
EULERIAN GRAPHS



Eulerian circuits

Seven Bridges of Königsberg problem (1736)



Eulerian circuits

An Eulerian circuit (or Euler circuit, Euler(ian) tour) is a closed walk

that contains every edge of G = (V,E) exactly once.

A graph having an Eulerian circuit is called Eulerian graph.

Variant: An Eulerian trail (or Euler trail) is an open walk that contains

every edge of G = (V,E) exactly once.

Theorem An undirected connected graph is Eulerian if and only if all

its vertices have even degree.

An undirected connected graph has an open Eulerian trail if and only

if all but two vertices have even degree.

Proof: induction on the number of edges.
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Eulerian circuits in directed graphs

Theorem A directed, weakly connected graph G = (V,E) is Eulerian

if and only if for all vertices in-degree and out-degree coincide, i.e., e

∀x ∈ V : d+(x) = d−(x).

A directed, weakly connected graph G = (V,E) has an Eulerian trail if

and only if there are vertices x, y ∈ V such that

d+(x) = d−(x) + 1,

d+(y) = d−(y)− 1,

∀ z ∈ V \ {x, y} : d+(z) = d−(z).



HAMILTONIAN GRAPHS



Hamiltonian graphs

A path in a graph that visits every vertex exactly once is called

Hamiltonian path.

A cycle in a graph that visits every vertex exactly once is called

Hamiltonian cycle.

A graph having a Hamiltonian cycle is called Hamiltonian graph.

Let G = (V,E) be a graph. We construct another graph [G] = (V, Ẽ),

called the closure of G: Let

A(E) := {vw | vw ∈ E or d(v) + d(w) ≥ |V |}.

Then Ẽ = A∞(E).

(In fact, there is a k s.t. A∞(E) = A` for all ` ≥ k.)



Hamiltonian graphs

Theorem G is Hamiltonian if and only if [G] is Hamiltonian.

Proof: “=⇒”: Obvious.

“⇐=”: Let v, w ∈ V with vw /∈ E, d(v)+d(w) ≥ |V |; H := (V,E∪{vw}).

Assume: H Hamiltonian, G not. Then there is a Hamiltonian cycle in

H containing vw, say v = x1, x2, . . . , xn = w, x1, where n = |V |.
Let

X = {xi | xi−1 ∈ Γ(w),3 ≤ i ≤ n−1}, Y = {xi | xi ∈ Γ(v),3 ≤ i ≤ n−1}.

Note: v — x2 — · · · — xn−1 — w is a path in G.

v /∈ Γ(w) implies |X| = d(w)−1 and |Y | = d(v)−1 and so |X|+|Y | ≥ n−2.

Thus there exists 3 ≤ i ≤ n− 1 such that xi−1 ∈ Γ(w) and xi ∈ Γ(v).

Hence

v, xi, xi+1, . . . , xn−1, w, xi−1, xi−2, . . . , v

is a Hamiltonian cycle in G.  �



Hamiltonian graphs

Consequences:

Theorem (Ore’s theorem) A graph with n ≥ 3 vertices, in which

the sum of the degrees of any two non-adjacent vertices is at least n

is Hamiltonian.

Theorem (Dirac’s theorem) A graph with n vertices in which the

degree of every vertex is at least n/2 is Hamiltonian.

Generalization: Travelling salesman problem, where one has to find an

optimal Hamiltonian cycle in a weighted graph.



PLANAR GRAPHS



Planar graphs

Two graphs G = (VG, EG) and H = (VH , EH) are called isomorphic,

notation G ∼= H, if there is a bijection f : VG → VH that preserves

adjacency, i.e.,

∀x, y ∈ VG : xy ∈ EG ⇐⇒ f(x)f(y) ∈ EH .

A graph G = (V,E) is called a plane graph if V ⊆ R2 and each edge is

a simple curve (like a polygonal chain) that connect two vertices and

no two edge cross.

A graph G is called planar graph if there is a plane graph H with G ∼= H.



Planar graphs

Example:

The edges and vertices of a plane graph G enclose areas in R2. These

are called the faces of G, their number is denoted by α2(G).



Planar graphs

Theorem (Euler’s polyhedron formula) If G is connected and pla-

nar, then we have α0(G)− α1(G) + α2(G) = 2.

Proof: Induction on α2:

α2 = 1: X

If α2(G) = n + 1 ≥ 2, then there must exist an edge separating two

faces. Remove this edge such that the two faces collapse into one face.

Call the resulting graphG′.

The induction hypothesis implies

α0(G′)︸ ︷︷ ︸
α0(G)

− α1(G′)︸ ︷︷ ︸
α1(G)−1

+ α2(G′)︸ ︷︷ ︸
α2(G)−1

= 2

Corollary In a planar graph α1 ≤ 3α0 − 6 holds.

If a planar graph has no cycles of length 3 then α1 ≤ 2α0 − 4 holds.



Planar graphs

If a planar graph has no cycles of length 3 then α1 ≤ 2α0 − 4 holds.

Proof: fj := # faces with boudary of j edges

Then f3 = 0 and
∑
j≥4

fj = α2(G).

Moreover,

4
∑
j≥4︸ ︷︷ ︸

4α2(G)

fj ≤
∑
j≥4

jfj ≤ 2α1(G).

As α0 − α1 + α2 ≥ 2 we get

4 ≤ 2α0 − 2α1 + 2α2 ≤ 2α0 − α1.

�



Planar graphs

A graph G′ is called subdivision of G if each edge of G corresponds to

a path in G′.

  

A graph H is called topological minor of G if there is a subdivision H ′

of H such that H ′ is a subgrah of G.



Planar graphs

Theorem (Kuratowski’s theorem) A graph G is planar if and only

if neither K5 nor K3,3 are topological minors of G

K K5 3,3
  



Planar graphs

Let G = (V,E) be a planar graph and F its set of faces. The topological

dual G∗ = (V ∗, E∗) of G is defined as follows:

V ∗ = F and for each edge e that separates two faces f1 and f2 put

f1f2 into E∗.

Note: In general, G∗ is a multigraph and |E| = |E∗|.

Theorem If G = (V,E) is a connected and planar multigraph, then

a set of edges A ⊂ E is a cycle if and only if A∗ = {e∗ | e ∈ A} is a

minimal cut of G∗.


