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Abstract

Motivated by applications in CNC machining, we provide a characterization of surfaces which are enveloped by a one-
parametric family of congruent rotational cones. As limit cases, we also address ruled surfaces and their offsets. The characteri-
zations are higher order nonlinear PDEs generalizing the ones by Gauss and Monge for developable surfaces and ruled surfaces,
respectively. The derivation includes results on local approximations of a surface by cones of revolution, which are expressed by
contact order in the space of planes. To this purpose, the isotropic model of Laguerre geometry is used as there rotational cones
correspond to curves (isotropic circles) and higher order contact is computed with respect to the image of the input surface in
the isotropic model. Therefore, one studies curve-surface contact that is conceptually simpler than the surface-surface case. We
show that, in a generic case, there exist at most six positions of a fixed rotational cone that have third order contact with the
input surface. These results are themselves of interest in geometric computing, for example in cutter selection and positioning
for flank CNC machining.
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1. Introduction1

Various manufacturing technologies, such as hot wire cutting, electrical discharge machining or computer numerically con-2

trolled (CNC) machining are based on a moving tool, the active part of which can be a curve or a surface. They generate surfaces3

which are swept by a simple curve, e.g. a straight line segment or a circular arc, or are enveloped by a simple surface. The4

latter case mostly refers to CNC machining where the moving tool is part of a rotational surface (sphere, rotational cylinder,5

rotational cone, torus). In order to produce a given shape with such a manufacturing process, one has to approximate the6

target shape by surfaces which are generated by a moving tool of the available type. Depending on the application, such an7

approximation has to be highly accurate and, for example in the case of CNC machining may have to meet a numerical tolerance8

of a few micrometers for objects of the size of tens of centimeters. Such high precision pushes demands on the path-planning9

algorithms which greatly benefit from a higher order analysis of the contact between the reference surface and the surface10

generated by the moving tool.11

A moving tool, conceptualized as a truncated cone, in the context of 5-axis flank CNC machining is shown in Fig. 1. Its12

motion is visualized by the motion of its axis (tracing a ruled surface). Ideally, the tool is supposed to touch the surface not only13

at a single point, but along a whole curve, known as characteristic. The characteristic is the intersection of the current position14

of the cone with the position at an “infinitesimally close” moment, therefore is an algebraic curve of degree four. For some15

special instantaneous motions, e.g. translation, this characteristic can degenerate to a pair of straight lines passing through16

the vertex of the cone, however, for a generic screw motion, the characteristic is a spatial curve lying on the cone. Therefore17

solving the flank-milling problem by approximating the given surface by developable patches, as widely done in engineering18

literature, is not a correct approach as it restricts the space of solutions. In this work we look for good initial positions of cones19

that admit higher order contact with the surface.20

With the flank CNC machining application in mind, we present such an analysis for envelopes of rotational cones. We21

emphasize here that we strictly focus on cones of revolution (aka rotational cones). A rotational cone is formed by all lines22

passing through a fixed point (vertex) and a fixed circle such that the orthogonal projection of the vertex to the plane of the23

circle is its center (but the vertex does not coincide with the center). In order to obtain contact of order n between an envelope24

of a moving rotational cone and a design surface Φ, it is not necessary that each position of the cone has contact of order n25

with Φ, when viewing the surfaces as point sets. This is obvious anyway, since 2nd order contact between a cone and a surface26
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Figure 1: Flank milling with a conical tool. (a) The rotation of the tool about its axis generates a truncated cone (transparent) whose instantaneous
motion is determined by a pair of velocity vectors (green); their projections onto the axis of the cone are two identical vectors (red). The contact
curve with the envelope is known as the characteristic (black) and is in general position an algebraic curve of degree four. Bottom framed: For special
instantaneous motions, such as translation, the characteristic degenerates to a pair of straight lines. (b) In 5-axis flank CNC machining, the goal is
to move the tool tangentially to the reference surface (black), that is, to approximate the input surface by an envelope of the moving truncated cone.

Φ would already imply vanishing Gaussian curvature of Φ, i.e., a developable surface Φ. One needs contact of order n between27

the cone and the surface, viewed in the space of planes. It is related to the fact that a cone possesses just a one-parameter28

family of tangent planes. This indicates the advantage of using a geometry, in which the (oriented) planes in Euclidean space29

are the basic elements. Therefore, we use Laguerre geometry and work in a point model of the set of oriented planes, known as30

the isotropic model of Laguerre geometry. There, a cone appears as a curve (an isotropic circle) and not as a surface. That is,31

the analysis of cone-surface contact is transferred to the study of a curve-surface contact, which is conceptually simpler.32

When we speak of higher order contact between a surface generated by a conical milling tool and a reference surface, it is33

important to note the following: Second order contact, also referred to as osculation, means that the surfaces locally penetrate34

tangentially. Thus, this case is not directly suitable for CNC machining, but may still be useful for initial estimates of good35

tool positions. However, third order contact, so-called hyperosculation, is locally penetration-free in the very neighborhood of36

the contact point and therefore very well-suited for CNC machining, in particular for initialization of optimization algorithms37

which aim at high-precision machining.38

Contributions and overview39

Our main contribution is a careful analysis of plane-based higher order contact between cones of revolution and a given40

reference surface. This leads to a nonlinear PDE which characterizes exact envelopes of congruent rotational cones (see41

Theorem 13). From a practical perspective, this means that we can detect the (rare) cases in which a surface can be milled42

exactly in a single path by flank milling with an appropriate conical tool, provided that this tool motion is collision free43

and accessible. Probably more importantly, a computational approach to locally well fitting tool positions is very helpful44

for the initialization of numerical optimization algorithms for high-precision tool motion planning. On our way towards the45

characterization of envelopes of moving rotational cones, we discuss other special types of surfaces as well.46

The paper is structured as follows: We discuss relevant previous work in Section 2. Section 3 derives a PDE that characterizes47

the graph of a bivariate function as a ruled surface (Theorem 1). To extend to envelopes of cones, in Section 4 we introduce48

the isotropic model of Laguerre geometry and discuss the contact order between a developable surface and a doubly curved49

surface, expressed in the space of planes. Section 5 characterizes envelopes of congruent rotational cones in the isotropic model50

and formulates conditions on second order and third order plane-based contact. This is the basis for a PDE characterization51

of envelopes of congruent rotational cones (Section 6, Theorem 13). In Section 7 we address the limit case of envelopes of52

congruent rotational cylinders (Corollary 21). Section 8 shows examples of hyperosculating cone positions and its application53

to flank CNC machining. Finally, Section 9 concludes the paper and indicates directions for future research. In Appendix54

A and Appendix B we prove Theorems 1 and 10 respectively (the latter implying Theorem 13) and in the process give an55

“algorithm” to reconstruct rulings and special conics on a given surface (and hence cones enveloping a surface).56

2. Previous work57

Geometry58

Higher order contact between curves and/or surfaces has been well-studied in the past, see e.g. [11, 29, 49]. It appears,59

for example, in surface-surface intersection: Using marching methods is straightforward for transversal intersections, however,60

when the surfaces in question have higher order contact, the computation of the intersection curve is quite complex [49]. Higher61
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order contact between a circle and a surface in Euclidean 3-space is studied in [29], in particular the existence of circles with62

5-th order contact at the umbilical points of a surface.63

Another class of relevant research deals with the approximation of general free-form (NURBS) surfaces by ruled surfaces [20,64

44], or even developable surfaces [34, 35, 39, 41, 42]. For simple geometries, the process of approximation can be even interactive,65

while the design of very complex shapes requires many rounds of optimization and is still beyond real-time performance [42].66

With the blossom of modern free-form architecture, another type of research appeared recently. A curved geometry on a67

large scale requires fine approximation in order to, for example, create panels, molds for their production and support structures.68

This requires segmentation of the whole complex free-form surface into manufacturable patches, while minimizing the cost of69

the whole manufacturing process [14]. To this end, another promising direction is to use to simple, ideally congruent, curved70

geometric entities such as circular arcs [1, 6] in a repetitive manner.71

CNC machining72

The problem of approximating a general free-form surface by an envelope of a moving simple object (e.g. a quadric) has73

been inspired by applications in 5-axis CNC machining. We refer to the very final stage of 5-axis CNC machining, known as74

flank machining, where the tool, typically a cone or a cylinder, moves tangentially along the to-be-manufactured surface, having75

a contact with the surface – theoretically – along a whole curve, see Fig. 1.76

In the case of 5-axis flank milling with cylindrical tools, the tool path-finding problem can be alternatively formulated as77

approximating the offset surface of the input surface (offset by the radius of the tool) by a set of ruled surfaces. Therefore a lot78

of literature is devoted to this equivalent formulation, see e.g. [10, 18, 24, 27, 36, 40, 45, 48] and the fact that a free-form surface79

can be approximated by ruled surfaces arbitrarily well [15]. However, this approximation of a general, doubly-curved surface80

by ruled surfaces within fine tolerances typically requires an excessive number of patches [15]. On the other hand, negatively81

curved surfaces can be approximated even by a reasonably small number of smoothly joining ruled surface strips [17].82

In the case of approximation with conical tools, the literature is a lot more sparse. One can machine a ruled surface perfectly83

with a cylindrical or conical tool only if the tangent plane along the ruling is constant, i.e., the surface is developable. For84

a general (non-developable) ruled surface, an approximation approach is necessary [24]. For general free-form surfaces, an85

alternative approach is to use an approximation of the surface’s distance function and look for directions in which its Hessian86

vanishes [5]. Along these 3D directions, the distance from the reference surface changes linearly and therefore provides good87

initial candidates for the milling axis positions.88

Another important issue is the accessibility of the surface by a machining tool. A conservative estimate is proposed in the89

context of 5-axis ball-end milling [16]. The admissible directions of the tool are encoded using normal bounding cones which90

enables to quickly find whole volumes in the configuration space that correspond to possible tool paths. As a result, there is91

no need to compute accessibility for individual cutter contact points which brings significant computational savings.92

Real-life manufacturing of free-form surfaces using conical tools is conducted in [8]. Using the initialization strategy for93

flank milling with conical tools introduced in [5], one quickly finds initial motions (ruled surfaces) of the milling axis and reveals94

the parts of free-form surfaces that can be efficiently approximated by conical envelopes within very fine machining tolerances.95

Consequently, high accuracy leads to a reduced machining time as only few sweeps are needed to cover large portions of the96

surface [8].97

Another strong stream of research deals with curved tools and especially barrels [25, 26, 43]. Barrel tools are shown to fit98

well free-form surfaces, especially in concave regions where the principal curvatures of the tool match their counterparts of the99

surface. The most recent research focuses on custom-shaped tools. That is, not only the 3D motion of the tool, but also the100

shape itself are the unknowns in path-planning [19, 51, 52, 53, 54, 55]. Typically, the initial milling trajectory is a part of101

the input or is indicated by the user. Recent research focuses on automatic path initialization for 5-axis flank milling [4, 5].102

For a specific shape of the milling tool (conical or doubly curved), an automatic initialization of the motion of the tool can103

be achieved by integrating the admissible multi-valued vector field that corresponds to directions in which the point-surface104

distance changes according to the prescribed shape of the milling tool (prescribed by a meridian curve) [4].105

On the conceptual level, our research in this paper is closely related to [46, 47, 50], which concerns research on 5-axis flat-106

end milling with cylindrical tools, where the bottom circle is posed in third order contact (hyperosculation) with the reference107

surface. In this work, however, we have to deal with higher order contact in the space of planes, i.e., we look for hyperosculation108

between a special conic and a curved surface in the isotropic model of Laguerre geometry, and not in Euclidean space.109

3. Ruled surfaces110

Ruled surfaces are traced by a line moving in space. They appear as limits of surfaces enveloped by a one-parametric111

family of congruent rotational cones when the opening angle tends to zero whereas the vertices stay fixed. We first treat this112

well-known class of surfaces and in this way introduce to our approach at hand of a well-known case. A particular case of ruled113

surfaces are developable ones. The latter are enveloped by a one-parametric family of planes. For a developable surface, a114

tangent plane touches the surface along a straight line segment (ruling); see Fig. 2(a). Not all ruled surfaces are developable:115

at a generic, so-called non-torsal ruling of a ruled surface, the tangent plane is not constant (Fig. 2(b); for a detailed discussion,116

see [34]).117
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Figure 2: (a) A developable ruled surface is an envelope of a one-parameter family of planes. Every plane touches the surface along the whole ruling.
In contrast, (b) tangent planes vary along a generic ruling of a non-developable ruled surface.

We derive a PDE characterizing ruled surfaces. It is by far less known than the one for developable surfaces. The classical118

origin is found in a�ne di�erential geometry (see Blaschke [2], cf. [28]), where ruled surfaces are characterized by the vanishing119

of a 3rd order di�erential invariant, called Pick's invariant . To our knowledge, the resulting PDE was �rst written explicitly120

by R. Bryant recently [7]. All that is equivalent to the result (Theorem 1) given below. Our approach is elementary and does121

not require knowledge in a�ne di�erential geometry.122

Take the surface to be the graph of aC3 function f (x; y). Assume that the segment (x + ut; y + vt; z + wt), where t runs
through ( � "; " ) and u; v; w 2 R are �xed, is contained in the graph. Then z + wt = f (x + ut; y + vt) identically. Di�erentiating
3 times with respect to t consecutively, we get

(
f xx u2 + 2 f xy uv + f yy v2 = 0 ;
f xxx u3 + 3 f xxy u2v + 3 f xyy uv2 + f yyy v3 = 0 :

(1)

The solvability of the system (1) is analysed directly. The two equations (1) have a common solution (u; v), if and only if
the resultant of the left-hand-side polynomials vanishes:

f yy
3f xxx

2 + 6 f yy f xxx f yyy f xy f xx � 6f yy
2f xxx f xyy f xx � 6f yyy f xy f xx

2f xyy

+ 9 f yy f xyy
2f xx

2 � 6f xy f yy
2f xxy f xxx + 12f xy

2f xxy f yyy f xx � 18f xy f yy f xxy f xyy f xx

+ 12f yy f xyy f xy
2f xxx � 8f yyy f xy

3f xxx + 9 f xx f yy
2f xxy

2 � 6f yy f xxy f yyy f xx
2 + f yyy

2f xx
3 = 0 : (2)

The �rst equation of (1) has a real solution (and moreover all solutions are proportional to real ones), if and only if

f xx f yy � f xy
2 � 0; (3)

i.e., the Gaussian curvatureK of the surface is non-positive. By the property of the resultant, (1) has a real solution (u; v), if123

and only if we have (2) and (3).124

Geometrically, the �rst equation of (1) expresses that the segment is an asymptotic direction (direction of vanishing normal125

curvature; see [12]). If both equations in (1) are satis�ed, the line in direction (u; v; w) (with w = f x u + f y v) has 3rd order126

contact with the surface (cf. De�nition 5 below).127

Conversely, if (2){(3) hold, then the surface is ruled. In Appendix A we present an \algorithm" to reconstruct a ruling128

through a generic point on the surface, and prove the following theorem.129

Theorem 1 (characterization of ruled surfaces). For a C3 function f : D ! R de�ned in an open disk D � R2 the following 3130

conditions are equivalent:131

1. Through a generic point of the graph off there passes a line segment completely contained in the graph.132

2. For each (x; y) 2 D , the two equations(1) have a common nonzero real solution(u; v).133

3. For each (x; y) 2 D we have(2) and (3) (the latter meaning nonpositive Gaussian curvature).134

Remark 2. In case of strictly negative Gaussian curvature, our argument in Appendix A shows that the graph contains a135

continuous family of line segments (and even an analytic family, iff is analytic, cf. [38, Proof of Corollary 3]).136

4. Surfaces enveloped by a family of rotational cones, using a point model of the space of planes137

Now we come to the main topic of the paper: how to characterize surfaces enveloped by a one-parametric family of congruent138

cones? To minimize technicalities, we consider surfaces tangent to cones along curves rather than arbitrary envelopes of cones,139
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and exclude certain positions of these curves. In this section we reduce the problem to the characterization of surfaces containing140

a special conic through each point, which is tractable by the methods already discussed.141

Motivation142

The motivation for using a plane-based approach is the following. A cone has just a one-parameter family of tangent143

planes T(u). Moving the cone, seen as set of its tangent planes, under ageneric smooth one-parameter motion,we obtain a144

two-parameter family of planesT(u; v). These are precisely the tangent planes of the envelope!145

One can convert the resulting (plane) representation of the envelope into its dual (point) variant by computing the inter-
section points

r (u; v) = T(u; v) \ Tu (u; v) \ Tv (u; v); (4)

whereTu (u; v) and Tv (u; v) are the planes with the equations obtained from the equation ofT(u; v) by taking partial derivatives.
That is, if T(u; v) has the equation

n1(u; v)x + n2(u; v)y + n3(u; v)z + h(u; v) = 0 ;

then Tu (u; v) is given by
@n1(u; v)

@u
x +

@n2(u; v)
@u

y +
@n3(u; v)

@u
z +

@h(u; v)
@u

= 0 :

This equation will not degenerate, as the intersectionsT(u; v) \ Tu (u; v) are the rulings of the cone. However,Tv (u; v) may146

degenerate. Even all four partial derivatives with respect tov may vanish simultaneously at particular points. Also, even if147

Tv (u; v) is a well de�ned plane, the intersection (4) may be at in�nity or be an entire straight line. For our purposes, it is not148

important to discuss all these cases and the corresponding properties of the generating motion. This is why we talked about a149

generic motion, which we want to be a one where (4) is always a well-de�ned point inR3 smoothly depending onu; v.150

A few more informal remarks are in place: Note that we consider the whole unbounded moving cone and the possibly151

unbounded envelope. Also note that the envelope may consist of several parts and may have self-intersections. For example,152

when a rotational cylinder of radius r moves so that its axis remains tangent to a generic space curvec, the envelope consists153

of two o�set surfaces of the tangent developable of the curvec and a pipe surface (the envelope of spheres of radiusr , centered154

at c). By the way, the latter part of the envelope is useless for the CNC machining application we have in mind. We prefer to155

avoid envelopes in the precise statements of our results because this notion has slightly di�erent de�nitions in the literature.156

(Sometimes this even leads to confusion: e.g., osculating circles of a generic curve are nested but all tangent to the curve; their157

envelope is the curve itself or empty depending on the choice of de�nition. In view of that notice that [38, Lemma 7] remains158

true for nested circles and should be applied in case (3) of the proof of Theorem 4 there.)159

Anyway, converting the plane representation of the envelope into the point one is a postprocessing step and is not necessary160

for a characterization of these envelopes when we work in the space of planes.161

De�nition of the point model162

Since geometric processing is easier in terms of points rather than planes, we apply a map that transforms planes to points163

and use a certain duality between plane and point coordinates. As we work with rotational cones, we use a transformation164

which allows us easily to recognize these cones in the point model. The right setting is that ofLaguerre geometry1, the geometry165

of oriented planes [3, 9]. Laguerre geometry has already been useful in various applications in CAGD, see [13, 21, 22, 30, 31].166

We try to give a concise, precise, and self-contained introduction to the subject; this is an update of [38,x2.3].167

We introduce the following coordinates for planes in space. Let an oriented planeP be given by the equationn1x + n2y +
n3z + h = 0, where (n1; n2; n3) 6= (0 ; 0; � 1) is the oriented unit normal to the plane and jhj is the distance from the origin. The
desired coordinates of the planeP is the triple

�
n1

n3 + 1
;

n2

n3 + 1
;

h
n3 + 1

�
: (5)

For the geometric considerations which lead to such coordinates, we refer to [31, 32, 33]. To think geometrically, denote byP i
168

the point with these coordinates, see Fig. 3. This correspondence between planes and points is called theisotropic model of169

Laguerre geometry; see [31, 32, 33]. The simple non-Euclidean geometry in the point model, known asisotropic geometry, is170

treated in detail in [37].171

To map an oriented surface � to the isotropic model, we consider the set � i of points P i , whereP runs through all oriented
tangent planes to � with the oriented normals distinct from (0 ; 0; � 1). Hereafter by an oriented surfacewe mean the image of a
proper injective C2 map of an open disk | or more generally of a smooth 2-manifold | into R3 with nondegenerate di�erential

1Another well-known assignment of points to planes is polarity with respect to the unit sphere. But it does not work that well because leads to
\linear" functions on the sphere rather than on the plane, which are hard to deal with.
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