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Abstract

Given two objects A and B with piecewise smooth boundary we discuss the

computation of the boundary Γ of the Minkowski sum A+B. This boundary surface

Γ is part of the envelope when B is moved by translations defined by vectors a ∈ A,

or vice versa. We present an efficient algorithm working for dense point clouds or for

triangular meshes. Besides this the global self-intersections of the boundary Γ are

detected and resolved. Additionally we point to some relations between Minkowski

sums and kinematics, and compute local quadratic approximations of the envelope.

keywords: Minkowski sum, convolution surface, translation, motion, envelope, marching

algorithm, point-set surface, signed distance function.
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1 Introduction

Minkowski sums in two and three dimensions are used in various fields, for example math-

ematical morphology, computer graphics, convex geometry and computational geometry.

Given two sets A and B, the set

{a + B|a ∈ A} = {a + b|a ∈ A,b ∈ B} = A+ B (1)

is called the Minkowski sum A + B of the sets A,B. It is formed by translating the set

B by all vectors a ∈ A, and it is obvious that the sets A and B can be exchanged. The

definition does not require any smoothness, but later on we will concentrate on sets A,B
with piecewise smooth boundaries ∂A and ∂B.

The boundary ∂(A+B) of the Minkowski sum A+B is contained in the envelope of B with

respect to the translations x′ = a+x, a ∈ A. Since we prefer to use boundary representa-

tions for geometric objects, the Minkowski sum will be represented by its boundary surface,

too. It is sufficient to apply translations defined by vectors a ∈ ∂A to the boundary points

of B. When studying envelopes it is not necessary that the input objects are solids but

can be surfaces as well.

Applying the concept of Minkowski sum to surfaces A and B may cause some confusion

since the surfaces are already boundaries (not necessarily closed). Figure 1 illustrates the

2D-case for two planar curves A, B bounding planar domainsA,B. The set A+B is covered

by two families of curves a + B and b + A. The family a + B consists of congruent curves

translating B when a varies in A. Analogously A + B is covered by b + A for a moving

point b ∈ B. These two families of curves possess an envelope called the convolution A?B

of A and B. It might consist of several components. The outer boundary Γ of the envelope

A ? B is the boundary ∂(A + B) of the Minkowski sum A + B of the sets A,B. In many

applications A and B are oriented surfaces which implies that A?B is an oriented envelope.

The outer boundary Γ is the trimmed outer component of A ? B.

In order to guard against misunderstandings we note that convolution surfaces appear in

computer graphics and visualization also in a different way, see e.g. [2, 11, 18]. There,

a convolution surface is defined as level set of an implicit function f(x) = g(x) ? h(x) =∫
R3 g(t)h(x−t)dt, called the convolution of the geometry function g and the kernel function

h.

There exist several contributions concerning the analysis of algorithms and the computation
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Figure 1: Construction of two families of curves a + B and b + A

of Minkowski sums. In particular the 2D case is investigated thoroughly, for polygons as

well as for smooth curves, see for instance [4, 6, 7, 8, 9].

The computation of the Minkowski sum of two convex objects is well known, see e.g. [12].

The handling of the non-convex case is thus often solved by decomposing the input poly-

topes into convex components, see e.g. [5]. The Minkowski sum of two non-convex objects

is thus obtained by computing the Minkowski sums of all pairs of convex parts. Finally

these partial Minkowski sums have to be glued together. In [19] this concept is applied to

the Minkowski sum computation of complex polyhedral objects.

When dealing with boundary representations of geometric objects, the computation of the

envelope with respect to translations is advantageous, since the convex decomposition of

free-form input geometries results in a large number of convex parts. Thus the union of a

large number of partial Minkowski sums is the challenging part of a practical implementa-

tion.

If the input objects are represented by their boundaries, there are mainly two cases: The

objects are given explicitly by parametric representations or by a piecewise planar ap-
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proximation, consisting of triangular or polygonal faces. In general, the Minkowski sum

computation with respect to parametric representations of the input objects results in a dif-

ficult reparametrization problem and is in close relation to the convolution of two surfaces,

see [8, 10, 13, 16, 17].

The aim of this contribution is twofold. On the one hand we present a method to compute

the Minkowski sum of two objects A,B with piecewise smooth boundary surfaces A = ∂A,

B = ∂B, which are assumed to be given by dense clouds of data points in order to estimate

surface normals and second order properties. On the other hand a local analysis of the

envelope A?B is performed. A detailed investigation of doubly curved input surfaces shows

how the regularity of the convolution depends on the relation of the normal curvatures of

A and B.

The Minkowski sum computation follows the following concept:

• Computation of the envelope A ? B.

• Extraction of the outer boundary Γ (and possibly inner boundaries) of the envelope.

• Treatment of global self-intersections.

• Triangulation of the final point set.

Assuming that the boundary surfaces A, B are defined by points a,b plus oriented unit

normal vectors na,nb, the same description will be available for the envelope A ? B and

its outer boundary Γ. The extraction of the outer boundary Γ is performed by a marching

method in the distance field of the envelope. This is a standard method for trimming,

see[20] and results in fact in a discretized implicit representation of the Minkowski sum.

A similar method can be applied to extract possibly occurring inner boundaries of the

envelope. The global self-intersections of Γ can be detected with relatively high reliability

by investigating the variation of the normal vectors at points of Γ. The test examples

(figures 6, 7, 9, 10) show that the presented method works with high precision and yields

reliable results.

The article is organized as follows. Section 2 provides an introduction to convolution

surfaces and envelope computation. The case of parametric input surfaces as well as the

local quadratic approximations are briefly discussed in Section 3. Section 4 tells about
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convolution of point clouds, extraction of the outer boundary and the detection of self-

intersections. Finally we conclude the paper in section 5.

2 Geometric background

Let A,B be two objects in space with piecewise smooth boundary surfaces A = ∂A,

B = ∂B. We discuss the construction of the convolution surface A ? B and its main

geometric properties.

2.1 Convolution of two surfaces

A (local) parametrization a(u, v) of the input surface A defines a two-parameter family

of translations x′ = a(u, v) + x. At any smooth position there exist linearly independent

partial derivative vectors

au =
∂a

∂u
, av =

∂a

∂v
.

Let a(t) = a(u(t), v(t)) be a curve in A and x′ = a(t) + x be the corresponding one-

parameter family of translations. The velocity vector field v(t) = ȧ(t) = auut + avvt is

independent of the point x.

Since we are interested in boundary representations we do not apply all translations a ∈ A

to all points b ∈ B but we are looking for those pairs of points a,b such that a + b is

a boundary point of the envelope of the two-parameter family of surfaces a + B. For the

given motion x′ = a(u, v) + x only those points b ∈ B will contribute to the envelope, if

both au and av are tangent to the surface B at b. This in fact requires smoothness of the

input surfaces A and B. In other words, a + b is a point of the envelope if the tangent

planes Ta and Tb at points a,b are parallel. Since we assume that A, B are oriented surfaces

it is more precise to formulate a condition involving oriented unit normal vectors na,nb of

A, B. This leads to the notion of convolution surfaces which are defined in the following

way:

Given two oriented smooth surfaces A and B with unit normal vectors na nb, the convo-

lution surface A ? B is defined by

A ? B = {a + b|na = nb, a ∈ A,b ∈ B}. (2)
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Since A ? B is defined with respect to orientations of the normal vectors, it is an oriented

envelope. If A, B are smooth boundaries of sets A,B, the boundary of the Minkowski sum

∂(A+B) is usually a subset of the convolution A ? B. To figure out which points of A ? B

are in fact boundary points of the Minkowski sum A + B, a trimming of the convolution

A ? B is performed, see Figure 5.

2.2 Convolution of a surface and a curve

One can generalize the concept of Minkowski sum and convolution surfaces to the case

where A is a smooth curve and B is a piecewise smooth surface in a straightforward

manner. Let the curve A be parametrized by a(t), the convolution is defined by

C = A ? B = {a + b|ȧ · nb = 0, a ∈ A,b ∈ B}. (3)

The vector sum is formed for those pairs of points a,b where the tangent vector ȧ is parallel

to the tangent plane of b. This definition is equivalent to (2).

The convolution is the envelope of B with respect to a one-parameter family of motions

x′ = a(t)+x. Thus, the computation of the convolution of a curve and a surface is simpler

than for two surfaces. This concept applies to the convolution of a surface and a pipe

surface which can be considered as offset of its center curve. Moreover it is useful when

computing convolution surfaces of piecewise smooth objects which possess sharp edges, see

Section 4.4.

3 Computing the envelope for parametrized surfaces

We are given two smooth oriented surfaces A, B ⊂ R3 by parametric representations

a(u, v) : G ⊂ R2 → A, b(s, t) : H ⊂ R2 → B,

where G and H are planar domains in R2. The unit normal vectors of A, B are denoted

by na(u, v) and nb(s, t), but their normalization is not essential. In order to compute the

envelope of B with respect to translations defined by a, or equivalently, the convolution

surface A ? B, we have to construct a reparametrization

φ : H → G,

(s, t) 7→ (u, v)
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such that na(φ(s, t)) = nb(s, t) holds. The mapping φ is assumed to be a local diffeomor-

phism, but in general it is not one-to-one. Under the assumption that we have already

found a reparametrization φ, the envelope A ? B is parametrized by

c(s, t) = a(φ(s, t)) + b(s, t).

In particular cases there exist explicit parametrizations of the convolution of two surfaces.

We mention that the convolution of two spheres is a sphere, which is geometrically evident,

since if the center of a sphere moves along another sphere, the envelope is again a sphere.

An analogous result holds for two paraboloids with parallel axes, see section 3.1.

Further it is shown in [13] that the convolution of an arbitrary rational surface and a

paraboloid is again a rational surface, and the reparametrization can be given explicitly.

The same property holds for a larger class of surfaces, whose normal vectors admit a

linear parametrization in the surface parameters, see [16]. In this sense, these surfaces

are generalizations of paraboloids. Convolution surfaces of two ruled surfaces can also

be parametrized explicitly, see [10]. Similar properties hold for two canal surfaces. The

existence of explicit parametrizations is in close relation to the structure of the normal

vector fields of the input surfaces.

Moreover we point to some degenerate cases concerning the unit normal vector field of the

input surfaces. Let A be planar, then na is a constant vector. Assume that nb(s, t) is

an injective parametrization of a part of the unit sphere S2, then there exists at most a

single point b0 = b(s, t) whose normal vector satisfies nb(s, t) = na. In other words, b0

corresponds to all points a ∈ A. We conclude that A ? B is planar with a(u, v) + b0 as

possible parametrization.

Let A be a developable surface, then na(u, v) is a curve in S2. Without loss of generality

we assume that this curve is parametrized by na(u). This says in particular that a(u0, v)

parametrizes a generating line in A for fixed u0. If nb(s, t) is injective, there exists in

general a curve b(s(u), t(u)) which contributes to the construction. Since all points a(u0, v)

correspond to a single point b(s(u0), t(u0)), the sum a(u0, v)+b(s(u0), t(u0)) is a generating

line in A ? B. Points on this line possess unit normals na(u0). Since this property holds

for all (u, v) ∈ G, the envelope A ? B is a developable surface.
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Convolution surfaces of translated input objects

For practical considerations it is remarkable that the convolution A ? B is invariant with

respect to translations in the following sense: Let τ : x′ = v + x be a fixed translation,

and let B′ = τ(B). Thus, B′ admits the parametrization b′(s, t) = b(s, t) +v. We assume

that a(φ(s, t)) is already a parametrization of A with respect to coinciding unit normals

na(φ(s, t)) = nb(s, t). Because b(s, t) and b′(s, t) possess the same unit normal vectors nb,

the convolution A ? B′ is parametrized by

a + b′ = a + b + v = c + v.

Thus, the convolution surface A ? B′ of A and B′ is obtained by applying the translation

τ to the convolution surface C = A ? B of A and B.

Convolution surfaces of offsets of the input objects

Let A and B be two smooth oriented surfaces and let us assume that the reparametrization

with respect to coinciding unit normal vectors na = nb has been performed already. Let A

and B be parametrized by a(s, t) and b(s, t), respectively.

How does the convolution surface look like, if we replace B by a one-sided offset Bd at

oriented distance d. In fact, B and Bd have the same unit normals nb, since bd(s, t) =

b(s, t) + dnb(s, t). Since the unit normals of B, Bd and C coincide, we denote them by n.

As a direct consequence, the convolution C ′ = A ? Bd is an offset of C = A ? B at distance

d, and a parametrization of C ′ is obtained by

c′ = a + bd = a + b + dn = c + dn.

Example: Let A be a piecewise smooth object and B be a pipe surface with spine curve

M and radius d. The pipe surface B itself is the envelope of a one-parameter family of

spheres traveling along M . We interpret M as offset of B at distance −d, and the unit

normals nb of B are perpendicular to M (for corresponding parameter values). Thus, the

convolution C = A ? B is the offset of C ′ = A ? M at oriented distance d.
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3.1 Convolution surfaces of spheres and paraboloids and the

quadratic approximation of general convolution surfaces

To get more insight into the computation of convolution surfaces, we discuss the convolution

of two spheres and two paraboloids with parallel axes. Latter is a special case of the

quadratic approximation of the convolution surface of two arbitrary analytic input surfaces.

Figure 2 is an illustration of the planar case, showing the convolution of two circles and

two parabolas with parallel axes.

Convolution of spheres

Let A and B be two oriented spheres with centers r and s. Their signed radii are denoted

by r and s, and determine the orientation of A and B. The convolution C = A ? B is

again a sphere, with center r + s and radius r + s. This can be checked by using standard

parametrizations

a(u, v) = r + rn(u, v),b(u, v) = s + sn(u, v)

for both A and B, where n(u, v) is a parametrization of the unit sphere. Since the corre-

spondence between A and B is defined by equal surface parameters (u, v), the convolution

surface A ? B is parametrized by

c(u, v) = a(u, v) + b(u, v) = r + s + (r + s)n(u, v). (4)

b

s

s
a

r
r

a + b

r + s

r + s

A
B

A ? B

o

b

A

aB

c = a + b

A ? B

na

nb

nc

o

Figure 2: Convolution of two circles and two parabolas
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Quadratic approximation of the convolution surface of two smooth surfaces

The computation of convolution surfaces is based on a simple operation, the sum of vectors,

and the question arises how local approximations of convolution surfaces look like. As a

byproduct of this investigation we obtain the result that the convolution of two paraboloids

with parallel axis is again a paraboloid.

Let A, B be two analytic surfaces. We assume that the regular points a0,b0 are a pair

of corresponding points of A, B with respect to coinciding unit normals. By applying a

translation one achieves a0 = b0. We choose a coordinate system with a0 as origin and in

a way that A and B are locally parametrized by the following graph representations,

a(u, v) = (u, v,
1

2
(au2 + cv2) + O(x3))>,b(s, t) = (s, t,

1

2
(αs2 + 2βst + γt2) + O(x3))>. (5)

The third coordinates a3, b3 of a and b are expanded into Taylor–series and we do not take

care of third or higher order terms. In order to obtain a compact and concise notation, we

let U = (u, v)> and S = (s, t)>, and set

D =

[
a 0

0 c

]
, and E =

[
α β

β γ

]
.

By the use of these abbreviations, the local parametrizations of A, B are given by

a(U) =

[
U

1
2
U> ·D · U + O(x3)

]
, and b(S) =

[
S

1
2
S> · E · S + O(x3)

]
. (6)

Since the gradients of the third coordinates a3, b3 of a,b equal ∇a3 = D · U + O(x2) and

∇b3 = E · S + O(x2), the reparametrization φ and its inverse according to coinciding unit

normals are given by

φ : S −→ U = D−1 · E · S + O(x2), φ−1 : U −→ S = E−1 ·D · U + O(x2). (7)

These transformations require regularity of D (or E), respectively, which is assumed in the

following. This implies that the case of a parabolic point a0 (or b0) is excluded. Later we

briefly report on this case. According to (7), A is represented with respect to S by

a(φ(S)) =

[
D−1 · E · S + O(x2)

1
2
S> · E ·D−1 · E · S + O(x3)

]
, (8)
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By letting F = I + D−1 · E the parametrization of the convolution surface A ? B is

(a + b)(S) =

[
F · S + O(x2)

1
2
S> · E · F · S + O(x3)

]
. (9)

Analogously, C = A ? B can be represented with respect to U . If a0 + b0 is a regular

point of C, which means that F is regular, C can be represented as graph with help of the

reparametrization

T = F · S + O(x2), or S = F−1 · T + O(x2).

The local graph representation of C at a0 + b0 is

(a + b)(T ) =

[
T

1
2
T> · F−> · E · T + O(x3)

]
, with F−> = (F>)−1. (10)

As known from differential geometry, the principal curvatures of A ? B are determined

by the eigenvalues of M = F−> · E and the associated directions are its eigenvectors.

Moreover, Gaussian and mean curvature of A ? B are det(M) and trace(M), respectively.

Regularity of the convolution

According to our approach the regularity of the convolution C at a0 + b0 depends on the

regularity of F = I + D−1 · E. This is a certain simplification but gives already some

insight to the problem. Thus we assume that rk(D) = 2 which says that a0 is either an

elliptic or hyperbolic point of A. If rk(E) = 2 the same holds for b0 on B, otherwise b0 is

a parabolic point (rk(E) = 1) or flat(rk(E) = 0).

The normal curvatures κA(v), κB(v) in direction of the tangent vector v at a0 and b0 are

given by

κA(v) = v> ·D · v, κB(v) = v> · E · v,

since the coefficient matrices of the first fundamental form at the origin a0 = b0 are both

I = diag(1, 1). The investigation of the regularity of C is based on the rank of F .

rk(F ) = 2: The convolution C is regular at a0 + b0. This point is either elliptic or hyper-

bolic if rk(E) = 2 and parabolic or flat if rk(E) = 1 or rk(E) = 0, respectively.

rk(F ) = 1: There exists a vector v 6= o = (0, 0)> with

F · v = o = v + D−1 · E · v, =⇒ −D · v = E · v =⇒ −κA(v) = κB(v).
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The convolution possesses a singular point at a0 + b0. We consider curves l on A

through a0 and their corresponding curves (with respect to coinciding unit normal

vectors) through b0. The image curves l′ on the convolution C have all the same

tangent vector determined by im(F ) except curves l whose tangent vector is deter-

mined by v = ker(F ). The latter ones are mapped to curves l′ with a singularity at

a0 + b0.

rk(F ) = 0: For any vector v we have F · v = o. Thus, all the normal curvatures of A and

B at a0 and b0 satisfy −κA(v) = κB(v). The convolution C possesses a singular

point at a0 + b0 and all curves through that point have a singularity there.

We observe that the behaviour of C can be quite complicated. If both surfaces A and B are

parabolic at a0 and b0 the proposed reparametrization (7) fails to work and one would have

to use another technique to compute a parametrization of C = A ? B. Nevertheless, this

case typically occurs for a finite set of corresponding points. The convolution C typically

is regular at the considered point a0 + b0. If ker(D) = ker(E) then a0 + b0 is a parabolic

point of C otherwise (ker(D) 6= ker(E)) a0 + b0 is a flat point of C.

Convolution of paraboloids with parallel axes

By omitting the higher order terms in (6) one obtains the case of two paraboloids with

parallel axes. Equation (9) shows that the convolution A?B of two paraboloids A, B with

parallel axes is again a paraboloid in case of regularity of F . The reparametrization (7) is

linear and (10) is a graph representation of A ? B.

If rk(F ) = 1, this condition holds for all pairs of corresponding points a,b and A ? B

consists of singular points only and degenerates to a curve, see Figure 3. The right hand

side figure shows the indicatrices, the curvature diagrams of both surfaces. At any pair

of corresponding points there exists a direction v with κA(v) = −κB(v). Since (9) is

quadratic, the singular curve is a parabola.

If rk(F ) = 0, this condition is again true for all pairs of corresponding points and A ? B

degenerates to a point.
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Figure 3: Left and middle: Degenerate cases of convolution ’surfaces’. Right: Curvature

diagrams (indicatrices) of A and B at the origin.

4 Convolution of surfaces given by dense point clouds

We are given two oriented surfaces A, B as sets of points ai, i = 1, . . . ,M and bj, j =

1, . . . , N together with their associated oriented unit normal vectors na,nb. For a moment

we assume that A, B are smooth surfaces and we will extent the construction to piecewise

smooth surfaces later.

4.1 Computing corresponding points

Two points a and b are said to be corresponding, if na = nb holds. For any a there exists

a set of corresponding points bj, which might be empty. Consequently, the convolution

A ? B is formed by points cj = a + bj. Usually, this correspondence through equal normal

vectors is not one-to-one. Obviously, the surface normal vector ncj
of the convolution A?B

at points cj equals na.

Figure 4 shows on the left hand side the construction of corresponding points of the convo-

lution A ? B of two planar curves A, B, and the one-parameter family of translated curves

b+ A on the right hand side. Figure 5 shows the point set of the convolution A ?B of two

planar curves A, B on the left hand side and the extracted outer boundary Γ of the outer

envelope A ? B on the right hand side.

In order to define the correspondence between a ∈ A and b ∈ B we proceed as follows: A

point a with associated normal vector na is correpsonding to those bj ∈ B whose normal
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nb
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c3

Figure 4: Corresponding points on A and B and family of translated curves b + A

vectors nbj
satisfy

‖na − nbj
‖ < τ, or ∠(na,nbj

) < τ. (11)

These two requirements are almost equivalent for small values τ . If the input surfaces A

and B are given by rather dense point clouds, it is sufficient to define the correspondence

by searching for nearest neighbors in the given sets of unit normal vectors na,nb according

to (11). This does not require any triangulation of the input surfaces A and B.

An alternative but more accurate construction uses triangulated input data and performs

linear interpolation. It works as follows: Thus let A and B be given by data points ai

and bj, normal vectors na,nb and triangulations S = {s} and T = {t}, respectively.

We consider the set of triangles {t′} whose vertices nb are the unit normals of B and

let a ∈ A be a fixed point with unit normal na. Let t′ be a triangle in the unit sphere

S2 with vertices nbk
, k = 1, 2, 3 which contains na. Then, na can be represented by a

convex combination
∑

nbk
βk, with βk > 0. Normalizing these coefficients by

∑
βk = 1,

they serve as barycentric coordinates with respect to the original triangle t with vertices

bk. Consequently, the point b =
∑

bkβk approximately corresponds to the given point a.

Performing this construction for each triangle t′ containing na, one obtains all points bj

corresponding to the fixed given point a. Finally, cj = a+bj are points of the convolution

surface A ? B.
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A

B

C = A ? B

(a)

B

A

Γ

(b)

Figure 5: a) Envelope C = A ? B. b) Extaction of the outer boundary Γ.

4.2 Extracting the outer boundary from the convolution

So far we have computed an unorganized set of points c with associated unit normals nc

covering the convolution surface C = A?B. Figure 5(a) shows that the envelope C = A?B

might have global self-intersections and possess parts in the interior. We apply a global,

grid-based method to extract the outer boundary Γ from the envelope of C. Examples are

illustrated in Figures 6 and 7.

The envelope C is placed in a rectangular grid whose cell size is larger than δ, the average

point distance at the envelope. The unsigned distance function of C, evaluated at the grid

points is computed. In order to trim those parts of C lying in the interior of the outer

boundary Γ a marching method is performed, similar to that described in [20, 14].

Figure 6: Objects and their offsets (at some distance) computed as Minkowski sum.
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Applying this method results is a correct labeling of the grid points as inside or outside.

Thus it defines in fact a signed distance function of the outer boundary Γ. By taking a small

band of outside grid points, the outer boundary Γ is defined as set of nearest neighbors of

this small band (Figure 5(b)). This results in a relatively uniform sampling of Γ by data

points with associated unit normal vectors. The principle of the boundary extraction is

illustrated in the 2D-Figure 5(b) and the method works analogously in 3D. The extraction

of the outer boundary can be significantly accelerated by considering only those grid points

within a certain bandwidth (∼ 5δ) of the convolution C. self-intersections of the envelope

are smoothed out and have to be treated separately (section 4.5).

Figure 7: Left and middle: Objects A and B. Right: Minkowski sum A + B.

4.3 Computing inner boundaries of the envelope

Even the simple two-dimensional examples in Figures 4 and 5 show that the convolution

C of two oriented objects A and B can possess one or more inner boundaries. We recall

that the correspondence between A, B is defined via coincidence of oriented unit normal

vectors na,nb. To determine potential points of the inner boundaries the orientation of

na is reversed to −na. Figure 8 shows the outer and inner envelopes with associated unit

normal vectors (left and middle) and the outer and inner boundaries on the right hand

side.

For extraction of the outer boundary the marching method requires a seed point being

definitely outside the convolution. The active front stops at the outer boundary. When

extracting the inner boundaries one proceeds similarly, but the seed point has to be con-

tained in an inside region bounded by points whose normal vectors point inwards, see
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Figure 8: Outer (left) and inner (middle) envelope and extracted boundary points (left).

Figure 8 (middle). Finally, the extracted inner boundary points have to be partitioned

into connected sets and each of these sets of points has to be triangulated. The figures

illustrate the two-dimensional case only, but the procedure in 3D is analogous.

4.4 Edges and corners

Real world objects typically possess edges and corner and the envelope computation has

to take this into account. For the practical implementation we assume that the edges of

the objects A, B can be reliably detected and fitted by curves determined by two different

patches of the input surfaces locally. At an edge point p there exist two different unit

normal vectors nl and nr with respect to both patches intersecting at this edge. We exclude

curves of regression here. The set of unit normal vectors at p form a wedge spanned by

nl and nr. At a corner p the set of unit normal vectors is even two-dimensional and is

defined by the convex cone of unit normals of the surface patches meeting at p.

Since the set of relevant normals is larger at edges and corners, these points contribute

usually more likely to the envelope. Thus it is important to detect sharp edges and corners

at the objects to guarantee an accurate representation of the outer boundary.

Let A be a piecewise smooth surface which contains edges and let B be a smooth surface.

We restrict our consideration to a single edge c of A. Assume that c is a smooth curve

with parametrization c(t) and let the left hand and right hand side normal vector fields of

A along c(t) be denoted by nl(t) and nr(t). The contribution of the edge c and surface B

to the outer boundary of the convolution A ? B consists of that part of c + B which lies

inside the wedge spanned by nl(t),nr(t).

Figure 6 shows offsets of two CAD-models with precise edges and corners. These offsets are
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Figure 9: Left: CAD-model and pipe surface and their Minkowski sum. Right: Plate with

hole and half torus and two views of their Minkowski sum.

computed as Minkowski sums of the objects and a sphere. Of course, for offset computation

there exist simpler algorithms and it is not necessary to define a correspondence between

the input surfaces. These examples have been chosen to illustrate the algorithm since in

case of more complex input surfaces it is often hard to imagine how the Minkowski sum

looks like.

4.5 Global self-intersections of the envelope

According to the nature of convolution surfaces, A ? B as well as the outer boundary Γ

might possess global self-intersections. Let Γ be covered by a point set G whose normals

are denoted by ng. Under the assumption that the smooth parts of Γ are nearly uniformly

sampled, global self-intersections can be detected with help of a feature sensitive metric

(see [15]). Onces having detected these feature locations, the global self intersections are

frequently reconstructed nicely by intersecting profile sections along the detected sharp

feature ([14]). An example is displayed in Figure 10.

5 Conclusion

We have presented a method to compute the boundary surface of the Minkowski sum of

two input objects which typically are piecewise smooth surfaces A, B. The method is based

on envelope computation with respect to translations defined by A or B and a trimming

procedure. The method applies to the representation of the outer boundary surface as well
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Figure 10: Minkowski sum of pipe surface and object. Right: Sharpened edges of the

Minkowski sum.

as possibly occurring inner boundaries. Additionally we performed a local analysis of the

envelope in dependence of the normal curvatures of the input surfaces.

The prototypical implementation has been performed in Matlab. The models are typically

sampled by 2.5k to 10k data points. The computation takes usually less than 60 sec.,

including nearest neighbor searching, initialization and marching on the grid, extraction of

outer boundary, etc., if the data structure of the models is already prepared.

The presented method of envelope computation applies not only to a two parameter family

of translations but as well to a general two parameter family of motions whose rotational

part is non trivial. Nevertheless, the translations are distinguished because the envelope is

fully determined by the correspondence defined via the normal vector fields na, nb of the

input surfaces A, B. This reduces the computational costs significantly compared to the

effort of envelope computation in case of general motions.

Acknowledgment. This work has been carried out partially within the Kplus compe-

tence center Advanced Computer Vision and funded partially by the Austrian Science Fund

FWF within the research network S92. The authors like to thank Helmut Pottmann and

Boris Odehnal for helpful comments.

References

[1] Bajaj, C. and Kim, M.-S. 1989. Generation of configuration space obstacles: The case

of a moving algebraic curve, Algorithmica 4(2), 157–172.

20



[2] Bloomenthal, J. and Shoemake, K., 1991. Convolution Surfaces, Computer Graphics,

Vol. 25, No. 4, 251–256.

[3] Farin, G., Hoschek, J., and Kim, M.-S., 2002. Handbook of Computer Aided Geometric

Design, Elsevier.

[4] Farouki, R.T., 2003. Minkowski combination of complex sets - Geometry, Algorithms

and applications, in Curve and Surface Design: Saint Malo 2002, T. Lyche, M.-L.

Mazure and L.L. Schumaker (eds.), Nashboro Press, 123–146.

[5] Halperin, D., 2002. Robust Geometric Computing in Motion, The international Jour-

nal of Robotics Research, Vol. 21, No. 3, pp.219–232.

[6] Kaul, A. and Farouki, R.T., 1995. Computing Minkowski sums of planar curves, Int.

J. of Computat. Geom. and Appl. 5, 413–432.

[7] Kohler, K. and Spreng, M., 1995. Fast Computation of the C-Space of Convex 2D

Algebraic Objects, The Int. J. of Robotics Research 14(6), 590-608.

[8] Lee, I.-K., Kim, M.-S. and Elber, G., 1998a. Polynomial/Rational Approximation of

Minkowski Sum Boundary Curves, Graphical Models 60, No.2, 136–165.

[9] Lee, I.K., Kim, M.-S. and Elber, G., 1998b. The Minkowski Sum of 2D Curved Objects,

Proceedings of Israel-Korea Bi-National Conference on New Themes in Computerized

Geometrical Modeling, Tel-Aviv University, 155-164.
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