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Figure 1: Left: Surfaces with irregularly placed holes are hard to realize as masonry, where the mortar between bricks must not be subject to
tensile stresses. The surface shown here, surprisingly, has this property – it has been found as the nearest self-supporting shape from a given
freeform geometry. The fictitious thrust network used in our algorithms is superimposed, with edges’ cross-section and coloring visualizing
the magnitude of forces (warmer colors represent higher stresses.) Right: Curvature analysis with respect to the Airy stress surface tells us
how to remesh shapes by self-supporting quad meshes with planar faces. This guides steel/glass constructions with low moments in nodes.

Abstract

Self-supporting masonry is one of the most ancient and elegant
techniques for building curved shapes. Because of the very geomet-
ric nature of their failure, analyzing and modeling such strutures is
more a geometry processing problem than one of classical contin-
uum mechanics. This paper uses the thrust network method of anal-
ysis and presents an iterative nonlinear optimization algorithm for
efficiently approximating freeform shapes by self-supporting ones.
The rich geometry of thrust networks leads us to close connections
between diverse topics in discrete differential geometry, such as
a finite-element discretization of the Airy stress potential, perfect
graph Laplacians, and computing admissible loads via curvatures
of polyhedral surfaces. This geometric viewpoint allows us, in par-
ticular, to remesh self-supporting shapes by self-supporting quad
meshes with planar faces, and leads to another application of the
theory: steel/glass constructions with low moments in nodes.
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1 Introduction

Vaulted masonry structures are among the simplest and at the same
time most elegant solutions for creating curved shapes in building
construction. For this reason they have been an object of inter-
est since antiquity; large, non-convex examples of such structures
include gothic cathedrals. They continue to be an active topic of
research today.

Our paper is concerned with a combined geometry+statics analysis
of self-supporting masonry and with tools for the interactive mod-
eling of freeform self-supporting structures. Here “self-supporting”
means that the structure, considered as an arrangement of blocks
(bricks, stones), holds together by itself, with additional support
present only during construction. This analysis is based on the fol-
lowing assumptions, which follow the classic [Heyman 1966]:

Assumption 1: Masonry has no tensile strength, but the individual
building blocks do not slip against each other (because of friction
or mortar). On the other hand, their compressive strength is suffi-
ciently high so that failure of the structure is by a sudden change in
geometry and not by material failure.

Assumption 2 (The Safe Theorem): If a system of forces can be
found which is in equilibrium with the load on the structure and
which is contained within the masonry envelope then the structure
will carry the loads, although the actual forces present may not be
those postulated by that system.

Our approach is twofold: We first give an overview of the con-
tinuous case of a smooth surface under stress, which turns out to
be governed locally by the Airy stress function. This mathemat-
ical model is called a membrane in the engineering literature and
has been applied to the analysis of masonry before. The surface
is self-supporting if and only if stresses are entirely compressive.
For computational purposes, stresses are discretized as a fictitious
thrust network [Block and Ochsendorf 2007] contained in the ma-
sonry structure; this network is a system of forces in equilibrium
with the structure’s deadload. It can be interpreted as a finite ele-
ment discretization of the continuous case, and it turns out to have
very interesting geometry, with the Airy stress function becoming a
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polyhedral surface directly related to a reciprocal force diagram.

While previous work in architectural geometry was mostly con-
cerned with aspects of rationalization and purely geometric side-
conditions which occur in freeform architecture, the focus of this
paper is design with statics constraints. In particular, our contribu-
tions are the following:

Contributions. • We present an optimization algorithm, based
on the theory of thrust networks and Airy potentials, for efficiently
finding a self-supporting surface near a given arbitrary reference
surface (§3), and build a tool for interactive design of self-support-
ing surfaces based on this algorithm (§4). Freeform masonry is
based on such surfaces.

• The discrete “stress Laplacian” derived from a thrust network
with compressive forces is a so-called perfect one (§2.2). We use it
to argue why our discretizations are faithful to the continuous case.

• We connect the physics of self-supporting surfaces with the ge-
ometry of isotropic 3-space, and express the equations governing
self-supporting surfaces in terms of curvatures (§2.3) and (§2.4).
Likewise we establish a connection between the stress Laplacian
and mean curvatures of polyhedral surfaces. This theoretical part
of the paper is a contribution to Discrete Differential Geometry.

• We use the geometric knowledge we have gathered to find par-
ticularly nice families of self-supporting surfaces, especially planar
quadrilateral representations of thrust networks (§5). This leads to
steel/glass structures with low bending and torsion moments.

Related Work. Unsupported masonry has been an active topic of
research in the engineering community. The foundations for the
modern approach were laid by Jacques Heyman [1966] and are
available as the textbook [Heyman 1995]. The theory of recipro-
cal force diagrams in the planar case was studied by J. Maxwell;
a unifying view on polyhedral surfaces, compressive forces and
corresponding “convex” force diagrams is presented by [Ash et al.
1988]. F. Fraternali [2002; 2010] established a connection between
the continuous theory of stresses in membranes and the discrete
theory of forces in thrust networks, by interpreting the latter as a
non-conforming finite element discretization of the former.

Several authors have studied the problem of finding discrete com-
pressive force networks contained within the boundary of masonry
structures; previous work in this area includes [O’Dwyer 1998] and
[Andreu et al. 2007]. Fraternali [2010] proposed solving for the
structure’s discrete stress surface, and examining its convex hull to
study the structure’s stability and susceptibility to cracking. This
approach works well for analyzing existing structures, where the
boundary tractions can be measured and the stress surface is known
to be close to convex, but is not an ideal design tool since in such
settings the boundary tractions are unknown, and where replacing a
non-convex intial stress surface by its convex hull can cause large,
uncontrolled global changes to the surface being designed.

Philippe Block’s seminal thesis introduced Thrust Network Analy-
sis, which pioneered the use of thrust networks and their reciprocal
diagrams for efficient and practical design of self-supporting ma-
sonry structures. By first seeking a reciprocal diagram of the top
view, guaranteeing equilibrium of horizontal forces, then solving
for the heights that balance the vertical loads, Thrust Network Anal-
ysis linearizes the form-finding problem. For a thorough overview
of this methodology, see e.g. [Block and Ochsendorf 2007; Block
2009]. Recent work by Block and coauthors extends this method
in the case where the reciprocal diagram is not unique; for different
choices of reciprocal diagram, the optimal heights can be found us-
ing the method of least squares [Van Mele and Block 2011], and the

search for the best such reciprocal diagram can be automated using
a genetic algorithm [Block and Lachauer 2011].

Other approaches to the design of self-supporting structures include
modeling these structures as damped particle-spring systems (“dy-
namic relaxation” methods) [Kilian and Ochsendorf 2005; Barnes
2009], and mirroring the rich tradition in architecture of designing
self-supporting surfaces using hanging chain or membrane models
(for instance by Frei Otto, Antoni Gaudi, and Heinz Isler) [Hey-
man 1998; Kotnik and Weinstock 2012]. Force density meth-
ods [Linkwitz and Schek 1971] linearize the form-finding prob-
lem by solving for static equilibrium with respect to position vari-
ables, given prescribed prestresses in the form of axial force den-
sities [Gründig et al. 2000]. Alternatively, masonry structures can
be represented by networks of rigid blocks [Livesley 1992], whose
conditions on the structural feasibility were incorporated into pro-
cedural modeling of buildings [Whiting et al. 2009].

Algorithmic and mathematical methods relevant to this paper are
work on the geometry of PQ meshes [Liu et al. 2006], discrete
curvatures for such meshes [Pottmann et al. 2007; Bobenko et al.
2010], in particular curvatures in isotropic geometry [Pottmann and
Liu 2007]. Schiftner and Balzer [2010] discuss approximating a
reference surface by a quad mesh with planar faces, whose layout
is guided by statics properties of that surface.

2 Self-supporting Surfaces

This section contains the theoretical basis of the paper. We be-
gin in §2.1 and §2.2 with a review of the continuous theory
of self-supporting surfaces, and their discretization as thrust net-
works [Block and Ochsendorf 2007]. This discrete model and its
associated equilibrium equations form the groundwork of our opti-
mization algorithm (§4) for designing self-supporting surfaces. In
§2.3, §2.4, and §2.5 we draw connections between the theory of
self-supporting surfaces, curvature measures in isotropic geome-
try, and discrete Laplace-Beltrami operators. These insights lead to
some observations on existence of convergence of discrete approx-
imations to smooth self-supporting surfaces, and are important for
the later discussions of planar quad remeshing and special classes
of self-supporting surfaces (§5).

2.1 The Continuous Theory

We model masonry as a surface given by a height field s(x, y) de-
fined in some planar domain Ω. We assume a vertical load density
F (x, y) over the top view — usually F represents the structure’s
own weight. By definition this surface is self-supporting if and only
if there exists a negative semidefinite (compressive) stress tensor σ
over the surface whose stresses are in equilibrium with the acting
forces. Rewriting the equilibrium equations in plane coordinates
(x, y), we have that such a stress tensor exists if and only if there
exists a field M(x, y) = −σg−1 det g of 2× 2 symmetric positive
semidefinite matrices satisfying

div(M∇s) = F, divM = 0, (1)

where g is the induced metric
(1+s2x sxsy
sxsy 1+s2y

)
and the divergence

operator div
(
u(x,y)
v(x,y

)
= ux+vy is understood to act on the columns

of a matrix (see e.g. [Fraternali 2010], [Giaquinta and Giusti 1985]).

The condition divM = 0 says that M is locally the Hessian of a
real-valued function φ (the Airy stress potential) [Green and Zerna
2002]: With the notation

M =
(
m11 m12
m12 m22

)
⇐⇒ M̂ =

(
m22 −m12
−m12 m11

)
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Figure 2: A thrust network S with dangling edges indicating ex-
ternal forces (left). This network together with compressive forces
which balance vertical loads AiFi projects onto a planar mesh S ′
with equilibrium compressive forces wije′ij in its edges. Rotating
forces by 90◦ leads to the reciprocal force diagram S ′∗ (right).

it is clear that divM = 0 is an integrability condition for M̂ , so
locally there is a potential φ with

M̂ = ∇2φ, i.e., M = ∇̂2φ.

If the domain Ω is simply connected, this relation holds globally.
Positive semidefiniteness of M (or equivalently of M̂ ) character-
izes convexity of the Airy potential φ. The Airy function enters
computations only by way of its derivatives, so global existence is
not an issue.

Remark: Stresses at boundary points depend on the way the sur-
face is anchored: A fixed anchor means no condition, but a free
boundary with outer normal vector n means 〈M∇s,n〉 = 0.

Stress Laplacian. Note that divM = 0 yields div(M∇s) =
tr(M∇2s), which we like to call ∆φs. The operator ∆φ is sym-
metric. It is elliptic (as a Laplace operator should be) if and only if
M is positive definite, i.e., φ is strictly convex. The balance condi-
tion (1) may be written as ∆φs = F.

2.2 Discrete Theory: Thrust Networks

We discretize a self-supporting surface by a mesh S = (V,E, F )
(see Figure 2). Loads are again vertical, and following Block [2007]
we discretize them as force densities Fi associated with vertices vi.
The load acting on this vertex is then given by FiAi, whereAi is an
area of influence (using a prime to indicate projection onto the xy
plane, Ai is the area of the Voronoi cell of v′i w.r.t. V ′). We assume
that stresses are carried by the edges of the mesh: the force exerted
on the vertex vi by the edge connecting vi,vj is given by

wij(vj − vi), where wij = wji ≥ 0.

The weights wij in these equations can be interpreted as axial
force densities along the edges. The nonnegativity of the individ-
ual weights wij expresses the compressive nature of forces. The
balance conditions at vertices then read as follows: With vi =
(xi, yi, si) we have∑

j∼i
wij(xj − xi) =

∑
j∼i

wij(yj − yi) = 0, (2)∑
j∼i

wij(sj − si) = AiFi. (3)

A mesh equipped with edge weights in this way is a discrete thrust
network [Block 2009]. Invoking the safe theorem, we can state that
a masonry structure is self-supporting, if we can find a thrust net-
work with compressive forces which is entirely contained within the
structure. In other words, for a given surface the vi are known and
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Figure 3: Airy stress potential Φ and its polar dual Φ∗. Φ projects
onto the same planar mesh as S does, while Φ∗ projects onto
the reciprocal force diagram. A primal face fk lies in the plane
z = αx + βy + γ ⇐⇒ the corresponding dual vertex is
w∗k = (α, β,−γ).

the wij are unknown; the surface is self-supporting whenever a so-
lution {wij} to the above equations exist. Finding a self-supporting
surface near one that is not amounts to solving for a simultaneous
solution in vi andwij ; we describe one efficient approach for doing
so in §3.

Reciprocal Diagram. Equations (2) have a geometric interpreta-
tion: with edge vectors

e′ij = v′j − v′i = (xj , yj)− (xi, yi),

Equation (2) asserts that vectors wije′ij form a closed cycle. Rotat-
ing them by 90 degrees, we see that likewise

e′∗ij = wijJe
′
ij , with J =

(
0 −1
1 0

)
,

form a closed cycle (see Figure 2). If the mesh S is simply con-
nected, there exists an entire reciprocal diagram S ′∗ which is a
combinatorial dual of S, and which has edge vectors e′∗ij [Block
and Ochsendorf 2007]. Its vertices are denoted by v′∗i .

Remark: If S ′ is a Delaunay triangulation, then the corresponding
Voronoi diagram is an example of a reciprocal diagram.

Polyhedral Stress Potential. We can go further and construct a
convex polyhedral “Airy stress potential” surface Φ with vertices
wi = (xi, yi, φi) combinatorially equivalent to S by requiring that
a primal face of Φ lies in the plane z = αx+ βy + γ if and only if
(α, β) is the corresponding dual vertex of S ′∗ (see Figure 3). Ob-
viously this condition determines Φ up to vertical translation. For
existence see [Ash et al. 1988]. The inverse procedure constructs
a reciprocal diagram from Φ. This procedure works also if forces
are not compressive: we can construct an Airy mesh Φ which has
planar faces, but it will no longer be a convex polyhedron.

The vertices of Φ can be interpolated by a piecewise-linear function
φ(x, y). It is easy to see that the derivative of φ(x, y) jumps by the
amount ‖e′∗ij‖ = wij‖e′ij‖ when crossing over the edge e′ij at right
angle, with unit speed. This identifies Φ as the Airy polyhedron in-
troduced by [Fraternali et al. 2002] as a finite element discretization
of the continuous Airy function (see also [Fraternali 2010]).

If the mesh is not simply connected, the reciprocal diagram and
the Airy polyhedron exist only locally. Our computations do not
require global existence.

Polarity. Polarity with respect to the Maxwell paraboloid z =
1
2
(x2+y2) maps the plane z = αx+βy+γ to the point (α, β,−γ).

Thus, applying polarity to Φ and projecting the result Φ∗ into the xy
plane reconstructs the reciprocal diagram Φ∗′ = S ′∗ (see Fig. 3).



Discrete Stress Laplacian. The weights wij may be used to de-
fine a graph Laplacian ∆φ which on vertex-based functions acts as

∆φs(vi) =
∑

j∼i
wij(sj − si).

This operator is a perfect discrete Laplacian in the sense of [War-
detzky et al. 2007], since it is symmetric by construction, Equa-
tion (2) implies linear precision for the planar “top view mesh” S ′
(i.e., ∆φf = 0 if f is a linear function), and wij ≥ 0 ensures
semidefiniteness and a maximum principle for ∆φ-harmonic func-
tions. Equation (3) can be written as ∆φs = AF .

Note that ∆φ is well defined even when the underlying meshes are
not simply connected.

2.3 Surfaces in Isotropic Geometry

It is worthwhile to reconsider the basics of self-supporting surfaces
in the language of dual-isotropic geometry, which takes place in R3

with the z axis as a distinguished vertical direction. The basic ele-
ments of this geometry are planes, having equation z = f(x, y) =
αx + βy + γ. The gradient vector ∇f = (α, β) determines the
plane up to translation. A plane tangent to the graph of the function
s(x, y) has gradient vector∇s.

There is the notion of parallel points: (x, y, z) ‖ (x′, y′, z′) ⇐⇒
x = x′, y = y′.

Remark: The Maxwell paraboloid is considered the unit sphere of
isotropic geometry, and the geometric quantities considered above
are assigned specific meanings: The forces ‖e∗ij‖ = wij‖eij‖ are
dihedral angles of the Airy polyhedron Φ, and also “lengths” of
edges of Φ∗. We do not use this terminology in the sequel.

Curvatures. Generally speaking, in the differential geometry of
surfaces one considers the Gauss map σ from a surface S to a con-
vex unit sphere Φ by requiring that corresponding points have par-
allel tangent planes. Subsequently mean curvature Hrel and Gaus-
sian curvature Krel relative to Φ are computed from the derivative
dσ. Classically Φ is the ordinary unit sphere x2 + y2 + z2 = 1, so
that σ maps each point to its unit normal vector.

In our setting, parallelity is a property of points rather than planes,
and the Gauss map σ goes the other way, mapping the tangent
planes of the unit sphere z = φ(x, y) to the corresponding tan-
gent plane of the surface z = s(x, y). If we know which point
a plane is attached to, then the Gauss map is determined by the
plane’s gradient. So we simply write

∇φ σ7−→ ∇s.

By moving along a curve u(t) = (x(t), y(t)) in the parameter
domain we get the first variation of tangent planes: d

dt
∇φ|u(t) =

(∇2φ)u̇. This yields the derivative (∇2φ)u̇
dσ7−→ (∇2s)u̇, for all

u̇, and the matrix of dσ is found as (∇2φ)−1(∇2s). By definition,
curvatures of the surface s relative to φ are found as

Krel
s = det(dσ) = det∇2s

det∇2φ
,

Hrel
s = 1

2
tr(dσ) = 1

2
tr
(

M

det∇2φ
∇2s

)
=

∆φs

2 det∇2φ
.

The Maxwell paraboloid φ0(x, y) = 1
2
(x2 + y2) is the canonical

unit sphere of isotropic geometry, with Hessian E2. Curvatures rel-
ative to φ0 are not called “relative” and are denoted by the symbols
H,K instead of Hrel,Krel. The observation

∆φφ = tr(M∇2φ) = tr(∇̂2φ∇2φ) = 2 det∇2φ

together with the formulas above implies

Ks = det∇2s, Kφ = det∇2φ =⇒ Hrel
s =

∆φs

2Kφ
=

∆φs

∆φφ
.

Relation to Self-supporting Surfaces. Summarizing the for-
mulas above, we rewrite the balance condition (1) as

2KφH
rel
s = ∆φs = F. (4)

Let us draw some conclusions:

• Since Hrel
φ = 1 we see that the load Fφ = 2Kφ is admissible

for the stress surface φ(x, y), which is hereby shown as self-
supporting. The quotient of loads yields Hrel

s = F/Fφ.
• If the stress surface coincides with the Maxwell paraboloid,

then constant loads characterize constant mean curvature
surfaces, because we get Kφ = 1 and Hs = F/2.

• If s1, s2 have the same stress potential φ, then Hrel
s1−s2 =

Hrel
s1 −H

rel
s2 = 0, so s1 − s2 is a (relative) minimal surface.

2.4 Meshes in Isotropic Geometry

A general theory of curvatures of polyhedral surfaces with respect
to a polyhedral unit sphere was proposed by [Pottmann et al. 2007;
Bobenko et al. 2010], and its dual complement in isotropic geome-
try was elaborated on in [Pottmann and Liu 2007]. As illustrated by
Figure 4, the mean curvature of a self-supporting surface S relative
to its discrete Airy stress potential is associated with the vertices of
S. It is computed from areas and mixed areas of faces in the polar
polyhedra S∗ and Φ∗:

Hrel(vi) =
Ai(S,Φ)

Ai(Φ,Φ)
, where

Ai(S,Φ) =
1

4

∑
k:fk∈1-ring(vi)

det(v′∗k ,w
′∗
k+1) + det(w′∗k ,v

′∗
k+1).

The prime denotes the projection into the xy plane, and summation
is over those dual vertices which are adjacent to vi. Replacing v∗k
by w∗k yields Ai(Φ,Φ) = 1

2

∑
det(w′∗k ,w

′∗
k+1).

vi
S

Φ

w∗0
v∗0

w∗1

v∗1

w∗2

v∗2

w∗3
v∗3

fΦ
0

fS0

fΦ
1

fS1

fΦ
2

fS2

fΦ
3

fS3

S∗

Φ∗

Figure 4: Mean curvature of a vertex vi of S: Corresponding
edges of the polar duals S∗, Φ∗ are parallel, and mean curvature
according to [Pottmann et al. 2007] is computed from the vertices
polar to faces adjacent to vi. For valence 4 vertices the case of
zero mean curvature shown here is characterized by parallelity of
non-corresponding diagonals of corresponding quads in S∗,Φ∗.

Proposition. If Φ is the Airy surface of a thrust network S, then
the mean curvature of S relative to Φ is computable as

Hrel(vi) =

∑
j∼i wij(sj − si)∑
j∼i wij(φj − φi)

=
∆φs

∆φφ

∣∣∣
vi

. (5)
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Figure 5: The top of the Lilium Tower (a) cannot stand as a masonry structure, because its central part is concave. Our algorithm finds
a nearby self-supporting mesh (b) without this impossible feature. (c) shows the corresponding Airy mesh Φ and reciprocal force diagram
S ′∗. (d) The user can edit the original surface, such as by specifying that the center of the surface is supported by a vertical pillar, and the
self-supporting network adjusts accordingly.

Proof. It is sufficient to show 2Ai(S,Φ) =
∑
j∼i wij(sj − si).

For that, consider edges e′1, . . . , e
′
n emanating from v′i. The dual

cycles in Φ∗′ and S∗′ without loss of generality are given by ver-
tices (v∗′1 , . . . ,v

∗′
n ) and (w∗′1 , . . . ,w

∗′
n ), respectively. The latter

has edges w′∗j+1 −w′∗j = wijJe
′
j (indices modulo n).

Without loss of generality vi = 0, so the vertex v′∗j by construction
equals the gradient of the linear function x 7→ 〈v′∗j ,x〉 defined by
the properties e′j−1 7→ sj−1 − si, e′j 7→ sj − si. Corresponding
edge vectors v′∗j+1 − v′∗j and w′∗j+1 − w′∗j are parallel, because
〈v′j+1−v′j , e

′
j〉 = (sj − si)− (sj − si) = 0. Expand 2Ai(S,Φ):

1
2

∑
det(w′∗j ,v

′
j+1) + det(v′j ,w

′∗
j+1)

= 1
2

∑
det(w′∗j −w′∗j+1,v

′
j+1) + det(v′j ,w

′∗
j+1 −w′∗j )

= 1
2

∑
det(−wijJe′j ,v′j+1) + det(v′j , wijJe

′
j)

=
∑

det(v′j , wijJe
′
j) =

∑
wij〈v′j , e′j〉 =

∑
wij(sj − si).

Here we have used det(a, Jb) = 〈a,b〉.

In order to discretize (4), we also need a discrete Gaussian curva-
ture, usually defined as a quotient of areas which correspond under
the Gauss mapping. We define

KΦ(vi) =
Ai(Φ,Φ)

Ai
,

where Ai is the Voronoi area of vertex v′i in the projected mesh S ′
used in (3).

Remark: If the faces of the thrust network S are not planar, the sim-
ple trick of introducing additional edges with zero forces in them
makes them planar, and the theory is applicable. In the interest of
space, we refrain from elaborating further.

Discrete Balance Equation. The discrete version of the balance
equation (4) reads as follows:

Theorem. A simply-connected mesh S with vertices vi =
(xi, yi, si) can be put into static equilibrium with vertical nodal
forces AiFi if and only if there exists a combinatorially equivalent
mesh Φ with planar faces and vertices (xi, yi, φi), such that cur-
vatures of S relative to Φ obey

2KΦ(vi)H
rel(vi) = Fi (6)

at every interior vertex and every free boundary vertex vi. S can
be put into compressive static equilibrium if and only if there exists
a convex such Φ.

Proof. The relation between equilibrium forces wijeij in S and
the polyhedral stress potential Φ has been discussed above, and
so has the equivalence “wij ≥ 0 ⇐⇒ Φ convex” (see e.g.
[Ash et al. 1988] for a survey of this and related results). It re-
mains to show that Equations (2) and (6) are equivalent. This is
the case because the proposition above implies 2K(vi)H

rel(vi) =

2Ai(Φ,Φ)
Ai

Ai(Φ,S)
Ai(Φ,Φ)

= 1
Ai

(
∑
j∼i wij(sj − si)) = 1

Ai
AiFi.

2.5 Convergence.

When considering discrete thrust networks as discretizations of
continuous self-supporting surfaces, the following question is im-
portant: For a given smooth surface s(x, y) with stress potential φ,
does there exist a polyhedral surface S in equilibrium approximat-
ing s(x, y), whose top view is a given planar mesh S ′? We restrict
our attention to triangle meshes, where planarity of the faces of the
discrete stress surface Φ is not an issue. Equivalently, we ask:

• Does S ′ have a reciprocal diagram whose corresponding Airy
polyhedron Φ approximates the continuous Airy potential φ?
(if the surfaces involved are not simply connected, these ob-
jects are defined locally).

• Does S ′ possess a “perfect” discrete Laplace-Beltrami opera-
tor ∆φ in the sense of Wardetzky et al. [2007] whose weights
are the edge length scalars of such a reciprocal diagram?

From [Wardetzky et al. 2007] we know that perfect Laplacians ex-
ist only on regular triangulations which are projections of convex
polyhedra. On the other hand, previous sections show how to ap-
propriately re-triangulate: Let Φ be a triangle mesh convex hull of
the vertices (xi, yi, φ(xi, yi)), where (xi, yi) are vertices of S ′.
Then its polar dual Φ∗ projects onto a reciprocal diagram with pos-
itive edge weights, so ∆φ has positive weights, and the vertices
(xi, yi, si) of S can be found by solving the discrete Poisson prob-
lem (∆φs)i = AiFi.

We expect, but we don’t prove, that the discrete ∆φ approximates
its continuous counterpart for reasonable sampling (after all it is
directly derived from φ(x, y)). This implies that solving the dis-
crete Poisson equation leads to a mesh approximating its continu-
ous counterpart s(x, y), and we have convergence as the sampling
density increases. A rigorous analysis is a topic for future research.

3 Thrust Networks from Reference Meshes

Consider now the problem of taking a given reference mesh, say
R, and finding a combinatorially equivalent mesh S in static equi-
librium approximating R. The loads on S include user-prescribed
loads as well as the dead load caused by the mesh’s own weight.
Conceptually, finding S amounts to minimizing some formulation



Figure 6: A freeform surface (left) needs adjustments around the
entrance arch and between the two pillars in order to be self-
supporting; our algorithm finds the nearby surface in equilibrium
(right) that incorporates these changes.

of distance between R and S, subject to constraints (2), (3), and
wij ≥ 0. For any choice of distance this minimization will be a
nonlinear, non-convex, inequality-constrained variational problem.
Our experience with black-box solvers [Wächter and Biegler 2006]
is that they perform well for surfaces without complex geometry or
for polishing reference meshes close to self-supporting, but fail to
converge in reasonable time for more complicated shapes such as
the one of Fig. 1, left. We therefore propose the following special-
ized, staggered linearization for solving the optimization problem:

0. Start with an initial guess S = R.
1. Estimate the self-load on the vertices of S, using their current

positions.
2. Fixing S, locally fit an associated stress surface Φ.
3. Alter positions vi to improve the fit.
4. Repeat from Step 1 until convergence.

Remark: This staggered approach shares several advantages of
solving the full nonlinear problem: a nearby self-supporting sur-
face is found given only a suggested reference shape, without need-
ing to single one of the many possible top view reciprocal diagrams
or needing to specify boundary tractions – these are found automat-
ically during optimization. Although providing an initial top view
graph with good combinatorics remains important, by not fixing the
top view our approach allows the thrust network to slide both ver-
tically and tangentially to the ground, essential to finding faithful
thrust networks for surfaces with free boundary conditions.

Step 1: Estimating Self-Load. The dead load due to the sur-
face’s own weight depends not only on the top view of S, but also
on the surface area of its faces. To avoid adding nonlinearity to
the algorithm, we estimate the load coefficients Fi at the beginning
of each iteration, and assume they remain constant until the next
iteration. We estimate the load AiFi associated with each vertex
by calculating its Voronoi surface area on each of its incident faces
(note that this surface area is distinct from Ai, the vertex’s Voronoi
area on the top view), and then multiplying by a user-specified sur-
face density ρ.

Step 2: Fit a Stress Surface. In this step, we fix S and try to
fit a stress surface Φ subordinate to the top view S ′ of the primal
mesh. We do so by searching for dihedral angles between the faces
of Φ which minimize, in the least-squares sense, the error in force
equilibrium (6) and local integrability of Φ. Doing so is equivalent
to minimizing the squared residuals of Equations (3) and (2), with
the positions held fixed. We define the equilibrium energy

E =
∑

i

∥∥∥( 0
0

AiFi

)
−
∑

j∼i
wij(vj − vi)

∥∥∥2

, (7)

where i runs through interior and free boundary vertices, and solve

minwij E, s.t. 0 ≤ wij ≤ wmax. (8)

Fig. Vertices Edges Time (s) Iterations Max. Rel. Error
5b 1201 3504 21.6 9 4.2× 10−5

5d 1200 3500 26.5 10 8.5× 10−5

6 1535 2976 17.0 21 2.7× 10−5

8 752 2165 8.0 9 5.8× 10−5

11 2358 4302 19.5 9 3.0× 10−4

16 527 998 5.7 25 2.4× 10−5

Table 1: Numerical details about our examples. We show the clock
time needed by an Intel Xeon 2.3GHz desktop PC with 4 GB of RAM
to find a self-supporting thrust network and associated stress sur-
face from the example’s reference mesh; we also give the number of
outer iterations of the four steps in (§3). The maximum relative er-
ror is the dimensionless quantity maxi ‖AiFi(

0
0
1)−

∑
j∼i wij(vj−

vi)‖/AiFi (the maximum is taken over interior vertices vi).

Here wmax is an optional maximum weight we are willing to as-
sign (to limit the amount of stress in the surface). This convex,
sparse, box-constrained least-squares problem [Friedlander 2007]
always has a solution. If the objective is 0 at this solution, S is self-
supporting – we are done. Otherwise, S is not self-supporting and
its vertices must be moved.

Step 3: Alter Positions. In the previous step we fit as best as
possible a stress surface Φ to S. There are two possible kinds of
error with this fit: the faces around a vertex (equivalently, the recip-
rocal diagram) might not close up; and the resulting stress forces
might not be exactly in equilibrium with the loads. These errors
can be decreased by modifying the top view and heights of S, re-
spectively. It is possible to simply solve for new vertex positions
that put S in static equilibrium, since Equations (2) and (3) with
wij fixed form a square linear system that is typically nonsingular.

While this approach would yield a self-supporting S, this mesh is
often far from the reference mesh R, since any local errors in the
stress surface from Step 2 amplify into global errors in S. We pro-
pose instead to look for new positions that decrease the imbalance
in the stresses and loads, while also penalizing drift away from the
reference mesh:

minv E + α
∑

i

〈
ni,vi − v0

i

〉2 + β
∥∥v − v0

P

∥∥2
,

where v0
i is the position of the i-th vertex at the start of this step

of the optimization, ni is the starting vertex normal (computed as
the average of the incident face normals), v0

P is the projection of v0

onto the reference mesh, and α > β are penalty coefficients that are
decreased proportionally to the decrease in E at every iteration of
Steps 1–3. α = 1 and β = 0.1 worked well as initial values of these
parameters for the examples shown in this paper. The second term
allows S to slide over itself (if doing so improves equilibrium) but
penalizes drift in the normal direction. The third term, weaker than
the second, regularizes the optimization by preventing large drift
away from the reference surface or excessive tangential sliding.

Implementation Details. Solving the weighted least-squares
problem of Step 3 amounts to solving a sparse, symmetric linear
system. While the MINRES algorithm [Paige and Saunders 1975]
is likely the most robust algorithm for solving this system, in prac-
tice we have observed that the method of conjugate gradients works
well despite the potential ill-conditioning of the objective matrix.

Limitations. This algorithm is not guaranteed to always con-
verge; this fact is not surprising from the physics of the problem



(a) (b) (c)

Figure 7: Interactive Edits. (a) shows a
self-supporting thrust network – in fact it
is a Koebe mesh as mentioned in §5. In
(b) boundary conditions are defined and
pillars have been added. Cutting along
the highlighted edge and optimizing for
the self-supporting property results in the
mesh shown in (c).

(a) (b) (c) (d)

Figure 8: Destruction sequence. We simulate removing small parts of masonry (their location is shown by a yellow ball) and the falling off
of further pieces which are no longer supported after removal. For this example, removing a certain small number of single bricks does not
affect stability (a,b). Removal of material at a certain point (yellow ball in (b)) will cause a greater part of the structure to collapse, as seen
in (c). (d) shows the result after one more removal (all images show the respective thrust networks, not the reference surface).

(if the boundary of the reference mesh encloses too large of a re-
gion, wmax is set too low, and the density of the surface too high,
a thrust network in equilibrium simply does not exist – the vault is
too ambitious and cannot be built to stand; pillars are needed.)

We can, however, make a few remarks. Only Step 1 can increase
the equilibrium energy E of Equation (7). Step 2 always decreases
it, and Step 3 does as well as β → 0. Moreover, as α → 0 and
β → 0, Step 3 approaches a linear system with as many equations
as unknowns; if this system has full rank, its solution sets E = 0.
These facts suggest that the algorithm should generally converge
to a thrust network in equilibrium, provided that Step 1 does not
increase the loads by too much at every iteration, and this is indeed
what we observe in practice. One case where this assumption is
guaranteed to hold is if the thickness of the surface is allowed to
freely vary, so that it can be chosen so that the surface has uniform
density over the top view.

We have observed several situations where our algorithm has diffi-
culty converging to a high-quality solution, even though the under-
lying optimization problem is feasible:

• Vertices with high valence (such as can occur at irregu-
lar vertices of triangle meshes) often become local maxima
(“bumps”) after optimization. In the worst case, the algorithm
can stall atE > 0 due to the linear system in Step 3 becoming
singular and infeasible. This failure occurs, for instance, when
an interior vertex has height zi lower than all of its neighbors,
and Step 2 assigns all incident edges to that vertex a weight of
zero: clearly no amount of moving the vertex or its neighbors
can bring the vertex into equilibrium. We avoid such degen-
erate configurations by bounding weights slightly away from
zero in (8), trading increased robustness for slight smoothing
of the resulting surface. We also haven’t noticed these arti-
facts in lower-valence meshes such as quad meshes.

• The algorithm does not usually converge if the reference mesh
has a self-intersecting top view (i.e., isn’t a height field), al-
though it can occasionally correct slight overhangs (by de-
forming the top view so that the network mesh is a height
field).

• The algorithm may not converge if the deformation needed to

make the refence mesh self-supporting is too large. Specify-
ing a reference mesh insufficiently supported by fixed bound-
ary vertices is the most common such situation – for instance,
marking the bases of the pillars in Fig. 7 as free instead of
fixed boundaries causes our algorithm to fail, even though a
(drastic) self-supporting deformation of that surface does ex-
ist.

4 Results

Interactive Design of Self-Supporting Surfaces. The opti-
mization algorithm described in the previous section forms the ba-
sis of an interactive design tool for self-supporting surfaces. Users
manipulate a mesh representing a reference surface, and the com-
puter searches for a nearby thrust network in equilibrium (see e.g.
Figure 7). Features of the design tool include:

• Handle-based 3D editing of the reference mesh using Lapla-
cian coordinates [Lipman et al. 2004; Sorkine et al. 2003] to
extrude vaults, insert pillars, and apply other deformations to
the reference mesh. Handle-based adjustments of the heights,
keeping the top view fixed, and deformation of the top view,
keeping the heights fixed, are also supported. The thrust net-
work adjusts interactively to fit the deformed positions, giving
the usual visual feedback about the effects of edits on whether
or not the surface can stand.

• Specification of boundary conditions. Points of contact be-
tween the reference surface and the ground or environment
are specified by “pinning” vertices of the surface, specifying
that the thrust network must coincide with the reference mesh
at this point, and relaxing the condition that forces must be in
equilibrium there.

• Interactive adjustment of surface density, external loads, and
maximum permissible stress per edge, with visual feedback
of how these parameters affect the fitted thrust network.

• Upsampling of the thrust network through Catmull-Clark sub-
division and polishing of the resulting refined thrust network
using optimization (§3).

• Visualization of the stress surface dual to the thrust network
and corresponding reciprocal diagram.



Figure 9: Stability Test. Left: Coloring and cross-section of edges
visualize the magnitude of forces in a thrust network which is in
equlibrium with this dome’s dead load. Right: When an additional
load is applied, there exists a corresponding compressive thrust net-
work which is still contained in the masonry hull of the original
dome. This implies stability of the dome under that load.

14 m←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

shell thickness 0.1 m, ρ = 2, 500 kg/m3

11,000 kg

Figure 10: Stability test similar to Figure 9, but with a shell thickness of 1 m, in order to better visualize the way the thrust network starts to
leave the masonry hull as the load increases. Additional loads are 0 kg, 5,000 kg, 10,000 kg, and 20,000 kg, resp., from left to right.

Examples. Top of the Lilium Tower: Consider the top portion of
the steel-glass exterior surface of the Lilium Tower (being built in
Warszaw, see Fig. 5). What is if we had wanted to build this sur-
face out of masonry instead? This surface contains a concave part
with local minimum in its interior and so cannot possibly be self-
supporting without modification. Given this surface as a reference
mesh, our algorithm constructs a nearby thrust network in equilib-
rium without the impossible feature. The user can then explore how
editing the reference mesh – adding a pillar, for example – affects
the thrust network and its deviation from the reference surface.

Example: Freeform Structure with Two Pillars. Suppose an archi-
tect’s experience and intuition has permitted the design of a nearly
self-supporting freeform surface (Figure 6). Our algorithm reveals
those edits needed to make the structure sound – principally around
the entrance arch, and the area between the two pillars.

(a) (b)

Figure 11: A mesh with holes (a) requires large deformations to
both the top view and heights to render it self-supporting (b)

Example: Interactive Editing. Figure 7 shows an example of the de-
sign and optimization workflow. Starting with a mesh, we first add
pillars in the center and clean up the outer boundary (by fixing it to
the floor). A subsequent cut needs a further round of optimization.
This surface is neither convex nor simply connected, and exhibits a
mix of boundary conditions, none of which cause our algorithm any
difficulty; it always finds a self-supporting thrust network near the
designed reference mesh. The user is free to make edits to the refer-
ence mesh, and the thrust network adapts to these edits, providing
the user feedback on whether these designs are physically realiz-
able [we refer to the accompanying video for interactive building
and editing of freeform self-supporting shapes].

Example: Destruction Sequence. In Figure 8 we simulate removing
parts of masonry and the falling off of further pieces which are no
longer supported after removal. This is done by deleting the 1-
neighborhood of a vertex and solving for a new thrust network in

compressive equilibrium close to the original reference surface. We
delete those parts of the network which deviate too much and are
no longer contained in the masonry hull, and iterate.

Example: Swiss Cheese. Cutting holes in a self-supporting surface
interrupts force flow lines and causes dramatic global changes to
the surface stresses, often to the point that the surface is no longer
in equilibrium. Whether a given surface with many such holes can
stand is far from obvious. Figure 11a shows such an implausible
and unstable surface; our optimization finds a nearby, equally im-
plausible but stable surface without difficulty (Figs. 1, left and 11b).

Example: Stability Test: See Figures 9, 10 for a series of images
which visualize the effect of additional loads on a thrust network.

Example: Structural Glass. See Figure 16 for details on a self-
supporting surface which is realized not as masonry, but as a steel/
glass construction with glass as a structural element.

5 Special Self-Supporting Surfaces

PQ Meshes. Meshes with planar faces are of particular interest
in architecture, so in this section we discuss how to remesh a given
thrust network in equilibrium such that it becomes a quad mesh
with planar faces (again in equilibrium). If this mesh is realized
as a steel-glass construction, it is self-supporting in its beams alone,
with no forces exerted on the glass (this is the usual manner of using
glass). The beams constitute a self-supporting structure which is in
perfect force equilibrium (without moments in the nodes) if only
the deadload is applied. (In such constructions, the restriction that
the internal forces are compressive does not apply.)

((a) ((b) ((c)

Figure 12: Directly enforcing planarity of the faces of even a
very simple self-supporting quad-mesh vault (a) results in a sur-
face far removed from the original design (b). Starting instead from
a remeshing of the surface with edges following relative principal
curvature directions yields a self-supporting, PQ mesh far more
faithful to the original (c).

Taking an arbitrary non-planar quad mesh and attempting naive, si-



Figure 13: Planar quad remeshing of
the surface of Fig. 5. (a) Relative prin-
cipal directions, found from eigenvec-
tors of (∇2φ)−1∇2s. (b) Quad mesh
guided by principal directions is al-
most planar and almost self-support-
ing. (c) Small changes achieve both
properties. (a) (b) (c)

Figure 14: Planar quad remeshing of
the surface of Figure 6. Left: Relative
principal directions. Right: The re-
sult of optimization is a self-support-
ing PQ mesh, which guides a moment-
free steel/glass construction (interior
view, see also Fig. 1).

multaneous enforcement of planarity and static equilibrium – either
by staggering a planarity optimization step every outer iteration, or
adding a planarity penalty term to the position update – does not
yield good results, as shown in Figure 12. Indeed, as we will see
later in this section, such a planar perturbation of a thrust network
is not expected to generally exist.

Consider a planar quad mesh S with vertices vij = (xij , yij , sij)
which approximates a given continuous surface s(x, y). It is known
that S must approximately follow a network of conjugate curves in
the surface (see e.g. [Liu et al. 2006]). We can derive this condition
in an elementary way as follows: Using a Taylor expansion, we
compute the volume of the convex hull of the quadrilateral vij ,
vi+1,j , vi+1,j+1, vi,j+1, assuming the vertices lie exactly on the
surface s(x, y). This results in

vol = 1
6

det(a1,a2) ·
(
(a1)T ∇2sa2

)
+ · · · ,

where a1 =
(
xi+1,j−xij
yi+1,j−yij

)
, a2 =

(
xi,j+1−xij
yi,j+1−yij

)
,

and the dots indicate higher order terms. We see that planarity re-
quires (a1)T ∇2sa2 = 0. In addition to the mesh S approximating
the surface s(x, y), the corresponding polyhedral Airy surface Φ
must approximate φ(x, y); thus we get the conditions

(a1)T ∇2s a2 = (a1)T ∇2φ a2 = 0.

a1,a2 are therefore eigenvectors of (∇2φ)−1∇2s. In view of §2.3,
a1,a2 indicate the principal directions of the surface s(x, y) rela-
tive to φ(x, y).

In the discrete case, where s, φ are not given as continuous surfaces,
but are represented by a mesh in equilibrium and its Airy mesh, we
use the techniques of Schiftner [2007] and Cohen-Steiner and Mor-
van [2003] to approximate the Hessians ∇2s, ∇2φ, compute prin-
cipal directions as eigenvectors of (∇2φ)−1∇2s, and subsequently
find meshes S,Φ approximating s, φwhich follow those directions.
Global optimization can now polish S,Φ to a valid thrust network
with discrete stress potential, where before it failed: we do so by
taking the planarity energy

∑
f (2π − θf )2, where the sum runs

over faces and θf is the sum of the interior angles of face f , lin-
earizing it at every iteration, and adding it to the objective function
of the position update (Step 3). Convexity of Φ ensures that S is
self-supporting.

Note that for each Φ, the relative principal curvature directions give
the unique curve network along which a planar quad discretization

of a self-supporting surface is possible. Other networks won’t work
(see Figure 12). Figures 13 and 14 further illustrate the result of
applying this procedure to self-supporting surfaces.

Remark: When remeshing a given shape by planar quad meshes, we
know that the circular and conical properties require that the mesh
follows the ordinary, Euclidean principal curvature directions [Liu
et al. 2006]. It is remarkable that the self-supporting property in a
similar manner requires us to follow certain relative principal direc-
tions. Practictioners’ observations regarding the beneficial statics
properties of principal directions can be explained by this analogy,
because the relative principal directions are close to the Euclidean
ones, if the stress distribution is uniform and ‖∇s‖ is small.

Koenigs Meshes. Given a self-supporting thrust network S with
stress surface Φ, we ask the question: Which vertical perturbation
S+R is self-supporting, with the same loads as S? As to notation,
all involved meshes S,R,Φ have the same top view, and arithmetic
operations refer to the respective z coordinates si, ri, φi of vertices.

The condition of equal loads then is expressed as ∆φ(s+r) = ∆φs
in terms of Laplacians or as Hrel

S = Hrel
S+R in terms of mean cur-

vature, and is equivalent to ∆φr = 0, i.e., Hrel
R = 0. So R is a

minimal surface relative to Φ. While in the triangle mesh case there
are enough degrees of freedom for nontrivial solutions, the case of
planar quad meshes is more intricate: Polar polyhedraR∗,Φ∗ have
to be Christoffel duals of each other [Pottmann and Liu 2007], as il-
lustrated by Figure 4. Unfortunately not all quad meshes have such
a dual; the condition is that the mesh is Koenigs, i.e., the derived
mesh formed by the intersection points of diagonals of faces again
has planar faces [Bobenko and Suris 2008].

Koebe meshes. An interesting special case occurs if Φ is a
Koebe mesh of isotropic geometry, i.e., a PQ mesh whose edges
touch the Maxwell paraboloid. Since Φ approximates the Maxwell
paraboloid, we get 2K(vi)H

rel(vi) ≈ 1 and Φ consequently is
self-supporting for unit load. Applying the Christoffel dual con-
struction described above yields a minimal mesh R, and meshes
Φ + αR which are self-supporting for unit load (see Figure 15).

6 Conclusion and Future Work

Conclusion. This paper builds on relations between statics and
geometry, some of which have been known for a long time, and



Φ + αR

Φ

R

Figure 15: Left: A “Koebe” mesh Φ is self-supporting for unit dead
load. An family of self-supporting meshes with the same top view is
defined by Sα = Φ + αR, where R is chosen as Φ’s Christoffel-
dual. The right hand image shows a different example of the same
connectivity.

connects them with newer methods of discrete differential geome-
try, such as discrete Laplace operators and curvatures of polyhedral
surfaces. We were able to find efficient ways of modeling self-
supporting freeform shapes, and provide architects and engineers
with an interactive tool for evaluating the statics of freeform ge-
ometries. The self-supporting property of a shape is directly rele-
vant for freeform masonry. The actual thrust networks we use for
computation are relevant e.g. for steel constructions, where equilib-
rium of deadload forces implies absence of moments. This theory
and accompanying algorithms thus constitute a new contribution to
architectural geometry, connecting statics and geometric design.
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ias Höbinger was supported by the Austrian Science Fund (FWF)
through grants No. P9206-N12 and P23735-N13.

Future Work. There are several directions of future research. One
is to incorporate non-manifold meshes, which occur naturally when
e.g. supporting walls are introduced. It is also obvious that non-ver-
tical loads, e.g. wind load, play a role. The surfaces produced by
our algorithm are the solutions of discrete elliptic boundary value
problems and so tend to be smooth; another avenue for future work
is modification of the discretization to allow for self-supporting sur-
faces with sharp features. There are also some directions to pur-
sue in improving the algorithms, for instance adaptive remeshing in
problem areas. Probably the interesting connections between stat-
ics and geometry are not yet exhausted: on the one hand we ex-
pect that interesting new geometry arises from questions of statics,
on the other hand we would like to propose the geometrization of

problems as a general solution paradigm.
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