Bernhard Gittenberger

TU Wien

March 20th, 2025

Complex Analysis

Generating functions as functions

Generating functions as functions

So far: $f(z) = \sum_{n} f_n z^n$ formal power series Examples:

$$f(z) = \frac{1 - \sqrt{1 - 4z}}{2}, \qquad g(z) = \frac{e^{-z}}{1 - z}.$$

Constructed from the known series

$$(1-y)^{-1} = \sum_{n\geq 0} y^n, \quad (1-y)^{1/2} = \sum_{n\geq 0} {\binom{1/2}{n}} y^n, \quad e^y = \sum_{n\geq 0} \frac{1}{n!} y^n.$$

explicit coefficients: $f_n = \frac{1}{2n} {\binom{2n-2}{n-1}} \sim \frac{4^{n-1}}{\sqrt{\pi n^3}}$, similarly: $g_n = \sum_{k=0}^n \frac{(-1)^k}{k!} \sim \frac{1}{e} \approx 0.36787$.

Complex Analysis

Generating functions as functions

In general

$$f(z)=\sum_n f_n z^n$$

is also a function defined on a disk in \mathbb{C} :

Theorem (Hadamard's theorem)

Given the series $f(z) = \sum_n f_n z^n$, let

$$R = \frac{1}{\limsup_{n \to \infty} |f_n|^{1/n}}.$$

Then the series converges for all $z \in \mathbb{C}$ with |z| < R and diverges for |z| > R.

Remark: *R* is called the radius of convergence of the power series.

Complex Analysis

Generating functions as functions

The function

$$f(z)=\frac{1-\sqrt{1-4z}}{2}$$

on the reals.

singularity at z = 1/4, because $f'(1/4) = \infty$.

Complex Analysis

Generating functions as functions

Recall:

$$f_n=[z^n]f(z)\sim rac{4^n}{\sqrt{\pi n^3}},\qquad g_n=[z^n]g(z)\sim rac{1}{e}.$$

These follow the asymptotic scheme $a_n \sim A^n \theta(n)$:

 A^n ... exponential growth (we write $a_n \bowtie A^n$) $\theta(n)$... subexponential (polynomial) modulation

Two principles	
Principle 1:	The location of the singularity determines the exponential growth
Principle 2:	The nature of the singularity determines the subexponential modulation

Analytic and meromorphic functions

Analytic and meromorphic functions

Definition

A region is a connected open subset of \mathbb{C} .

Definition

 $f: \Omega \to \mathbb{C}$ is differentiable at z_0 if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists.

Theorem

 $f: \Omega \to \mathbb{C}$ is differentiable $\iff f$ is infinitely often differentiable.

Analytic and meromorphic functions

Definition

A function $f : \Omega \to \mathbb{C}$ is analytic at z_0 if there is a disk $D(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\}$ in which f is expressible as

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n$$

f is analytic in Ω if *f* is analytic at z_0 for all $z_0 \in \Omega$.

Theorem

 $f: \Omega \to \mathbb{C}$ is differentiable $\iff f$ is analytic.

Theorem (Closure properties)

If f and g are analytic, then so are

$$f \pm g, \quad f \cdot g, \quad f', \quad \frac{f}{g} \triangle, \quad f \circ g \triangle$$

Analytic and meromorphic functions

Theorem (Identity theorem)

If f and g are analytic in Ω and coincide on a set with an accumulation point, then f(z) = g(z) for all $z \in \Omega$.

Theorem

If $f : \Omega \to \mathbb{C}$ is analytic at z_0 , then the power series $\sum_{n\geq 0} a_n(z-z_0)^n$ expressing f converges on every disk $D \subseteq \Omega$ centered in z_0 .

Theorem (analytic continuation)

If $f : \Omega \to \mathbb{C}$ is analytic at some $z \in \partial \Omega$, then f can be uniquely analytically continued to $\Omega \cup D(z, r)$ for some disk D(z, r)centered in z. If $\Omega' \supseteq \Omega$ and $f : \Omega \to \mathbb{C}$ and $g : \Omega' \to \mathbb{C}$ are analytic and coincide on Ω , then g is uniquely determined by f.

Complex Analysis

Analytic and meromorphic functions

Definition

f has a singularity at z_0 if f is not analytic at z_0 .

Definition

A singularity z_0 is called isolated singularity if f is analytic in $D \setminus \{z_0\}$, where D is an open set. It is called

removable if $\lim_{z\to z_0} f(z)$ exists,

- a pole if $(z z_0)^k f(z)$ is analytic at z_0 for some positive integer k,
- an essential singularity otherwise.

Examples

$$\frac{e^z-1}{z} \quad (z_0=0), \quad \frac{1}{1-2z-3z^2} \quad (z_0=-1), \quad e^{\frac{1}{z}} \quad (z_0=0).$$

Analytic and meromorphic functions

Theorem

If z_0 is an isolated singularity of f, then f can be expressed as a Laurent series

$$\sum_{\geq -K} a_n (z-z_0)^n.$$

Remark: If *K* is integer, then we have a pole of order *K*, otherwise $K = \infty$ and the singularity is essential.

n

Examples

$$\frac{e^{z}-1}{z} = \sum_{n\geq 0} \frac{z^{n}}{(n+1)!}, \qquad \frac{1}{1-2z-3z^{2}} = \sum_{n\geq -1} \frac{3^{n+1}}{4^{n+2}}(z+1)^{n},$$
$$e^{\frac{1}{z}} = \sum_{n=-\infty}^{0} \frac{z^{n}}{n!}$$

Analytic and meromorphic functions

Definition

A singularity z_0 is called a branch point if it going around a circle encircling z_0 yields a new element of f(z), i.e., f is multi-valued.

Example: $f(z) = \sqrt{z}$ and $z_0 = 0$.

Analytic and meromorphic functions

Remark: One distinguishes

- algebraic branch points (Puiseux expansion with finitely many terms with negative powers),
- transcendental branch points (Puiseux expansion with infinitely many terms with negative powers),
- and logarithmic branch points (Riemann surface with infinitely many sheets).

Examples

 e^{z}

- no singularities, entire
- 1/(1-z) simple pole
- $\sqrt{1-z}$ algebraic branch point
- $\log(1-z)$ logarithmic branch point
- $exp(1/\sqrt{z})$ transcendental branch point

Complex Analysis

Analytic and meromorphic functions

Analytic and meromorphic functions

Definition

A function $f : \Omega \to \mathbb{C}$ is called meromorphic if f is analytic in Ω with the exception of poles.

Theorem

If f(z) is analytic at $z_0 = 0$ and its power series has a finite radius of convergence, say R, then there is at least one singularity on the circle |z| = R.

Theorem (Pringsheim's theorem)

If f(z) is analytic at z = 0 and has a power series expansion

$$f(z) = \sum_{n \ge 0} f_n z^n \text{ with } f_n \ge 0 \text{ for all } n,$$

then z = R is a singularity of f(z).

Analytic and meromorphic functions

Theorem

If f(z) is analytic at $z_0 = 0$ and the radius of convergence of its power series is R, then $f_n = [z^n]f(z) \bowtie \frac{1}{R^n}$

Proof: By definition, $\limsup_{n\to\infty} |f_n|^{1/n} = \frac{1}{R}$. Thus, for all $\varepsilon > 0$ we must have

$$|f_n| \geq rac{1}{(R+arepsilon)^n}$$
 infinitely often.

On the other hand:

$$|f_n| = o\left(\frac{1}{(R-\varepsilon)^n}\right)$$

since the series converges for |z| < R.

Analytic and meromorphic functions

Theorem

If f(z) is analytic at $z_0 = 0$ and the radius of convergence of its power series is R, then $f_n = [z^n]f(z) \bowtie \frac{1}{R^n}$

Simplest singular case: f(z) rational \implies

$$f(z) = \sum_{\rho} \sum_{j} \frac{a_{\rho,j}}{(z-\rho)^{j}}$$

Then

$$[z^{n}]\frac{1}{(z-\rho)^{j}} = [z^{n}]\frac{(-1)^{j}}{\rho^{j}\left(1-\frac{z}{\rho}\right)^{j}} = (-1)^{j}\binom{n+j-1}{j-1}\rho^{-n-j}$$

Analytic and meromorphic functions

Theorem

If f(z) is analytic at $z_0 = 0$ and the radius of convergence of its power series is R, then $f_n = [z^n]f(z) \bowtie \frac{1}{R^n}$

Definition

Assume f(z) is analytic at z = 0. A singularity is called a dominant singularity if its modulus is minimal among all singularities.

Two strategies for meromorphic functions:

- 1 Subtraction of singularities
- 2 contour integration

Complex Analysis

Analytic and meromorphic functions

Example

Consider

$$f(z) = \frac{e^{-z}}{1-z}$$

= $\frac{e^{-1}}{1-z} + \underbrace{\frac{e^{-z} - e^{-1}}{1-z}}_{\text{analytic for } |z| < 1+\varepsilon}$
= $\frac{e^{-1}}{1-z} + \underbrace{\frac{e^{-1}\sum_{n \ge 1} \frac{(1-z)^n}{n!}}{1-z}}_{=:h(z)}$

$$\implies f_n = \frac{1}{e}[z^n]\frac{1}{1-z} + [z^n]h(z) = \frac{1}{e} + O\left((1-\varepsilon)^n\right) \sim \frac{1}{e}$$

Analytic and meromorphic functions

In general: For a dominant polar singularity z_0 , expand

$$f(z) = \sum_{j=-r}^{\infty} a_j (z-z_0)^j = \sum_{j=1}^r \frac{a_{-j}}{(z-z_0)^j} + h(z)$$

and subtract the principal part. Dealing with several singularities:

Theorem

Assume that f has the singularities $z_0, z_1, ..., z_s$ with $|z_i| = R$, i = 0, ..., s and let $g_i(z)$ be the principal part of the Laurent series of f at z_i , i = 0, ..., s. Then

$$h(z) = f(z) - g_0(z) - g_1(z) - \cdots - g_s(z)$$

is analytic in the domain $|z| \leq R + \varepsilon$.

Analytic and meromorphic functions

Theorem

If f(z) is meromorphic, but analytic in |z| < R and has a unique dominant polar singularity z_0 on |z| = R, then

$$[z^{n}]f(z) = [z^{n}]\sum_{j=1}^{r} \frac{a_{-j}}{(z-z_{0})^{j}} + O\left(\left(\frac{1}{R} + \varepsilon\right)^{n}\right)$$
$$= \operatorname{Poly}_{\operatorname{degree} r-1}(n)z_{0}^{-n} + O\left(\left(\frac{1}{R} + \varepsilon\right)^{n}\right)$$

Several singularities z_0, z_1, \ldots, z_s :

$$[z^n]f(z) = \sum_{j=0}^{s} P_{j,r_j-1}(n)z_j^{-n} + O\left(\left(\frac{1}{R'+\varepsilon}\right)^n\right)$$

where
$$R' = \min_{\substack{z \text{ pole of } f, z \notin \{z_0, \dots, z_s\}}} |z|.$$

Complex contour integrals

Complex contour integrals

Theorem

Let $f : \Omega \to \mathbb{C}$ be analytic and γ and γ' be simple paths from a to b (a, b $\in \Omega$) such that

- γ and γ' are homotopic;
- the set encircled by the closed curve $\gamma \cup \gamma'$ is a subset of Ω .

Then

$$\int_{\gamma} f(z) \, \mathrm{d} z = \int_{\gamma'} f(z) \, \mathrm{d} z.$$

Complex contour integrals

Corollary (Cauchy's integral theorem)

If $f: \Omega \to \mathbb{C}$ analytic and γ is a simple closed curve encircling a subset of Ω , then

$$\oint_{\gamma} f(z) \, \mathrm{d} z = 0.$$

Complex contour integrals

Definition

If $f : \Omega \to \mathbb{C}$ is meromorphic at z_0 and $f(z) = \sum_{n \ge -M} a_n (z - z_0)^n$. Then the residue of f at z_0 is defined by $\operatorname{Res}(f; z_0) = a_{-1}$

Theorem (Residue theorem)

If $f : \Omega \to \mathbb{C}$ is meromorphic and γ is a simple closed curve encircling a region $\mathcal{D} \subseteq \Omega$ exactly once such that

• there is no singularity on γ ;

• \mathcal{D} contains the poles z_1, z_2, \dots, z_k . Then $\oint_{\gamma} f(z) dz = 2\pi i \sum_{j=1}^k \operatorname{Res}(f; z_j).$

Complex contour integrals

Theorem (Residue theorem)

If $f : \Omega \to \mathbb{C}$ is meromorphic and γ is a simple closed curve encircling a region $\mathcal{D} \subseteq \Omega$ clockwise exactly once such that

• there is no singularity on γ ;

D contains the poles z_1, z_2, \ldots, z_k .

Then

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f; z_j).$$

Proof:

Assume k = 1 and $z_1 = 0$. Choose $\gamma = \{ re^{i\varphi} \mid 0 \le \varphi < 2\pi \}$ Integrate $f(z) = \sum_{n \ge -M} f_n z^n$ term by term

Complex contour integrals

Theorem (Residue theorem)

If $f : \Omega \to \mathbb{C}$ is meromorphic and γ is a simple closed curve encircling a region $\mathcal{D} \subseteq \Omega$ clockwise exactly once such that

- there is no singularity on γ ;
- **D** contains the poles z_1, z_2, \ldots, z_k .

Then

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f; z_j).$$

Proof:

Complex contour integrals

Theorem (Residue theorem)

If $f : \Omega \to \mathbb{C}$ is meromorphic and γ is a simple closed curve encircling a region $\mathcal{D} \subseteq \Omega$ clockwise exactly once such that

- there is no singularity on γ ;
- **D** contains the poles z_1, z_2, \ldots, z_k .

Then

$$\oint_{\gamma} f(z) \, \mathrm{d} z = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f; z_j).$$

Proof:

Complex contour integrals

Theorem (Cauchy's integral formula)

If $f : \Omega \to \mathbb{C}$ is analytic at z = 0 ($0 \in \Omega$) and γ a simple closed curve encircling the origin clockwise exactly once, then

$$f_n = [z^n]f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z^{n+1}} \,\mathrm{d}z$$

Proof:

$$f(z) = \sum_{\ell \ge 0} f_{\ell} z^{\ell}$$

$$\implies \qquad \frac{f(z)}{z^{n+1}} = \sum_{\ell \ge 0} f_{\ell} z^{\ell-n-1}$$

$$\implies \qquad \operatorname{Res}\left(\frac{f(z)}{z^{n+1}}; 0\right) = f_n \quad \Box$$

Complex contour integrals

Theorem

If $f:\Omega\to\mathbb{C}$ is analytic at z=0 ($0\in\Omega$) and meromorphic in Ω , then

$$f_n = -\sum_{\rho \text{ singularity of } f \text{ with } |\rho| < r} \operatorname{Res}\left(\frac{f(z)}{z^{n+1}};\rho\right) + O\left(r^{-n}\right)$$

Proof:

$$\frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{n+1}} \, \mathrm{d}z = f_n + \sum_{\rho \text{ singularity of } f \text{ with } |\rho| < r} \operatorname{Res}\left(\frac{f(z)}{z^{n+1}}; \rho\right)$$

and

$$\frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{n+1}} \,\mathrm{d}z = O\left(r^{-n}\right). \quad \Box$$

Complex contour integrals

Example

The EGF of the class of ordered set partitions (surjections) is

$$f(z) = \sum_{n \ge 0} f_n \frac{z^n}{n!} = \sum_{n \ge 0} \sum_{k=0}^n k! S(n,k) \frac{z^n}{n!}$$

$$\sum_{k\geq 0} S(n,k)y^k = n![z^n]e^{y(e^z-1)} = \sum_{k\geq 0} \frac{y^k}{k!}n![z^n](e^z-1)^k$$

$$= \sum_{k\geq 0} \frac{y^{k}}{k!} \sum_{j=0}^{k} {k \choose j} (-1)^{k-j} j^{n} = \sum_{j\geq 0} \sum_{k\geq j} y^{k} \frac{1}{(k-j)! j!} j^{n} (-1)^{k-j}$$
$$= \sum_{j\geq 0} \frac{j^{n}}{j!} y^{j} \sum_{k\geq j} \frac{y^{k-j}}{(k-j)!} (-1)^{k-j} = e^{-y} \sum_{j\geq 0} \frac{j^{n}}{j!} y^{j}$$
$$\implies f_{n} = \sum_{k\geq 0} S(n,k) k! = \sum_{k\geq 0} S(n,k) \int_{0}^{\infty} y^{k} e^{-y} \, \mathrm{d}y$$
$$= \sum_{j\geq 0} \frac{j^{n}}{j!} \int_{0}^{\infty} y^{j} e^{-2y} \, \mathrm{d}y = \sum_{j\geq 0} \frac{j^{n}}{2^{j+1}}$$

Complex contour integrals

Example

The EGF of the class of ordered set partitions (surjections) is

$$f(z) = \sum_{n \ge 0} f_n \frac{z^n}{n!} = \sum_{n \ge 0} \sum_{k=0}^n k! S(n,k) \frac{z^n}{n!}$$

$$f(z) = \sum_{n \ge 0} \sum_{j \ge 0} \frac{j^n}{2^{j+1}} \frac{z^n}{n!} = \sum_{j \ge 0} \frac{1}{2^{j+1}} \sum_{n \ge 0} \frac{(jz)^n}{n!}$$
$$= \frac{1}{2} \sum_{j \ge 0} \left(\frac{e^z}{2}\right)^r = \frac{1}{2 - e^z} \qquad (\text{pedestrian way})$$

Symbolic method: Seq(Set_{≥ 1}(\mathcal{Z})) $\implies f(z) = \frac{1}{1 - (e^z - 1)}$

Complex contour integrals

Example

The EGF of the class of ordered set partitions (surjections) is

$$f(z) = \sum_{n \ge 0} \sum_{k=0}^{n} k! S(n,k) \frac{z^n}{n!} = \frac{1}{2 - e^z}$$

singularities at $\log 2 \pm 2k\pi i$, $k \in \mathbb{N}$. dominant singularity: $z = \log 2$ $f(z) = \frac{-1/2}{z - \log 2} + \frac{1}{4} - \frac{1}{24}(z - \log 2) + \dots$ $f_n = \frac{1}{2(\log 2)^{n+1}} + O((\rho^{-n}))$ #surjections $= \frac{n!}{2(\log 2)^{n+1}} + O(n!\rho^{-n})$ with $\rho < \sqrt{\log^2 2 + 4\pi^2}$