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Preliminaries

Assumptions:
mf:Q—Cisanalyticatz=0,0 € Q.
m The dominant singularity z; is not a pole.

m Near z = z, we have f(z) = g((z — 2p)*) where « ¢ Z and
g is analytic at 0.

B 2 is the unique singularity in |z| < |Z| + 7.
m W.l.o.g. let zy = 1, otherwise consider f(zz,).
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Lemma

Given sequences (an)n>o0 and (bn)s>o with ap, = O(n~7)
(y>0)and b, =0(0") (0 <6 < 1) then

Proof:

n/2 n/2

Zakbn k<OT3x2ak\Z(:)cen K< CiCo2 < Cofi" = O (n )

n

n
Z akbn_k < max |ak] Z C-G”‘kg Cs-n7-1.

2<k<
k=n/2 nfesksn o T
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Lemma

Let 3 ¢ N. Then

Proof: Later.

Lemma
Let v(z) be analyticin|z| <1+ n and u(z) = (1 — z)"v(2).

Then
[z"u(z) = O (n‘”“) :

Proof: a, := [z"](1 — z)" = O (1), by := [2"]v(z) = O(0")
for some 0 < 6 < 1. Now apply first lemma.
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Theorem (Darboux)

Let v(z) be analytic in |z| < 1+ n and locally around z = 1 let
the asymptotic expansion v(z) = 3 ;~o vi(1 — zY hold. Let
B ¢ N. Then we have m

(21 - 2)°u(2) = [z} yi(1 — 2)"H + O (n~m-7-2)

(1-2)5+m17(2)

Analyticity domains of v(z) and v(z) identical, so last lemma
completes the proof. O
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Theorem (Darboux’s theorem)

If f is analytic in the disk |z| < 1 and k times continuously
differentiable on its boundary, then [z"|f(z) = o(n¥).

Proof: k = 0:

2 . .
! ?{ f2) = 1 f(eMe Mdt — 0
1z|= 0

2ri 1zt 2r

by the Riemann-Lebesgue lemma.
k > 0: For k = 1 integration by parts gives

2r ) ) 2r ) )
/ f(elt)ef/ntdt =0+ 1/ f/(elt)efmtdt =0 <1> 7
0 n Jo n

for larger k iterate.

O
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Example (2-regular graphs)

Labelled undirected 2-regular simple graphs consist of cycles
only, each of length at least 3:

G = set(cyc

CyCZS(Z))
where Z is the class of a labelled atom and Cyc(>”§ means the
undirected cycle construction. -
Thus the EGF satisfies
z Z2
(z)— 1 | L_Z_ZiQ _67577
glz)=ep\3\ 877 2)) iz
P4 22
= singularityatz=1,e 2~

7 is analyticat z = 1
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Example (2-regular graphs — cont’d)

We have

PR —3/4
e i T = e -2+ T —(1-22+0((1-2))

9(2) = S + VT2 + (1 = 292+ O ((1 - 22)

Thus by Darboux’s theorem we obtain

oo () ()0 e00)

nle—3/4 5 1 3
A (T —3/2
— 9 (1 ant7aae o7 ))
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Several singularities:

Theorem (Szegd'’s theorem)

Let h(z) analytic in |z| <1 and "1, ..., €' be its singularities
on|z| = 1. Assume that locally around €'* the expansion

] ax+45
h(z) = Z cék) (1 - ze*"ﬁk) S , for some Bk > 0,
>0

holds.
Then, as n — oo,

[27h(2) ~ > Z et (ak * em) (~e)"

£>0 k=1
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The Gamma function is defined by
Mz) = / t?~le~tdt, Rz>0.
0
It can be analytically continued to C \ {0, —1,-2,...}.

Lemma (Stirling’s formula)

For ®z > 0 we have

MNz+1)~ <g)z 27z, asz— oo.



Analytic Combinatorics: Complex-analytic Methods and Applications

L Singularity Analysis

Lemma (Hankel’s representation of I'(2))

LetH =HtUH™ UH® whereHt = {t+i]|t>0},
H-={t—i|t>0},H°={e*| % < ¢ <3} and the curve
encircles the origin clockwise. Then

A [ paet
- /H( f-oe~!dt.

?

- :
N
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The method of singularity analysis

The task: Given OGF/EGF, determine its coefficients

The goal:
m Find function class for comparison with given function.
m coefficient extraction for that class is easy.

m Transfers applicable.
m f(2) = O(9(2)) = fr=0O(gn)
m f(z) = 0(9(2)) = fn=0(gn)
m f(z)~9(z) = fn~0n

Extension:

f(z) = ho(2) + h1(2) + - - + hk(2) + O(hk11(2)),
where h;j(z) > hi11(2)
— fn = hO,n + h1,n + o+ hk,n —+ O(hk+1,n) and hi,n > hi+1,n
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Example (2-regular graphs — revisited)

We got

e 5% e—3/4

T Vi-z VA —z+e_3/4m+o((1 _2)3/2)’

—3/4 —3/4
&:e _ 5e +O<n‘2).
n! VThn 8vmnd
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Lemma

Leta € C\N. Then

n—o—1

[Zn](1 _z)a ~ r(*Oé)

Proof:
n o nfo n—a—1 MNn—a
[Z7(1 = 2)% = (=1) <n> - < n > - Fi—a)n?
then apply Stirling’s formula
Mz 4+ 1)~ (f)z orz

to M'(n— «). O
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Lemma (Flajolet, Odlyzko 1990)
Letaw € C\ N. Then

270 -2~ P (14 3 L)

M(—a) = nk
where
2k 1
ex(a) = (a+1)(a+2) (a+0) [WrxleX (1 + xw) v
o=k

Ck,e
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Proof: Start with

pm1—awz;ﬂﬁ“;jwdz

cz{zma:;}

Behaviour near the singularity determines coefficient
asymptotics.
— So, deform C appropriately.

with
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Let Hp = H; UHF UHS

. ip
an{t—; | OStSCR}7 %‘;,:{1 -2 mgg},

n

}, Hf,:{z | |z|=R.|3z| z;ifafez>o}

11—z -
/HC Zer 1421 = O(R ")

[2"](1-2)* ~ Z:Ti/ﬂnu_z)a dz ~ n;;? /H(—t)a (1 + ;) o dt.
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We have
—a—1 —n—1
n t
N =2~ [ (=" 1+ dt.
[2"](1 - 2) 5 /H( ) ( +n>
Now use
YT ottty T T gt £n—k T
(1+n) e e(1+n) e k,%oCk’ltn (x=t,w=y)
Thus
n 1— ~ , —t a+/ —fdt
[Z ]( Cv+1 Cke 27_” ’H( ) e

k £>0

1/T(—a—2)

_n_o‘_1 (a+1)(a+2) - (a+0)
= r(a)k%o Ck,f nk []
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A function is f called A-analytic if there are n > 0 and
0 < ¢ < 5 such that f is analytic in A\ {1} where

A=Am¢)={z| |2l <1+n,|arg(z-1)| = ¢}

Remark: A is often called Camembert.
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Theorem (O-transfer; Flajolet, Odlyzko 1990)
Iff(z) is A-analytic and f(z) = O (|1 — z|*) in A, then

= [271f(2) = O (")

v =71 U2 Uv3 U4 Where

Y1 ={z||z-1|=1, |arg(z—1)|>¢}

Y2 ={z| 1<lz-1|, |2|<1+4n, arg(z—1)=6}
Y3 ={z| [z|=1+n, |arg(z—1)|>¢}

V4 =72
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Y =71 U2 U3 Uys Where

Y1 ={z||z-1|=1, |arg(z—1)|>¢}

Y2 ={z| 3<Iz-1|, |2|<1+4n, arg(z—1)=¢}
Y3 ={z||z|=1+n, |arg(z—1)|>¢}

Y4 =72

By assumption: |f(z)| < K|1 — z|*
set ) := [ 11 jaz) = £ <1V + P + Y 4 1Y

|z‘n+1

Small circle 41 |z|™1 > (1 — %)nH, If(z)| < Kn—«

— ) < ko 1—1 _n_127T—O(n‘“‘1)
no= n n
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Proof: v =1 U72 U7 Uys Where

71 ={z||z—1|=1, |arg(z-1)[>¢}

Y2 ={z| 1<lz-1|, |2|<14n, arg(z—1)=6}
Y3 ={z| [z|=1+n, |arg(z—1)[>¢}

Y4 =72

f(2)] < K[1 —2|*
Rectilinear parts - and v4: Let E be such that
11+ e?E| =1+ 7. Then £?) is bounded by

En o —n—1 0o
[ e
1 n n 1

nOé+1
et
n

et giot| "
1+ 1+ dt

Rem.: (1 + )4’71 ~ exp (—€'’t).
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Proof: v =71 U72 U7 Uys Where

71 ={zl1z-1|=1, larg(z—-1)[>¢}

Y2 ={z| 3<lz—1|, |2|<1+4n, arg(z2—1)=0}
Y3 ={z| [z|=1+n, |arg(z—1)[>¢}

Y4 =72

f(2)] < K[1 =2
Large circle v3: |z| =1+ n, thus |1 — z| < 3.

i < K8 (1 4+n)""2r(1 +9) = O (n™°7") O
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Extensions:

Theorem

B
If f(2) is A-analytic and f(z) = O <|1 —zp (log 1172) ) inA,

then
fo = [27)1(2) = O (" (1og n)?)

Small circle: ‘Iog =

< supy | log(ne~")| = O (log n)
Rectilinear parts: z =1+ e®L, t € [1, En]

Split into [1, log? n] U [log? n, En]

|og11fz = log (@) ~logn fort=0 (Iog‘2 n).

Larger t: log 15 = O (log n);

[lz|"1dz=0 (ne—c'°g2 ") = o(1/n) = O ((log )"
Large circle: Iogﬂfz bounded; [ |z|"~1 dz=O((1+n)™")
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If f(z) is A-analytic and

f(z)=0 <|1 —z|* <|0g1 1Z>ﬁ <Iog Iog1 1Z>W>

in A\, then

f, = [2"]f(z) = O (n—a—1 (log n)®(log log n)7>
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Corollary (o-transfer)
If f(z) is A-analytic and f(z) = o (|1 — z|) in A, then

o= [271f(2) = 0 (n™*7")

Proof (sketch): Same idea, but instead of |f(z)| < K|[1 — z|*
use |f(z)| < e|1 — z|* for z sufficiently close to 1.

Show |f,| < en—~1 for n sufficiently large. Fiddling with £ and ¢
yields the proof. O

~-transfer: f(z) ~ (1 - 2)* <= f(z) = (1 —2)*+o((1 — 2)*)
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Leta ¢ N, g € C. Then

—log ——
20g1—z

B —a—1 o
210-2)" (Sos ) ~ Ferstogmy? 1+ )

where Ci(a, 8) = (3)T(—a) & ris;

Sketch of the proof: Use same contour as for (1 — z)=¢
(Hn UHE) and substitute z = 1 + £ on H,. This gives

z7"f(z) ~ e l(=t)*n%log’ n (1 — log(—t)/ log n)”
expand and use derivatives of Hankel’s formula:
1 (—t)*e 'logh(—t)dt = AN
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The extra factor 1/z does not disturb, since

1:1_(1_2):2(1—z)k:1+0(1—z).

z k>0
)ﬁ +0 ((1 _2) (Iog 1 1Z>B>

1Io 1 ﬁ— lo 1
z2%1-z) T\ %12z

Thus transfers also apply to functions of the form

o (e )
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If f(z) is A-analytic and

f(z) ~(1 z)aL< 1 )

1-2z
where L(u) = (log u)’(log log u)?, then

fo ~ 0" 1L(n).

Likewise, the statement holds for o- and X -transfers.
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A function L : C — C is called slowly varying if

There is xo > 0 with 0 < ¢ < 7 such that L(x) # 0 for
—(r — §) < arg(x — x0) < 7 — &}

There is a function ¢ : RT — RT with Iim g(x) = 0 such that for

allo e [—(m— ¢),m — ]andforallx>x0wehave
L (xe’® L (xlog? x
| E)((i)) — 1] <e(x) and (L(x))_1 < g(x).

Theorem

If f(z) is A-analytic and f(z) = O ((1 — ZPIL (1%2)) where
L(u) is slowly varying, then f, = O(n=*~"L(n)).
This holds for o- and ~-transfers as well.
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