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Tauber’s theorem
Recall:

Theorem (Abel’s limit theorem)

If
dap=s

then > anz" defines a continuous function f on [0, 1] and
n>0
f(1) =s.

What about the converse?
Given the function, statement about the series.
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Theorem (Tauber’s theorem (1897))
Given f(z) = > anz" such that lim f(z) = s and

nZO Z—1—
1 . »
an=20 <n) Tauberian condition
Then >  ap=s

n>0

Example (Example without side condition)

f(z) = _Z

n>0

Clearly, I|m f(z) = 3,
but ano( 1)" is divergent!
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Theorem (Hardy & Littlewood (1914), Karamata (1930))

Letf(z) = > fpz" be a power series with radius of
n>0

convergence equal to 1 and, as z — 1—, (no A-analyticity!)

f(z) ~ (1 —12)QL<1 12)

If f, > 0 (Tauberian condition), then

Z fic ~ 0 ——L(n).

If moreover f, is monotone, then

na—1

o~ iy L
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Proof: Set U(t) = Z,Eio fx, which is the improper distribution
function of a measure U on [0, c0).
Let

w(s) =Ee™sY = /OO e~ U(dx) =) e *f = f(e™°)

0 k>0

be its Laplace transform.
Letr >0and t=1/7. Then

w(rs) = /0 T e (dx) = /O T ey dx) = /0 T e U(tdy)

is the Laplace transform of the measure with distribution
function U(ix).
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Let V be the measure with distribution function U(tx)/w(7).

For - — 0 we have
w(r)=fle ") ~f(1—7)~7"%L (}) = t*L(t) and

Ee—sV _ w(Ts) N f(1—rs) N 1 L(é) R 1 r (Xa1>

T w(n) T f(A=1) Ts L(D) so 7\ T(a)

Now let W denote the measure with density x*~'/I'(«). Then,
by the continuity theorem for Laplace transforms,

ulx) /X xo1 x®
0

w(7) M) X far 1)
But

Utx Z i,

w( ) k<[txj k< Ltx]

sosetx=1and t=n. O]
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Example (Permutations with distinct cycle lengths)

The EGF of Cycy(Z2) is z¥/k. Thus the EGF of the class of
permutations with distinct cycle lengths is

f(z):H<1+Zkk>.

k>1
Therefore
n 1an
log f(z IogH<1+ > Zlog( > ZZT
k>1 k>1 k>1 n>1

Zk
Iog1 +Z<Iog(1+ ) k)
k>1
1 n 1an
1= + log(1 ZJFZZik”n

k>2 n>2

= log

=:9(2)
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Example (Permutations with distinct cycle lengths — cont'd)

9(2) = log(1+2)-2+ 33 & kn1 = Z:('og< k)_zkk>

k>2 n>2

g(1) convergent?

g(1) = lim g(z) = ;; (Iog (1 + ;) - ;)

—log1 + ntrgo(log(n+ 1) — Hp) = —v

Thus
-
1-2

This implies "¢ _o f ~ ne™7.

f(z) ~ forz — 1.
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Example (Permutations with distinct cycle lengths — cont'd)

What about f,? )
Write f(z) = 1H2e9(2) = 12 p(z) with

§(2) = 9(2) ~togz = —z+ 3 T ka

m>2 k>2
So, 1
_ n 4 n
f(z) = mZhnz 4 mZhnz
n>0 n>0

and thus f, = 2hy + - -- + 2h,_1 + hp.
Our goal: Show that f, converges, then >"¢_, fx ~ ne~7 implies
fn ~ e_’y.
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Example (Permutations with distinct cycle lengths — cont'd)

If [[2"19(2)| < [2"]v(2) then |hy| < [2"]€"(?)
For n > 2 we have

m—1 km _4\m-1 m
[2"9(2) [z”]Z ) Z%: > (1,37 (%)

m>2 k>2 m>2, m|n, m<n

Moreover,

% (%)X = <%>X(1 +logx —logn) <0

if1 < x < n/e. Thus (%)m is decreasing for 1 < m < n/e.
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Example (Permutations with distinct cycle lengths — cont'd)

Consequently,

e (2) X L(2) 2

2
3<m<n/3, m|n
g 2 3 2 10
< ? arF ? A ﬁ < ?

Thus we can take w(z) = (9 := exp (10 > e j—;)

Wik
As w' = v'w, we have | nw, = 10
n=10) -

Note: v(1) < oo, wp > 0, w,y < w(1).
Choose C > 0, then for 1 < n < C and sufficiently large B we
have w, < B/n?.
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Example (Permutations with distinct cycle lengths — cont'd)

Assume wp, < B/m?for 1 < m < nand some n> C and
proceed by induction on n.
Choose Cy < §: Then

Wi
< = <k<
P w(l)- forO k < Co,
Wy B 1
< — <k< .
kS ke n_kforcofkfn/z
With this we get
Z Wk _ 2B 1 _2BS,
n—k = n k2 n
COSkSn/z C()Skgn/z
Wi 4B 1 4BH, _4(1+logn)B
n—k=—n n—k n - n@
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Example (Permutations with distinct cycle lengths — cont'd)

Altogether this gives

1
o < 20Cow(1) (203,, | 40(1 —|-2|0g n)) 52
n n n

S|

B> 20Cyw(1)
This can be achieved as n > C; so choose C sufficiently large
to guarantee that S, can be made small (by choosing Cy large

enough) and the denominator is positive.
Then choose B sufficiently large.

Finally, we obtain h, < w, = O (1/n?) and so f, converges. [
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Laplace’s method

Goal: Evaluation of the parameter integral
b
10 = / f(2)e @) dz,  as A — oo,
a

where
m f and h are analytic and real-valued for real z.
m)>0abekR.
m Thereisa a< ty < bsuch that /() = 0 and h'(ty) > 0.
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Idea: Let f(fy) # 0 and esimate

A) ~ /b £(to) exp (—)\ <h(to)+h"(to)“_2"°)2)> dt
~ f(ty)e M fo)/ < t) SLUASY A )) dt

where we used
1 ok he 0 if k is odd,
— x'e dx = . e
V2r /_oo {WQ if k is even.

Note: k ﬁxed, o > O, then fgoo Xke*CYX2 dx =0 (efoﬁz) ]
A\ Simultaneous limits: A\ — oo, t — fy
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Theorem (Laplace’s method)

Let —co0 < a< b< oo and

I(x) = /a ’ f(t)eM0 qt.

Assume
f is once and h twice continuously differentiable;
to unique minimum of h, with h"(t) > 0, f(t)) # 0;
h(t) = h(to) + Tt — )2 + O (|t - 1),
I(x) convergent for x > Xg.

Then

I(x) = f(t) Xh?/?to)e_Xh(IO) (1 +0 (\%)) , as X — .
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Proof: W.lLo.g. iy =0 (a< 0, b > 0), h(tp) = 0 and f(t) =
(otherwise f(t) = f(ty) + O (|t — fo]))
By (2), we have |t| < § —> ]h(t) — H(0)&

9
I(x) = / =0 gt / =0 gt
-5 |t|>6

h(x) h(x)

< c|t®. Write

With p := inf|y~ 5 h(t) > 0 we get

|b(x)| < / g () —(x=x)h(t) gt < e*(X*Xo)#/ e~ 4t — O (efﬁX)
[t>3 It|>s

for some 5 > 0.
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Turn to h(x):

h(x)

0 é _ _ oy B
— [ emkars [ gOX <e (no-rof) _1> at
= -4

=4/ h”?g)x +0 (e‘X52> +J

As

(4 v 1" e
e |_an<z(n—1)!_||e

n>1 n>1

and |h(t) — h'(0)4| < c|t3|, we have

é 2
|J] < ZCX/ t3 exp (—Xh”(O)t2 + CXt3> dt
0
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L Laplace’s method

We had

— 6
h// ¥ +J

with
|J| < Zcx 13 exp ( xh"( to + cxt3) dt

and thus we get
’ 3 2 h”(to) ’ 3 2

|J] < 2cx/ t° exp (—xt (2 —5c>> dt < 2cx/ t° exp (—xt°b) dt
0 0

for b= "{b) _ s¢. Substitution u = /xbt gives

< o /OOO we " du=0 <l>
and therefore /4(x) = m( + O( >>

O
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L Saddle points
Saddle points
Let f be analytic in some region Q, z € Q
Zp is an ordinary point: f(zy) # 0, () # 0

For z = zy + re'? and f((z )) = \e'® we have

£(2)| = |f(20) + re”f'(20) + O(r®)| ~ [f(20)] - |1 + rAcos(d + )|
Let r be sufficiently small, while 6 varies. Then

[f(2)| ~ |f(20)|(1 £ Ar) forf=—¢, 6 = —¢+m, resp.
(line of steepest ascent resp. descent)

(

(

[(2)] ~ [f(20)| + o(r) f0r0=—¢if

level set, perpendicular to gradlent)



Analytic Combinatorics: Complex-analytic Methods and Applications

L Saddle point techniques
LSalddle points

zy is a zero: f(zp) = 0, f'(zy) # O if first order.
Then |f(2)| ~ r|f'(z0)| = O(r). For mth order: |f(z)| = O(r™).
Zy is a simple saddle point: f(z) # 0, f'(2p) :20, f"(zp) # 0

r .
. £ _ 2i0 g1/ 3
Set e = J ). #(2)| = ‘f(zo) + 5" (20) + O(r%)

= |f(z0)| |1+ Ar2e®+9) 4 O(r2)|
7

7
D ~H20)l(1 + AP cos(20 + )
)

/
7
i

7

|f(z)| maximal for 6 = —¢/2

|f(2)| minimal for § = —¢/2 + /2
f(2)| ~ |f(20)| for 6 = —¢/2 + /4
and for 0 = —¢/2 + 37 /4

Pattern repeats once. (0 < 0 < 2n)
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LSaddle points
p-fold saddles: f'(zp) = f"(z9) = --- = fP)(z9) = 0,
fP(29) # 0
Example: p=2and p = 4:
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