Analytic Combinatorics: Complex-analytic Methods and Applications

Bernhard Gittenberger

TU Wien

March 27th, 2025

Singularity analysis for implicit functions

Theorem (Implicit function theorem)

If F(z, y) is analytic, $F(z_0, y_0) = 0$, $F_y(z_0, y_0) \neq 0$, then there is a unique analytic function y(z), defined in a neighbourhood of z_0 such that $F(z, y(z)) \equiv 0$.

Thus, the solution of a function can only have a singularity at z_0 if $F_y(z_0, y_0) = 0$. Then

$$F(z,y) = F(z_0, y_0) + F_z(z_0, y_0)(z - z_0) + F_y(z_0, y_0)(y - y_0)$$

$$+ \frac{F_{yy}(z_0, y_0)(y - y_0)^2}{2} + F_{yz}(z_0, y_0)(y - y_0)(z - z_0)$$

$$+ \frac{F_{zz}(z_0, y_0)(z - z_0)^2}{2} + O\left(|z - z_0|^3 + |y - y_0|^3\right)$$

Theorem

Assume that F(z,y) is analytic and that y(z) is a solution of the functional equation F(z,y)=0. Moreover, $F(z_0,y_0)=0$, $F_y(z_0,y_0)=0$, $F_z(z_0,y_0)\neq 0$, and $F_{yy}(z_0,y_0)\neq 0$. Then, locally around z_0 , the function y(z) admits the expansion

$$y(z) = y_0 \pm \sqrt{\frac{2z_0F_z(z_0,y_0)}{F_{yy}(z_0,y_0)}}\sqrt{1-\frac{z}{z_0}} + O\left(\left|1-\frac{z}{z_0}\right|\right).$$

as $z \rightarrow z_0$.

bootstrapping → error term

Proof (sketch): Considerations of the previous slide \rightsquigarrow main term

Applications

Applications

The practical procedure is as follows:

- Preparation:
 - a) Locate the dominant singularities.
 - b) Check for analytic continuation.
- Determine the singular expansions.
- 3 Apply transfers.
- In case of more than one dominant singularity: Collect contributions and sum up

Example (Motzkin trees)

$$\mathcal{M} = \mathcal{Z} + \mathcal{Z} \times \mathcal{M} + \mathcal{Z} \times \mathcal{M} \times \mathcal{M}.$$

thus
$$M(z) = z(1 + M(z) + M(z)^2$$
 and

$$M(z) = \frac{1 - z - \sqrt{(1+z)(1-3z)}}{2z}.$$

Singularities are at z = -1 and z = 1/3.

Analytic continuation possible. For $z \rightarrow 1/3$ we have

$$M(z) = 1 - \sqrt{3}\sqrt{1 - 3z} + O((1 - 3z)^{3/2})$$

Apply transfer:

$$m_n = \frac{-\sqrt{3} \cdot 3^n}{n^{3/2} \Gamma\left(-\frac{1}{2}\right)} + O(3^n n^{-5/2}) = \frac{3^n \sqrt{3}}{2\sqrt{\pi n^3}} + + O(3^n n^{-5/2})$$

Example (2-regular graphs)

Recall

$$\mathcal{G} = \operatorname{Set}(\operatorname{Cyc}_{>3}^{(u)}(\mathcal{Z}))$$

and

$$g(z) = \exp\left(\frac{1}{2}\left(\log\frac{1}{1-z} - z - \frac{z^2}{2}\right)\right) = \frac{e^{-\frac{z}{2} - \frac{z^2}{4}}}{\sqrt{1-z}}.$$

as well as

$$e^{-\frac{z}{2}-\frac{z^2}{4}}=e^{-3/4}\left(1-(z-1)+\frac{1}{4}(z-1)^2+O\left((z-1)^3\right)\right).$$

Thus

$$\frac{e^{-\frac{z}{2} - \frac{z^2}{4}}}{\sqrt{1 - z}} = \frac{e^{-3/4}}{\sqrt{1 - z}} + O(\sqrt{1 - z})$$

Example (2-regular graphs - cont'd)

$$\frac{e^{-\frac{z}{2}-\frac{z^2}{4}}}{\sqrt{1-z}} = \frac{e^{-3/4}}{\sqrt{1-z}} + O(\sqrt{1-z})$$

Applying transfers gives

$$[z^n]g(z) = \frac{g_n}{n!} = \frac{e^{-3/4}n^{-1/2}}{\Gamma(\frac{1}{2})} + O(n^{-3/2})$$

and

$$g_n = \frac{n! e^{-3/4}}{\sqrt{\pi n}} \left(1 + O\left(\frac{1}{n}\right) \right).$$

More precisely:

$$g_n = \frac{n! e^{-3/4}}{\sqrt{\pi n}} \left(1 - \frac{5}{8n} + \frac{1}{128n^2} + O\left(n^{-3}\right) \right)$$

Example (Children's rounds)

$$\mathcal{R} = \operatorname{Set}(\mathcal{Z} * \operatorname{Cyc}(\mathcal{Z}))$$

Thus

$$R(z) = \exp\left(z \log \frac{1}{1-z}\right) = (1-z)^{-z}.$$

Simplifying gives

$$R(z) = \frac{1}{1-z} \exp\left(-(1-z)\log\frac{1}{1-z}\right)$$

$$= \frac{1}{1-z} - \log\frac{1}{1-z} + O\left((1-z)\log^2\frac{1}{1-z}\right)$$

$$= \frac{1}{1-z} - \log\frac{1}{1-z} + O\left(\sqrt{1-z}\right)$$

R(z) has singularity at z = 1 and is analytic in $\mathbb{C} \setminus [1, \infty)$.

Example (Children's rounds - cont'd)

$$\frac{r_n}{n!} = 1 - \frac{1}{n} + O\left(n^{-3/2}\right)$$

Remark: Better estimate is

$$\frac{r_n}{n!} = 1 - \frac{1}{n} + O\left(\frac{\log n}{n^2}\right)$$

In general: $m, k \in \mathbb{N}$ then

$$[z^n](1-z)^m \log^k \frac{1}{1-z} \sim \frac{(\log n)^{k-1}}{n^{m+1}}$$

Example (Permutations with all cycles of odd length)

$$\mathcal{F} = \operatorname{Set}(\operatorname{Cyc}_{\operatorname{odd}}(\mathcal{Z}))$$

Thus

$$f(z) = \exp\left(\frac{\log\frac{1}{1-z} - \log\frac{1}{1+z}}{2}\right) = \exp\left(\frac{1}{2}\log\frac{1+z}{1-z}\right)$$
$$= \sqrt{\frac{1+z}{1-z}}$$

Singularities are $z=\pm 1$, f(z) is analytic on $\mathbb{C}\setminus ((-\infty,-1]\cup [1,\infty))$.

Example (Permutations with all cycles of odd length – cont'd)

The singular expansions are

$$f(z) = \frac{\sqrt{2}}{\sqrt{1-z}} - \frac{1}{2\sqrt{2}}\sqrt{1-z} + O\left(|1-z|^{3/2}\right), \text{ as } z \to 1,$$

$$f(z) = \frac{1}{\sqrt{2}}\sqrt{1+z} + O\left(|1+z|^{3/2}\right), \text{ as } z \to -1.$$

and hence we get

$$\frac{f_n}{n!} = \frac{\sqrt{2}}{\sqrt{\pi n}} - \frac{(-1)^n + \frac{1}{2}}{2\sqrt{2\pi n^3}} + O\left(n^{-5/2}\right)$$

Example (Number of cycles in a random mapping)

Let $\mathcal{B} = \bigcup_{n \geq 0} \mathcal{B}_n$ where $\mathcal{B}_n = \{f : \{1, \dots, n\} \rightarrow \{1, \dots, n\}\},$ equipped with the uniform distribution.

Clearly: $|\mathcal{B}_n| = n^n$.

Functional digraph of an element of \mathcal{B}_{24} :

We see that

$$\mathcal{B} = \operatorname{Set}(\operatorname{Cyc}(\mathcal{T})), \quad \text{where } \mathcal{T} = \mathcal{Z} * \operatorname{Set}(\mathcal{T}).$$

Example (Number of cycles in a random mapping - cont'd)

When marking cycles, then

$$\mathcal{B} = \text{Set}(\mu \text{Cyc}(\mathcal{T})), \quad \text{where } \mathcal{T} = \mathcal{Z} * \text{Set}(\mathcal{T}).$$

Thus, with $b_{n,k} = \#$ functional digraphs with n vertices and k nodes, the bivariate GF $B(z, u) = \sum_{n \ge 0} \sum_{k \ge 0} b_{n,k} u^k \frac{z^n}{n!}$ satisfies

$$B(z, u) = \exp\left(u \log \frac{1}{1 - T(z)}\right), \text{ where } T(z) = ze^{T(z)}.$$

The average number of cycles in \mathcal{B}_n is then

$$\frac{1}{n^n}\sum_{k\geq 0}kb_{n,k}=\frac{n!}{n^n}[z^n]\frac{\mathrm{d}}{\mathrm{d}u}B(z,u)\Big|_{u=1}.$$

Example (Number of cycles in a random mapping - cont'd)

Since

$$\frac{\mathrm{d}}{\mathrm{d}u}B(z,u)\Big|_{u=1} = \frac{1}{1-T(z)}\log\frac{1}{1-T(z)}$$

we are searching for

$$\frac{n!}{n^n} [z^n] \frac{1}{1 - T(z)} \log \frac{1}{1 - T(z)}.$$

To find the singularities, we must solve

$$F(z,T) = T - ze^{T} = 0,$$
 $F_{T}(z,T) = 1 - ze^{T} = 0,$

which has only one solution: $z_0 = 1/e$, $T_0 = T(z_0) = 1$.

We find $F_z(1/e, 1) = -e$, $F_{TT}(1/e, 1) = -1$ and thus

$$T(z) = 1 - \sqrt{2}\sqrt{1 - ez} + O(1 - ez), \quad \text{as } z \to \frac{1}{e}.$$

Example (Number of cycles in a random mapping - cont'd)

Hence

$$\frac{n!}{n^n} [z^n] \frac{1}{1 - T(z)} \log \frac{1}{1 - T(z)}$$

$$\sim \frac{n!}{n^n} [z^n] \frac{1}{\sqrt{2}\sqrt{1 - ez}} \log \frac{1}{\sqrt{2}\sqrt{1 - ez}}$$

$$\sim \sqrt{2\pi n} e^n \cdot \frac{e^n}{\sqrt{2}} [z^n] \frac{1}{\sqrt{1 - z}} \cdot \frac{1}{2} \log \frac{1}{1 - z}$$

$$\sim \sqrt{\pi n} \cdot \frac{1}{2} \cdot \frac{n^{\frac{1}{2} - 1}}{\Gamma(\frac{1}{2})} \log n$$

$$= \frac{1}{2} \log n$$

Example (Pólya trees)

$$\mathcal{P} = \{ \circ \} \times MSet(\mathcal{P})$$

Thus

$$P(z) = z \exp \left(\sum_{\ell \ge 1} \frac{P(z^i)}{i} \right) = z e^{P(z)} Q(z)$$

Searching for dominant singularities: The above equation implies $\rho \leq \frac{1}{e} < 1$, thus Q(z) is analytic for $|z| = \rho$.

The system $P = ze^P Q$, $1 = ze^P Q$ has one solution $(\rho, 1)$.

$$P(\rho) = 1$$
 implies $\rho e = 1/Q(\rho) < 1$ and thus $\rho < 1/e$.

Comparing with the GF for the Catalan numbers:

$$P(1/4) < C(1/4) = 1/2 < 1$$
 implies $\rho > 1/4$.

Example (Pólya trees – cont'd)

We have F(z, P(z)) = 0 with $F(z, P) = ze^{P}Q - P$.

$$P(z) \sim 1 - \sqrt{\frac{2\rho F_z(\rho, 1)}{F_{PP}(\rho, 1)}} \sqrt{1 - \frac{z}{\rho}}.$$

We compute $F_{PP}(\rho, 1) = (ze^P Q)(\rho, 1) = 1$ and

$$ho F_{z}(
ho, 1) =
ho rac{\partial}{\partial z} (ze^{P}Q - P) =
ho (
ho e Q' + e Q)$$

$$= 1 + \sum_{i} P'(
ho^{i})
ho^{i}.$$

Thus

$$[z^n]P(z) = \frac{-\sqrt{2} \cdot \sqrt{1 + \sum_{i \ge 2} P'(\rho^i) \rho^i}}{\Gamma(-1/2)\sqrt{n^3}} \rho^{-n} = \frac{\sqrt{1 + \sum_{i \ge 2} P'(\rho^i) \rho^i}}{\sqrt{2\pi n^3} \rho^n}$$

Example (Extremal parameters: Average height of binary trees (sketch))

$$\mathcal{B}_0 = \emptyset, \qquad \mathcal{B}_1 = \{\Box\}, \qquad \mathcal{B}_{h+1} = \{\Box\} \cup \{\circ\} \times \mathcal{B}_h \times \mathcal{B}_h$$
 and thus $B_1(z) = 1$, $B_{k+1}(z) = 1 + zB_k(z)^2$
$$\sum_{h \geq 0} h(\text{\# trees w. height } h) = \sum_{h \geq 0} (\text{\# trees w. height } \geq h)$$

$$= [z^n] \sum_{h \geq 0} (B_{\infty}(z) - B_h(z))$$

$$\Longrightarrow \text{ average height } = \frac{f_n}{\frac{1}{2} \binom{2n-2}{2n-1}} \sim \frac{f_n}{4^n} \sqrt{\pi n^3}$$

Example (Extremal parameters: Average height of binary trees (sketch) – cont'd)

Flajolet & Odlyzko 1982 showed:

$$f(z) = 2\log rac{1}{1-4z} + O\left((1-4z)^{1/4+arepsilon}
ight)$$
 $\implies 4^{-n}f_n = rac{2}{n} + O\left(n^{-5/4+arepsilon}
ight)$
 $\implies ext{average height} = \sqrt{\pi n} + O\left(n^{1/4+arepsilon}
ight)$

Example (Extremal parameters: Longest cycle in a permutation (sketch))

$$A...$$
 cyclic permutations, GF $A(z) = \log \frac{1}{1-z} = \sum_{\ell > 1} \frac{z^{\ell}}{\ell}$

 \mathcal{B} ...all permutations, GF $B(z) = e^{A(z)}$, because $\mathcal{B} = \text{Set}(A)$

longest cycle length less than k: GF $B_k(z) = \exp\left(\sum_{j=1}^{k-1} \frac{z^j}{j}\right)$.

Thus consider

$$f(z) = \frac{1}{1-z} \sum_{k \ge 0} \left(1 - \exp\left(-\sum_{j \ge k} \frac{z^j}{j}\right) \right)$$

Rem.: $f_n = \mathbb{E}(\text{length of longest cycle in } \mathcal{B}_n)$

Applications

Example (Extremal parameters:

Longest cycle in a permutation (sketch) - cont'd)

$$\sum_{j>k} \frac{z^j}{j} = t \sum_{j>k} \frac{e^{-tj}}{tj} \sim t \int_k^\infty \frac{e^{-tu}}{tu} du = \int_{kt}^\infty \frac{e^{-u}}{u} du$$

Applications

Example (Extremal parameters: Longest cycle in a permutation (sketch) – cont'd)

$$\sum_{j \ge k} \frac{z^j}{j} = t \sum_{j \ge k} \frac{e^{-tj}}{tj} \sim t \int_k^\infty \frac{e^{-tu}}{tu} du = \int_{kt}^\infty \frac{e^{-u}}{u} du$$

$$(1-z)f(z) = \sum_{k\geq 0} \left(1 - \exp\left(-\sum_{j\geq k} \frac{z^j}{j}\right)\right)$$

L Applications

Example (Extremal parameters:

Longest cycle in a permutation (sketch) - cont'd)

$$\sum_{j \ge k} \frac{z^j}{j} = t \sum_{j \ge k} \frac{\mathrm{e}^{-tj}}{tj} \sim t \int_k^\infty \frac{\mathrm{e}^{-tu}}{tu} \, \mathrm{d}u = \int_{kt}^\infty \frac{\mathrm{e}^{-u}}{u} \, \mathrm{d}u$$

$$(1-z)f(z) \sim \int_0^\infty \left(1-\exp\left(\int_{xt}^\infty \frac{e^{-u}}{u}\,\mathrm{d}u\right)\right)\,\mathrm{d}x$$

L Applications

Example (Extremal parameters:

Longest cycle in a permutation (sketch) - cont'd)

$$\sum_{j \ge k} \frac{z^j}{j} = t \sum_{j \ge k} \frac{e^{-tj}}{tj} \sim t \int_k^\infty \frac{e^{-tu}}{tu} \, \mathrm{d}u = \int_{kt}^\infty \frac{e^{-u}}{u} \, \mathrm{d}u$$

$$(1-z)f(z) = \frac{1}{t} \underbrace{\int_0^\infty \left(1 - \exp\left(-\int_x^\infty \frac{e^{-u}}{u} du\right)\right) dx}_{\text{constant } C}$$

$$\implies f(z) \sim \frac{C}{(1-z)^2} \implies f_n \sim Cn.$$