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Abstract

This paper is an overview of architectural structures which are either composed of poly-
hedral cells or closely related to them. We introduce the concept of a support structure
of such a polyhedral cell packing. It is formed by planar quads and obtained by connect-
ing corresponding vertices in two combinatorially equivalent meshes whose correspond-
ing edges are coplanar and thus determine planar quads. Since corresponding triangle
meshes only yield trivial structures, we focus on support structures associated with quad
meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of
recent research which reveals beautiful relations to discrete differential geometry. Those
are essential for successfully initializing numerical optimization schemes for the compu-
tation of quad-based support structures. Hex-dominant structures may be designed via
Voronoi tessellations, power diagrams, sphere packings and various extensions of these
concepts. Apart from the obvious application as load-bearing structures, we illustrate
here a new application to shading and indirect lighting. On a higher level, our work
emphasizes the interplay between geometry, optimization, statics, and manufacturing,
with the overall aim of combining form, function and fabrication into novel integrated
design tools.

Keywords: architectural geometry, fabrication-aware design, spatial tiling, polyhedral
packing, cell packing, polyhedral mesh, offset mesh, sphere packing, torsion-free
support structure, shading system

1. Introduction

The formation of complex materials and structures from smaller and simpler cells
is an omnipresent concept in nature and certainly also in architecture. While nature is
abundant in shapes of cells, architecture – at least so far – had to be more conservative
and uses simple cells which can be easily manufactured. Hence, we here deal mostly
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with polyhedral cells, i.e., those which exhibit flat faces. Since part of contemporary
architecture favors organic freeform shapes, we will discuss the following basic question:
How can one generate freeform shells by tightly packing polyhedral cells? We mainly
focus on just one layer of cells, although we will comment on how to generate multiple
layers. In the actual architectural realization, the polyhedral cells may not be completely
realized or may be decorated with additional detail (see Figures 1 and 4). Moreover, we
discuss derived structures which are not really polyhedral anymore, but can easily be
generated from polyhedral cell packings.

The present paper may be seen as a survey with new results. It covers some core
developments in Architectural Geometry of the past few years, but is written from
a somewhat different perspective. We therefore do not discuss prior research at the
beginning of our paper, but prefer to integrate it into the relevant sections.

Our paper is organized as follows: In Section 2, we formulate the problem, introduce
the basic terminology and concepts and focus on cell arrangements related to Voronoi
diagrams and hexagonal patterns. Section 3 presents a survey of packings with quadri-
lateral combinatorics and its close relations to discrete differential geometry. Aspects of
statics, especially self-supporting surfaces, and the rigidity of the presented structures
are discussed in Section 5. Throughout the paper, we illustrate the discussions with
various applications. Section 6 concludes the paper.

Figure 1: Real projects exhibiting cell packing structures: Left and center: Details from the roof of the
Kogod Courtyard, Smithsonian National Portrait Gallery, Washington DC, by Foster+Partners. Right:
KREOD Pavilions, by Pavilion Architecture, London (Architect: Chun Qing Li).

The Material Ecology aspect. Material Ecology is an interdisciplinary research initiative
which, we quote, “undertakes design research in the intersection between architecture,
engineering, computation, and ecology [. . . It] undertakes research in advanced digi-
tal applications for architectural practice and pursuits their contribution to a design
paradigm promoting generative design processes.”. The study of geometric and physical
aspects of freeform architecture certainly fits most of these items directly or indirectly, in
particular it lies in the intersection between computation, architecture and engineering.
Our philosophy could be described as analytic and knowledge-based, laying the foun-
dations for generative design. Guiding thoughts are efficiency of construction, and also
the exploration of the most general shapes obtainable from specified local geometric and
other constraints. Since often local geometry (cell shapes) is inspired by forms occurring
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in nature – most famously in honeycombs or radiolaria – we might argue that we are
borrowing shapes from a source which already has performed specific optimization on
them. This again puts our research in the context of Material Ecology.

2. Polyhedral cell structures

2.1. Basic types and properties of polyhedral cell structures
A polyhedron is a solid whose boundary has planar faces only; if no confusion can

arise, also the boundary surface is called a polyhedron. The polyhedra shall be tightly
packed in order to form a thick shell (see Figure 2). Shared faces of neighboring polyhedra
are called inner faces or transverse faces; the other faces are boundary faces. Analogously,
a polyhedral packing has inner edges and boundary edges.

f
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Figure 2: Left: Cell packing of three polyhedra. Right: The support structure of this polyhedral cell
packing. It consists of quadrilaterals f ′ which are spanned by the inner edges of inner faces f of the
packing. We indicate one of the inner edges aibi, it spans a so-called node axis of this support structure.

The support structure of a polyhedral cell packing. Packing polyhedra in this way, the
planes of the inner faces, confined by the lines of the inner edges, form a structure which
is of central importance for our considerations. As we want the packing to have nonzero
thickness everywhere, each inner face contains two inner edges, which we can connect
to form a quad (see Figure 2). The resulting arrangement of quads will be called the
support structure of the polyhedral cell packing. This name also indicates an important
application: One can align prismatic beams of a load bearing structure with its faces
(see e.g. Figure 1, left). In this case we speak of a torsion-free support structure; and
the inner edges are called the node axes.

Polyhedral plate structures. In some cases it is possible to close all cells of the support
structure with just two flat faces, one on either side. Then we have two combinatorially
equivalent polyhedral meshes A,B, which form the boundary of a structure we refer to
as a polyhedral plate structure. It is obtained by joining corresponding vertices and edges
in meshes A and B (which have the particular property that corresponding edges are
coplanar). One may see meshes A and B as variable distance offsets of each other.
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Parallel meshes and offsets.. A practically useful special case occurs when corresponding
faces of A and B lie in parallel planes; then also corresponding edges are parallel. Such
offset meshes have been investigated in detail [1]. If the plates are of constant thickness
(width) w, the planes of the support structure are bisecting planes of the adjacent face
planes of the plates and the two meshes A and B are so-called conical meshes introduced
by Liu et al. [2]. At each vertex ai of A, the bisecting planes of the incident edges of
A intersect in an inner edge (node axis) ni = aibi, where bi is the vertex in B which
corresponds to ai (see Figure 2 for notation): Hence, ni is the axis of a right circular
cone which touches all face planes meeting at ai.

Note that a polyhedral mesh is always conical if its vertices have valence 3. In
that case there always exists a polyhedral plate structure of constant thickness which is
defined by the mesh A and a suitable partner mesh B. We come back to this topic in
Section 2.5.

The faces of the boundary meshes A and B of a support structure are arranged
similar to the tiles of a planar tiling. Thus, the basic regular types can be taken from
the planar case: triangular, quadrilateral and hexagonal. In the plane, we have regular
tilings all of whose tiles and vertex stars are congruent. This is clearly not possible for
general freeform shapes, even not on the combinatorial side. For example, instead of a
regular quad tiling, the inner faces will be arranged in a quad-dominant structure, which
may exhibit extraordinary vertices (valence 6= 4) and extraordinary faces (non-quads).

Triangular structures. If the support structure is bounded by triangle meshes A,B, then
all inner edges (node axes) pass through a common point or are parallel. This is obvious,
since (i) the three face planes of a triangular cell intersect in a common point C or are
parallel and thus its three inner edges pass through C or are parallel, and (ii) neighboring
polyhedra share two inner edges. Reformulating this property, we can say that a triangle
mesh does not possess a torsion-free support structure. In the present context, this is
the least interesting case which will not be further pursued.

Quadrilateral structures. A quadrilateral support structure is geometrically very inter-
esting, and its discussion depends a bit on whether it is a plate structure or not. The
quad structure in Figure 1, left, is obviously not a plate structure, as seen clearly by
means of the detail of its upper side in Figure 1 (center). We discuss the remarkable
geometry of quadrilateral structures in Section 3.

Hexagonal structures. Such structures seem to appear frequently in nature and are
closely related to Voronoi diagrams. We discuss them below.

This paper treats quad-based and hex-based structures but as explained above, struc-
tures based on triangle meshes have too few degrees of freedom to be considered in this
context. There is more material on quad-based structures than on hexagonal ones, ow-
ing to the richer geometry of the former, and their connections to discrete differential
geometry. All kinds of structures have counterparts in nature, the most common be-
ing hexagonal ones. Figure 3 demonstrates that even with a specified narrow class of
organisms all kinds can occur.
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Figure 3: Triangular, quadrilateral and hexagonal packings of various degrees of regularity all occur
in nature, as demonstrated by the famous drawings of radiolaria by Ernst Haeckel. These images are
taken from [3]. Counterclockwise from bottom left: Haliommatidium mülleri, Tab. 22,10, Aulosphaera
trigonopa, Tab. 10,4, Euchitonia köllikeri, Tab. 31,6, Cladococcus viminalis, Tab. 14,3, Ethmosphaera
siphonophora, Tab. 11,1, Haliomma erinaceus, Tab. 23,3.

2.2. Voronoi diagrams
Given a set of seed points si, a Voronoi diagram associates with each of these points

a cell C(si) formed by all points which are closer to si than to any other seed point sk.
For our application, we can place the seeds si on a surface Φ and consider only that part
of the Voronoi diagram which is sufficiently close to Φ. This immediately determines the
support structure of a polyhedral cell packing, whose nodes are generically of valence
three and whose faces tend to be hexagonal, especially if the cells are roughly of the
same size.

A good way to achieve nearly the same size for all cells, is to use a centroidal Voronoi
tessellation (CVT, see [4]). In the plane or for a full 3D diagram, this means that the
seeds are the barycenters of their cells. For a diagram on a surface Φ, the seeds si are
placed by an optimization algorithm. With S as the set of seeds and Vi as cells obtained
by restricting the Voronoi diagram V of S to the surface Φ, such a CVT minimizes∑

i

∫
Vi

‖p− si‖2dp. (1)

We refer to Yan et al. [5] and to Liu et al. [6] for fast computation. Figure 5 shows
examples of such structures.
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Figure 4: Hex-dominant structures. Left and center: The KAUST Breakwater Beacon at the entrance
to the harbour of the King Abdullah University of Science and Technology in Saudi Arabia, by Urban
Art Projects. Right: ICD/ITKE Research Pavilion 2011 at the University of Stuttgart.

Figure 5: Hexahedral support structures of cell packings derived from centroidal Voronoi tessellations
on surfaces.

In order to vary the size of CVT cells in a controlled way, one can use weighted
Voronoi diagrams, which are also called power diagrams [7]. Recalling that the power of
a point p with respect to a sphere with center c and radius r is defined as (p− c)2 − r2,
we define a power diagram by seed spheres Si. The cell C(Si) is the set of all points
whose power with respect to Si is smaller than the power with respect to any other
seed sphere Sk. All points which have equal power with respect to two spheres lie
in a plane, the so-called power plane. As a consequence, the power planes to three
spheres in general position pass through a line, and four spheres in general position
generate 6 power planes which pass through a common point, the power center. These
geometric properties immediately imply that the cells C(Si) are polyhedral. Obviously,
if all spheres have the same radius, the power diagram reduces to the ordinary Voronoi
diagram.

The concept of centroidal Voronoi tessellation can be extended to weighted centroidal
Voronoi tessellation. For that, one prescribes a density function ρ(p) on the input domain
(part of 3-space) and seeks a power diagram where each seed sphere center lies at the
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Figure 6: Cell structure based on a weighted centroidal Voronoi tessellation (the reference surface for
this illustration is a model of the Heydar Aliyev Cultural Center in Baku, by Zaha Hadid Architects).

barycenter of its cell, and such that its radius is given by the density function. Using the
variational formulation, one can extend this also to surfaces by replacing the integrand
in Equation (1) by ρ(p)‖p − si‖2 and thus generate hex-dominant patterns where the
designer can steer the cell sizes (see [5, 6] and for an example, Figure 6).

Irregular hexagonal structures occurring in nature can be easily thought to have
grown around irregularly arranged centers. The similarity between Figures 6 and 3
leads to the speculation that there are biological process with act on growing “cells” in
a manner similar to the optimization of centroidal Voronoi cells.

2.3. Sphere packings and associated cell packing structures
A special case of power diagrams arises when the seed spheres are tangent to each

other (and therefore are tangent to their respective cell boundaries). This amounts to
tightly packing spheres which are centered at a surface. Such sphere packings provide
us with a good way of designing support structures with well shaped “round” cells.
Schiftner et al. [8] discussed the basic geometry and construction of such structures.

Computing sphere packings. When computing a sphere packing, we start with a reference
surface Φ and an initial triangle mesh approximating it. The vertices of that mesh move
along Φ during optimization, but the mesh combinatorics remain fixed. At each vertex
vi we place a sphere of radius ri; some of the radii may be fixed, but most will change
during optimization. The centers of adjacent spheres are connected by an edge of the
mesh. To achieve a sphere packing, the sum of radii of neighbouring spheres must equal
the distance of centers, so we minimize the objective function

fp =
∑

edges vivj

(len(vi − vj)2 − (ri + rj)2)2. (2)

7



To make sure that vertices stay close to the reference surface Φ and boundary vertices
remain close to the boundary ∂Φ, we use functions fprox and f∂

prox which penalize de-
viation of the mesh from the reference surface, and deviation of the mesh boundary
from the reference surface’s boundary, respectively. The resulting optimization problem
“F = fp + λ1fprox + λ2f

∂
prox → min” is a nonlinear least squares problem which can be

solved with a damped Gauss-Newton method; for details, especially for computationally
effective approximations to fprox and f∂

prox, see [8].

Figure 7: A circle packing mesh is a triangle mesh whose incircles (orange) form a packing. It is always
associated with a packing of spheres (blue), which are centered at mesh vertices. The axes of incircles
define the node axes of a hexagonal support structure whose faces lie in the tangent planes at contact
points of touching spheres.

Geometric properties of sphere packings. We consider a mesh triangle with vertices
vivjvk and the pairwise tangent spheres Si, Sj , Sk. Then, the spheres’ tangent planes
at their contact points intersect in the rotational axis of the triangle’s incircle. This
implies that the incircles of the mesh faces form a packing in the sense that the circles of
adjacent faces share the same contact point at the common edge; the mesh is therefore
called a circle packing (CP) mesh. The support structure associated with a CP mesh has
the incircle axes as its node axes. A CP mesh and its sphere packing, incircle packing
and support structure are illustrated in Figure 7.

Figure 8: The connectivity of a CP mesh (left, with vertices of valences 4 and 8) determines the sphere
radii and the cell sizes of the support structure derived from that mesh (at right).

Design flexibility. There is numerical evidence for an intuitively plausible conjecture,
namely that the natural correspondence between combinatorially equivalent CP meshes
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approximates a conformal mapping of surfaces (this is known to be true for circle packings
in the plane). Employing results of conformal geometry (see e.g. [9]), one then comes to
the conclusion that optimization of a triangle mesh towards the CP property works if the
reference geometry is a topological disk or topological sphere. Convergence (on closed
surfaces or with fixed boundaries) is unlikely to happen in examples whose topology is
different [8]. A nice feature of CP meshes and the associated cell structures is the good
control of the combinatorics. In a CVT-based cell structure, non-hexagonal cells may
pop up in an undesired way, but one has the advantage of no topological restrictions
(which also get weakened in CP-meshes if one adds freedom at boundaries).

2.4. Designing anisotropic cell packings
Much of the work discussed so far can be extended to the design of cell packings whose

cells exhibit a given anisotropy. Geometrically, anisotropy is expressed by the wish that
the cells on the reference surface approximate the shapes of prescribed ellipses. When
computing anisotropic cell packings we therefore try to repeat what we have done above,
but with ellipsoids instead of spheres. Prescribing a field of ellipsoids on a reference
geometry amounts to prescribing a 3 × 3 tensor field M(x) on it. In order to closely
mimick the sphere case described above, we redefine the length of a vector y attached to
a vertex v by

lenv(y)2 = yT ·M(v) · y
and require that the cell centered at a point v shall be shaped according to the ellipsoid
with equation

lenv(x− v) = 1

(this ellipsoid plays the role of a unit sphere in a local metric).

Figure 9: Left: A tensor field initialized from the curvatures of a reference surface is visualized by a field
of ellipsoids. It guides the size and shape of triangles of an anisotropic version of CP mesh. Right: The
anisotropic “dual CP” support structure wich corresponds to this CP mesh. The reference geometry
employed in this example is the roof of the Islamic arts exhibition in the Cour Visconti of the Louvre,
Paris.

Numerical experiments confirm that both circle packing meshes and associated poly-
hedral packings can be extended towards anisotropic cell packings as follows. As men-
tioned abvove, the desired cell shapes are encoded in a tensor field M(x) which is seen
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as input. Typically one will prescribe a few tensors and obtain the field by interpolation
(for tensor field design, see also Zhang et al. [10]). Another way how to readily obtain
tensor fields is to derive them from the curvatures of the surface. To get nice hexahedral
cells, one would now start with a triangle mesh of regular combinatorics and optimize
it so that its edges are of nearly equal length in these local metric defined by the tensor
field. This is done by replacing Equation (2) by

fp =
∑

edges vivj

( lenvi(vi − vj)2 + lenvj (vi − vj)2

2
− (ri + rj)2

)2
.

The desired sphere radii ri, rj are also subject to optimization. In order to control the
size of cells and penalize cases of widely different sizes of neighbourhing cells we also add∑

(ri − rj)2 to the target functional. Figure 9 illustrates an example.
Remark: Shimada [11] formulates the problem of finding anisotropic cells as an

ellipsoid packing problem. Li et al. [12] extended centroidal Voronoi diagrams on surfaces
to the anisotropic case, but their discussion would go beyond the scope of our article.

2.5. Hex-dominant plate structures
In general, it is not possible to obtain a plate structure from a hex-dominant support

structure by simply closing each cell by a planar face on either side: misalignment is
inevitable (see Figure 10). Certainly, there is a variety of options to arrive at a polyhedral
cell packing by using more faces per cell. This is illustrated by Figure 11 and by Figure 4,
right (for details on this bio-inspired structure, see Knippers et al. [13]).

Figure 10: A hexahedral support structure can in general not be extended to a hexagonal plate structure.
Closing each cell by a single plane on either side of the shell usually results in misalignment which is
particularly apparent in negatively curved areas of the reference surface.

To design a polyhedral plate structure with hex combinatorics, one has to start from
a polyhedral hex mesh. Their computation appears at first sight easy since such a mesh
can be obtained by intersecting tangent planes at the vertices of a triangle mesh [14]. A
vertex of valence 6 in the triangle mesh thus generates a hexagon of the tangent plane
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Figure 11: A hexahedral support structure, derived from a CP mesh and extended towards a honeycomb-
like polyhedral cell structure.

Figure 12: Hex-dominant plate structure of constant width. At right, one cell has been removed.

mesh. This approach has various shortcomings, including numerical instability, high
sensitivity and lack in aesthetics. An improvement can be achieved by slightly deviating
from tangent planes based on a variational formulation [15]. However, the problem is
even harder: if one wants to have aesthetically pleasing faces, which cannot be convex
in negatively curved areas of an underlying reference surface Φ (see Figure 12, right),
one should base the design of the hex mesh on a careful curvature analysis of Φ, since
the hexagons approximate the shapes of Φ’s Dupin indicatrices [16]. The advantage of
polyhedral meshes with planar faces and vertices of only valence 3 is that they always
define plate structures of constant thickness, cf. Figure 12.

2.6. Basic patterns via parameterization algorithms
Arbitrary patterns on surfaces can be generated by parameterization algorithms.

Parameterization is of central importance for texture mapping in computer graphics
and thus it has been studied extensively. Its discussion within the present context would
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lead too far. However we would like to refer to work by Nieser et al. [17] on hexagonal
global parameterization, since we extensively deal with hexagonal patterns. That paper
also contains a long list of references on parameterization.

2.7. Computing a support structure to a mesh
Given a mesh A with vertices ai, can we find a mesh B with vertices bi so that they

define a support structure? This associates a constraint with each edge aiaj , namely
planarity of the quad aiajbjbi. We have one degree of freedom for the plane of this quad.
At a vertex of valence ν, all these planes have to be co-axial, which amounts to ν − 2
scalar constraint equations.

A support structure to a mesh all of whose vertices have valence 3, gives rise to one
degree of freedom per face and one scalar condition per vertex. Leaving aside a possible
boundary, the numbers v, e of vertices and edges respectively, are related by 2e = 3v, and
thus we have 1.5 times more degrees of freedom than constraints and an optimization
algorithm will work in general. We can even be more specific and try to get node axes
as orthogonal as possible to the reference surface (see Figures 13 and 26), or planes of
the structure arranged so that they optimally block sun light for selected sun positions
(Figure 27). The formulation and implementation of the optimization algorithm follows
the final optimization step suggested by Wang et al. [18, 19] for the harder case of quad
structures.

Figure 13: Computing a support structure for a hex mesh so that node axes are as orthogonal as possible
to the reference surface. Left: Initialization of the optimization with node axes as surface normals; right:
after optimization towards planarity of faces. The deviation from planarity is color coded by the diagonal
distance in the quads, based on a scale which sets the average edge length in the hex mesh to 1 (red
correspondes to the value 0.015)

The above count of degrees of freedom also shows that chances to compute a support
structure to a quad mesh (without allowing to adapt the mesh) are much smaller, since
we have 2 constraints for a vertex of valence 4, leading roughly to balance between
the number of unknowns and degrees of freedom. This is not sufficient if the support
structure has to satisfy additional constraints like orthogonality to a reference surface
or blocking of sun. Fortunately, as discussed in the next section, the quadrilateral case
is deeply rooted in differential geometry and this helps us to succeed.
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3. Quad-dominant structures

3.1. Structures derived from PQ meshes (quad meshes with planar faces)
Support structures associated with PQ meshes have been extensively studied from

various points of view. One reason for this interest is that they represent a discrete
version of “conjugate” surfaces and their higher-dimensional generalizations, and they
have interesting relations with integrable systems [20]. It turns out that a support
structure defined by a PQ mesh A is always spanned by parallel meshes A and B,
meaning that B is a PQ mesh combinatorially equivalent to A, such that corresponding
edges are parallel.

PQ meshes have also appeared in architecture, see e.g. Glymph et al. [21]. From the
viewpoint of geometry processing, they have been studied by [2] (especially their circular
and conical versions), and in [1] (with regard to multi-layer constructions and support
structures).

Zadravec et al. [22] and Liu et al. [23] study the design flexibility of PQ meshes by
means of conjugate curve networks. Alternative ways of computing PQ meshes have
been presented by [24, 25, 26]. The abstract constraint manifold (“shape space”) of PQ
meshes is investigated by [27]. Yang et al. [28] utilized the shape space for interactively
exploring the shapes of PQ meshes.

It is worth mentioning that sphere packings (cf. Section 2.3) have been combined
with PQ meshes, both for theory and practice — see e.g. [29, 30].

Design flexibility. Assuming a PQ mesh A is given, there is actually little design flex-
ibility in finding a support structure associated with it. This problem is equivalent to
finding a mesh B parallel to A. If A has rectangular combinatorics with n×m faces, we
have essentially n + m degrees of freedom to do that. However one must bear in mind
that certain special cases, like the conical and the circular meshes, possess canonical
support structures with nice properties, and there is little to no freedom in choosing
them. For a comprehensive overview of this topic we refer to [1].

Figure 14: Discrete developable surfaces and their smooth counterparts. A strip of planar quadrilaterals
is called a discrete developable, because firstly it can be unfolded into the plane, and secondly refinement
of such a strip where quads retain their height but their width goes to zero produces, in the limit, a
smooth developable surface. Under this limiting procedure, the planes which contain individual quads
converge to the tangent planes of the smooth limit surface.

3.2. Support structures for non-polyhedral quad meshes: Discrete torsal parameteriza-
tions of line congruences

The collection of node axes of a quad-based support structure (cf. Figure 2) has
been the topic of discrete differential geometry [31]. It also plays an important role in
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Figure 15: Support structures and their smooth counterparts. We illustrate the fact that a torsion-free
support structure (left) can be seen as a discrete approximation of a so-called torsal parametrization of
a line congruence (right). The support structure consists of two series of strips of planar quads – one
is highlighted, and each is seen as a discrete developable surface. The right hand image shows a 2D
system of lines (a so-called congruence of lines) and two series of developable surfaces whose rulings fit
this system of lines. Obviously the support structure is a discrete approximation of the smooth object
at right. The node axes of the support structure correspond to selected lines of the congruence. This
relation is used in the computation of support structures with light-blocking and other related properties.

Figure 16: Design example (“subway station”) which involves quadrilateral support structures. The left
hand example exhibits two aligned support structures, one bearing loads, the other has been optimized
to provide complete shade at 1pm of June 21st, for the latitude of London. The right hand example is
similar, with the support structure being optimized not only to block light, but also to reflect light into
the entrance hall of this subway station. For details on the computation of such structures we refer to
Wang et al. [18]. 14



the optimization of support structures which have the function of shading or aiding in
indirect lighting [18, 19]. Figure 16 illustrates an example of this. Wang et al. in [18]
manage to deal with quad-based support structures by interpreting them as a discrete
analogue of a torsal paramerization of a line congruences [32]; by firstly optimizing a
congruence and subsequently extracting a torsal parametrization of it. These notions
are explained in Figures 14 and 15, but it would lead too far to discuss the details here.
A result of this work is shown by Figure 16.

Relation of support structures with PQ meshes. Since meshes with planar faces are a
topic of great interest, we discuss here the question whether it is important that a quad-
based support structure is guided by a quad mesh with planar faces, or if the planarity
of faces is not relevant. The answer depends on the circumstances. Quad-based support
structures can always be defined by quad meshes with planar faces (at least locally, see
below), but there is in general too little design freedom for such a mesh. So unless we
must have a PQ mesh for some reason, it is usually better not to insist on planarity of
faces if the only purpose of a quad mesh is to guide the support structure.

a00

a10

a20

a01

a02 a11

L00

Figure 17: This figure illustrates the degrees of freedom when choosing vertices aij of a PQ mesh on
straight lines Lij : By choosing vertices a0j and ai0 on their respective lines, the other vertices are
uniquely determined by the condition that the faces of the mesh {aij} are planar.

In order to estimate the design flexibility of a PQ mesh which can guide a given
support structure, we do the following. Assume regular combinatorics and denote the
node axes by Lij . We locally fit a PQ mesh with vertices aij to them, by arbitrarily
choosing a polyline with vertices ai,0 ∈ Li,0 (i = 0, . . . , n) and another polyline transverse
to the first one by vertices a0,j ∈ L0,j (j = 0, . . . ,m) — see Figure 17. This data uniquely
determines a PQ mesh with vertices aij ∈ Lij , by requiring co-planarity of all quads
ai,j , ai+1,j , ai,j+1, ai+1,j+1. Thus we have n+m+1 degrees of freedom for an n×m piece
of quad mesh which is usually not sufficient to let the mesh follow a reference surface.
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b0j b1j b2j b3j b4j

a0j a1j a2j a3j a4j

(ii)

(i)

Figure 18: A quadrilateral support structure defines prismatic beams of constant height along a mesh
polyline {ai,j}j=const in exactly two cases: (i) Unfolding the discrete developable through the mesh
polyline either yields a straight strip, or (ii) a strip where the lines connecting ai,j , bi,j are bisecting the
angle between adjacent edges. The example at left has constant beam height along one family of beams
(the larger one), it belongs to case (ii).

Beams of constant height. Depending on the application, additional geometric con-
straints may be imposed on a support structure. One such question concerns the geomet-
ric dimensions of the quads it is composed of: We ask if it is possible to generate support
structures where all quads have constant height. The question if edges of meshes A,B
with planar faces can be at constant distance was studied by [1]. It turns out that A must
have special properties. For a general mesh A lying on a discrete torsal parametrization
we can always achieve parallel edges along one family of mesh polygons, but not for
both. In this one family one can achieve constant height of the beams in exactly two
cases which are illustrated by Figure 18.

Multiple layers and extension to 3D. So far we have considered only one layer of poly-
hedral cells which follow a surface. It is an obvious question to what extent the concepts
above extend to multilayer structures and polyhedral cell decompositions of volumes.
For some this is easy: For instance, Voronoi cells are just well defined for arbitrary
points in space. For other structures there is actually an extensive mathematical theory
on their extension. For example, for many kinds of discrete surfaces the extension to 3D
is summarized under “consistency of integrable systems”, see [20]. A particular example
can be seen in the paper on circular arc structures by Bo et al. [33].

4. Derived structures

There are many ways to derive further structures from those we have discussed so
far. The following paragraphs discuss some of them.

Resolving nodes and reciprocal structures. Given a support structure, one may resolve
its node axes into cells either by an appropriate rotation or translation of the face
planes of cells. An example is provided by Figure 19, where the nodes of valence 3 in the
original structure become triangular cells. They are stable and easier to be manufactured
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Figure 19: A CP mesh generates a hex-mesh (left), whose edges are rotated so as to form nearly equally
sized triangular nodes (middle) along which the beams of a reciprocal structure for the Kreod Pavilion
are placed (right); images courtesy Evolute, Vienna.

from wooden elements than the original nodes. The resulting design shares some basic
geometry with reciprocal frame structures. For a classical architectural discussion of
reciprocal structures, see [34]; a recent computational design approach is due to Song et
al. [35].

Figure 20: Reciprocal frame structures with quadrilateral cells. The structure on the right has been
optimized for blocking light at selected positions of the sun.

There is obviously a close connection between tilings of the plane on the one hand, and
patterns arising in reciprocal frame structures on the other (for another example based
on a quad mesh, see Figure 20). This fact is relevant for the computing of reciprocal
frame structures, since one can e.g. employ parameterization algorithms followed by
optimization [35]. It is not necessary to start the computation from a support structure
with nodes of higher valence and resolve them. The challenge lies in providing the
designer with handles to steer shape, orientation and size of the cells. This is part of our
ongoing research and is connected to the computational design of shading structures.

Transfer of 3D textures. Support structures frequently consist of a regular arrangement
of small elements of similar size and shape. This property suggests to employ 3D textures
to generating designs which contain repeating small elements. An example is shown by
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Figure 21: It consists of many combinatorial cubes, and a 3D texture mapping has been
employed to transfer a master element (contained in the unit cube) to each of them.

Cells bounded by developable surfaces. A sequence of planar quadrilaterals is a discrete
developable surface. This interpretation motivates us to apply a refinement procedure
according to [2] to a support structure in order to convert it into a system of smooth
developable surface strips: we iteratively apply splitting, smoothing, and optimization
towards planar faces (see Figure 22). Depending on how exactly the splitting is done, we
end up with different patterns of developables — Figure 22, top row, and Figure 23, left,
shows one which follows the mesh polylines, while Figure 22, bottom row, Figure 23,
right, and Figure 24 exhibit one developable per cell. Applications for the former are
structures built from plywood or sheet metal, whose manufacturing depends on the de-
velopability property. The latter is useful for applying known methods of lighting to
curved building skins (see Figure 24; for previous work combining shading with subdivi-
sion, but such that the shading system follows the edges of a mesh created by subdivision,
see http://aedasresearch.com/features/view/all/method/envelope-design).

5. Rigidity and statics

While all structures undergo statics analysis before construction starts, this is mostly
done separately from architectural design. However in some cases it is possible to ac-
tively incorporate statics in the geometric shape optimization process. Already J. C.
Maxwell in the 19th century observed relations between geometry and statics, by noting
that the polyhedral surfaces which lie over a given cell decomposition of a planar do-
main are in correspondence with so-called reciprocal force diagrams associated with that
decomposition (a continuous version of this discrete statement is the correspondence be-
tween the Airy potential surface of a shell on the one hand, and the stresses which occur
in this shell on the other hand). Interestingly, this correspondence can also be utilized
for exploring the shapes of polyhedral surfaces [36].

Self-supporting masonry. A particular way of combining geometric modeling with statics
is the thrust network method developed by [37, 38], which is attracting much interest
in recent years. It is based on the following Safe Theorem proposed in the 1960’s:
Whenever a masonry structure contains in its interior a ficticious network of compressive
forces which at every node balances a lumped amount of gravity, that structure is stable
(under the assymption that friction between individual bricks is sufficient to counteract
shearing forces so that no sliding occurs). It turns out that in case the force network is
triangular, this approach is equivalent to a finite element discretization of the method
of Airy potentials used in continuum mechanics, and that this is because of Maxwell’s
observation mentioned in the previous paragraph. The thrust network method is very
attractive from the computational viewpoint, as has been demonstrated by Vouga et
al. [39] (see e.g. Figure 26). These authors also study links with discrete differential
geometry. The topic of self-supporting surfaces was taken further by recent work [40,
41, 42]. In particular we mention that Panozzo et al. [42] study brick-type hexagonal
cell decompositions of selfsupporting shapes which prevent sliding failure.
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Figure 21: A design by Egon Eiermann, at left, motivates a shading system in form of a 3D texture. A
quadrilateral support structure (transparent) allows us to transfer this design to a curved building skin.

Figure 22: Subdivision of a quadrilateral support structure in direction of mesh polylines (top row) and
per cell (bottom row). From left to right: Original, and result after 1,2 and 3 rounds of subdivision.

Figure 23: Packings of cells which are bounded by developable surfaces and generated from a quad
support structure via subdivision along mesh polylines (left) and faces (right).

19



Figure 24: Indirect lighting by oblique cylinders (at left, High Museum of Art, Atlanta) motivates a
shading system consisting of developables, created by a subdivision process.

Stability of support structures. Geometric methods dealing with the statics of meshes
and of support structures depend on mathematical abstractions. One such abstraction
is that the structure is a mesh whose edges are connected by spherical joints in the
vertices, so they can rotate freely against each other. Of course it is very unlikely
that an arbitrarily chosen quad mesh is stable under these conditions, but on the other
hand, by finding meshes which are, we provide structures which can be built with low
moments in the nodes. Vouga et al. [39] use methods of differential geometry to solve
the problem of approximating a freeform shape by a quad mesh with planar faces which
is in equilibrium in this sense.

Another abstraction suitable for structures like the ones shown in Figure 1 is to
consider an arrangement of quadrilaterals connected by hinges (in particular, support
structures and reciprocal structures can be thought of in this way). We then consider
rigidity and flexibility of this arrangement. The more rigid this hinge-quad arrangement
is, the less effort has to be made to make the original structure stable.

It is well known that the individual points of a moving rigid body experience velocities
of the form v(x) = c×x+d, where vectors c, d encode the 6 degrees of freedom of motion
[32]. To describe the arrangement of faces f1, . . . , fN we choose on each hinge which
connects fi with fj two points xij,k with k = 1, 2. In order to find out if this arrangement
is flexible, we assign to each quad fi two vectors ci, di such that the velocities experienced
by xij,k are the same regardless if they count as members of fi or of fj . This is expressed
by smallness of the discrepancy

δi,j,k = ‖vfi(xij,k)− vfj (xij,k)‖
= ‖ci × xij,k + di − cj × xij,k − dj‖.

Without going into details, we minimize the target function
∑

i,j,k δ
2
i,j,k under the side

condition that
∑
‖ci‖2 + ‖di‖2 = 1. The side condition corresponds to our forcing the

structure to move, and the magnitude of discrepancies exhibited by the minimal solution
show how far from flexible the structure is. Figure 25 shows an example.
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(a) (b) (c)

Figure 25: Example of rigidity analysis. Subfigure (a) shows a reciprocal structure whose quadrilateral
parts are thought to be connected with hinges. It is based on a base mesh with quadrilateral faces,
which can be seen in subfigures (b) and (c). For each vertex of the base mesh, the reciprocal structure
exhibits a quadruple of hinges close together. In order to test if the structure is flexible, we compute an
infinitesimal movement of all parts such that the deviation of parts from each other is minimal (in the
least squares sense, for more details see [19]). Subfigure (b) shows the deviations between moving parts
which occur in this minimal-deviation flexion. The occurrence of high deviations (red color) indicates
that the reciprocal structure is rigid. Subfigure (c) does this analysis for the same reciprocal structure,
but with 3 extremal boundary vertices kept fixed. One can see that with these additional constraints,
the structure is even more rigid.

6. Discussion

There are numerous applications of cell packing structures, many of which have
already been encountered above, simply because it is in most cases not feasible to build
a large structure in a monolithic way. One has to decompose it into smaller units,
which naturally leads to some kind of cell packing. Obviously, the geometric concept of
support structures as discussed in our paper, is suitable for load bearing structures, and
has been used for that in many real projects, especially steel/glass constructions. Cell
packing structures, in particular those which are statically optimized (such as the ones
in Figure 26), may be built from opaque material like stone, leading to contemporary
freeform designs from natural and maybe often locally available material.

Figure 26: Hexagonal structures for a self-supporting surface. The underlying support structure is that
of Figure 13, right. The misalignment of plates can be used for the generation of a pattern which becomes
particularly visible through light and shade effects. The two examples differ in the height computation
for the hexagonal cells, giving rise to different patterns.
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A wide and not yet systematically studied application area is the use of cell packing
structures for shading and indirect lighting (see Wang et al. [18] and Figures 16 and 27).

Figure 27: In this example, the hex mesh of Figure 13 has been extended to a support structure which
blocks light for a given light direction and thus is suitable as a shading system.

Conclusion and future work. We have provided an overview of architectural structures
which are composed of polyhedral cells or closely related to them. As this is a wide
topic, our paper is certainly biased towards work in Architectural Geometry, especially
by researchers from geometry processing. We added new aspects at various places,
having in mind the overall goal of combining form, function and fabrication into novel
integrated design tools.

We have very briefly touched our own ongoing work on the theme of this paper,
which develops around structurally sound shading systems based on reciprocal meshes
in a design environment which leaves enough artistic freedom and helps to keep the
structure as light and cost-effective as possible.

It is hoped that our discussion illustrated the necessity to carefully elaborate on the
relationships between geometry, numerical analysis and aspects of statics, functionality
and manufacturing. In this area, we have so far only scratched the surface, and there
are plenty of possibilities for future research.
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