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Hayman admissible functions

yn = [xn]y(x) =
1

2πi

∫
|x |=r

y(x)
xn+1 dx

If y(x)x−n is concentrated at a saddle point ζn:

yn ∼ y(ζn)ζ
−n
n√

2πσ2(ζn)
, (n → ∞)

where

σ2(ζ) =

[
∂2

∂v2 log y(ζev )

]
v=0

=
ζ2y ′′(ζ)

y(ζ)
−
(
ζy ′(ζ)

y(ζ)

)2

+
ζy ′(ζ)

y(ζ)
.
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Definition (Hayman admissible function)

1 f (x) analytic in |x | < R, positive in (R0,R)

2 ∃δ : (R0,R) → (0, π) such that in (R0,R):

f
(

reiθ
)
∼ f (r) exp

(
iθa(r)− θ2

2
b(r)

)
, r → R,

uniformly for |θ| ≤ δ(r), where
a(r) = rf ′(r)/f (r),b(r) = ra′(r)

3 In (R0,R)

f
(

reiθ
)
= o

(
f (r)√
b(r)

)
, r → R,

uniformly for δ(r) ≤ |θ| ≤ π

4 b(r) → ∞ as r → R.
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Theorem (Hayman 1956)

Let f (x) be H-admissible (∈ HR). Then, as r → R, we have

fn =
f (r)

rn
√

2πb(r)

(
exp

(
−(a(r)− n)2

2b(r)

)
+ o(1)

)
,

uniformly for all integers n.

Examples: ex , eex
, exp

(
1

1−x

)
are admissible.

Corollary

Let f (z) ∈ HR, then
fn ∼ f (ζn)√

2πb(ζn)ζn
n

where ζn is defined by a(ζn) = n.

Remark: For sufficiently large n, ζn is unique.
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Proof: Let δ = δ(r)

fnrn =
1

2π

∫ 2π−δ

−δ
f (reiθ)e−inθ dθ

=
1

2π

∫ δ

−δ
f (reiθ)e−inθ dθ︸ ︷︷ ︸

I1

+
1

2π

∫ 2π−δ

δ
f (reiθ)e−inθ dθ︸ ︷︷ ︸

I2

Clearly, I2 = o
(

f (r)√
b(r)

)
.

I1 =
f (r)
2π

∫ δ

−δ
exp

(
i(a(r)− n)θ − b(r)

2
θ2
)
(1 + o(1)) dθ

=
f (r)
2π

(∫ δ

−δ
exp

(
i(a(r)− n)θ − b(r)

2
θ2
)

dθ + o

(
1√
b(r)

))
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Remaining part:

f (r)
2π

∫ δ

−δ
exp

(
i(a(r)− n)θ − b(r)

2
θ2
)

dθ

|f (reiδ)|
f (r)

∼ e−b(r)δ2/2 = o

(
1√
b(r)

)
=⇒ b(r)δ2 → ∞

Substitute y = θ
√

b(r)/2:

I1 ∼ f (r)
π
√

2b(r)

∫ δ
√

b(r)/2

−δ
√

b(r)/2
exp

(
−y2 + iy

a(r)− n√
b(r)

√
2

)
dy

∼ f (r)
π
√

2b(r)

∫ ∞

−∞
exp

(
−y2 + iy

a(r)− n√
b(r)

√
2

)
dy︸ ︷︷ ︸

√
π exp(−(a(r)−n)2/(2b(r)))
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Consequences:
Admissible functions have at least exponential growth, their
maximal modulus is on the positive real line.
"Distribution" of partial sums asymptotically Gaussian, i.e.,

∑
n≤a(r)+ω

√
2b(r)

anrn ∼ f (r)√
π

ω∫
−∞

e−t2
dt .

Growth of derivatives: f (k)(r) ∼ f (r)(a(r)/r)k , as r → R.
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Theorem (Closure Properties, Hayman 1956)

1 p(x) real polynomial, ep(x) =
∑

anxn, almost all an
positive, then ep(x) ∈ H

2 f1(x), f2(x) ∈ H =⇒ efi (x) ∈ H and f1(x)f2(x) ∈ H
3 f (x) ∈ HR, p(x) polynomial with positive leading coefficient

and p(R) > 0 =⇒ f (x)p(x) ∈ HR

4 f (x) ∈ H and g(x) = O
(
f 1−δ

)
=⇒ f (x) + g(x) ∈ H

Remark: Maple packages by Salvy et al. (Algolib)
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Example (Stirling’s formula)

Find asymptotic of n!:

1
n!

= [zn]f (z) = [zn]ez

ez ∈ H,

a(r) =
rf ′(r)
f (r)

= r , b(r) = ra′(r) = r .

Saddle point equation: a(ζn) = n.
This implies ζn = n and thus

fn =
1
n!

∼ 1√
2πb(ζn)

f (ζn)

ζn
n

=
1√
2πn

en

nn .
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Example (Bell numbers)

ez ∈ H, likewise ez − 1 ∈ H and thus f (z) = eez−1 ∈ H.
This function corresponds to Set(Set(Z) \ {ε}).

We get

a(r) =
rf ′(r)
f (r)

=
rer f (r)

f (r)
= rer , b(r) = ra′(r) = r(1 + r)er ,

Saddle point equation: ζneζn = n.
Taking logarithms and then using ζn = log n − log ζn gives

ζn ∼ log n − log log n + o(1).

Thus

Bn = n![zn]f (z) ∼ n!√
2πζ2

neζn
· eeζn−1

ζn
n

∼ n!
e
√

2πn log n
· en/ log n

ζn
n
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Example (Involutions)

An involution is a permutation with no cycles of length 3 or
more. Thus

f (z) = ez+ z2
2 =

∑
n≥0

fn
zn

n!
∈ H

We compute

a(r) = r + r2, b(r) = r + 2r2, ζ2
n + ζn = n

and so ζn =
√

n − 1
2 + 1

8
√

n + O(n−3/2).

This implies

f (ζn) = eζn+
1
2 ζ

2
n = e

1
2 (ζn+n) = exp

(√
n

2
− 1

4
+ O(n−1/2)

)
and b(ζn) = ζn + 2ζ2

n ∼ 2ζ2
n ∼ 2n.
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Example (Involutions – cont’d)

ζn
n =

(√
n − 1

2
+

1
8
√

n
+ O(n−3/2)

)n

= nn/2
(

1 − 1
2
√

n
+

1
8n

+ O(n−2)

)n

= nn/2 exp

(
n

[(
− 1

2
√

n
+

1
8n

)
− 1

2

(
− 1

2
√

n
+

1
8n

)2

+O
(

1
n3/2

)])

= nn/2 exp

(
−
√

n
2

+ O
(

n−1/2
))

∼ nn/2e−
√

n/2

Thus
fn
n!

∼ f (ζn)√
2πb(ζn)ζn

n
∼

exp
(n

2 +
√

n − 1
4

)
2nn/2

√
πn
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Multivariate Hayman admissibility
Notations
x = (x1, . . . , xd), xn = xn1

1 · · · xnd
d

For a function y(x), x ∈ Cd :
a(x) = (aj(x))j=1,...,d vector of the logarithmic (partial)
derivatives, i.e.,

aj(x) =
xjyxj (x)

y(x)
,

B(x) = (Bjk (x))j,k=1,...,d matrix of the second logarithmic
(partial) derivatives of y(x), i.e.,

Bjk (x) =
xjxkyxj xk (x) + δjkxjyxj (x)

y(x)
−

xjxkyxj (x)yxk (x)
y(x)2 ,



Analytic Combinatorics: Complex-analytic Methods and Applications

Multivariate Hayman admissibility

The typical shape of |y(reiφ, seiθ)| (for fixed r and s)

B(r) positive definite
v1(r), . . . ,vd(r) orthonormal basis of eigenvectors
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Definition (Multivariate Hayman admissible function)

A function
y(x) =

∑
n1,...,nd≥0

yn1···nd xn1
1 · · · xnd

d ,

with real coefficients yn1···nd is called H-admissible in R ⊂ Rd if
it is entire and positive in R (for some fixed R0 > 0) and
satisfies

(I) B(r) is positive definite and there exists a function
δ : Rd → [−π, π]d such that

y
(

reiθ
)
∼ y(r) exp

(
iθa(r)t − θB(r)θt

2

)
, as r → ∞ in R,

uniformly for
θ ∈ ∆(r) = {

d∑
j=1

µjvj(r) with |µj | ≤ δj(r), for j = 1, . . . ,d}.
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Definition (Mv Hayman admissible function – cont’d)

(II) The asymptotic relation

y
(

reiθ
)
= o

(
y(r)√
detB(r)

)
, as r → ∞ in R,

holds uniformly for θ /∈ ∆(r).
(III) The eigenvalues λ1(r), . . . , λd(r) of B(r) satisfy

λi(r) → ∞, as r → ∞ in R, for all i = 1, . . . ,d .

(IV) We have Bii(r) = o
(
ai(r)2), as r → ∞ in R.

(V) For r sufficiently large and θ ∈ [−π, π]d \ {0}:

|y(reiθ)| < y(r).

Remark: (I)–(III) imply ∥B(r)∥ = o(∥a
(
r)∥2) , as r → ∞ in R.
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Theorem

Let y(x) be H-admissible. Then as r → ∞ we have

yn ∼ y(r)
rn(2π)d/2

√
detB(r)

exp

(
−1

2
(a(r)− n)B(r)−1(a(r)− n)t

)
,

uniformly for all n ∈ Zd .

Proof (sketch): Let E =
{∑

j µjvj | |µj | ≤ δj

}
.

Then we have ynrn = I1 + I2 with

I1 =
1

(2π)d

∫
· · ·
∫

E

y
(
reiθ)

einθt dθ1 · · · dθd

and
I2 =

1
(2π)d

∫
· · ·
∫

[−π,π]d\E

y
(
reiθ)

einθt dθ1 · · · dθd = o

(
y(r)√
detB(r)

)
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Corollary

Let y(x) be an H-admissible function. If n1, . . . ,nd → ∞ in such
a way that all coordinates of the solution ρn of a(ρn) = n tend
to infinity as well, then we have

yn ∼ y(ρn)

ρn
n
√
(2π)d detB(ρn)

,

where ρn is uniquely defined for sufficiently large n, i.e.,
minj nj > N0 for some N0 > 0.
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A Class of H-admissible Functions

Theorem

Let P(z) =
∑

m∈M bmzm be a polynomial in z with real
coefficients and

y(z) =
∑
n∈nd

anzn = eP(z)

Then the following conditions are equivalent
1 ∀ϑ ∈ [−π, π]d \ 0 we have:∣∣∣y(reiϑ)

∣∣∣ < y(r), for sufficiently large r(in R)

2 y(z) is H-admissible in R.
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Theorem

Let P(z1, . . . , zd) =
∑L

j=1 ajz
k1j
1 · · · zkdj

d be a polynomial in d
variables and with positive coefficients aj > 0
Kj := (k1j , . . . , kdj): exponent vector of the jth monomial

Then eP(z1,...,zd ) is admissible if and only if the span of the
Kj := (k1j , . . . , kdj) over Z equals Zd .
Equivalently, this means that

Kjθ
T ≡ 0 mod 2π, j = 1 . . . ,L,

has only the trivial solution θ ≡ 0 mod 2π.
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Closure Properties
If y(x) ∈ HR, then ey(x) ∈ HR.
If y1(x), y2(x) ∈ HR and
det(B1 + B2) ≤ C min (detB1, detB2) and B1 and B2 have
same eigenvectors, then y1(x)y2(x) ∈ HR.
If y(x) ∈ HR, p(x) polynomial with positive coefficients,
then y(x)p(x) ∈ HR.
y(x) ∈ HR, f (x) analytic, real if x ∈ Rd and

max
xi=ri ,i=1,...,d

|f (x)| = O
(

y(r)1−δ
)
, as r → ∞.

Then y(x) + f (x) ∈ HR.
If y(x) ∈ H, then euy(x) ∈ HR with suitable R.
If y(x) ∈ HR, then exp(y(x1)y(x2)) ∈ HR̃ with suitable R̃.
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Example (Stirling numbers of the second kind)

gen. function y(z,u) = eu(ez−1)

Example (Permutations with bounded cycle length)

cycle length ≤ ℓ =⇒ gen. function

y(z,u) = exp

(
u

ℓ∑
i=1

z i

i

)

exponent is polynomial → check conditions of theorem

Example (Partitions of a set of partitions)

partitions of the set of subsets of a given partition

y(z,u) = exp
(

u
(

eez−1 − 1
))

mean and variance by Salvy and Shackell 1999
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Example (Set partitions with bounded block size)

y(z,u) = exp

(
u

ℓ∑
i=1

z i

i!

)

Example (Coverings of complete bipartite graphs with complete
bipartite graphs)

y(z,u) = exp ((ez − 1)(eu − 1))

Example (Partitions of sets with coloured elements (out of d
colours))

S ⊆ Zd , S finite, in each block the vector of the number of
elements per colour must be an element of S.

y(z) = exp

(∑
n∈S

zn

n1! · · · nd !

)
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Rule of thumb

Small singularities:
f (z) grows subexponentially when z approaches the
singularity
Use singularity analysis

Large singularities:
f (z) grows at least exponentially when z approaches the
singularity
Use saddle point method
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Multivariate asymptotics and
limiting distributions
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Introductory remarks

Introductory remarks
X . . . random variable on probability space Ω.
Assumption: X (Ω) ⊆ N; pk := P {X = k}

distribution function: F (x) = P {X ≤ x} =
∑

k≤x pk .

probability generating function: p(u) =
∑

k≥0 pkuk ;
analytic for |u| < 1 since p(1) = 1.
pk = 1

k!p
(k)(0).

Moments: EX =
∑

k≥0 kpk , generally: Eh(X ) =
∑

k≥0 h(k)pk ;
for h(x) = eitx : characteristic function ϕX (t) = EeitX .

In particular:

µr = EX r =

(
u

∂

∂u

)r

p(u) |u=1;

µ = µ1 = p′(1), σ2 = µ2 − µ2 = p′′(1) + p′(1)− p′(1)2.
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Introductory remarks

In combinatorics: A combinatorial structure;
probability spaces (An,Pn), where
Pn is a probability distribution on An,

Xn(a) = χ(a) for some random a ∈ An (recall: χ : A → N, or Nm)

An,k = {a ∈ A : |a| = n, χ(a) = k}, an,k = |An,k |

Uniform distribution:

P[Xn = k ] =
an,k

an
where an =

∑
k

an,k

Then (A, χ) corresponds to

A(z,u) =
∑
n,k

an,kznuk .
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Introductory remarks

What is the limiting distribution of Xn?
E.g.: Xn asymptotically Gaussian if ∃µn, σn, σn → ∞, s.t.∑

k≤µn+xσn

an,k = anΦ(x) + o(an)

as n → ∞, where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt .

Question: Is Xn asymptotically Gaussian?
Distributional quantities encoded in A(z,u):
pn(u) = [zn]A(z,u)/[zn]A(z,1) Thus

EXn =
[zn]Au(z,1)
[zn]A(z,1)

, VarXn =
[zn][Auu(z,1) + Au(z,1)]

[zn]A(z,1)
− (E Xn)

2

mn(t) =
[zn]A(z,et)

[zn]A(z,1)
, ϕn(t) =

[zn]A(z,eit)

[zn]A(z,1)
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Introductory remarks

Example (Cycles in permutations)

F = Set(µCyc(Z)) =⇒ f (z,u) = exp

(
u log

1
1 − z)

)
= (1−z)−u

Thus pn(u) =
(

n + u − 1
n

)
=

Γ(n + u)
Γ(u)n!

If |u − 1| < ε then

pn(u) =
nu−1

Γ(u)

(
1 + O

(
1
n

))
∼ (eu−1)log n
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Introductory remarks

Example (Cycles in permutations – cont’d)

For the expectation we get

EXn =
[zn] 1

1−z log 1
1−z

[zn] 1
1−z

∼ log n

and similarly VarXn ∼ log n. Let ϕ∗
n(t) = E exp

(
it Xn−EXn√

VarXn

)
, then

ϕ∗
n(t) ∼

e−it
√
log n

Γ(eit/
√
log n)

exp
(
(eit/

√
log n − 1) log n

)
∼ e− t2

2 +O
(

1√
log n

)
.

Theorem (Goncharov 1944)

The number of cycles in random permutions of size n is
asymptotically normal with mean and variance proportional to
log n
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Introductory remarks

Important inequalities for random variables:

Theorem (Markov’s inequality)

If X > 0 and µ = EX then P {X ≥ tµ} ≤ 1/t .

Theorem (Chebyshev’s inequality)

If X is real-valued with µ = EX and σ2 = VarX, then

P {|X − µ| ≥ tσ} ≤ 1/t2.

Definition

A sequence (Xn)n≥0 of random variables with EXn = µn is
called asymptotically concentrated, if

∀ε > 0 : lim
n→∞

P
{

1 − ε <
Xn

µn
< 1 + ε

}
= 1.
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Introductory remarks

Theorem

Let (Xn)n≥0 be a sequence of random variables, µn = EXn,
σ2

n = VarXn, satisfying limn→∞ σn/µn = 0. Then Xn is
asymptotically concentrated.

Proof: Set X̃n = Xn/µn. Then EX̃n = 1 and σ̃n = σn/µn = o(1).
Therefore P

{
|X̃n − 1| ≥ ε

}
≤ σ̃2

n/ε
2 = o(1).

Example (Number of leaves in plane trees)

F = µ{◦} ∪ {◦} × Seq≥1(F)

implies

F (z,u) = zu +
zF (z,u)

1 − F (z,u)
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Introductory remarks

Example (Number of leaves in plane trees – cont’d)

and thus

F (z,u) =
1
2

(
1 + (u − 1)z −

√
1 − 2(u + 1)z − (u − 1)2z2

)
F (z,1) =

1
2

(
1 −

√
1 − 4z

)
Fu(z,1) =

1
2

(
z +

z√
1 − 4z

)

[zn]F (z) =
1
n

(
2n − 2
n − 1

)
∼ 4n−1

√
πn3

[zn]Fu(z,1) = [zn−1]
1

2
√

1 − 4z
∼ 1

2
4n−1
√
πn

Thus µ ∼ n/2. Similarly σn = O
(√

n
)

=⇒ asymptocally
concentrated.
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