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Tauber’s theorem
Recall:

Theorem (Abel’s limit theorem)

If ∑
n≥0

an = s

then
∑
n≥0

anzn defines a continuous function f on [0,1] and

f (1) = s.

What about the converse?
Given the function, statement about the series.
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Theorem (Tauber’s theorem (1897))

Given f (z) =
∑
n≥0

anzn such that lim
z→1−

f (z) = s and

an = o
(

1
n

)
Tauberian condition

Then
∑
n≥0

an = s

Example (Example without side condition)

f (z) =
1

1 + z
=
∑
n≥0

(−1)nzn.

Clearly, lim
z→1−

f (z) = 1
2 ,

but
∑

n≥0(−1)n is divergent!
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Theorem (Hardy & Littlewood (1914), Karamata (1930))

Let f (z) =
∑
n≥0

fnzn be a power series with radius of

convergence equal to 1 and, as z → 1−, (no ∆-analyticity!)

f (z) ∼ 1
(1 − z)α

L
(

1
1 − z

)
.

If fn ≥ 0 (Tauberian condition), then

n∑
k=0

fk ∼ nα

Γ(α+ 1)
L(n).

If moreover fn is monotone, then

fn ∼ nα−1

Γ(α)
L(n).
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Proof: Set U(t) =
∑⌊t⌋

k=0 fk , which is the improper distribution
function of a measure U on [0,∞).
Let

ω(s) = Ee−sU =

∫ ∞

0
e−sxU( dx) =

∑
k≥0

e−sk fk = f (e−s)

be its Laplace transform.
Let τ > 0 and t = 1/τ . Then

ω(τs) =
∫ ∞

0
e−τsxU( dx) =

∫ ∞

0
e−sx/tU( dx) =

∫ ∞

0
e−syU(t dy)

is the Laplace transform of the measure with distribution
function U(tx).
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Let V be the measure with distribution function U(tx)/ω(τ).

For τ → 0 we have
ω(τ) = f (e−τ ) ∼ f (1 − τ) ∼ τ−αL

(1
τ

)
= tαL(t) and

Ee−sV =
ω(τs)
ω(τ)

∼ f (1 − τs)
f (1 − τ)

∼ 1
sα

L
( t

s

)
L(t)

−→ 1
sα

= L
(

xα−1

Γ(α)

)
Now let W denote the measure with density xα−1/Γ(α). Then,
by the continuity theorem for Laplace transforms,

U(tx)
ω(τ)

−→
∫ x

0

xα−1

Γ(α)
dx =

xα

Γ(α+ 1)
.

But
U(tx)
ω(τ)

=
1

ω(τ)

∑
k≤⌊tx⌋

fk ∼ 1
tα

∑
k≤⌊tx⌋

fk ,

so set x = 1 and t = n.
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Example (Permutations with distinct cycle lengths)

The EGF of Cyck (Z) is zk/k . Thus the EGF of the class of
permutations with distinct cycle lengths is

f (z) =
∏
k≥1

(
1 +

zk

k

)
.

Therefore

log f (z) = log
∏
k≥1

(
1 +

zk

k

)
=
∑
k≥1

log

(
1 +

zk

k

)
=
∑
k≥1

∑
n≥1

(−1)n−1zkn

knn

= log
1

1 − z
+
∑
k≥1

(
log

(
1 +

zk

k

)
− zk

k

)

= log
1

1 − z
+ log(1 + z)− z +

∑
k≥2

∑
n≥2

(−1)n−1zkn

knn︸ ︷︷ ︸
=:g(z)
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Example (Permutations with distinct cycle lengths – cont’d)

g(z) = log(1+z)−z+
∑
k≥2

∑
n≥2

(−1)n−1zkn

knn
=
∑
k≥1

(
log

(
1 +

zk

k

)
− zk

k

)

g(1) convergent?

g(1) = lim
z→1−

g(z) =
∑
k≥1

(
log

(
1 +

1
k

)
− 1

k

)
= − log 1 + lim

n→∞
(log(n + 1)− Hn) = −γ

Thus

f (z) ∼ e−γ

1 − z
for z → 1.

This implies
∑n

k=0 fk ∼ ne−γ .



Analytic Combinatorics: Complex-analytic Methods and Applications

Tauberian theorems

Example (Permutations with distinct cycle lengths – cont’d)

What about fn?
Write f (z) = 1+z

1−z eg̃(z) = 1+z
1−z h(z) with

g̃(z) = g(z)− log z = −z +
∑
m≥2

(−1)m−1

m

∑
k≥2

zkm

km

So,

f (z) =
1

1 − z

∑
n≥0

hnzn +
z

1 − z

∑
n≥0

hnzn

and thus fn = 2h0 + · · ·+ 2hn−1 + hn.
Our goal: Show that fn converges, then

∑n
k=0 fk ∼ ne−γ implies

fn ∼ e−γ .
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Example (Permutations with distinct cycle lengths – cont’d)

If |[zn]g̃(z)| ≤ [zn]v(z) then |hn| ≤ [zn]ev(z).
For n ≥ 2 we have

[zn]g̃(z) = [zn]
∑
m≥2

(−1)m−1

m

∑
k≥2

zkm

km =
∑

m≥2, m|n, m<n

(−1)m−1

m

(m
n

)m
.

Moreover,

d
dx

(x
n

)x
=
(x

n

)x
(1 + log x − log n) < 0

if 1 ≤ x ≤ n/e. Thus
(m

n

)m is decreasing for 1 ≤ m ≤ n/e.
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Example (Permutations with distinct cycle lengths – cont’d)

Consequently,

|[zn]g̃(z)| ≤ 1
2

(
2
n

)2

+
∑

3≤m≤n/3, m|n

1
m

(
3
n

)3

+
2
n

2−n/2

≤ 2
n2 +

3
n2 +

2
n2 <

10
n2 .

Thus we can take w(z) = ev(z) := exp
(

10
∑

ℓ≥1
zℓ

ℓ2

)
.

As w ′ = v ′w , we have nwn = 10
n−1∑
k=0

wk

n − k
.

Note: v(1) < ∞, wn ≥ 0, wn ≤ w(1).
Choose C > 0, then for 1 ≤ n ≤ C and sufficiently large B we
have wn ≤ B/n2.
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Example (Permutations with distinct cycle lengths – cont’d)

Assume wm ≤ B/m2 for 1 ≤ m ≤ n and some n ≥ C and
proceed by induction on n.
Choose C0 < C

2 : Then

wk

n − k
≤ w(1) · 2

n
for 0 ≤ k ≤ C0,

wk

n − k
≤ B

k2 · 1
n − k

for C0 ≤ k ≤ n/2.

With this we get∑
C0≤k≤n/2

wk

n − k
≤ 2B

n

∑
C0≤k≤n/2

1
k2 =

2BSn

n∑
n/2<k≤n−1

wk

n − k
≤ 4B

n2

∑
n/2<k≤n−1

1
n − k

=
4BHn

n2 ≤ 4(1 + log n)B
n2
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Example (Permutations with distinct cycle lengths – cont’d)

Altogether this gives

nwn ≤ 20C0w(1)
n

+

(
20Sn

n
+

40(1 + log n)
n2

)
B

!
≤ B

n

if
B ≥ 20C0w(1)

1 − 20Sn − 40(1+log n)
n

This can be achieved as n ≥ C; so choose C sufficiently large
to guarantee that Sn can be made small (by choosing C0 large
enough) and the denominator is positive.
Then choose B sufficiently large.

Finally, we obtain hn ≤ wn = O
(
1/n2) and so fn converges.
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Laplace’s method

Laplace’s method
Goal: Evaluation of the parameter integral

I(λ) =
∫ b

a
f (z)e−λh(z) dz, as λ → ∞,

where
f and h are analytic and real-valued for real z.
λ > 0, a,b ∈ R.
There is a a < t0 < b such that h′(t0) = 0 and h′′(t0) > 0.
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Laplace’s method

Idea: Let f (t0) ̸= 0 and esimate

I(λ) ∼
∫ b

a
f (t0) exp

(
−λ

(
h(t0) + h′′(t0)

(t − t0)2

2

))
dt

∼ f (t0)e−λh(t0)
∫ ∞

−∞
exp

(
−(t − t0)2

2
λh′′(t0)

)
dt

∼ f (t0)e−λh(t0)

√
2π

λh′′(t0)

where we used

1√
2π

∫ ∞

−∞
xke−tx2

dx =

{
0 if k is odd,

t−(k+1)/2k!
(k/2)!·2k+1/2 if k is even.

Note: k fixed, α > 0, then
∫∞
θ xke−αx2

dx = O
(

e−αθ2
)
.

!△Simultaneous limits: λ → ∞, t → t0
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Theorem (Laplace’s method)

Let −∞ ≤ a < b ≤ ∞ and

I(x) =
∫ b

a
f (t)e−xh(t) dt .

Assume
(1) f is once and h twice continuously differentiable;
(2) t0 unique minimum of h, with h′′(t0) > 0, f (t0) ̸= 0;

(3) h(t) = h(t0) +
h′′(t0)

2 (t − t0)2 + O
(
|t − t0|3

)
;

(4) I(x) convergent for x ≥ x0.
Then

I(x) = f (t0)

√
2π

xh′′(t0)
e−xh(t0)

(
1 + O

(
1√
x

))
, as x → ∞.
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Proof: W.l.o.g. t0 = 0 (a < 0, b > 0), h(t0) = 0 and f (t) ≡ 1
(otherwise f (t) = f (t0) + O (|t − t0|))
By (2), we have |t | < δ =⇒

∣∣∣h(t)− h′′(0) t2

2

∣∣∣ ≤ c|t |3. Write

I(x) =
∫ δ

−δ
e−xh(t) dt︸ ︷︷ ︸
I1(x)

+

∫
|t |>δ

e−xh(t) dt︸ ︷︷ ︸
I2(x)

.

With µ := inf |t |>δ h(t) > 0 we get

|I2(x)| ≤
∫
|t|>δ

e−x0h(t)−(x−x0)h(t) dt ≤ e−(x−x0)µ

∫
|t|>δ

e−x0h(t) dt = O
(
e−βx)

for some β > 0.
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Turn to I1(x):

I1(x)

=

∫ δ

−δ
e−xh′′(0) t2

2 dt +
∫ δ

−δ
e−xh′′(0) t2

2

(
e
−x

(
h(t)−h′′(0) t2

2

)
− 1

)
dt

=

√
2π

h′′(0)x
+ O

(
e−xδ2

)
+ J

As

|et − 1| =

∣∣∣∣∣∣
∑
n≥1

tn

n!

∣∣∣∣∣∣ <
∑
n≥1

|t |n

(n − 1)!
= |t |e|t |

and |h(t)− h′′(0) t2

2 | ≤ c|t3|, we have

|J| ≤ 2cx
∫ δ

0
t3 exp

(
−xh′′(0)

t2

2
+ cxt3

)
dt
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We had

I1(x) =

√
2π

h′′(t0)x
+ O

(
e−xδ2

)
+ J

with

|J| ≤ 2cx
∫ δ

0
t3 exp

(
−xh′′(t0)

t2

2
+ cxt3

)
dt

and thus we get

|J| ≤ 2cx
∫ δ

0
t3 exp

(
−xt2

(
h′′(t0)

2
− δc

))
dt ≤ 2cx

∫ δ

0
t3 exp

(
−xt2b

)
dt

for b = h′′(t0)
2 − δc. Substitution u =

√
xbt gives

|J| ≤ 2c
b2x

∫ ∞

0
u3e−u2

du = O
(

1
x

)
and therefore I1(x) =

√
2π

h′′(t0)x

(
1 + O

(
1√
x

))
.
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Saddle points
Let f be analytic in some region Ω, z0 ∈ Ω

z0 is an ordinary point: f (z0) ̸= 0, f ′(z0) ̸= 0

For z = z0 + reiθ and f ′(z0)
f (z0)

= λeiϕ we have

|f (z)| = |f (z0) + reiθf ′(z0) + O(r2)| ∼ |f (z0)| · |1 + rλ cos(θ + ϕ)|

Let r be sufficiently small, while θ varies. Then

|f (z)| ∼ |f (z0)|(1 ± λr) for θ = −ϕ, θ = −ϕ+ π, resp.
(line of steepest ascent resp. descent)

|f (z)| ∼ |f (z0)|+ o(r) for θ = −ϕ± π

2
(level set, perpendicular to gradient)
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z0 is a zero: f (z0) = 0, f ′(z0) ̸= 0 if first order.

Then |f (z)| ∼ r |f ′(z0)| = O(r). For mth order: |f (z)| = O(rm).

z0 is a simple saddle point: f (z0) ̸= 0, f ′(z0) = 0, f ′′(z0) ̸= 0

Set λeiϕ = 1
2

f ′′(z0)
f (z0)

. |f (z)| =
∣∣∣∣f (z0) +

r2

2
e2iθf ′′(z0) + O(r3)

∣∣∣∣
= |f (z0)|

∣∣∣1 + λr2ei(2θ+ϕ) + O(r3)
∣∣∣

∼ |f (z0)|(1 + λr2 cos(2θ + ϕ))

|f (z)| maximal for θ = −ϕ/2
|f (z)| minimal for θ = −ϕ/2 + π/2
|f (z)| ∼ |f (z0)| for θ = −ϕ/2 + π/4
and for θ = −ϕ/2 + 3π/4

Pattern repeats once. (0 ≤ θ ≤ 2π)
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Saddle points

p-fold saddles: f ′(z0) = f ′′(z0) = · · · = f (p)(z0) = 0,
f (p+1)(z0) ̸= 0
Example: p = 2 and p = 4:
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