(u)(E(t)) = (e0, e1, e2, e3, 1)(t) ·
[

1, 0
a(u), A(u)

]
, (4.21)

where a(u) denotes the translational part of α∗(u), a vector in R4. The matrix A(u) is a pe
orthogonal 4× 4–matrix for each u ∈ R with rational entries. Multiplying by the common
denominator of the rational entries, we obtain a matrix with polynomial entries. Compare
the representation of pe similarities in Formula (3.8).

This implies that G(t, u) is a rational parametrized set of γ–hyperplanes in the cyclo-
graphic model R4. If G(t, u) is really 2–parametric, we apply the cyclographic map η∗ to
G(t, u) and obtain a two parametric set of oriented tangent hyperplanes

e(t, u) = G(t, u) ∩ R3.

Let e(t, u) be a regular dual parametrization of a surface Φ, which means that e and the
first partial derivative planes et, eu are linearly independent and intersect in a unique point.

Proposition 4.2 Let Φ be the envelope of a rational developable PN surface ∆ in R3 under
a rational one parameter family of Laguerre transformations. If Φ is non developable, then
it is a rational PN surface.

Example: Let a parabolic cylinder ∆ be given by its tangent planes[
−p

2

1 + t2

2t
,

2t

1 + t2
,−1− t2

1 + t2
, 0

]
.

For simplicity we choose the one parameter family of Laguerre transformations to be a one
parameter family of motions β(u). Let X and X ′ be coordinates of the original and the
transformed plane. Then, β(u) shall be

X ′ = X ·


1 + u2 0 0 0

1
4
u(1 + u2) 1 + u2 0 0

0 0 1− u2 −2u
0 0 2u 1− u2

 .
A point representation of the envelope Φ in homogeneous coordinates is

x0

x1

x2

x3

 =


−4t2(t2 − 1)(u2 + 1)

(2t4 − ut2 − 12t2 + 2)(t2 − 1)(u2 + 1)
2t(4(u2 − 1)(t2 − 1)2 + t2u(1 + u2))

t(16u(t2 − 1)2 + t2(1− u4))

 .



Figure 4.5: Envelope of a parabolic cylinder

Figure 4.5 shows rational parameter lines of a section of Φ. It is plotted for values t ∈ [1.5, 4]
and u ∈ [−1.2, 1.2].

4.7 Hypercyclides

Let π be a hyperplane in R4 and ϕ ⊂ π a quadric in it. The cyclographic image η(ϕ) of
ϕ is called a hypercyclide. A brief discussion of these surfaces is given in [3]. To generate
η(ϕ) one forms the γ–hypersurface Γ(ϕ), which is the envelope of the two parameter set
of γ–hyperplanes, passing through the tangent planes of ϕ. Then, the hypercyclide η(ϕ)
is the intersection Γ(ϕ) ∩ R3.

Let Ω be the absolute quadric in P4 defined by x0 = 0, x2
1+x2

2+x2
3−x2

4 = 0.(See Section
3.2). The hypersurface Γ(ϕ) can be interpreted as envelope of common tangent hyperplanes
of the pencil of dual hyperquadrics λϕ + µΩ in P4. The quadrics ϕ and Ω are considered
as sets of tangent hyperplanes, which implies that they are singular hypersurfaces in this
pencil. This generation of η(ϕ) indicates that hypercyclides are of algebraic class ≤ 4, but
they are in general not of order 4.

Remark: The notation ’hypercyclide’ goes back to W. Blaschke [3] and is just a translation
of the german expression ’Hyperzyklide’. These surfaces should not be mixed up with
’supercyclides’, which are introduced by M.J. Pratt [44]. Supercyclides are special conic
surfaces of type C (see Chapter 1), which possess two 1–parameter families of quadratic



tangent cones. A supercyclide admits a twofold generation as conic surface. Additionally,
the planes containing the conics of each family form two pencils. They are also called
double Blutel conic surfaces. Their algebraic degree is ≤ 4, which was proved by W.
Degen, [11]. Mainly they are complex projective transforms of Dupin cyclides.

It can be proved that the intersection surface of a pencil of hyperquadrics in P4 is a quartic
del Pezzo surface, which is rationally parametrizable, see for instance [1]. But a del Pezzo
surface is dual to the hypersurface Γ(ϕ), which implies that the two parameter family of
tangent hyperplanes of Γ(ϕ) can be rationally parametrized. This proves the following
result.

Proposition 4.3 The cyclographic images η(ϕ) of two dimensional quadrics ϕ ⊂ R4 are
rational surfaces, so–called hypercyclides.

Hypercyclides are natural generalizations of Dupin cyclides and contain interesting surfaces
such as the offsets of quadrics. Those occur as cyclographic images η(ϕ) if π ⊃ ϕ is parallel
to R3. The cyclographic image of a quadric in any Euclidean hyperplane π is related to
the offset of a quadric by a Laguerre transformation (compare last but one paragraph in
Section 3.2).

To obtain rational parametrizations of hypercyclides one can follow ideas of classical
geometry, which provides parametrizations of a del Pezzo surface. Choose five base points
in P2 and consider the four parametric linear system of cubics, passing through these points.
This leads to a parametrization of a del Pezzo surface, see [1].

We will construct rational PN parametrizations of cyclographic images η(ϕ) of quadrics
ϕ by representing η(ϕ) as envelope of cones of revolution. But firstly, we assume that ϕ is
not a quadratic cone but a regular quadric. Secondly, we assume that ϕ is contained in a
Euclidean hyperplane π. As we mentioned above, there exists pe similarity in R4, which
maps π to x4 = 0. This implies that the cyclographic image η(ϕ) is related to the offsets
of ϕ by a Laguerre transformation. So it is sufficient to study offset surfaces of quadrics.
Another proof of the rationality of the offsets of regular quadrics can be found in [27]. By
the way, the offsets of conics in the plane are only rational for circles and parabolas.

Theorem 4.6 All regular quadrics are PN surfaces.

Proof: Let ϕ be a regular quadric possessing real points. Firstly, we note that quadrics
of revolution are canal surfaces. From Corollary 4.3 it follows that they are rational PN
surfaces. Secondly, if ϕ is a ruled surface, we can apply Corollary 4.2.

Otherwise let R3 be embedded in R4 and let ϕ be contained in the hyperplane x4 = 0.
We form the pencil of dual hyperquadrics λϕ + µΩ in R4 and form the γ–hypersurface
Γ(ϕ). All singular quadrics in this pencil possess the same cyclographic image Γ(ϕ) ∩ R3.
Let π be parallel to R3. Then we obtain the offset surfaces of ϕ by projecting Γ(ϕ) ∩ π
onto R3.

We will prove that the pencil λϕ + µΩ contains a ruled singular quadric ψ. Since
ϕ possesses real points it follows that ψ possesses a real cyclographic image η(ψ). This



implies that ψ possesses a family of hyperbolic generator lines g(t). But note that g(t)
needs not to be hyperbolic for all t ∈ R, but in an interval ⊂ R. Three cases have to be
distinguished.

Ellipsoid: Let ϕ be an ellipsoid in x4 = 0 given by

x2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1, x4 = 0,

and a > b > c. Then the ruled quadric ψ is given by

x2
1

a2 − b2
− x2

3

b2 − c2
+
x2

4

b2
= 1, x2 = 0.

Two sheet hyperboloid: Let ϕ be a two sheet hyperboloid in x4 = 0 given by

x2
1

a2
− x2

2

b2
− x2

3

c2
= 1, x4 = 0,

and b > c. Then the ruled quadric ψ is given by

x2
1

a2 + b2
+

x2
3

b2 − c2
− x2

4

b2
= 1, x2 = 0.

Elliptic paraboloid: Let ϕ be an elliptic paraboloid in x4 = 0 given by

x2
1

a2
+
x2

2

b2
− 2x3 = 0, x4 = 0,

and a > b. Then the ruled quadric ψ is given by

− 1

a2 − b2
x2

2 +
1

a2
x2

4 = 2x3 − a, x1 = 0,

and is a hyperbolic paraboloid.

We mentioned that η(ϕ) = η(ψ). Since ψ is a ruled quadric with generators g(t), η(ψ) is
the envelope of a one parameter family of cones of revolution ∆(t) = η(g(t)). The cones
∆(t) can be defined by two rational families of cycles c1(t) and c2(t). These cycles can be
chosen to be the cyclographic images of two conics on ψ. Since the generator lines induce a
projective map between these two conics, they can be rationally parametrized by a common
parameter t. We can choose c1(t) to be the conic ψ ∩ R3, where R3 is considered to be
the hyperplane x4 = 0. Further c2(t) is the cyclographic image of ψ ∩ (x4 = const.), (see
the following example). This proves that η(ϕ) = η(ψ) is an envelope of a real rational one
parameter family of cones of revolution ∆(t) with rational radius function. With Theorem
4.5, all regular quadrics are PN surfaces. �
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Figure 4.6: Ellipsoid as envelope of cones of revolution

From above formulas we see that ψ is contained in a hyperplane parallel to the x4–axis
which implies that the top views g′ of all generator lines g are contained in a fixed plane.
These lines g′ are tangent lines of a conic f , which is called focal conic of ϕ.

If ϕ is an ellipsoid in R3, f is a hyperbola in the plane x2 = 0. If ϕ is a two sheet
hyperboloid, f is an ellipse in the plane x2 = 0. At least, if ϕ is an elliptic paraboloid, f is
a parabola in the plane x1 = 0. The focal conic f intersects ϕ orthogonally at its umbilic
points. The points of f are the vertices and the tangent lines of f are the axes of cones
of revolution ∆(t), which envelope ϕ. But only points in the exterior of ϕ correspond to
real cones ∆(t). In the following example the parametrization of an ellipsoid and its offset
surfaces is discussed in detail.

Example: Let Φ be an ellipsoid

Φ :
x2

1

a2
+
x2

2

b2
+
x2

3

c2
= 1,

where xi are Cartesian coordinates in R3 and a ≥ b ≥ c > 0 are constants. First we assume



a > b > c, which implies that one focal conic is a hyperbola f defined by

f :
x2

1

a2 − b2
− x2

3

b2 − c2
= 1, x2 = 0.

If a = b or b = c, f degenerates to a segment of a line and Φ is an ellipsoid of revolution.
We discuss this later. To obtain low degree representations, we apply a rotation of the
frame with axis x2. The new x3 axis shall be parallel to the normal to Φ at one umbilic
point. We use the substitutions

α =
√
b2 − c2, β =

√
a2 − c2, γ =

√
a2 − b2.

With respect to the new coordinate system a rational parametrization of an appropriate
segment of f is

f = m1(t) =
1

b(t4 − 1)

(
αγ(t4 + 1), 0, ac(t4 + 1) + 2b2t2)

)
,

which represents one arc in the exterior of Φ, connected in the projective extension, see
Figure 4.6. This arc of f defines the vertices of the cones ∆(t), which are the cycles c1(t)
in accordance with Theorem 4.5. Let ∆0 be a cylinder of revolution, tangent to Φ along
k0 (see Fig. 4.6). The intersection points of the tangent lines of f with the axis of ∆0 are
the centers

m2(t) =
(t2 − 1)

b(t2 + 1)
(αγ, 0, ac− b2)

of the cycles c2(t) with constant radius r2 = b. We transfer these two families of cycles
c1 and c2 by the map Λ to isotropic 3–space. According to formulae (4.7) and (4.8) the
centers n(t) and radius function ρ(t) of the circles are

(n1, n2) =
( −αγt2

act2 + b2
, 0

)
,

ρ2 =
b2t2

(act2 + b2)2

(
ac(t4 + 1) + t2(a2 + c2)

)
.

A decomposition of ρ2(t) leads to

(ρ1, ρ2) =
bt

(act2 + b2)

(√
ac(t2 + 1), (a− c)t

)
,

with ρ2
1 + ρ2

2 = ρ2. With formula (4.11) one constructs a rational parametrization of Φ as
set of tangent planes, in general of degrees 6 and 2 in t and u. It is not difficult to see that
ellipsoids of revolution Φ can be treated in the same way. For instance, let a = b. The not
normalized homogeneous plane coordinates of the one–sided offset Φd at distance d are

ϕ0 = −(1 + u2)
(
a(ct4 + 2at2 + c) + d(at4 + 2ct2 + a)

)
,

ϕ1 = −2t
(√

ac(t2 + 1)(u2 − 1) + 2tu(a− c)
)
,

ϕ2 = 2t
(
−2
√
ac(t2 + 1)u+ t(u2 − 1)(a− c)

)
,

ϕ3 = a(1 + u2)(t4 − 1).



Setting d = 0 parametrizes the ellipsoid Φ itself. The conversion to a point representation
is done by intersecting the planes ϕ0x0 + . . . + ϕ3x3 = 0 with the derivative planes with
respect to t and u. This leads to a point representation of Φd

x0 = −(1 + u2)(ct4 + 2at2 + c)(at4 + 2ct2 + a),

x1 = −2t(d(ct4 + 2at2 + c) + a(at4 + 2ct2 + a))

((u2 − 1)
√
ac(t2 + 1) + 2ut(a− c)),

x2 = 2t(d(ct4 + 2at2 + c) + a(at4 + 2ct2 + a))

(t(a− c)(u2 − 1)− 2
√
acu(t2 + 1)),

x3 = −(1 + u2)(t4 − 1)(ad(ct4 + 2at2 + c) + c2(at4 + 2ct2 + a)).

Again, d = 0 parametrizes the ellipsoid Φ itself. The parametrization of Φ is of degrees 4
and 2. The t–lines on Φ are rational quartics, containing an isolated double point. The
t–lines on Φd are rational curves of degree 8.

Figure 4.7: Ellipsoid of revolution and outside offset

Let Φ be a general triaxial ellipsoid. The point representation as PN surface is rather
long, but we give a representation as set of tangent planes. Substituting α =

√
b2 − c2,γ =√

a2 − b2 and µ =
√
ac we obtain

ϕ0 = −b
[
(u2 + 1)

(
a2c2t2(t4 − 1) + b2ac(3t4 + 1) + 2b2(a2 + c2)t2

)
+2bµαγ(u2 − 1)t(t2 + 1) + 4b(a− c)αγut2

]
,

ϕ1 = −2t(act2 + b2)
(
bµ(u2 − 1)(t2 + 1) + 2(a− c)but+ αγ(u2 + 1)t

)
,

ϕ2 = 2tb(act2 + b2)
(
(a− c)t(u2 − 1)− 2µu(t2 + 1)

)
,

ϕ3 = (u2 + 1)
(
acb2t2(t4 − 1)− b4(t4 + 1) + 2t4(b2c2 + a2b2 − a2c2)

)
+

2bµαγ(u2 − 1)t3(t2 + 1) + 4b(a− c)αγut4.



Figure 4.8 shows rational parameter lines of an ellipsoid and an inside offset. All t–lines
pass through two umbilic points of Φ, such that the parametrization is singular there, (see
the black dots at the figure).

Figure 4.8: Ellipsoid and inside offset



Chapter 5

Generalizations in n–Space

We will show that the most of the results obtained before in P3 and R3 can be generalized
to Pn and Rn, respectively in an appropriate way. This is not a complete description of
a generalization of earlier ideas but a short overview. We only pick out some details and
start with an analogue to Section 1.3.

5.1 Rational One Parameter Families of Quadrics

Let Q(t) be a one parameter family of quadrics in Pn. We call the set Q(t) rational, if a
representation exists, such that the defining equations of Q(t) possess rational coefficients.
Using rational coordinate transformations we can assume that Q(t) is given by its real
projective normal form

Q(t) : β0(t)x
2
0 + . . .+ βp(t)x

2
p − βp+1(t)x

2
p+1 − . . .− βr(t)x

2
r = 0, (5.1)

where βi(t) are assumed to be polynomials. Further, let βi(t) ≥ 0, for all t ∈ R. Some
assumptions are necessary, equivalent to those given in Section 1.3.

1. The quadrics Q(t) possesses regular real points for all real t, such that not only the
singular set consists of real points.

2. There are at least three polynomials βi(t), which are not identically zero. This implies
that Q(t) does not contain hyperplanes.

3. The quadrics Q(t) are of fixed type for all real numbers, except the zeros of βi(t).
That means that Q(t) has constant rank and a constant maximum dimension of
subspaces contained in Q(t).

Since Q(t) possesses regular real points, there are at least three polynomials βi(t), which
are not identically zero. Then, there exists a plane intersection c(t) of Q(t), which is an
irreducible conic containing real points for almost all t. By an appropriate renumbering,
let this plane be x3 = 0, . . . , xn = 0. The conic c(t) is given by

c(t) : β0(t)x
2
0 + β1(t)x

2
1 + β2(t)x

2
2 = 0, (5.2)
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Theorem 1.1 says that there are polynomials (y0, y1, y2)(t) 6= (0, 0, 0), which satisfies equa-
tion (5.2) identically. This leads to an equivalent statement to Theorem 1.1.

Corollary 5.1 Let Q(t) be a real rational one parameter family of quadrics in Pn. Assume
that Q(t) possesses real conic sections, which means that Q(t) does not contain hyperplanes.
Then there exists a rational curve f(t) such that for all t ∈ R the curve point f(t) is
contained in the corresponding quadric Q(t).

Applying a stereographic projection (see Section 1.4) to each quadric Q(t) results in a
rational parametrization g(t, u) of the family Q(t), with u = (u1, . . . , un−1).

Proposition 5.1 Let Q(t) be a real rational one parameter family of quadrics, satisfying
above assumptions. Then there exists a rational parametrization g(t, u). For all t ∈ R
the point g(t, u) is contained in the quadric Q(t). For a fixed t0, g(t0, u) is an affine
parametrization of Q(t).

This construction will be applied to some n–dimensional problems. One could study ana-
logues to conic surfaces (Chapter 1) and envelopes of quadratic cones (Chapter 2).

5.2 PN Hypersurfaces

Definition: Let Φ be a rational hypersurface in Rn. Let u = (u1, . . . , un−1) be a vector in
Rn−1, considered as parameter space. Let x(u) = (x1, . . . , xn)(u) be a rational parametriza-
tion of Φ. The parametrization x(u) is called a PN parametrization, if and only if the unit
normal vectors n(u) of Φ are rational. Further, Φ is called a PN hypersurface, if and only
if it possesses a PN parametrization.

All offset hypersurfaces Φd to a PN surface Φ at an arbitrary distance d, which are
parametrized by xd = x+ dn are rational. As in R3 it is good to use the dual parametriza-
tion. Let e(u) = (e0, . . . , en)(u) be homogeneous coordinate functions of hyperplanes in
Rn. If Φ be a PN hypersurface, it admits a dual parametrization of the form

(e0, e1, . . . , en−1, en) =
(
g, 2a1cf, 2a2cf, . . . , 2an−1cf, (a

2
1 + a2

2 + . . . a2
n−1 − c2)f

)
, (5.3)

where ai, c, g, f are polynomials in R[u], and can be assumed to have no common fac-
tor. The not normalized surface normal is represented by (e1, . . . , en). The normalized
coordinate vector of e(u) is

e(u) =

(
h,

2a1c

a2
1 + . . .+ a2

n−1 + c2
, . . . ,

2an−1c

a2
1 + . . .+ a2

n−1 + c2
,
a2

1 + . . .+ a2
n−1 − c2

a2
1 + . . .+ a2

n−1 + c2

)
, (5.4)

where h is an arbitrary rational function in R(u) and ai, c are polynomials in R[u] without
a common factor. Immediately we see that substituting h by h + d in (5.4) parametrizes



the offset surface Φd at distance d, which is again a PN surface. If the tangent planes
e(u) and the first partial derivatives euj

are linearly independent, the conversion to a point
representation p(u, v) is done by intersecting

(e ∩ eu1 ∩ . . . ∩ eun−1)(u) = p(u).

Otherwise one obtains more dimensional analogues to developable PN surfaces.

5.3 Envelopes of Hypercones

First we look for an analogue of a cone of revolution. Further, we give a n–dimensional
version of Theorem 4.5.

Definition: Let c1 and c2 be two cycles in Euclidean Laguerre space Rn. The set of
common oriented tangent hyperplanes of c1 and c2 define a quadratic hypercone ∆, which
shall be called sphere–hypercone.

Let two rational families c1(t) and c2(t) be given. If the common oriented tangent
hyperplanes are real, we call ∆(t) a real rational family with rational radius function,
analogously to Section 4.5.

This prepares a generalization of Theorem 4.5. We also give the proof here, although
it is nearly a copy of the 3-dimensional case.

Theorem 5.1 Let Φ be the envelope of a real rational one–parameter family of sphere–
hypercones ∆(t) with rational radius function, degenerate cases are allowed. If the Gaussian
image of Φ is at least two dimensional, then Φ is a PN surface in Rn.

Proof: The set ∆(t) is determined by two rational sets of cycles ci(t) with centers mi(t)
and radii ri(t), i = 1, 2. We map them by Λ to the isotropic model In and by Lemma 3.1
we obtain two isotropic Möbius spheres

Ψ1(t) : 2yn + (y2
1 + . . .+ y2

n−1)(r1 +m1,n) + 2y1m1,1 + . . . 2yn−1m1,n−1 + r1 −m1,n = 0,
Ψ2(t) : 2yn + (y2

1 + . . .+ y2
n−1)(r2 +m2,n) + 2y1m2,1 + . . . 2yn−1m2,n−1 + r2 −m2,n = 0.

(5.5)
We required that ∆(t) possesses real oriented tangent hyperplanes for all t. This implies
that the intersection ψ1 ∩ ψ2 is a quadric d(t) which possesses real points. Its projection
d′(t) onto yn = 0 is

d′(t) : (y2
1 + . . . y2

n−1)(R +Mn) + 2y1M1 + . . .+ 2yn−1Mn−1 +R−Mn = 0, (5.6)

where Mj := m1,j −m2,j and R := r1 − r2. If R +Mn 6= 0, d′(t) is a Euclidean sphere of
dimension n−2 in the hyperplane π : yn = 0. Note that d′(t) is the stereographic projection
of the Gaussian image of Φ. If Φ is the envelope of a rational one parameter family of
hyperplanes e(t), its Gaussian image is 1–dimensional and not necessarily a rational curve.
This curve is only rational, if e(t) possesses rational unit normals.



We will construct a rational parametrization of the one parameter family d′(t) in the
hyperplane π, considered as parameter space. Section 5.1 says that a rational parametriza-
tion exists and gives an algorithm to compute it. But here we will proceed as in the
3–dimensional case. The center of the sphere d′(t) is

(p1, . . . , pn−1)(t) =
−1

R +Mn

(M1, . . . ,Mn−1). (5.7)

We define the vector M = (M1, . . . ,Mn−1,Mn). The radius function ρ(t) is not rational,
however we have

ρ2(t) =
1

(R +Mn)2(t)
(M ·M −R2)(t). (5.8)

Next, two rational functions ρ1(t) and ρ2(t) are constructed, satisfying

ρ2
1(t) + ρ2

2(t) = ρ2(t). (5.9)

This leads to a curve
f(t) = (p1 + ρ1, p2 + ρ2, p3, . . . , pn−1), (5.10)

which satisfies f(t) ⊂ d′(t) for all t ∈ R. Now we can apply stereographic projection to
parametrize each sphere d′(t), as described in Section 5.1. Another way, which shall be
described here, is to reflect f(t) at all hyperplanes passing through the center of d′(t). Let
u = (u1, . . . , un−2), where ui are affine real parameters. The normals of these hyperplanes
can be parametrized by c(u) = (u1, . . . , un−2, 1). This leads to a rational parametrization
of the top view d′(t) of d(t)

(z1, . . . , zn−1)(t, u) = f(t) + 2
(p(t)− f(t)) · c(u)

c(u) · c(u)
c(u). (5.11)

Further, by inserting (z1, . . . , zn−1) into (5.5), we obtain

2zn(t, u) = −ri(z
2
1 + . . . z2

n−1+1)−mi,n(z2
1 + . . . z2

n−1−1)−2mi,1z1− . . . 2mi,n−1zn−1. (5.12)

Thus, we have found a rational parameterization z(t, u) of the envelope in the isotropic
model. Applying the map Λ−1 to the paramerization z(t, u1, . . . , un−2) results in a PN
parametrization of the envelope of the family ∆(t). �

5.4 Ruled k + 1–Manifolds

Let Rn be Euclidean n–space and let Pn be the projective extension. Further let ω be the
hyperplane at infinity. We also interpret Rn as vector space. Let l(t) for t ∈ R be a smooth
curve in Rn. Let gj(t) for t ∈ R be vector functions in Rn and j = 1, . . . , k. Assume that
Gk(t) = l(t) + span(g1, . . . , gk)(t) is a subspace of dimension k for (almost) all t ∈ R.



Definition: The parametrized k + 1–dimensional manifold

Φ : x(t, u1, . . . , uk) = l(t) +
k∑

j=1

ujgj(t) (5.13)

is called a ruled k+1–manifold in Rn. The curve l(t) is called directrix, the subspaces G(t)
are called generating subspaces of Φ. The k + 1–manifold Φ is regular, if

rk(l̇ +
k∑
1

uj ġj, g1, . . . , gk)(t) = k + 1.

We will prove that the offset hypersurfaces of unirational ruled k+ 1–manifolds are unira-
tional. For that we collect some basic geometric ideas concerning ruled k + 1–manifolds.
A detailed description, mainly from the differential geometric viewpoint, can be found in
[14], [15].

Two vector spaces shall be defined. The first one is

A(t) = span(g1, . . . , gk, ġ1, . . . , ġk)(t), (5.14)

with dimension k + m for a fixed t, and 0 ≤ m ≤ k. For a fixed t the vector space A(t)
contains all tangent vector spaces, which are tangent to Φ ∩ ω. Such tangent spaces are
called asymptotic spaces and ∪A(t) is called asymptotic bundle.

The second vector space is

T (t) = span(l̇, g1, . . . , gk, ġ1, . . . , ġk)(t). (5.15)

For its dimension we have k + m ≤ dim(T (t)) ≤ k + m + 1 for all fixed t. For a fixed t,
the vector space T (t) contains all tangent vector spaces in regular points of the generating
subspace Gk(t). Mainly there are two cases to distinguish.

Case 1: dimT (t) = k +m.
It follows from the definition of the vector spaces, that l̇(t) ∈ A(t). We look for singular
points in each generating space Gk. A point s = l +

∑k
1 ujgj is singular, if

ṡ = l̇ +
k∑
1

uj ġj =
k∑
1

λjgj.

This leads to a linear system for each t. Since l̇ ∈ A and dimA = k+m, there is a solution
of dimension k−m. But note that k−m < k, because otherwise all points in the generating
space would be singular. The subspace of singular points in Gk shall be denoted by Kk−m.

To have an example, consider developable surfaces Φ, different from cylinders in R3.
Here we have m = k = 1, such that only one singular point s exists in each generating line
g. If s is a fixed point, Φ is a cone. The singular point s can be obtained by intersecting
g ∩ ġ. The same is true in the general case.



Lemma 5.1 Kk−m = Gk ∩ Ġk.

Proof: For each fixed t let Nj be normal vectors of Gk. Let s be a singular point in Gk.
We choose s to be the directrix curve of Φ. Let Ek and Ėk be the corresponding vector
spaces to Gk and Ġk, that means Gk = s+ Ek. The subspaces Gk and Ġk can be defined
by a linear system of equations

Gk : (x− s) ·Nj = 0, j = 1, . . . , n− k, (5.16)

Ġk : (x− s) · Ṅj − ṡ ·Nj = 0, j = 1, . . . , n− k, (5.17)

where Nj are normal vectors of Ek. Since ṡ ∈ Ek it follows that s is a solution. The
dimension of Ek ∩ Ėk is k −m and it follows

s+ Ek ∩ Ėk = Kk−m.�

Consider a line h ∈ Gk, which passes through a singular point, but h /∈ Kk−m. The line h
can be parametrized by

h : x = s+ λ
k∑
1

αjgj,

where the constants αj define the direction of the line h. The tangent space in any regular
point x of h is

τ(x) = s+ λ
k∑
1

αjgj + µ0(ṡ+ λ
k∑
1

αj ġj) + µ1g1 + . . .+ µkgk

= s+ span(g1, . . . , gk,
k∑
1

αj ġj).

The tangent space τ(x) only depends on the direction defined by αj and is fixed for all
x ∈ h \ s.

Lemma 5.2 Let h ∈ Gk be a fixed line, but h /∈ Kk−m, which passes through one singular
point s. All regular points x 6= s of h possess a constant tangent k + 1–space.

Case 2: dimT = k +m + 1. There exists a vector a in T , such that span(A, a) = T and
a ⊥ A. Further we are looking for points r, satisfying

ṙ ∈ span(a, g1, . . . , gk).

In detail, the condition is

ṙ = l̇ +
k∑
1

uj ġj = λa+ µjgj, j = 1, . . . , k.
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Figure 5.1: Geometric properties of ruled k + 1–manifolds

This is again a linear system for each fixed t. The solution leads to a subspace of Gk, which
shall be denoted by Zk−m, and usually is called central space, see [14], [15].

Let y be an arbitrary point in Zk−m. Its derivative vector is

ẏ ∈ span(a, g1, . . . , gk) = τ.

We see that all points of the central Zk−m(t) space possess a constant tangent space τ(t).
For example, cylinders in R3 are obtained for k = 1 and m = 0. A non developable ruled
surface in R3 is obtained for k = 1 and m = 1, thus Z is zero dimensional and Z(t) is
usually called striction curve.

5.5 Offset Hypersurfaces of Ruled k + 1–Manifolds

Assume that Φ ⊂ Rn is a rationally parametrized ruled k+1–manifold, that means l(t) and
gj(t), j = 1 . . . , k are rational vector functions in t. In the literature Φ is called unirational.
Further gj(t) are assumed to be linearly independent for almost all t ∈ R.

The offset hypersurface Φd to Φ shall be defined to be the envelope of the k + 1–
parametric set of hyperspheres S(t, ui) with constant radius d, centered at points of Φ.
Let

p(t, ui) = l(t) +
k∑

i=1

uigi(t)

be a regular point on Φ. The tangent vector space

τ(p) = span(l̇(t) +
k∑

i=1

uiġi(t), g1(t), . . . , gk(t)). (5.18)



at a regular point p ∈ Φ is k + 1–dimensional, and the normal vector space N(p) is
n − (k + 1)–dimensional. Let S(p) : (x − p) · (x − p) − d2 = 0 be a hypersphere of radius
d, centered at p and let

St : (x− p) · pt = 0,
Sui

: (x− p) · pui
= 0, for i = 1, . . . , k,

be the partial derivatives of S(p) with respect to t and ui. The later ones are just hyper-
planes passing through p, which are perpendicular to pt and gi = pui

, respectively. The
envelope Φd consists of spheres

σ(p) = S(p) ∩ St(p) ∩ Su1(p) ∩ . . . ∩ Suk
(p) (5.19)

with radius d in each normal space p + N(p) of Φ. This is a generalization of (2.14). So,
we can obtain the sphere σ(p) as intersection S(p) ∩ (p+N(p)).

We will prove that the offset hypersurface Φd to a rationally parametrizable ruled
k + 1–manifold Φ is a PN hypersurface, if Φ is not a hypersurface with constant tangent
hyperplanes τ(t) along the generating subspaces Gn−2(t). The construction shall be done
in three steps. Firstly, we will construct a rational curve f(t) and a rational unit normal
vector M1(t), which satisfies M1(t) ⊥ τ(f(t)). Secondly, we will find a rational unit normal
M(p) at all regular points p of Φ. Thirdly, we give a parametrization of the spheres σ(p).

Step 1: Let p be a regular point of Φ. A vector z is a normal vector of Φ at p if

pt · z = (l̇(t) +
k∑
1

uiġi(t)) · z = 0, (5.20)

gi(t) · z = 0, for i = 1, . . . , k. (5.21)

The solutions of (5.21) form the subspace G⊥
k , spanned by bi, and can be written as

y(t) = λ1b1(t) + . . . λn−kbn−k(t), λi ∈ R. (5.22)

We note that bi · gj = 0, for all possible i and j. Some technical details are necessary. The
vectors gi are renumbered such that (g1, . . . , gk, ġ1, . . . , ġm) is a linearly independent set.

This implies that G⊥
k 6⊂ ġ⊥j , but G⊥

k ∩ ġ⊥j is a hyperplane in G⊥
k , for all j = 1, . . . ,m. It

is necessary to distinguish two cases. If dimT (t) = k +m, thus l̇ ∈ A(t), we form the set

W1 = G⊥
k \ {G⊥

k ∩ ġ⊥1 , . . . , G⊥
k ∩ ġ⊥m}.

If dimT (t) = k +m+ 1, thus l̇ /∈ A(t), we form the set

W2 = G⊥
k \ {G⊥

k ∩ ġ⊥1 , . . . , G⊥
k ∩ ġ⊥m, G⊥

k ∩ l̇⊥}.

We choose the vector b1 ∈ W1 or W2, respectively. This implies that b1 · ġj 6= 0 for
j = 1, . . . ,m in Case 1 and in Case 2 we additionally have b1 · l̇ 6= 0. Then, we insert (5.22)



into (5.20) and obtain a condition for λ1. This leads to the representation of the normal
vector z

z = −[
n−k∑
i=2

λibi · pt]b1 +
n−k∑
i=2

λi(b1 · pt)bi. (5.23)

Since pt is linear in ui, the solution z is linear in ui. Inserting pt = l̇ +
∑
uiġi into (5.23)

leads to
z(t, ui) = ū0c0(t) + ū1c1(t) + . . .+ ūmcm(t). (5.24)

where ūi are homogeneous parameters, obtained by ui = ūi/ū0. The vectors ci are

c0 = −[(
n−k∑
i=2

λibi)l̇]b1 + (b1 · l̇)
n−k∑
i=2

λibi,

cj = −[(
n−k∑
i=2

λibi)ġj]b1 + (b1 · ġj)
n−k∑
i=2

λibi, for j = 1, . . . ,m.

They are rational in t and depend additionally on parameters λ1, . . . , λn−k. Is it possible
to choose the λi such that the vectors ci(t) are linearly independent? We have to discuss
two cases.

Case 1: Firstly, let Φ be a ruled k+1–manifold of the type dimT (t) = k+m, that means
l̇ ∈ A(t). We can choose l ∈ Kk−m such that l̇ ∈ span(g1, . . . , gk). In this case we
obtain c0 = 0 ∈ Rn and further

z = ū1c1(t) + . . .+ ūmcm(t).

Since we know that b1 · ġj 6= 0 for j = 1, . . . ,m, we can choose the parameters
λ1, . . . , λm such that (c1, . . . , cm) are linearly independent.

Since we exclude manifolds with only singular points, the casem = 0 does not appear.
If m = 1, the normal z and also the normal space p +N only depends on t but not
on the parameters ui. So, N is constant for all regular points of a fixed generating
space Gk. This case is treated separately and the dimension k will be important.

Case 2: Secondly, let Φ be a ruled k+ 1–manifold of the type dimT (t) = k+m+ 1, that
means l̇ /∈ A(t). Similar to Case 1 it is possible to choose m + 1 parameters λi in a
way such that the representation (5.24) contains already m+ 1 linearly independent
vectors c0, ·, cm. Here, the case m = 0 is allowed and represents the cylinders with
directrix curve l. If m = 0, the normal vector space N is independent of ui. We will
discuss this later and again the dimension k will be important.

In both cases we can assume that the rational vectors ci(t) form an orthogonal set, but
clearly not normalized. We will construct a normal vector M1(t) or M2(t) for the Cases 1
or 2, respectively, which possess rational length. In both cases, the squared length of z is

Case 1: z · z =
∑m

i=1 ci · ciū2
i ,

Case 2: z · z =
∑m

i=0 ci · ciū2
i .



This defines a family of not necessarily regular quadrics

Case 1: Q1(t) :
∑m

i=1 ci · ciū2
i − w2 = 0,

Case 2: Q2(t) :
∑m

i=0 ci · ciū2
i − w2 = 0.

(5.25)

Proposition 5.1 says that there are polynomials w(t) and ūi(t) which satisfy Q1(t) or Q2(t),
respectively, identically, if the quadric possesses real points and conic sections. The reality
condition is always satisfied. The quadrics Q1(t) or Q2(t) contain conics, except in Case 1
for m = 1 or in Case 2 for m = 0, which will be studied separately. Otherwise it follows
that

Case 1: M1(t) = c1(t)
ū1

w
(t) + . . . cm(t)

ūm

w
(t)

Case 2: M2(t) = c0(t) + c1(t)
ū1

ū0

(t) . . . cm(t)
ūm

ū0

(t),

are rational normal vectors. In Case 1, M1(t) is a unit normal. In Case 2, M2(t) has the
length

√
M2 ·M2 = w/ū0 and M2(t) can be normalized. Inserting the rational parameters

ū1(t)/w(t), . . . , ūm(t)/ū0(t) into the parameter representation of Φ determines a curve f(t)
which possesses a rational normal vector field M1(t) or M2(t), respectively, with rational
length. We summarize the construction of Step 1.

Corollary 5.2 Let Φ be a rational parametrizable ruled k + 1–manifold. There exists a
rational curve f(t) which possesses a rational unit normal M1(t) or M2(t), respectively,
except in Case 1 for m = 1 or in Case 2 for m = 0.

Step 2: We will construct a unit normal M(t, ui) for all points of Φ, except in Case 1 for
m = 1 or in Case 2 for m = 0. This can be done by stereographic projection, applied to
Q1(t) or Q2(t). But we have to consider Q1(t) or Q2(t) to be a hyperquadric in Pk+1. We
note that Q1(t) always contains singular points, even for m = k, whereas Q2(t) is regular
for m = k. This proves the following.

Corollary 5.3 Let Φ be a rationally parametrizable ruled k+1–manifold, excluding m = 1
in Case 1 and m = 0 in Case 2. For all regular points p(t, ui) there exists a rational unit
normal M(t, ui).

Step 3: If the normal vector space N(p) of Φ is 1–dimensional we are already done.
Otherwise we have to parametrize the spheres σ(p), centered at p with radius d, which
are contained in the normal space p+N(p), see formula (5.19). Additionally, each sphere
σ(p) possesses the rational point p+ dM . We apply a stereographic projection with center
p+ dM and obtain a rational parametrization of σ(p).

Another method is to reflect the point p + dM at all diameter hyperplanes of σ(p),
considered as hypersphere in the normal space p+N(p). We use local coordinates in N(p).
Let c(v) = (v1, . . . , vn−(k+2), 1) be the normals of these diameter hyperplanes. A rational
parametrization of the offset hypersurface Φd of Φ is

Φd : y(t, u1, . . . , uk, v1, . . . , vn−(k+2)) = (p+ dM)(t, u)− 2d
M(t, u) · c(v)
c(v) · c(v)

c(v) (5.26)



Now we study the two exclusions, Case 1 for m = 1 and Case 2 for m = 0. First we note
that the normal vector space only depends on t and not on the parameters ui, such that
we have N(p) = N(t). All regular points of a fixed generating space G(t) possess the same
normal space and also the same tangent space.

If dimN(t) = 1, the length
√
M ·M of the normal vectorM(t) is in general not rational.

So we conclude that the offset hypersurface of these ruled hypersurfaces Φ are in general
not rational parametrizable.

If dimN(t) ≥ 2 a general normal vector M(t) at p ∈ Φ is a linear combination

M(t) = d1(t)v1 + . . .+ dn−k−1(t)vn−k−1,

where we can assume that (d1(t), . . . , dn−k−1(t)) is a rational orthogonal basis of N(t). The
squared length of M(t) is

M(t) ·M(t) =
n−k−1∑

i=1

di · div
2
i . (5.27)

This defines the quadric

Q(t) :
n−k−1∑

i=1

di · div
2
i = w2 (5.28)

in Pn−k−1 with homogeneous coordinates vi, w. Since n − k − 1 ≥ 2, Q(t) contains conic
sections and real points. Proposition 5.1 says that there exist polynomials vi(t) and w(t),
satisfying Q(t) identically.

Since N(t) is constant for all regular points of G(t), it follows that there is a rational
unit normal vector M(t) for all regular points of Φ. What remains is equivalent to Step
3 from above. We apply a stereographic projection to the quadric Q(t), given by formula
(5.28). This leads to a rational parametrization of the spheres σ(p). Together with above
constructions this proves the following.

Theorem 5.2 Let Φ be a ruled k+1–manifold different from a hypersurface with constant
tangent hyperplanes along its generators G(t). Then, the offset hypersurface Φd to Φ at
distance d is a PN hypersurface.

To illustrate the method just described we discuss two examples.
Example: Let Φ be a developable 2–manifold in 4–space, parametrized by

Φ : p(t, u) = c(t) + uċ(t)

Let c be a polynomial (rational) space curve, free of inflection points. The tangent plane
is given by

τ : p+ λ(ċ+ uc̈) + µċ.

The normal vectors of Φ are solutions of the linear homogeneous system

mj · (ċ+ uc̈) = 0,

mj · ċ = 0.



This implies that the normal vector space N(t) does not depend on u. Since c is required
to be free of inflections, N(t) is 2–dimensional. Let m1(t) and m2(t) be an orthogonal basis
of N(t). A general normal vector m of Φ is a linear combination of

m(t) = m1(t)v1 +m2(t)v2.

For the squared length of m we obtain a quadratic polynomial in vi

||m||2 = α1(t)v
2
1 + α2(t)v

2
2,

whose coefficients αi are polynomial (rational) functions in t. We form the quadric

Q(t) : α1(t)v
2
1 + α2(t)v

2
2 = w2.

Proposition 5.1 says that there exist polynomials v1(t), v2(t) and w(t) which satisfy Q(t)
identically. It follows that

m(t) = m1(t)
v1

w
(t) +m2(t)

v2

w
(t)

is a unit normal vector field of Φ. To obtain a parametrization of the offset hypersurface
Φd at distance d, it remains to parametrize circles σ(p) of radius d in the normal spaces
p + N(t). Let m1(t) be an arbitrary rational normal vector of Φ, linearly independent of
m for almost all t. Then, Φd can be parametrized by

Φ : q(t, u, λ) = p(t, u) + dm(t)− 2d
m(t) · (λm1(t)−m(t))

(λm1(t)−m(t)) · (λm1(t)−m(t))
(λm1(t)−m(t)).

Example: Let Φ be a 2–manifold in 4–space, parametrized by

Φ : p(t, u) = c(t) + ug(t),

where c is a rational space curve, g a rational vector field. The vectors ċ, g, ġ shall be
linearly independent, which implies that Φ is non developable. The normal vectors of Φ
are solutions of the linear homogeneous system

mj · (ċ+ uġ) = 0,

mj · g = 0. (5.29)

The normal vector space N(t, u) depends on u, which is the main difference to the previous
example. Let m be a normal vector of Φ and with (5.29) it is a linear combination

m(t, u) = m1(t) + um2(t).

The squared length is a quadratic function in u. Setting u = u2/u1 it follows

||m||2 = α1(t)u
2
1 + α2(t)u

2
2,



where αi are rational in t. Proposition 5.1 says that there exist polynomials u1(t), u2(t)
and w(t) such that

α1(t)u1(t)
2 + α2(t)u2(t)

2 = w(t)2

is identically satisfied. It follows that

m(t) = m1(t)
u1

w
(t) +m2(t)

u2

w
(t)

is a unit normal vector field of Φ along a curve f(t). Applying a stereographic projection
to the quadric, defined by the squared length, we obtain unit normals m(t, ũ) in each point
of Φ. We note that this new parameter ũ depends on t and on the stereographic projection.

To obtain a parametrization of the offset hypersurface Φ at distance d, it remains to
parametrize circles σ(p) of radius d in the normal spaces p + N(t, ũ). Let n(t, ũ) be an
arbitrary normal vector of Φ, where (m(t, ũ), n(t, ũ)) is a basis of the normal vector space
N(t, ũ). Then, Φd can be parametrized by

Φd : q(t, ũ, λ) = p(t, ũ) + dm− 2d
m · (λn−m)

(λn−m) · (λn−m)
(λn−m).
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[27] Lü, W. (1996), Rational parameterization of quadrics and their offsets, Computing
57, 135–147.
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