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IntroductionAn important and powerful tehnique for solving ombinatorial enumeration problems is thegenerating funtion approah. A generating funtion is a formal power series in one or moreindeterminates where the oeÆients equal the number of objets in a given ombinatoriallass having ertain harateristis (e.g., the oeÆient of zn in B(z) de�ned by B(z) =

1 + zB(z)2 equals the number of binary trees having n internal nodes). The generatingfuntion approah an be summarised as follows. Using ombinatorial arguments we derivebijetions between or deompositions of ertain sets of omposite ombinatorial strutures.These bijetions are then redued to funtional relationships between formal power series.Our enumeration problem an now be solved by extrating the oeÆients of the formalpower series ourring. In the ase of simple relationships between known power series wean immediately �nd the solution to our problem and in some other ases we an apply theInversion Theorem of Lagrange. But most often the situation is not so easy and we have toresort to other methods.In Chapter 1 we give a short overview on how to transform ertain given types of deom-positions into relations between formal power series. For a detailed disussion of this step werefer to the books of Goulden and Jakson [GJ04℄, Wilf [Wil90℄ and Flajolet and Sedgewik[FS℄.Fortunately many formal power series ourring in ombinatorial enumeration an beidenti�ed with analyti funtions. Hene we an use methods from omplex analysis for ex-trating the oeÆients. This fat also makes it possible to �nd asymptoti expressions forthe oeÆients sine we an express them by means of omplex ontour integrals and asymp-totially evaluate these integrals. In Chapter 2 we disuss two methods yielding asymptotiexpressions for the oeÆients in question, namely singularity analysis and the saddlepointmethod. The third method presented in this hapter is the analyti version of Lagrange'sInversion Theorem.The entral analyti method in this work is the saddlepoint method. It an be suess-fully applied to funtions whih are large for positive real arguments and satisfy suÆientdeay onditions for nonreal arguments. Hayman [Hay56℄ de�ned lasses of analyti funtionswhih satisfy all requirements neessary for suessfully applying the saddlepoint method andproved an asymptoti expression for the oeÆients of suh funtions. In aordane to theliterature these funtions will be alled H-admissible funtions. In his work Hayman alsoproved ertain losure properties satis�ed by the lasses of H-admissible funtions. And inview of the deompositions mentioned above it is exatly the existene of these losure prop-erties whih makes Hayman's onept a very omfortable tool for ombinatorial enumeration.1



CONTENTS 2A detailed presentation of Hayman's results is given in Chapter 3.In Chapter 4 we disuss some generalisations of Hayman's work. Harris and Shoenfeld[HS68℄ tightened Hayman's onditions and obtained omplete asymptoti expansions for theoeÆients but did not provide any losure properties. Some simple losure properties havelater been provided by Odlyzko and Rihmond [OR85℄ and M�uller [M�ul97℄.Mutafhiev [Mut92℄ proposed a univariate generalisation of H-admissibility, alled GH-admissibility, where the asymptotis required by H-admissibility are replaed with weakeronditions. Mutafhiev's goal was a onept that an be used to establish loal limit theo-rems in ombinatorial lasses. Unfortunately none of the examples presented in his paper[Mut92℄ onstitute valid appliations of GH-admissibility as will be shown in this work. Validappliations of this onept an be found in [Mut97℄ where Mutafhiev proved some weakonvergene results for the number of distint omponent sizes.We also present two multivariate extensions of Hayman's work whih give answer toquestions dealing with the distribution of some parameters on ombinatorial lasses (e.g. thedistribution of the number of lasses of a partition of a set of size n as n → ∞). Bender andRihmond [BR96℄ presented a multivariate generalisation whih yields loal limit theoremsfor the parameters onsidered. They also proved some losure properties satis�ed by theirlasses. In this work we present an additional simple losure property whih seems to benew (see Setion 4.3.1). Drmota, Gittenberger, and Klausner [DGK05℄ stated a onept forbivariate funtions in the spirit of Hayman's onept and obtained entral limit theorems forthe parameter onsidered. An important fat to note on this last onept is the existeneof many simple algebrai losure properties. This makes their onept (besides Hayman'sonept itself) the only onept amenable to automated membership testing.In Chapter 5 we apply the methods of Chapters 3 and 4 to some ombinatorial problemsonerning the number of omponents a randomly hosen ombinatorial struture onsistsof. Some general remarks on this lass of ombinatorial problems an be found in [BBCR00℄and [BCOR99℄.Besides Can�eld's [Can77℄ results, we present some examples taken from [BR96℄, [DGK05℄,and [GJ04℄. The examples are hosen suh as to show appliability as well as limitations ofthese methods.



Chapter 1

Generating FunctionsCombinatorial strutures onsist of a �nite set of atoms together with some relations betweenthem (e.g. graphs onsist of nodes that are related to others via edges). In some ases allatoms are onsidered equal while in others they are onsidered distinguishable by attahedlabels. In the former ase the strutures are alled unlabelled ombinatorial strutures whilein the latter ase they are alled labelled ombinatorial strutures. It proves onvenient touse ordinary generating funtions (ogf) in the unlabelled ase and exponential generatingfuntions (egf) in the labelled ase.The deompositions of ombinatorial strutures onsidered here an all be redued toa number of disjoint-sum-operations and produt-operations. While the disjoint-sum is es-sentially the same for labelled and unlabelled strutures the produt is a di�erent one inthese ases. The reason for this is that in the labelled ase we have to onsider all possibledistributions of the set of labels over the fators.In this hapter we show how to redue given deompositions of the type desribed aboveto funtional relationships between generating funtions. This step is also known as \thesymboli method" and is extensively disussed in [FS℄, [GJ04℄ and [Wil90℄ using a verydi�erent notation. We have adopted the notation of [FS℄.In Setions 1 and 2 we present the symboli method for unlabelled and labelled ombina-torial strutures assuming that we are only interested in the total number of strutures of agiven size. If we want to keep trak of more than one parameter we have to use multivariategenerating funtions (mgf). In this situation we an use a simple modi�ation of the symbolimethod desribed in the �rst two setions whih is presented in Setion 3. The last setionontains some de�nitions onerning limiting distributions needed in later hapters.All power series onsidered in this hapter will be treated as formal power series andall operations are performed in the ring of formal power series (see [GJ04℄ for neessaryde�nitions).
1.1 Unlabelled ConstructionsAn example of a lass of unlabelled strutures is the lass of all binary trees where the nodesin eah tree are indistinguishable. The size of a tree an for example be de�ned as the number3



CHAPTER 1. GENERATING FUNCTIONS 4of its internal nodes. This example is an instane of
Definition 1.1. A pair (A, |�|A) is alled an unlabelled ombinatorial lass if and only if(i) |�|A is a funtion |�|A : A → N and(ii) for eah n 2 N the set {

α 2 A�� |α|A = n
} is �nite.For eah α 2 A the nonnegative integer |α|A is alled the size of α. The sequene�ard{

α 2 A�� |α|A = n
}�

n2N
is alled the ounting sequene of (A, |�|A).

Remark. As a onsequene of (i) and (ii), the set A is at most denumerable.
Remark. The following naming onvention will be adopted: If the unlabelled ombina-torial lass is alled (A, |�|A), then its ounting sequene is denoted by (an)n2N

and theorresponding ordinary generating funtion is denoted by a(z) =
∑

n�0anzn (analogousfor (B, |�|B), (bn)n2N
and b(z)).

Definition 1.2. Two unlabelled ombinatorial lasses (A, |�|A) and (B, |�|B) are said tobe isomorphi if and only if their ounting sequenes are idential:
(A, |�|A) ∼= (B, |�|B) ⇐⇒ (an)n2N

= (bn)n2N
.

Definition 1.3. For a given unlabelled ombinatorial lass (A, |�|A) , the sublass on-sisting of all elements of size � n, n 2 N, is denoted by (A, |�|A)[n] =
�A[n], |�|A[n]

�:
α 2 A[n] ⇐⇒ α 2 A ∧ |α|A � n.

Definition 1.4. Given two unlabelled ombinatorial lasses (A, |�|A) and (B, |�|B), theCartesian produt (C, |�|C) = (A, |�|A)� (B, |�|B) is de�ned as the lassC = A� B 8(α,β) 2 A� B : |(α,β)|C = |α|A + |β|B .The Cartesian produt onstitutes a ombinatorial onstrution sine the resulting setis an unlabelled ombinatorial lass. It is assoiative in the sense that (for any possibleplaement of the parenthesis) all resulting lasses are isomorphi.For n � 1, the n-th power of a lass (A, |�|A) (Cartesian produt of n opies of (A, |�|A))is denoted by (A, |�|A)n = (An, |�|An ). The 0-th power is de�ned as the lass onsisting of onestruture of size 0.
Definition 1.5. Given two unlabelled ombinatorial lasses (A, |�|A) and (B, |�|B) and twodi�erent strutures ǫ1 and ǫ2 of size 0, the disjoint sum (D, |�|D) = (A, |�|A) + (B, |�|B) isde�ned as the lass D =

0� [
α2A{ǫ1}� {α}

1A [0� [
β2B{ǫ2}� {β}

1A .The size of the objets remains unhanged.



CHAPTER 1. GENERATING FUNCTIONS 5The disjoint sum is an assoiative ombinatorial onstrution in the same sense as theCartesian produt.
Theorem 1.1. Let (A, |�|A) and and (B, |�|B) denote two unlabelled ombinatorial lasses.Then the following holds:(i) (C, |�|C) ∼= (A, |�|A)� (B, |�|B) if and only if c(z) = a(z)b(z).(ii) (D, |�|D) ∼= (A, |�|A) + (B, |�|B) if and only if d(z) = a(z) + b(z).Proof. (i) For any n 2 N, the number of strutures of size n in (A, |�|A)� (B, |�|B) is givenby

cn =
∑

n1+n2=n

an1
bn2whih is equal to [zn]

�
a(z)b(z)

�.(ii) Any objet of size n in (A, |�|A) + (B, |�|B) has either the form (ǫ1, α) or (ǫ2, β) where
α 2 A and β 2 B are strutures of size n. Thus, the total number of elements of size
n in (A, |�|A) + (B, |�|B) is given by an + bn whih is equal to [zn]

�
a(z) + b(z)

�.The lass of all �nite sequenes of a given unlabelled ombinatorial lass (A, |�|A) satis�esDe�nition 1.1 if and only if A does not ontain any strutures of size 0. In ase of existene,this struture is denoted by seq� (A, |�|A)
�.Under the same restrition, the lass of all �nite subsets and the lass of all �nite multisetsof (A, |�|A) exist as unlabelled ombinatorial lasses and are denoted by set� (A, |�|A)

� andmultiset� (A, |�|A)
�, respetively.As a onsequene of the last theorem, one gets

Theorem 1.2. Let (A, |�|A) denote an unlabelled ombinatorial lass not ontaining anyobjets of size 0. Then the following holds(i) (B, |�|B) ∼= seq� (A, |�|A)
� if and only if

b(z) =
∑

n2N

�
a(z)

�n
=

1

1 − a(z)
.(ii) (C, |�|C) ∼= set� (A, |�|A)

� if and only if
c(z) = exp0�∑

k�1

(−1)k+1a(zk)

k

1A .(iii) (D, |�|D) ∼= multiset� (A, |�|A)
� if and only if

d(z) = exp0�∑

k�1

a(zk)

k

1A .



CHAPTER 1. GENERATING FUNCTIONS 6Proof. (i) Sine all elements of (A, |�|A) have size � 1, all sequenes of length k � 0 ofelements of (A, |�|A) have size � k. Therefore (B, |�|B) ∼= seq� (A, |�|A)
� implies for any

m � 0

[zm]b(z) = [zm]

m∑

n=0

a(z)n = [zm]
1

1 − a(z)
.(ii) Sets of elements of (A, |�|A) of size k � 0 have ardinality of at most k. Let ǫ denote astruture of size 0. The lass of all �nite subsets of (A, |�|A) satis�es�set (A, |�|A)

�[k] ∼=

0� ∏

α2A[k]

({ǫ}� {α}, |�|1A[k]for all k � 0. Therefore (C, |�|C) ∼= set� (A, |�|A)
� implies for all m � 0

[zm]c(z) = [zm]

m∏

n=0

(1 + zn)an = [zm] exp0� m∑

n=0

an ln (1 + zn)

1A
= [zm] exp0�∑

j�1

m∑

n=0

an
zjn

j
(−1)j+1

1A =

a0=0
= [zm] exp0�∑

j�1

∞∑

n=1

an
zjn

j
(−1)j+1

1A =

= [zm] exp0�∑

j�1

(−1)j+1a(zj)

j

1A .(iii) The lass of all multisets of (A, |�|A) satis�es�multiset (A, |�|A)
�[k] ∼=

0� ∏

α2A[k]

seq�{α}, |�| �1A[k]for all k � 0. Therefore (D, |�|D) ∼= multiset (A, |�|A) implies for all m � 0

[zm]d(z) = [zm]

m∏

n=0

(1 − zn)−an = [zm] exp0�−

m∑

n=1

an log(1 − zn)

1A
= [zm] exp0�∑

n�1

a�m(zn)

n

1A = [zm] exp0�∑

n�1

a(zn)

n

1A .The next example demonstrates the appliation of the results in this setion. One thelass of interest is de�ned in terms of simple lasses ombined using Cartesian produts anddisjoint sums, the orresponding ounting sequene is obtained in a rather mehanial way.



CHAPTER 1. GENERATING FUNCTIONS 7
Example 1. The lass (B, |�|B) of binary trees. A binary tree is either an external nodeor it onsists of an internal node with two binary trees (the left and the right subtree)attahed. The size of a tree is de�ned as the number of internal nodes.This an be formalised using the lass (E , |�|E) onsisting of one struture, the exter-nal node, of size 0 and the lass (N , |�|N ) onsisting of one struture, the internal node,of size 1. The lass of all binary trees is then given by

(B, |�|B) ∼= (E , |�|E ) +
�
(N , |�|N )� (B, |�|B)� (B, |�|B)

�
.Sine E(z) = 1 and N(z) = z, the ogf B(z) of the ounting sequene of the lass of binarytrees satis�es

B(z) = 1 + zB(z)2.One root of the equation above involves a negative power of z. Therefore, B(z) isuniquely determined by
B(z) =

1 −
p

1 − 4z

2z
= −

1

2z

∑

j�1

 
1/2

j

!
(−4z)j =

=
1

2z

∑

j�1

2

j

 
2(j − 1)

j − 1

!
zj =

∑

j�0

1

j + 1

 
2j

j

!
zj.Thus, the number bn of binary trees of size n is equal to 1

n+1

�2n
n

�.
1.2 Labelled ConstructionsThis setion deals with strutures onsisting of a �nite number of di�erent atoms eah ofwhih bears a label di�erent from all others. Examples are labelled graphs (or trees) andpermutations. For simpliity, all labels are assumed to be integers.Sine the disjoint sum and the labelled produt (as de�ned below) do not depend on theway the labels are onneted, the following de�nition an be used:
Definition 1.6. A pair (S, f) is alled labelled ombinatorial struture of size n, n 2 N, ifand only if(i) S is a set of ardinality n (the set of atoms) and(ii) f : S → Z is an injetive funtion (the labelling).For eah a 2 S, the number f(a) is alled the label of a. The size of (S, f) is denoted by
|(S, f)|.

(S, f) is alled well labelled if and only if f(S) = {0, 1, . . . n − 1}.
Definition 1.7. Let (S, f) be a labelled ombinatorial struture and let g : S → Z be aninjetive funtion. Then the pair (S, g) is a labelled ombinatorial struture, too, andthe funtion g Æ f−1 is alled relabelling.The relabelling gÆf−1 : Z → Z is alled admissible if and only if it is order preserving.



CHAPTER 1. GENERATING FUNCTIONS 8
Remark 1.1. For any labelled ombinatorial struture (S, f) and a set L � N of ardi-nality |(S, f)| there exists exatly one funtion g : S → L suh that gÆf−1 is an admissiblerelabelling.
Definition 1.8. A set C is alled a labelled ombinatorial lass if and only if(i) C is a set onsisting of well labelled ombinatorial strutures only and(ii) for every n 2 N the set Cn =

{
γ 2 C

��|γ| = n
} is �nite.The sequene (cn)n2N

satisfying cn = ard(Cn) is alled the ounting sequene of C.
Remark 1.2. For any sequene (an)n2N

the orresponding exponential generating fun-tion is denoted by â(z) =
∑

anzn/n!.As in the last setion, two labelled ombinatorial lasses C and D are said to be isomorphi,
C ∼= D, if and only if their ounting sequenes are idential.The disjoint sum an be de�ned similar as in the ase of unlabelled strutures:

C + D ∼=
�
C ⋆ {ǫ0}

� [ �D ⋆ {ǫ1}
� (1.1)where ǫ0 and ǫ1 denote two di�erent strutures of size 0.

Definition 1.9. Let α = (Sα, fα) and β = (Sβ, fβ) denote two labelled strutures where
Sα\ Sβ = ;.Then α ⋆ β is de�ned as the set of well labelled strutures satisfying

(Sα[ Sβ, g) 2 α ⋆ β ⇐⇒ g Æ f−1
α and g Æ f−1

β are admissible relabellings.The set α ⋆ β is alled the labelled produt of α and β.As a onsequene of Remark 1.1 the funtion g in the last de�nition is uniquely de�nedif g(Sα) � {0, 1, . . . , |α| + |β| − 1} is known. This set an be hosen in �|α|+|β|

|α|

� ways, thusard(α ⋆ β) =

 
|α| + |β|

|α|

!
. (1.2)The labelled produt onstitutes an assoiative and ommutative operation. Equation(1.2) an be extended to ard(α1 ⋆ α2 ⋆ � � � ⋆ αm) =

�|α1 |+|α2 |+���+|αm |

|α1 |,|α2 |,...,|αm |

�.The labelled produt of two labelled ombinatorial lasses A and B is de�ned as
A ⋆ B =

[
α2A

[
β2B

α ⋆ β.

Theorem 1.3. Let A,B and C denote labelled ombinatorial lasses with orrespondingounting sequenes (an)n2N
, (bn)n2N

and (cn)n2N
. Then the following holds:(i) C ∼= A + B if and only if ĉ(z) = â(z) + b̂(z).



CHAPTER 1. GENERATING FUNCTIONS 9(ii) C ∼= A ⋆ B if and only if ĉ(z) = â(z)b̂(z).Proof. (i) This is true sine the ounting sequenes satisfy
(cn)n2N

= (an)n2N
+ (bn)n2N

.(ii) From (1.2) it follows that the number of elements of size n in A ⋆ B is given by∑n
k=0

�n
k

�
akbn−k whih is equal to [zn/n!]â(z)b̂(z):

â(z)b̂(z) =
∑

n�0

n∑

k=0

ak

k!

bn−k

(n − k)!
zn =

∑

n�0

0� n∑

k=0

 
n

k

!
akbn−k

1A zn

n!
.For any labelled ombinatorial lass A ontaining no struture of size 0 the sets of all�nite sequenes and �nite sets of A exist as labelled ombinatorial lasses and are denotedby seq(A) and set(A), respetively.Let ǫ denote the empty sequene. The lass of all yles of elements of A is denoted byy(A) and is de�ned as y(A) ∼=

�seq(A) − {ǫ}
�Æ� (1.3)where β � γ, β, γ 2 �seq(A) − {ǫ}

�, if and only if β an be transformed into γ using a ylishift.
Theorem 1.4. Let A denote a labelled ombinatorial lass that ontains no element ofsize 0. Then the following holds(i) B ∼= seq(A) if and only if

b̂(z) =
1

1 − â(z)(ii) C ∼= y(A) if and only if
ĉ(z) = log� 1

1 − â(z)

�(iii) D ∼= set(A) if and only if
d̂(z) = exp �â(z)

�Proof. (i) All elements of seq(A) of size � k must be sequenes of length � k sine A doesonly ontain elements of size � 1. Therefore B ∼= seq(A) implies for all m � 0

[zm/m!]b̂(z) = [zm/m!]

m∑

k=0

â(z)k = [zm/m!]
1

1 − â(z)
.



CHAPTER 1. GENERATING FUNCTIONS 10(ii) Every sequene of length k � 1 of elements of A onsists of k di�erent omponents sinetheir set of labels are pairwise disjoint. Therefore eah yle of length k � 1 an beassoiated with exatly k di�erent sequenes (of length k). Hene C ∼= y(A) impliesfor all m � 0

[zm/m!]ĉ(z) = [zm/m!]

m∑

n=1

â(z)n

n
= [zm/m!] ln 1

1 − â(z)
.(iii) Every set of size k � 0 an be arranged in k! ways and thus an be assoiated with k!sequenes of length k. Therefore, D ∼= set(A) implies for all m � 0

[zm/m!]d̂(z) = [zm/m!]

m∑

n=0

â(z)n

n!
= [zm/m!] exp �â(z)

�
.

Example 2. The Bell numbers. The n-th Bell number bn, n � 0, is de�ned as thenumber of partitions of a set of ardinality n (b0 = 1).Sine the interesting parameter of a given set is its ardinality, the size of the set,viewed as labelled struture, should be equal to its ardinality. Thus in this ontext thelass S of all �nite sets (viewed as labelled strutures) an be modelled as
S ∼= set�{α}

�where α is a struture of size 1. The egf of its ounting sequene is given by
ŝ(z) =

∑

n�0

zn

n!
= exp(z).Let ǫ denote the empty set. Every partition an be viewed as a set of non-emptyset. Therefore the lass B of all partitions satis�es

B ∼= set�S − {ǫ}
�

∼= set�set�{α}
�
− {ǫ}

�
.This is readily translated into the language of exponential power series:

b̂(z) = exp �ez − 1
�Di�erentiation yields

d

dz
b̂(z) = ezb̂(z).and omparison of the oeÆients of zn/n! on both sides results in the well-knownreurrene relation

bn+1 =

n∑

k=0

 
n

k

!
bk n � 0.
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1.3 ParametersOften, one is not only interested in the number of objets of size n, but would also like to keeptrak of ertain other parameters (e.g. the number of omponents) and obtain probabilistiinformation on these parameters.
Definition 1.10. Let A denote a ombinatorial lass. A parameter on A is a mapA → N

d, d � 1.The symboli approah desribed in the last two setions an be niely adapted in orderto ful�l these needs for a ertain type of parameter:
Definition 1.11. Let A, B and C denote ombinatorial lasses (labelled or unlabelled)with parameters χ, ξ and ζ, resp., all of whih have the same dimension. Then, theparameter χ is said to be inherited from ξ,ζ in the following ases:� A = B + C and

χ(α) =

{
ξ(α) if α 2 B
ζ(α) if α 2 C 8α 2 A� A = B 
 C and

χ(hα,βi) = ξ(α) + ζ(β) 8 hα,βi 2 Awhere 
 and hα,βi denote either ⋆ and α ⋆ β (labelled ase) or � and (α,β)(unlabelled ase).This is extended for all �nite sums and produts and ombinations thereof.
Remark 1.3. For simpliity, we will adopt the following onventions: Vetors will bedenoted by bold variables (e.g. v). If z and u denote two vetors of dimension d + 1,we use the abbreviation

zu := z
u0

0 z
u1

1 � � � zud

d .If z is a vetor of dimension d + 1 and r an arbitrary omplex number then we set
rz = (rz0 , rz1 , . . . , rzd ) .

Remark 1.4. For the ombinatorial lass A with parameter ξ, we de�ne
An,k :=

{
α 2 A �� |α|A = n ∧ ξ(α) = k

}and
an,k := ard(An,k).(For the lass B, it would be Bn,k and bn,k.)

Definition 1.12. (i) For the unlabelled ombinatorial lass A with parameter ξ, the(formal) power series ∑

α2A z|α|Auξ(α),where u is a vetor of indeterminates of same dimension as ξ, is alled the mul-tivariate generating funtion for the ombinatorial lass A with parameter ξ.



CHAPTER 1. GENERATING FUNCTIONS 12(ii) For the labelled ombinatorial lass B with parameter ζ, the (formal) power series
∑

β2B z|β|B
|β|B!

uζ(β)is alled the multivariate generating funtion for the ombinatorial lass B with pa-rameter ζ.With this de�nitions, one an prove the same translation rules as stated in the Theorems1.2 and 1.4 using analogous arguments.As an be seen in the following example, one has to �nd an appropriate symboli desrip-tion of the lass(es) in question before translating it into an equation between multivariatepower series.
Example 3. The ombinatorial lass G of planar unlabelled trees is de�ned byG ∼= N � seq(G)where N denotes the lass onsisting of one element of size 1 (a node).If we want to introdue the parameter ξ on G whih ounts the number of leafs, thereursive de�nition above annot be used. But the de�nition above an be rephrased asG ∼= N + Z � �seq(G) − ǫ

�where ǫ denotes the empty sequene and Z any lass satisfying Z ∼= N . Now, N playsthe role of an external node and Z that of an internal node.It is found, that the parameter ξ is idential with the parameter inherited from theparameter on N with onstant value 1 and the parameter on Z with onstant value 0.The lasses N and Z thus have the mgf uz and z, resp.This leads to the equation
G(z, u) = zu +

zG(z, u)

1 − G(z, u)where G(z, u) denotes the mgf of the lass G with u marking the number of leafs.
1.4 Limiting DistributionsGiven a ombinatorial lass A (labelled or unlabelled) with parameter ξ of dimension d �
1. The orresponding multivariate generating funtion F(z,u) an be diretly related to asequene of random variables (Xn : n 2 I), I � N, on N

d de�ned by
P{Xn = k} =

[znuk]F(z,u)

[zn]F(z,1)
8n 2 I, 8k 2 N

dwhere I onsists of those numbers for whih [zn]F(z,1) > 0.



CHAPTER 1. GENERATING FUNCTIONS 13In the ase d = 1, the m-th fatorial moment of Xn an simply be expressed as
E
�
Xn(Xn − 1) � � � (Xn − m + 1)

�
=

1

[zn]F(z, 1)
[zn]

∂m

∂um
F(z, u)

����
u=1whih gives, denoting the partial derivatives w.r.t u with Fu and Fuu, the expressions

EXn =
[zn]Fu(z, 1)

[zn]F(z, 1)

VXn =
[zn]Fuu(z, 1)

[zn]F(z, 1)
+

[zn]Fu(z, 1)

[zn]F(z, 1)
−

�
[zn]Fu(z, 1)

[zn]F(z, 1)

�2for the mean and variane, resp.For appliations in later hapters, we give the following de�nitions.
Definition 1.13. A sequene (Xn : n � 0) of random variables is alled asymptotiallyonentrated if and only if there exists a sequene (µn) suh that8 ε > 0 : lim

n→∞
P

{
1 − ε <

Xn

µn
< 1 + ε

}
= 1.

Definition 1.14. A sequene (Xn : n � 0) of random variables satis�es a entral limittheorem if and only if there exist sequenes (µn) and (σn) suh thatlim
n→∞

sup
x

�������P {
Xn − µn

σn
� x

}
−

1p
2π

x∫

−∞

e−t2/2dt

������� = 0.

Definition 1.15. A sequene (Xn : n � 0) of random variables satis�es a loal limittheorem on S if and only if there exist sequenes (µn) and (σn) suh thatlim
n→∞

sup
x2S

����σnP

{
Xn − µn

σn
= bσnx + µn} −

1p
2π

e−x2/2

���� = 0.



Chapter 2

Asymptotic MethodsThe methods of the last hapter result in equations satis�ed by the generating funtion inquestion. For ertain types of equations one an immediately extrat the desired informationabout the oeÆients of the gf (see Example 1). But this is not always possible.It is often the ase that the generating funtion onsidered is analyti in some domain.One an then use methods of omplex analysis in order to obtain exat or asymptoti repre-sentations for the oeÆients in question.The Lagrange Inversion Theorem an be applied to ertain equations and results in anexat representation. We note that an analogous theorem holds for the larger lass of formalpower series (see [GJ04℄ for details).A soure of asymptoti information about the oeÆients are the singularities on theirle of onvergene of the generating funtion. The asymptoti behaviour an then oftenbe determined by an appliation of Cauhy's theorem using an appropriate path and esti-mating the resulting integral. In the ase of small singularities of an algebrai-logarithmitype Flajolet and Odlyzko's [FO90℄ so-alled singularity analysis applies. If the dominantsingularities are large singularities, that is the funtion is growing exponentially near thesesingularities, or in the ase of entire funtions one an often apply the saddle point method.
2.1 Lagrange InversionConsider a lass T of trees with generating funtion F(z). T is alled simply generated if andonly if there exists a power series Φ(u) suh that

F(z) = zΦ(F(z)), Φ(0) > 0. (2.1)Lagrange proved a theorem that gives the power series expansion of F(z) in terms of z. Thefollowing formulation is taken from [WW96, p.133℄ where one an also �nd a proof for it.
Theorem 2.1 (Lagrange Inversion Theorem). Let Φ(z) be analyti on and inside aontour γ surrounding a point a. If t 2 C is suh that |tΦ(z)| < |z − u| for all z 2 γ,then we have: 14



CHAPTER 2. ASYMPTOTIC METHODS 15(i) The equation
ζ = u + tΦ(ζ)has exatly one root ζ(t) in the interior of γ.(ii) If f(z) is analyti on and inside γ, we have the expansion

f(ζ(t)) = f(u) +
∑

n�1

tn

n!

dn−1

dzn−1

�
f 0(z)Φ(z)n

������
z=u

. (2.2)A reformulation of equation (2.2) gives
[tn]f(ζ(t)) =

1

n
[(z − u)n−1]

�
f 0(z)Φ(z)n

� (2.3)for n � 1.Theorem 2.1 an be applied to the inversion problem (2.1) using f(z) = z and u = 0. Weapply formula (2.3) to the generating funtions of some families of trees.
Example 4 (plane rooted trees). The family T of plane rooted trees is de�ned by theequation T = N � seq(T ).Thus, the ordinary generating funtion F(z) and the exponential generating funtion
G(z) satisfy

F(z) =
z

1 − F(z)
and G(z) = zeG(z).An appliation of Theorem 2.1 using Φ(z) = (1 − z)−1 and u = 0 gives

[zn]F(z) =
1

n
[tn−1](1 − t)−n =

(−1)n−1

n

 
−n

n − 1

!
=

1

n

 
2n − 2

n − 1

!and setting Φ(z) = ez and u = 0 yields
[zn]G(z) =

1

n
[tn−1]ent =

nn−1

n!
.Sine G(z) is an egf, the atual number of labelled trees of size n is given by nn−1.

Example 5 (t-ary trees). The family T of t-ary trees is de�ned byT = E +N � T t.Thus, the ordinary generating funtion F(z) satis�es
F(z) = 1 + F(z)t.By Langrange's Theorem, the number of t-ary trees of size n � 1 is given by (setting

φ(z) = zt and u = 1)
[zn]F(z) =

1

n
[(w − 1)n−1]

�
(w − 1) + 1

�nt
=

1

n

 
nt

n − 1

!
.
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2.2 Singularity AnalysisWe onsider funtions having a unique dominant algebrai-logarithmi singularity on theirirle of onvergene. By normalisation, we may always assume that this singularity oursat z = 1.Flajolet and Odlyzko [FO90℄ onsidered a speial lass S of funtions as desribed aboveand proved an asymptoti expansion for their Taylor oeÆients (Theorem 2.3). Having thislass at hand, they obtained asymptoti expansions for the Taylor oeÆients of funtions
f(z) of the form

f(z) = h0(z) + h1(z) + � � � + hk(z) + O(g(z)), z → 1, (2.4)where h0(z), . . . , hk(z), g(z) 2 S and h0(z) � � � � � hk(z) � g(z) as z → 1. Moreover, theso-alled transfer-theorems (Theorem 2.2) proved in [FO90℄ whih guarantee that
[zn]O(g(z)) = O([zn]g(z)), g(z) 2 S,show that the oeÆients orresponding to (2.4) satisfy

fn = h0,n + � � � + hk,n + O(gn)and that h0,n � � � � � hk,n � gn.We ontinue by stating the results mentioned above. The proofs are mainly based onCauhy's theorem using a Hankel-ontour as integration path and an be found in [FO90℄.
Theorem 2.2. Assume that f(z) is analyti in

∆ = ∆(φ, η) =
{
z
��� |z| � 1 + η and | arg(z − 1)| � φ

}where η > 0 and 0 < φ < π
2
and that z = 1 is a singularity of f(z). Set L(z) =

(log z)β(log log z)δ. If
f(z) = O

�
(1 − z)αL

�
1

1 − z

��
, z 2 ∆, z → 1for some real numbers α,β, δ then

[zn]f(z) = O
�
n−α−1L(n)

�
, n → ∞.Analogous results hold for o and ∼ instead of O.

Theorem 2.3. Let α,β, δ 2 C − {0, 1, 2, . . .} and de�ne
f(z) = (1 − z)α

�
1

z
log 1

1 − z

�β�1

z
log�1

z
log 1

1 − z

��δ

. (2.5)Then we have
[zn]f(z) ∼

n−α−1

Γ(−α)
(logn)β(log logn)δ

0�1 +
∑

k�1

ek(log logn)

(logn log logn)k

1A (2.6)
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ek(z) = Γ(−α)Ek(z)

dk

dsk

1

Γ(−s)

�����
s=αwith

∑

k�0

Ek(z)uk = (1 − uz)β
�

1 −
1

z
log(1 − uz)

�δ

.

Remark 2.1. Note that the funtions onsidered in Theorems 2.2 and 2.3 di�er by z−1.The reason for introduing this fator is the fat that �−z−1 log(1 − z)
�β is analyti at

z = 0 even for non-integral β. Noting that
1

z
log 1

1 − z
= log 1

1 − z
+ O

�
(1 − z) log 1

1 − z

�and applying Theorem 2.2 we see that
[zn]

�
1

z
log 1

1 − z
− log 1

1 − z

�
= O

� logn

n2

�
.Hene we may replae −z−1 log(1 − z) with − log(1 − z) in (2.5) without destroying thetruth of (2.6).

Example 6. The generating funtion for the harmoni numbers (Hn)n�1 is known tobe
H(z) =

∑

n�1

Hnzn =
1

1 − z
log 1

1 − z
.Adopting the notation of Theorem 2.3 we have α = −1,β = 1 and δ = 0 as well as

Ek(z) =

{
−z k = 1

0 k > 1
ek(z) =

{
γ k = 1

0 k > 1where γ = 0.577 . . . is Euler's onstant and therefore obtain
Hn = logn + γ + o(1) n → ∞.

Example 7. An undireted labelled graph is said to be 2-regular if and only if all itsnodes have degree 2. All onneted 2-regular graphs are given by undireted yleshaving at least 3 nodes. Hene, the egf for onneted 2-regular graphs is
c(z) =

∑

n�3

(n − 1)!

2

zn

n!
=

1

2

 log 1

1 − z
− z −

z2

2

!
.Applying Theorem 1.4 we see that the egf for 2-regular graphs is

f(z) = ec(z) =
e−z/2−z2/4p

1 − z

= e−3/4

�
1p

1 − z
+
p

1 − z + O(1 − z)3/2

�
, z → 1.
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[zn]O(1 − z)3/2 = O(n−5/2), n → ∞,and from Stirling's formula for Γ(z) we obtain

[zn](1 − z)−1/2 =

�
1

nπ

�1/2�
1 +

1

8n
+ O(n−2))

�
[zn](1 − z)1/2 = −

1

2

�
1

n3π

�1/2�
1 + O(n−1)

�as n → ∞ (note that Theorem 2.3 would have given only the main term of the last twoexpansions).The number fn of 2-regular graphs having n nodes therefore satis�es
fn =

e−3/4p
π

�
1p
n

−
3

8n3/2
+ O(n−5/2)

�
, n → ∞.

2.3 The Saddle Point MethodThe saddle point method is a heuristi, that often yields good approximations to integrals ofthe form ∫

γ(t)

F(z, t)dz as t → ∞ (2.7)where t is a real parameter, F is analyti w.r.t. z in some domain G(t) � C and γ(t) is apath that entirely lays in G(t).In this setion, we will only give a rough sketh and a sample appliation of the saddlepoint method and refer to [dB81, h.5,6℄ for a thorough disussion.Essentially, the method relies on the Theorem of Cauhy and the Method of Laplae (see[dB81, h.4℄ for details) and an roughly be summarised as follows:(i) Substitute the path of integration γ(t) with another one, σ(t) say, without hangingthe value of the integral suh that along σ(t) |F(z, t)| has some sharp peaks and is smalleverywhere else and(ii) apply the Method of Laplae:(a) hoose neighbourhoods of these peaks so large that the main ontribution to thevalue of the integral is being aptured,(b) in these neighbourhoods, substitute the integrand with simpler funtions and() asymptotially estimate the resulting integrals.The name \saddle point method" stems from the way of obtaining an appropriate path:By the maximum modulus theorem, |F(z, t)| does not have any maxima or minima in theinterior of G(t) (exept for zeros). Thus, the only points where d
dz

|F(z, t)| = 0 and F(z, t) 6= 0are saddle points.



CHAPTER 2. ASYMPTOTIC METHODS 19Suppose that ζ 2 G(t) is a saddle point of F(z) = F(z, t), that is F(ζ) 6= 0, F 0(ζ) = � � � =

F(k−1)(ζ) = 0 and F(k)(ζ) 6= 0 for some k � 2.Suppose that k = 2. Then, for |z−ζ| small enough, the funtion log F(z) an be expandedas log F(z) = log F(ζ) +
F 00(ζ)

F(ζ)

(z − ζ)2

2
+ O((z − ζ)3). (2.8)Sine |F(z)| = eℜlog F(z), |F(z)| is of fastest derease for

z = ζ + t exp� i

2

�
π − arg F 00(ζ)

F(ζ)

��
, t 2 R (2.9)where the seond addend of (2.8) is real and negative. The straight line (2.9) is alled theaxis of the saddle point or the diretion of steepest desent.In the ase k > 2 there are several diretions of steepest deent. See [FS℄ for some remarkson this.So, for appropriate funtions, the path σ in step (i) should be hosen suh that the highestpoints of |F(z)| along σ are also saddle points of |F(z)| and in small neighbourhoods of thesesaddle points, σ approximates its axis.

2.3.1 An Illustrating ExampleThe goal of this setion is an estimation of the number of permutations of n elements havingonly yles of length � 2 as n → ∞. The orresponding egf will be denoted by F.Eah permutation an be represented as a set of (labelled) yles. In this ase, all ylesare of length 1 or 2 (orresponding to �xed points and transpositions, resp.). Thus, the egfis given by
F(z) =

∑

n�0

Fn
zn

n!
= exp z +

z2

2

!
.The starting point for the asymptoti analysis is the residue theorem whih reads

Fn

n!
=

1

2πi

∮
ez+z2/2

zn+1
dz, n � 0, (2.10)where the path of integration enirles the origin exatly one (ounterlokwise).Rewriting the integrand of (2.10) as

eh(z) := exp z +
z2

2
− (n + 1) log z

!we see that there are two saddle points, determined by the equation z2 + z = n + 1, namely
−

1

2
�s5

4
+ n = −

1

2
�pn

�
1 +

5

8
n−1 + O(n−2)

�
.



CHAPTER 2. ASYMPTOTIC METHODS 20First, onsider the saddle point at
ζn = −

1

2
+

s
5

4
+ n, n � 0. (2.11)The power series expansion of h entred in ζn is given by

h(z) = h(ζn) +

�
1 +

n + 1

ζ2
n

�
(z − ζn)2

2
+

∑

k�3

(−1)k
n + 1

k

�
z − ζn

ζn

�k (2.12)whih is onvergent for |z − ζn| < ζn. The oeÆient of (z − ζ)2 is real and therefore the axisof the saddle point ζn is perpendiular to the real line.The other saddle point is negligible as will be seen below. Furthermore, we will showthat the path γ = γ1 + γ2 given by
γ1 :=

{
z : z = ζn + it, −δ � t � δ

}

γ2 :=
{
z : |z|2 = ζ2

n + δ2, arg(ζn + iδ) � arg(z) � 2π − arg(ζn + iδ)
}
,where δ 2 R

+ has yet to be hosen, an be used to estimate the integral (2.10).For suessfully replaing ∫
γ1

eh(z)dz by a omplete Gaussian integral, δ has to be hosensuh that for z 2 γ1 we have(i) h(z) ∼ h(ζn) + h 00(ζn)(z − ζn)2 and(ii) h 00(ζn)δ2 → ∞as n → ∞.The last sum of (2.12) an be rewritten as
−(n + 1)

�
z − ζn

ζn

�3 ∑

k�0

(−1)k

k + 2

�
z − ζn

ζn

�k

.Sine ζn ∼
p

n we have
(n + 1)(z − ζn)3ζ−3

n ∼ (n−1/2 + n−3/2)(z − ζn)3and therefore ondition (i) is satis�ed if δ is hosen so small that
δ3 = o(

p
n) as n → ∞. (2.13)The quantity h 00(ζn) = 1

2
+ n+1

ζ2
n

tends to 1
2
from above as n → ∞ sine ζ2

n ∼ n. Thus, inoder to satisfy ondition (ii), δ has to be hosen suh that
δ2 → ∞ as n → ∞. (2.14)A possible hoie satisfying (2.13) and (2.14) is

δ = n1/8



CHAPTER 2. ASYMPTOTIC METHODS 21whih will be used in the sequel.For z 2 γ1, we have
1

i

∫

γ1

eh(z)dz =

∫δ

−δ

eh(ζn+it)dt

=

∫δ

−δ

eh(ζn)−h00(ζn)t2/2
�
1 + O(nδ3ζ−3

n )
�
dt

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

δ
p

h00(ζn)∫

−δ
p

h00(ζn)

e−u2/2du

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

 ∫∞

−∞
e−u2/2du + O

�
e−δ2/2

�!
=

eh(ζn)
p

2πp
h 00(ζn)

�
1 + O(n−1/8)

�For z 2 γ2, we have���eh(z)
��� = eℜh(z) � exp ζn +

ζ2
n

2
− (n + 1) log ζn

!
= exp (n + 1)(1 − log ζn) −

ζ2
n

2

!
=

�
e

ζn

�n+1

e−ζ2
n/2and therefore �����∫

γ2

eh(z)dz

����� � 2π
q

ζ2
n + δ2

�
e

ζn

�n+1

e−ζ2
n/2

= 2π

s
1 +

�
δ

ζn

�2� e

ζn

�n

e−ζ2
n/2+1whih tends to zero as n → ∞.From (2.11) we get ζ2

n = n −
p

n + 3
2

+ O(n−1/2) and sine
ζn+1

n = (n + 1) log �pn

�
1 −

1

2

p
n +

5

8
n−1 + O(n−2)

��
= (n + 1) logpn − (n + 1)

�
1

2
p

n
−

5

8n
+ O(n−2) +

1

2

�
1

4n
+ O(n−3/2)

��
= (n + 1) logpn −

 p
n

2
−

1

2
+ O(n−1)

!we have
eh(ζn) = eζn+ζ2

n/2ζ
−(n+1)
n =

en/2+
p

n/2+1/4+O(n−1/2)

n(n+1)/2e−
p

n/2+1/2+O(n−1)

=
p

n
n+1 exp�n

2
+
p

n −
1

4

� �
1 + O(n−1/2)

�
.
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Figure 2.1: Surfae of |ez+z2/2z−16| with the dominant saddlepoint at z = −1
2

+
q

5
4

+ 15This gives the intermediate result
Fn

n!
∼

1

2π

eh(ζn)
p

2πp
h 00(ζn)

∼
1

2
p

πnn+1
exp�n

2
+
p

n −
1

4

�Using Stirling's formula we �nally obtain
Fn ∼

nn/2p
2

exp�−
n

2
+
p

n −
1

4

� as n → ∞.



Chapter 3

Hayman-admissible Functions

3.1 H-admissibilityHayman [Hay56℄ stated onditions of power series ∑
n�0 fnzn,cn 2 C, whih ensure thedetermination of the behaviour of fn as n → ∞ (in the sense of ∼) using the saddle pointmethod.A notable fat about these funtions is the existene of ertain losure properties. Thisoften simpli�es the task of establishing these onditions (see below) for a given funtion andan also be used for an automation of this proess.

Definition 3.1 (H-Admissibility). Let f(z) denote a funtion regular for |z| < R, 0 <

R � ∞. Assume further that there exists R0 < R suh that f(r) > 0 for all r 2 [R0, R).De�ne for r 2 [R0, R) the two funtions
a(r) = r

f 0(r)
f(r)and

b(r) = ra 0(r) = r
f 0(r)
f(r)

+ r2f 00(r)
f(r)

− r2

�
f 0(r)
f(r)

�2

.Then f is said to be Hayman-admissible in |z| < R (or H-admissible) if and only if itsatis�es(i) b(r) → ∞ as r → R andthere exists a funtion δ : [R0, r) → (0, π) suh that the following holds(ii) Uniformly for φ � δ(r) we have
f(reiφ) ∼ f(r) exp�iφa(r) −

1

2
φ2b(r)

� (3.1)as r → R and 23



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 24(iii) uniformly for δ(r) � φ we have
f(reiφ) =

o(f(r))p
b(r)

(3.2)as r → R.
Remark 3.1. As a onsequene of onditions (ii) and (iii) we have for δ = δ(r)

|f(reiδ)|

f(r)
∼ e−δ2b(r) = o(b(r))−1/2whih is o(1) as r → R by ondition (i). Thus, we have

δ2b(r) → ∞ as r → R. (3.3)
Remark 3.2. Without loss of generality, we may assume that

δ(r) � s2
log b(r)

b(r)
(3.4)sine otherwise we have for p2 log b(r)/b(r) � |φ| � δ(r), applying (3.1),

|f(reiφ)|

f(r)
∼ exp −b(r)

φ2

2

! � 1

b(r)whih implies (3.2).
Theorem 3.1. Let f(z) =

∑
n�0 fnzn be H-admissible in |z| < R and de�ne fn = 0 for

n < 0. Then we have
fnrn =

f(r)p
2πb(r)

0�exp0�−

�
a(r) − n

�2
2b(r)

1A+ o(1)

1A (3.5)uniformly for all integers n as r → R.Proof. The laim an be proved by an estimation of Cauhy's Integral
fnrn =

1

2π

0B� δ∫

−δ

+

2π−δ∫

δ

1CA f(reiφ)

einφ
dφwhere δ = δ(r).From (3.2), we have�������2π−δ∫

δ

f(reiφ)

einφ
dφ

������� � 2(π − δ) max
δ�φ�2π−δ

���f(reiφ)
��� =

o(f(r))p
b(r)



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 25uniformly in n as r → R.Equations (3.1) and (3.3) give
δ∫

−δ

f(reiφ)

einφ
dφ = f(r)

δ∫

−δ

(1 + o(1)) exp�iφ(a(r) − n) −
1

2
φ2b(r)

�
dφ

= f(r)

0B� δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ + o

0B� ∞∫

−∞

e−1
2
b(r)φ2

dφ

1CA1CA
= f(r)

0B� δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ + o(b(r))−1/2

1CAas r → R.An appliation of Cauhy's Theorem gives
∞+iW∫

−∞+iW

e−t2/2dt =

∞∫

−∞

e−t2/2dt =
p

2π, W 2 R,and thus, by noting that
iφ(a(r) − n) −

1

2
b(r)φ2 = −

1

2

 
φ
q

b(r) − i
a(r) − np

b(r)

!2

−
(a(r) − n)2

2b(r)
,we get

δ∫

−δ

eiφ(a(r)−n)−1
2
φ2b(r)dφ =

1p
b(r)

exp −
(a(r) − n)2

2b(r)

! δ
p

b(r)∫

−δ
p

b(r)

e−t2/2dt

=

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1))where the last equality follows from (3.3).Combining the two estimates gives

fnrn =
f(r)

2π

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1)) +

o(f(r))p
b(r)

=
f(r)p
2πb(r)

0�exp0�−

�
a(r) − n

�2
2b(r)

1A+ o(1)

1A .
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Corollary 3.1. We have

a(r) → ∞, as r → R. (3.6)Furthermore, there exists an R1 < R suh that a(r) is stritly monotoni inreasing in
[R1, R).As a onsequene thereof, we have

b(r) = o(a(r))2, as r → R. (3.7)Proof. Sine b(r) = ra 0(r) → ∞ as r → R, we know that a(r) is stritly monotoni inreasingin some range R1 < r < R, R1 < R.Putting n = −1 in equation 3.5 yieldsexp −
(a(r) + 1)2

b(r)

!
= o(1), as r → R,and as a onsequene we get

(a(r) + 1)2

b(r)
→ ∞, as r → R,whih proves (3.6) sine b(r) → ∞ as r → R.In partiular, the last orollary shows, that for n 2 N large enough the equation a(r) = nhas a unique solution rn that satis�es rn → R as n → ∞. This observation leads to

Corollary 3.2. Let f(z) =
∑

n�0 fnzn be H-admissible in |z| < R and let rn denote theunique solution of a(r) = n. The oeÆients satisfy
fn ∼

f(rn)

rn
n

p
2πb(r)

, as n → ∞. (3.8)
Corollary 3.3. Assume that f(z) =

∑
n�0 fnzn is H-admissible in |z| < R.For any n 2 Z, we have

f(r)

rn
→ ∞, as r → R (3.9)and for any ε > 0, we have

a(r) = O(f(r))ε and b(r) = O(f(r))ε, as r → R. (3.10)Proof. From (3.5) it follows that fn > 0 if n is suÆiently large. Also, if r is suÆiently nearto R, (3.5) gives
f(r)

rn
>

1

2
fn

q
2πb(r).Sine b(r) → ∞ as r → R we obtain 3.9.Clearly, b(r) = O(f(r))ε follows from a(r) = O(f(r))ε/2 and (3.7).



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 27For proving the remaining laim, we suppose on ontrary that there exists ε > 0 suhthat
a(r) = r

f 0(r)
f(r)

� f(r)εfor r 2 [R1, R) and some 0 � R1 < R. This gives, for R1 < ρ < R,
∫ρ

R1

f 0(r)
f(r)1+ε

dr � ∫ρ

R1

dr

rand therefore
f(R1)

−ε − f(ρ)−ε

ε
� log ρ

R1
.If R = ∞, we obtain a ontradition by letting ρ → ∞ sine the left hand side of the lastequation remains �nite. The proof for R < ∞ involves some additional tehnialities and willbe omitted (see [Hay56℄).The next lemma gives suÆient onditions for (3.1).

Lemma 3.1. Let f(z) be analyti and not zero in |z − r| < 2ηr for some r 2 R
+ and

0 < η � 1
2
and set

a(z) = z
f 0(z)
f(z)

and b(z) = za 0(z).If b(z) satis�es
|b(z)| < Cb(r), |z − r| < 2ηr, (3.11)for some onstant C 2 R

+ then we have the expansionlog f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+ ǫ(r, ζ)where

|ǫ(r, ζ)| <
Cb(r)|ζ|3

2ηfor |ζ| < η.Proof. The funtion b(reζ) = ∂2

∂ζ2 log f(reζ) is analyti for |ζ| < η sine we have���reζ − r
��� = r

���eζ − 1
��� � r

�
e|ζ| − 1

� � r(eη − 1) < 2ηrfor η � 1
2
and thus has a power series development

b(reζ) =
∑

n�0

cnζn.Cauhy's inequality together with (3.11) yields
|cn| � Cb(r)

ηn
.



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 28Integrating twie w.r.t. ζ giveslog f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+

∑

n�1

cn

(n + 1)(n + 2)
ζn+2and noting that

∑

n�1

cn

(n + 1)(n + 2)
ζn+2 � Cb(r)|ζ|3

η

∑

n�1

1

(n + 1)(n + 2)
=

Cb(r)|ζ|3

2ηompletes the proof.The remaining part of this setion is devoted to the study of the behaviour of H-admissiblefuntions. Theorem 3.2 shows how H-admissible funtions and their derivatives behave forreal arguments, Lemma 3.2 gives a better approximation than (3.1) for arguments near thereal line and �nally, Theorem 3.3 shows that H-admissible funtions attain their maximumon {z 2 C : |z| = r}, r properly hosen, at z = r. The tehnial proofs for the Theorems 3.2and 3.3 will be omitted and an be found in [Hay56℄.
Theorem 3.2. Let f(z) be H-admissible in |z| < R. Then� for any �xed positive onstant K and |h| < K/a(r) we have

a(reh) ∼ a(r) (3.12)uniformly as r, reh tend to R from below;� for any �xed κ 2 R

f

�
r +

κr

a(r)

�
∼ ekf(r), as r → R; (3.13)� for any �xed k 2 N,k > 0,

f(k)(r) ∼ f(r)

�
a(r)

r

�k

, as r → R; (3.14)
Lemma 3.2. Assume that f(z) is H-admissible in |z| < R.We have, uniformly for |φ| < a(r)−1,

f(reiφ) = f(r) + iφf 0(r) −
φ2

2

�
rf 0(r) + r2f 00(r)� + O

�
φ3f(r)a(r)3

� (3.15)as r → R.Proof. We obtain the result by applying Lemma 3.1 to the funtion F(z) = exp(f(z)). Set
A(z) = z

F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 29By (3.14), we have
B(r) ∼ f(r)a(r)2, as r → R.

B(z) has, by de�nition, only a �nite number of negative oeÆients in its power series ex-pansion. Therefore,
|B(ζ)| � B

�
r +

2r

a(r)

�
+ O(rN)for |ζ − r| � 2r

a(r)
and some N � 0. Now we have, by (3.12) and (3.13),
B

�
r +

2r

a(r)

�
∼ f

�
r +

2r

a(r)

�
a

�
r +

2r

a(r)

�2

∼ e2f(r)a(r)2.Thus, if r is suÆiently near to R, we may apply Lemma 3.1 to F(z):
f(reiφ) = f(r) + iφA(r) −

φ2

2
B(r) + ǫ(r,φ)where, for |φ| < a(r)−1 and some C > 0,

ǫ(r,φ) < Cf(r)a(r)3|φ|3.

Theorem 3.3. Suppose that f(z) is H-admissible in |z| < R.There exists R1 < R suh that for R1 < r < R and f(r)−2/5 � |φ| � π we have
|f(reiφ)| � f(r) − f(r)1/7 (3.16)and there exists R0 < R suh that for R0 < r < R and 0 < |φ| < π we have

|f(reiφ) < f(r). (3.17)
Example 8. The funtion ez is H-admissible in C with δ(r) = r−2/5 and the funtionsof De�nition 3.1 assoiated with ez are given by

a(r) = b(r) = r, r 2 R+.Thus, the unique positive real solution to a(r) = n is given by rn = n. Corollary 3.2now yields the main term of Stirling's approximation to n!, viz.
[zn]ez =

1

n!
∼

�
e

n

�n

(2πn)−1/2.
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3.2 Classes of H-admissible FunctionsFor given R > 0 de�ne the lassHR := {f : C → C | f(z) is H-admissible in |z| < R} .In this setion we will prove ertain losure properties satis�ed by HR: Theorems 3.5 and 3.4show how to onstrut new H-admissible funtions from given ones and Theorems 3.6 and3.7 show that \small perturbations" do not destroy H-admissibility.These fats an often be used to simplify the task of establishing H-admissibility for agiven funtion. Starting from a basi set of H-admissible funtions, one an establish H-admissibility for many funtions by use of the theorems below without having to hek theonditions of De�nition 3.1.
Theorem 3.4. f1(z), f2(z) 2 HR =⇒ f1(z)f2(z) 2 HR.Proof. Set f(z) = f1(z)f2(z). The orresponding funtions δ(r), a(r), b(r) of De�nition 3.1will be denoted using no subsript, subsript 1 or 2, resp. These funtions satisfy a(r) =

a1(r) + a2(r) and b(r) = b1(r) + b2(r).We show that the funtion f(z) satis�es the onditions for H-admissibility with
δ(r) = min �δ1(r), δ2(r)

�
.The only thing that needs to be shown is ondition (iii)(b) of H-admissibility all otherproperties immediately follow from H-admissibility of f1 and f2.Suppose that in R0 < r < R we have b1(r) > e and b2(r) > e and that with ε < 1

2
wehave

|f1(re
iφ)|

f1(r)
� ε

b1(r)1/2
, δ1(r) � |φ| � π, (3.18)

|f2(re
iφ)|

f2(r)
� ε

b2(r)1/2
, δ2(r) � |φ| � π. (3.19)Now, onsider those r for whih b1(r) � b2(r). We have to show that (3.18) is valid for

δ(r) � |φ| � π. If δ1(r) � δ2(r) there is nothing to prove. If δ2(r) < δ1(r) then we have by(3.1)
|f1(re

iφ)|

f1(r)
∼ e−b1(r)φ2/2 � e−b1(r)δ2(r)2/2, r → R, (3.20)as well as

|f2(re
iδ2(r))|

f2(r)
∼ e−b2(r)δ2(r)2/2, r → R.This gives for r suÆiently near to R

e−b2(r)δ2(r)2/2 <
2ε

b2(r)1/2
.



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 31The funtion pte−at is dereasing for a > 0 and t 2 h 1
2a

,∞
�. Thus, for b2(r) � δ2(r)

−2, thelast equation implies
e−b1(r)δ2(r)2/2 <

2ε

b1(r)1/2
.Hene (3.20) yields for r suÆiently near to R

|f1(re
iφ)|

f1(r)
<

3ε

b1(r)1/2
. (3.21)Note that by (3.16) we have for r suÆiently near to R

|f2(re
iφ)|

f2(r)
< 1, 0 < |φ| < π. (3.22)Sine b(r) = b1(r) + b2(r) � 2b1(r) we �nally obtain (3.2) for f by multiplying the relations(3.21) and (3.22).

Theorem 3.5. f(z) 2 HR =⇒ exp(f(z)) 2 HR.Proof. We show that F(z) = exp(f(z)) is H-admissible with δ(r) = f(r)−2/5. The funtionsof De�nition 3.1 read
A(z) = z

F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).First, note that, by (3.14),
B(r) ∼ f(r)a(r)2 → ∞, r → R.We have f(r)−2/5 = o(a(r)−1) as r → R by (3.10) and may therefore apply Lemma 3.2 for

|φ| � f(r)−2/5 to F(z) whih yieldslog F(reiφ) = log F(r) + iφA(r) −
φ2

2
B(r) + O(f(r))−1/5a(r)3whih gives (3.1) beause of (3.10). Finally, for f(r)−2/5 � |φ| � π we have by (3.16) and(3.10) for r suÆiently near R

|F(reiφ)| � F(r) exp �−f(r)−1/7
� � F(r) exp �−B(r)1/8

�whih gives (3.2).
Theorem 3.6. If f(z) 2 HR and p(z) = bmzm + � � �+ b0 2 R[z] is a polynomial satisfying� p(R) > 0 if R < ∞ or� bm > 0 if R = ∞then we have p(z)f(z) 2 HR.



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 32Proof. Set a(r) = rf 0(r)/f(r) and b(r) = ra 0(r) and let f(z) satisfy (3.1) and (3.2) with afuntion δ(r) that satis�es (3.4).Sine δ(r) → 0 as r → R we have, for any R,
P(reiφ)

P(r)
∼ 1, r → R,uniformly for |φ| � δ(r). Hene, we get

f(reiφ)

f(r)

P(reiφ)

P(r)
∼ eiφa(r)−φ2b(r)/2, r → R, (3.23)uniformly for |φ| � δ(r).For any R, we have

P(riφ)

P(r)
= O(1), r → Rfor any φ and thus, we dedue

f(reiφ)

f(r)

P(reiφ)

P(r)
= o(b(r))−1/2, r → R, (3.24)uniformly for δ(r) � |φ| � π.In order to omplete the proof we have to show that we may replae a(r), b(r) by

a(r) + r
P 0(r)
P(r)

, b(r) + r
d

dr
r
P 0(r)
P(r)in (3.23) and (3.24). But this follows immediately sine rP 0(r)/P(r) and its derivative remainsbounded, while a(r),b(r) tend to in�nity as r → R.

Theorem 3.7. If f(z) 2 HR and h(z) is a funtion, regular in |z| < R and real for real z,suh that for some η > 0 we havemax
|z|=r

|h(z)| = O(f(r))1−η as r → Rthen we have f(z) + h(z) 2 HR.Proof. Again, let a(r), b(r), δ(r) denote the funtions of De�nition 3.1 orresponding to f(z).Assuming that δ(r) satis�es (3.4) we dedue that
|f(reiφ)| ∼ f(r)e−φ2b(r)/2 � f(r)

b(r)
> f(r)1−

η
2uniformly for |φ| � δ(r) as r → R. Hene we have, for |φ| � δ(r),

(f + h)(reiφ) ∼ (f + h)(r)eiφa(r)−φ2b(r)/2, r → R (3.25)



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 33and similarly, for δ(r) � |φ| � π,
(f + h)(reiφ) =

o((f + h)(r))

b(r)−1/2
. (3.26)Set

A(r) = f
(f + h) 0(r)
(f + h)(r)

, B(r) = rA 0(r).We have to show that A(r) = a(r) + o(1) and B(r) = b(r) + o(1) sine we may then replae
a(r),b(r) by A(r),B(r) in (3.25) and (3.26). Suppose that |r − z| < ra(r)−1. Then we have

h(z) = O

�
f(

�
r +

r

a(r)

��
= O(f(r))1−ηby (3.13). Thus for every �xed k 2 N

|h(k)(r)| � k!

�
a(r)

r

�k max
|z−r|�r/a(r)

|h(z)| =
O(f(r))1−η/2

rkby Cauhy's inequality. Hene
A(r) = r

(f 0 + h 0)(r)
(f + h)(r)

= r
f 0(r)
h 0(r) �1 + O

�
h(r)

f(r)

���
1 + O

�
h 0(r)
f 0(r) ��

= a(r)
�
1 + O(f(r))−η/2

�
, r → R.Similarly, B(r) = b(r) + o(1).

3.3 ExamplesWithout proof we quote three theorems that give a basi set of H-admissible funtions andlose this hapter with some simple examples.
Theorem 3.8. Let P(z) = bkz

k + . . . + b1z + b0, bk 6= 0, k � 1, be a real polynomial andset
f(z) =

∑

k�0

fnzn = eP(z).Then the following four onditions are equivalent.(i) f(z) is H-admissible in C.(ii) For all suÆiently large r we have
|f(reiφ)| < f(r), 0 < |φ| � π.(iii) For every integer d > 1, there exists an integer m, suh that d is not a fator of

m and bm 6= 0. Further if m = m(d) is the largest suh integer, then bm(d) > 0.



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 34(iv) an > 0 for all suÆiently large positive integers n.
Theorem 3.9. Suppose that f(z) is an integral funtion of genus zero, positive for largepositive z, having for some positive δ at most a �nite number of zeros in the angle
| arg z| � π/2 + δ, and suh that

b(r) = r
d

dr
r

d

dr
log f(r) → ∞, r → R.Then f(z) is admissible in the plane.

Theorem 3.10. Suppose that f(z) =
∑

n�0 fnzn is regular in |z| < 1. Furthermore, thereexist positive onstants α, β < 1 and R0 < 1 and a positive funtion C(r), 0 < r < 1suh that� as r → 1 we have
(1 − r)

C 0(r)
C(r)

→ 0;� uniformly for | arg z| � β(1 − r) we havelog f(z) ∼ C(|z|)(1 − z)−α, z → 1;� for r suÆiently near 1 we have
|f(reiφ)| � |f(reiβ(1−r))|, β(1 − r) � |φ| � π.Then f(z) is H-admissible in |z| < 1.

Example 9. (i) ez;(ii) The funtion of Setion 2.3.1, ez+z2/2, is H-admissible by Theorem 3.8.(iii) The funtion ez − 1 is H-admissible by Theorem 3.7 and Theorem 3.5 shows thatthe generating funtion for the Bell numbers, exp(ez − 1), is H-admissible, too.
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Generalisations and Related

ConceptsWe onsider some onepts strongly related to H-admissibility.Harris and Shoenfeld [HS68℄ de�ned a lass of funtions f : C → C, alled HS-admissible,and proved an asymptoti expansion for their oeÆients. Their method is losely relatedto Hayman's but unfortunately their result is rather hard to apply. Odlyzko and Rihmond[OR85℄ and M�uller [M�ul97℄ provided theorems whih establish HS-admissibility for ertainlasses of funtions.Mutafhiev [Mut92℄ generalised the loal limit result implied by H-admissibility (Corollary3.2) by weakening the restritions on the asymptoti behaviour of H-admissible funtions.While Hayman requires that only the terms up to order 2 are signi�ant, Mutafhiev onlyassumes that the funtion ourring in the asymptoti is the harateristi funtion of anin�nitely divisible and absolutely integrable distribution with �nite variane.Bender and Rihmond [BR96℄ stated a rather general analogue of H-admissibility forfuntions f : C
n → C, n � 1, and proved an asymptoti formula for the oeÆients ofsuh funtions. Their onept is useful for establishing loal limit theorems for variousombinatorial strutures. In their paper they also proved some theorems whih simplify thetask of establishing this so-alled BR-admissibility. Unfortunately it is not easy to use thisonept for automatially obtaining asymptoti formulae for the oeÆients in question andproving limit theorems for ombinatorial strutures.In view of this, Drmota, Gittenberger, and Klausner [DGK05℄ stated an analogue of H-admissibility for funtions f : C

2 → C and proved a entral limit theorem for their oeÆients.These so-alled e-admissible lasses satisfy various losure properties of an algebrai type.With this onept at hand, omputers an, given a desription of the ombinatorial lass asin Chapter 1, automatially prove entral limit theorems. In their paper they also presenteda Maple-implementation demonstrating this onept.
35
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4.1 HS-admissibility

Definition 4.1. Let f(z) =
∑

n�0 fnzn be a funtion analyti in |z| < R,0 < R � ∞ andreal for real z.
f is said to be HS-admissible if and only if(i) There exists R0 2 (0, R) and a funtion d : (R0, R) → (0, 1) suh that for r 2 (R0, R)we have

1 + d(r) <
R

rand
|z − r| � rd(r) =⇒ f(z) 6= 0.(ii) For k � 1 and r 2 (R0, R) set

A(z) =
f 0(r)
f(r)

, Bk(z) =
zk

k!

�
d

dz

�k−1

A(z), B(z) =
z

2
B 0

1(z).We have B(r) > 0 for r 2 (R0, R) and B1(r) → ∞ as r → R−.(iii) For R1 < R and n 2 N suitably large the equation B1(r) = n + 1 has a uniquesolution un 2 (R1, R). De�ne
Cj(z, r) = −

Bj+2(z) +
(−1)j

j+2
B1(r)

B(r)and suppose that for a ertain �xed N � 0 there exist non-negative numbers Dn,Enand n0 suh that for all n � n0 and for 1 � j � 2N + 1 we have
|Cj(un, un)| � EnDj

n.In addition, we have for all n � n0 that either(a) |Cj(un, un)| � EnD
j
n for all j � 2N + 2 or(b) |C2N+2(un + iρun, un)| � EnD2N+2

n for ρ 2 [−d(un), d(un)].(iv) As n → ∞, we have
B(un)d(un)2 → ∞, DnEnB(un)d(un)3 → 0, Dnd(un) → 0.We an now state the main theorem for HS-admissible funtions. Using the abbreviations� βn = B(un);� γj(n) = Cj(un, un);� Q(r) is the path onsisting of the line segment L from r+ ird(r) to r

q
1 − d(r)2+ ird(r)and the irular ar C from the last point to ir to −r (see �gure 4.1).



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 37� λ(r; d) is the maximum value of |f(z)/f(r)| on Q(r);�
µ(r; d) = max0�λ(r; d)

q
B(r),

exp �−B(r)d(r)2
�

d(r)
p

B(r)

1A ;� E 0n = min(1, En) and E 00n = max(1, En);� hN(n; d) = max �µ(un; d), E 0n(DnE 00n/
p

βn)2N+2
�;�

Fk(n) =
(−1)kp

π

2k∑

m=1

Γ(m + k + 1
2
)

m!

∑

j1 + � � � + jm = 2k

j1, . . . jm � 1

γj1 (n) � � � γjm (n)we have
Theorem 4.1. Let f(z) =

∑
n�0 fnzn be HS-admissible (with either (iii)(a) or (iii)(b)).Then for the given N we have, as n → ∞, the expansion

fn =
f(un)

un
n

p
πβn

0�1 +

N∑

k=1

Fk(n)

βk
n

+ O(hN(n; d))

1A (4.1)In ase of (iii)(a) equation (4.1) is valid for all N � 0.
Remark 4.1. The detailed proof an be found in [HS68℄. It mainly onsists of anappliation of the saddle point-method to the funtion f(z)z−n−1 whih has the dominantsaddle point at un. The path of integration used in the proof of Theorem 4.1 is depitedin Figure 4.1. It onsists of a vertial line running through the dominant saddle pointof the integrand, a irular ar of radius un and entre 0 and two horizontal lines withonstant imaginary part und(un).Harris and Shoenfeld [HS68℄ gave two reasons for preferring the integration pathdesribed above over the irle |z| = un−1 as used in Hayman's proof:� The quantities Bk(z) arising in De�nition 4.1 are usually easier to determine thanthe quantities (z d

dz
)kA(z) whih would arise when using the irle |z| = un−1.� In appliations onsidered by Harris and Shoenfeld it turns out that the oneptas presented above produes better numerial results than the alternative oneptbased on the irle |z| = un−1.

Remark 4.2. Theorem 4.1 does not neessarily give a meaningful asymptoti result forevery N. If we apply the Theorem as stated above to f(z) = ez and make the (optimal)hoie d(r) =
p

2 log r/
p

r, then for all N � 0 we merely obtain hN(n; d) = O(logn/
p

n)whih is independent of N. Noting that Fk(n)/βk
n � n−k as n → ∞ for any �xed k � 1
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−un un

un + iund(un)

un

ℜ

ℑ

Figure 4.1: The integration path used in the proof of Theorem 4.1.we see that for N > 0 Theorem 4.1 does not give a better approximation to 1/n! thanfor N = 0.For this reason, Harris and Shoenfeld [HS68℄ stated an alternative form of Theorem4.1 based on the irle |z| = un−1. Details an be found in [HS68℄.
Example 10. Let Tn denote the set of funtions mapping the set {1, 2, . . . , n} into itselfand let Æ denote the omposition of funtions. Then, hTn, Æi is a semigroup. We areinterested in the number Un of idempotent elements in hTn, Æi, i.e., funtions f 2 Tnsuh that f Æ f = f. Harris and Shoenfeld [HS67℄ showed that

1 +
∑

n�1

Un
zn

n!
= ezezand in [HS68℄ they showed that this funtions is HS-admissible. In this ase, R = ∞,

A(z) = (z + 1)ez, Bk(z) =
zk

k!
(z + k)ez, B(z) =

z

2
(z2 + 3z + 1)ez,and the funtion d(r) is hosen suh that d(r) = e−2r/5. A alulation yields

hN(n; d) = O

� logn

n

�N+1

, n → ∞,and
Fk(n)

βk
n

=
Pk(un)

C3k
n (n + 1)k



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 39where un is the positive solution of u(u + 1)eu = n + 1, Cn = u2
n + 3un + 1, and Pk(u)is a polynomial of degree 7k. Hene, by Theorem 4.1,

Un =

s
un + 1

2π(n + 1)Cn

n!

un
n

e(n+1)/(un+1)

0�1 +

N∑

k=1

Pk(un)

C3k
n (n + 1)k

+ O

� logn

n

�N+1
1Aas n → ∞ for any �xed N � 0.In general it is quite hard to hek the onditions of HS-admissibility. However, Odlyzkoand Rihmond[OR85℄ showed that for a speial type of funtion HS-admissibility an beestablished using H-admissibility only:

Theorem 4.2. If f(z) is H-admissible in |z| < R then exp(f(z)) is HS-admissible in
|z| < R. Furthermore, the error term hN(n; d) of equation (4.1) is o(β−N

n ) as n → ∞ forevery �xed N � 0.M�uller[M�ul97℄ proved HS-admissibility for exponentials of ertain polynomials whih hasan interesting impliation on the relation between HS-admissibility and H-admissibility (seenext remark).
Theorem 4.3. Let P(z) =

∑m
k=1 pkzk be a polynomial of degree m � 1 with omplexoeÆients pk and let f(z) = exp(P(z)). Then the following assertions are equivalent:(i) f(z) is HS-admissible in C.(ii) P(z) 2 R[z] and cm > 0.M�uller[M�ul97℄ also gave an upper bound for the error term for a more speial lass ofpolynomials.

Theorem 4.4. Suppose that P(z) =
∑m

k=1 pkzk is a polynomial of degree � 2 and that
p1 > 0 and pk � 0 for 1 < k � m.Then the funtion f(z) = exp(P(z)) is HS-admissible and the auxiliary funtion d(r)an be hosen in suh a way that for eah �xed N � 0

hN(r, d) = O
�
n−N−1

�
, n → ∞.

Remark 4.3. Theorem 4.3 shows that HS-admissibility does not imply H-admissibility.In fat, Theorem 4.3 shows that the funtion ez(z−1) is HS-admissible. But the funtionis not H-admissible by Theorem 3.8 sine its power series expansion at z = 0 hasin�nitely many negative oeÆients.Note that the funtions of Theorem 4.4 are H-admissible.
Example 11. The funtion of Setion 2.3.1,

F(z) =
∑

n�0

Fn
zn

n!
= exp z +

z2

2

!



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 40is HS-admissible in C by Theorem 4.3 with the auxiliary funtions
A(z) = 1 + z, Bk(z) =






z + z2 if k = 1
z2

2
if k = 2

0 else ,

B(z) = z
2

+ z2, Cj(z, r) =
(−1)j+1

j+2

�
1 + 1

1+2z

�
.The unique positive solution of B1(u) = n + 1 is given by

un =
−1 +

p
4n + 5

2
=

p
n

0�−
1

2
p

n
+

s
1 +

5

4n

1A
=

p
n

�
1 −

1

2
n−1/2 +

5

8
n−1 −

25

128
n−2 + O(n−3)

�
.Hene

Cj(un, un) =
(−1)j+1

j + 2

�
1 +

1p
4n + 5

�
=

(−1)j+1

j + 2

�
1 +

1

2
n−1/2 −

5

16
n−3/2 + O(n−2)

�
B(un) =

un

2
+ u2

n = n + 1 −
un

2

= n + 1 +

p
n

2

�
1 −

1

2
p

n
+

5

8n
+ O(n−2)

�
= n

�
1 +

1

2
n−1/2 +

3

4
n−1 +

5

16
n−3/2 + O(n−2)

�Theorems 4.1 and 4.4 now give (putting N = 1) after some simpli�ations
Fn

n!
=

eun+u2
n/2

2un
n

p
πB(un)

�
1 +

7

24
n−1 +

5

96
n−3/2 + O(n−2))

�
.Calulating

u−n
n = n−n/2 exp�−n log�1 −

1

2
p

n
+

5

8n
−

25

128
n−2 + O(n−3)

��
= nn/2 exp pn

2
−

1

2
−

13

48
n−1/2 −

13

128
n−1 + O(n−2)

!
un +

u2
n

2
= n + 1 −

u2
n

2

= n + 1 −
n

2

�
1 − n−1/2 +

3

2
n−1 −

5

8
n−3/2 +

25

128
n−5/2 + O(n−3)

�
=

n +
p

n

2
+

1

4
+

5

8
p

n
−

25

256
n−3/2 + O(n−2).
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un

2
+ u2

n = n + 1 −
un

2

= n

�
1 −

1

2
n−1/2 +

5

4
n−1 −

5

16
n−3/2 + O(n−2)

��
un

2
+ u2

n

�−1/2

=
1p
n

�
1 +

1

4
n−1/2 −

17

32
n−1 −

35

128
n−3/2 + O(n−2)

�we obtain
Fn

n!
=

exp �n
2

+
p

n − 1
4

�
2
p

πnn−1

�
1 +

55

48
n−1/2 +

2245

4608
n−1 + O(n−3/2)

�and an appliation of Stirling's formula gives the �nal result
Fn =

nn/2p
2

exp�−
n

2
+
p

n −
1

4

����1 +
55

48
n−1/2 +

2629

4608
n−1 +

19061

663552
n−3/2 + O(n−2)

�
. (4.2)

4.2 GH-admissibilityMutafhiev [Mut92℄ proposed a generalisation of Hayman's onept of admissibility, alledGH-admissibility, with the asymptotis (3.1) and (3.2) of De�nition 3.1 replaed by weakeronditions.In the following we present Mutafhiev's de�nition and results but follow Hayman morelosely and prove an analogue of Theorem 3.1 for GH-admissible funtions. We will �rst listsome important fats onerning harateristi funtions of distribution funtions. Then westate a slightly modi�ed de�nition of GH-admissibility followed by some remarks. We thenproeed stating the main results of this setions and show how GH-admissibility an be usedto infer loal limit theorems for the number of omponents of ombinatorial strutures.Mutafhiev [Mut92℄ also applied his onept to three ombinatorial problems alreadyknown to satisfy a loal limit theorem. Unfortunately, as we will show in this setion, thegenerating funtions of the problems onsidered by Mutafhiev are not GH-admissible andtherefore his paper [Mut92℄ does not ontain any valid appliations of the onept of GH-admissibility.
Remark 4.4. We summarise some important properties of absolutely integrable andin�nitely divisible harateristi funtions h(t). Details and proofs of these fats an befound in [Luk70℄. Let H(x) denote the probability distribution funtion orrespondingto h(t). We have� H(x) is absolutely ontinuous w.r.t. the Lebesgue-measure with ontinuous density

H 0(x);
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H 0(x) =

1

2π

∞∫

−∞

e−itxh(t)dt, −∞ < x < ∞. (4.3)
Definition 4.2. Suppose that f(z) is analyti in |z| < R, R > 0, and real for real z.Assume further that there exists R0, 0 � R0 < R, suh that f(r) > 0 for R0 � r < R. Forthis range de�ne the funtions

a(r) = r
f 0(r)
f(r)

and b(r) = ra 0(r) = r
f 0(r)
f(r)

+ r2f 00(r)
f(r)

−

�
r
f 0(r)
f(r)

�2

.Then f(z) is said to be GH-admissible in |z| < R if and only if there exists a funtion δ :

[0, R) → [0, π] and an absolute integrable and in�nitely divisible harateristi funtion
h(t) de�ned by a non-degenerate probability distribution with �nite variane suh that(i) b(r) → ∞ as r → R;(ii) the probability density funtion H 0(x) orresponding to h(t) satis�es H 0(0) > 0;(iii) f(reiφ) ∼ f(r)eiφa(r)h(φ

q
b(r)) as r → ∞ uniformly for |φ| < δ(r);(iv) ∫

δ(r)�|φ|�π

s(r,φ)f(reiφ)dφ =
o(f(r))p

b(r)
as r → R for any omplex valued funtion

s(r,φ) satisfying s(r,φ) = O(1) as r → R uniformly for δ(r) � |φ| � π.
Remark 4.5. Instead of Condition (iv) in De�nition 4.2 Mutafhiev originally requiredthat(iv') ∫

δ(r)�|φ|�π

s(r,φ)f(reiφ)e−iZφ
p

b(r)dφ =
o(f(r))p

b(r)
as r → R for any real Z 6= 0 and anyomplex valued funtion s(r,φ) satisfying s(r,φ) = O(1) as r → R uniformly for

δ(r) � |φ| � π.Conditions (iv) and (iv') are equivalent sine s(r,φ)e−iZφ
p

b(r) also satis�es the assump-tions imposed on s(r,φ). Hene the fator e−iZφ
p

b(r) need not be mentioned expliitly.
Remark 4.6. We adopt the notation of the last de�nition.Consider the power-series distributed random variable ξ(r) whose distribution isdetermined by

P
�
ξ(r) = k

�
=

fkrk

f(r)
, k � 0, 0 < r < R.Then we have Eξ(r) = a(r) and Vξ(r) = b(r) and the harateristi funtion of thenormalised random variable (ξ(r) − a(r))/
p

b(r) is seen to be
α(t; r) =

f
�
reit/

p
b(r)
�

f(r)
exp −it

a(r)p
b(r)

!
.
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p

b(r) in De�nition 4.2, Condition (iii), we see that
α(t; r) → h(t), r → R,whenever |t| � δ(r)

p
b(r).H-admissible funtions are GH-admissible with h(t) = e−t2/2, i.e., the oeÆients ofH-admissible funtions satisfy a normal limit law (see Corollary 3.2.).As for H-admissible funtions, we have

Lemma 4.1. We adopt the notation of De�nition 4.2. Then
δ(r)

q
b(r) → ∞, r → R.The proof of Lemma 4.1 an be found in [Mut92℄. We only note that

Theorem 4.5. Suppose that f(z) =
∑

n�0 fnzn is GH-admissible in |z| < R with har-ateristi funtion h(t) and orresponding probability distribution funtion H(x) andde�ne fn = 0 for n 2 Z−. Then we have uniformly for all integers n

fn =
f(r)

rn
p

b(r)

 
H 0 −

a(r) − np
b(r)

!
+ o(1)

!
, r → R. (4.4)Proof. The starting point is Cauhy's formula, viz.

fnrn =
1

2π

π∫

−π

f(reiφ)
dφ

einφ
.We set

I1 :=
1

2π

δ(r)∫

−δ(r)

f(reiφ)
dφ

einφ
and I2 :=

1

2π

2π−δ(r)∫

δ(r)

f(reiφ)
dφ

einφ
.Putting s(r,φ) = exp (−inφ) in Condition (iv) of De�nition 4.2 we see that

I2 =
o(f(r))p

b(r)
, r → R,and Condition (iii) together with the absolute integrability of h(t) gives uniformly in n

I1 =
f(r)

2π

0B� δ(r)∫

−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ + o(b(r))−1/2

1CA .
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p

b(r) and using Condition (i) as well as the absolute integrabilityof h(t) and (4.3) we obtain as r → R

δ(r)∫

−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ =

1 + o(1)p
b(r)

∞∫

−∞

h(t) exp it
a(r) − np

b(r)

!
dt

=
2πf(r)p

b(r)
H 0 −

a(r) − np
b(r)

!
+

o(f(r))p
b(r)whih ompletes the proof.

Corollary 4.1. We have
a(r) → ∞, r → R. (4.5)Furthermore, there exists R1 < R suh that a(r) is stritly monotonially inreasing for

R1 � r < R and
b(r) = O(a(r))2, r → R. (4.6)Proof. We have b(r) = ra 0(r) → ∞ as r → R whih shows that a(r) is �nally stritlymonotonially inreasing as r → R.Putting n = −1 in (4.4) yields

H 0 −
a(r) + 1p

b(r)

!
= o(1), r → R.Sine H 0(x) is ontinuous and H 0(0) 6= 0 by De�nition 4.2 there exists M 2 R+ suh that�����a(r) − 1p

b(r)

����� � M, r → R.From this and the fat that b(r) → ∞ as r → R it follows that a(r) → ∞ as r → R and
b(r) = O(a(r))2.
Corollary 4.2. For n large enough the equation a(r) = n has a unique solution rn whihsatis�es rn → R as n → ∞. Furthermore

fn ∼
f(rn)H 0(0)
rn
n

p
b(rn)

, n → ∞. (4.7)Proof. From (4.5) and the fat that a(r) is �nally stritly monotoni inreasing we see thatthe equation a(r) = n has, at least for n large enough, a unique positive solution rn. Thissolution satis�es rn → R as n → ∞. Putting r = rn in (4.4) proves the asymptoti for fn.We now turn to the problem of determining the distribution of the number of omponentsin ombinatorial lasses.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 45Suppose that G and F are two labelled ombinatorial lasses related via G = setF . Theorresponding exponential generating funtions
g(z) =

∑

n�0

gnzn/n! and f(z) =
∑

n�1

fnzn/n!then satisfy
g(z) = ef(z). (4.8)Now let ξ1(r), ξ2(r), . . . denote a sequene of i.i.d. random variables generated by f(z), thatis

P {ξ1 = k} =
fkrk

f(r)k!
, 0 < r < R, k = 0, 1, . . . , (4.9)where R denotes the radius of onvergene of f(z), de�ne the sequene of random variables

SN(r) = ξ1(r) + � � � + ξN(r), N = 1, 2, . . . (4.10)and let X = X(ω) denote the number of omponents of ω 2 G. Finally, let Pn and En denotethe uniform probability measure and expetation de�ned on the set of strutures of size n ofG. Then we have
Pn {X = N} =

f(r)Nn!

gnrnN!
P {SN(r) = n} , N = 1, 2, . . . , n, n = 1, 2, . . .and ∑

n�0

(EnX)
gnzn

n!
= f(z)g(z).Proofs for these fats an be found in [Kol86℄ and [Com87℄.We an now state Mutafhiev's results onerning the distribution of X.

Theorem 4.6. Suppose that f(z) and g(z) are power series with nonnegative oeÆientssatisfying (4.8) and let R > 0 denote their ommon radius of onvergene. Moreover,let g(z) be GH-admissible with distribution funtion H(x) and funtions a(r) and b(r)as de�ned in De�nition 4.2 suh thatq
b(r) ∼ dg(r), r → R,for some 0 < d < ∞.Then(i) If N = f(r)(1 + o(1)) as r → R, then the distribution of the sums SN(r) de�ned by(4.10) satisfy

P {SN(r) = k} =
H 0(γ) + o(1)p

b(r)
, r → R,where γ = (a(r) − k)/

p
b(r). This onvergene is uniform w.r.t. γ belonging to anarbitrary ompat set.
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Pn {X = N} ∼

1p
2πf(rn)

exp −
(N − f(rn))2

2f(rn)

!
, n → ∞,uniformly w.r.t. N suh that (N− f(rn))/f(rn)7/12 belongs to an arbitrary ompatset.

Remark 4.7. The last theorem an be applied to all GH-admissible funtions whih arenot H-admissible (see [Mut92, Remark 2.2℄ for details).
Theorem 4.7. Suppose that f(z) and g(z) are analyti for |z| < R and satisfy (4.8). If
g(z) is GH-admissible then

EnX ∼ f(rn), n → ∞,where rn is de�ned by a(rn) = n.Proofs for the last two theorems an be found in [Mut92℄.We lose this setion with a omment on the examples given by Mutafhiev in his paper[Mut92℄.
Remark 4.8. Mutafhiev [Mut92℄ onsidered the egf for the number of permutations oflength n � 0 given by

f(z) = e− log(1−z) =
1

1 − z
.We have

a(r) =
r

1 − r
, b(r) =

r

(1 − r)2
.Let δ : [0, 1) → [0, π] be suh that

(1 − r)2/3 � δ(r) � (1 − r)1/2, r → 1.Then we have, uniformly for |φ| � δ(r), as r → 1

f(reiφ)

f(r)
=

1 − r

1 − reiφ
=

1

1 − a(r) (eiφ − 1)

∼
1

1 − iφa(r)
∼ eiφa(r) e−iφ

p
b(r)

1 − iφ
p

b(r)
.If f(z) would be GH-admissible in |z| < 1 then the orresponding harateristi fun-tion would be given by

h(t) =
e−it

1 − it
, −∞ < t < ∞,whih orresponds to a shifted Gamma density, viz.

H 0(x) =

{
e−x−1 if x � −1

0 if x < −1.The funtion f(z) annot be GH-admissible for two reasons:



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 47� The probability density funtion H 0(x) orresponding to h(t) = e−it/(1 − it) has adisontinuity at x = −1. Hene h(t) annot be absolutely integrable (see [Luk70,Theorem 3.2.2℄).� Condition (iv) of De�nition 4.2 is not satis�ed by f(z). To see this, we hoose thefuntion s(r; φ) = exp �−i arg f(riφ)
�. Then

∫

δ(r)�|φ|�π

s(r; φ)f(reiφ)dφ =

∫

δ(r)�|φ|�π

|f(reiφ)|dφ

=

∫

δ(r)�|φ|�π

dφp
1 + r2 − 2r osφ� ∫

δ(r)�|φ|�π

dφp
1 + r2whih is not o(1) as r → 1.The generating funtions

g(z) =
1 + zp
1 − zand

G(z) =
1

1 − T(z)
where T(z) = zeT(z)onsidered in the remaining two examples of [Mut92℄, again, lead to harateristi fun-tions whih are not absolutely integrable sine the orresponding probability distributionshave got disontinuities. Hene, the funtions g(z) and G(z) annot be GH-admissible.

Remark 4.9. Mutafhiev [Mut97℄ onsidered the distribution of the parameter 'num-ber of distint omponent sizes' on the set of ombinatorial strutures of size n inertain ombinatorial lasses as n → ∞. Using the onept of GH-admissibility Mu-tafhiev [Mut97℄ established weak onvergene results to a onvolution of two distribu-tions, where one of them is always Gaussian.In his paper [Mut97℄ he also presented three examples. In ase of the �rst twoexamples, namely set-partitions and integer-partitions, the generating funtion is notonly GH-admissible but even H-admissible. Unfortunately, the third example onstitutesan invalid appliation of his results sine the generating funtion for the number offuntions from {1, 2, . . . , n} into itself is given by G(z) of Remark 4.8 whih is not GH-admissible.
4.3 BR-admissibilityIn this setion we onsider a multivariate generalisation of the notion of H-admissibility whihis due to Bender and Rihmond [BR96℄. They proved a theorem analogous to Theorem 3.1whih an be used to obtain loal limit theorems for a variety of ombinatorial problems.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 48First, we need some de�nitions onerning the notation:
Definition 4.3. For the d-variable funtion f(z) =

∑
n�0 anzn we de�ne:� Λf is the Z-module spanned by di�erenes of those n for whih an 6= 0.� d(Λf) denotes the absolute value of the determinant of a Z-basis of Λf.� Λ�

f is the polar lattie of Λf,
Λ�

f =
{

x 2 R
d : 8n 2 Λf we have x � n 2 Z

}where x � n denotes the usual salar produt.� Let {v1, . . . ,vd} be a Z-basis of Λ�
f. Then we de�ne the fundamental region of f asthe parallelepiped

Φf = {c1v1 + . . . + cdvd | 8 1 � k � d : −π � ck � π} . (4.11)We will also make use of the following asymptoti notation:
Definition 4.4. We write f(z) = ou(z)(g(z)) for z in some set S, if there exists a funtion
λ(t) suh that λ(t) → 0 as t → ∞ and |f(z)/g(z)| � λ(|u(z)|) for z 2 S.Now, we an state the entral de�nition and the main theorem of [BR96℄. Remarks willbe given right after the proof of this theorem.
Definition 4.5 (BR-Admissibility). Let f(z) be a d-variable funtion analyti at theorigin having a fundamental region Φf. If Λf is d-dimensional, then we say that f(z)is BR-admissible in R � R

d
+ with angles Θ if there exist funtions� Θ : R → {S � Φf | 0 2 S and S is an open set},� a : C

d → C
d and� B : C

d → C
d�dsuh that (we write oB for odetB(r)))(i) f(z) is analyti whenever r 2 R and |zi| � ri for 1 � i � d,(ii) B(r) is positive de�nite for r 2 R,(iii) the diameter of Θ(r) is oB(1),(iv) for r 2 R and θ 2 Θ(r), we have

f(reiθ) = f(r)(1 + oB(1)) exp �ia(r) 0θ − θ 0B(r)θ/2
� (4.12)



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 49(v) and for r 2 R and θ 2 Φf − Θ(r), we have
f(reiθ) =

oB(f(r))p
|B(r)|

. (4.13)The funtion f(z) is alled BR-super-admissible if ondition (4.13) an be replaedby
f(reiθ) =

oB(f(r))

|B(r)|t
(4.14)for arbitrary t 2 R, where oB(f(r)) may depend on t.

Theorem 4.8. Let f(z) =
∑

n�0 anzn be a d-variable funtion that is BR-admissible inR with angles Θ and let k 2 N
d be suh that [zk]f(z) 6= 0 and set v = a(r) − n. Then wehave

[zn]f(z) =
d(Λf)f(r)r−n

(2π)d/2
pdetB(r)

�exp �−v 0B−1(r)v/2
�

+ oB(1)
� (4.15)for r 2 R and n − k 2 Λf.Proof. For brevity, we omit the arguments of B(r) and Θ(r).By Cauhy's theorem, we have

anrn =
1

(2π)d

∫

[−π,π]d

f(reiθ)e−in0θdθ. (4.16)Assume that an 6= 0 and c 2 Λ�
f. By de�nition of Λ�

f, the integrand remains unhanged if θis replaed with θ + 2πc. Thus, we an write
anrn =

d(Λf)

(2π)d

∫

Φf

f(reiθ)e−in0θdθ. (4.17)Now, let Θ⋆ = Θ⋆(r) denote the greatest star-shaped region ontained in Θ, that is
θ 2 Θ⋆ ⇐⇒ 8 0 < ρ < 1 : ρθ 2 Θ.We an work with Θ⋆ instead of Θ sine� The interior of Θ⋆ is ontained in Θ.� The boundary of Θ⋆ is ontained in Φf − Θ and therefore we haveexp(−θ 0Bθ/2) =

oB(1)pdetBon the boundary of Θ⋆.� For every θ, there is a κ = κ(r) suh that κθ 2 Θ⋆ beause 0 2 Θ⋆.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 50� B is positive de�nite, that is (ρθ) 0B(ρθ) > θ 0Bθ for ρ > 1. Therefore we haveexp �−θ 0Bθ/2
�

=
oB(1)pdetB

for all θ 62 Θ⋆. (4.18)Now, the integral (4.17) an be rewritten as
anrn =

d(Λf)

(2π)d

∫

Θ⋆

f(reiθ) exp �−in 0θ�dθ +
oB(f(r))pdetB

.

B is a positive de�nite matrix and thus, there exists a real d�d matrix S suh that B = S 0S.Using the abbreviations y = Sθ and w2 = w 0w, we have
iv 0θ − θ 0Bθ/2 = iv 0S−1y − y2/2 =

= −(S 0−1v)2/2 − (y − iS 0−1v)2/2 =

= −v 0B−1v/2 − (y − iS 0−1v)2/2.Hene, using equation (4.12), we get
∫

Θ⋆

eiv0θ−θ0Bθ/2dθ =
e−v0B−1v/2pdetB

∫

SΘ⋆

e−(y−iS0−1v)2/2dy =

=
e−v0B−1v/2pdetB

∫

Rd

e−(y−iS0−1v)2/2dy +

+
O(1)e−v0B−1v/2pdetB

∫

T

e−x2/2dx.As in the proof of Theorem 3.1 we get
∫

Rd

e−(y−iS0−1v)2/2dy =

0B�∫

R

e−(x−ic)2/2dx

1CAd

= (2π)d/2.For x 2 T we have, by equation (4.18), e−x2
= oB(1)/

pdetB and therefore, we get
∫

T

e−x2/2dx = oB(1)by essentially the same argument as in the proof of Theorem 3.1. Combining these resultswe obtain equation (4.15).
Remark 4.10. (i) Usually, one an let a(z) and B(z) be the �rst and seond logarith-mi derivatives of f(z).



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 51(ii) De�nition 4.5 does not demand the unboundedness of detB(r) in R. So, the oB-terms in the equations (4.12) and (4.13) need not be small anywhere in R. Hene,if f is BR-admissible in some set R, then f is BR-admissible in every set R1 � R,too.In appliations, however, one is usually interested in maximal regions or at leastregions large enough for detB being unbounded.(iii) If the funtion f(z) is H-admissible for |z| < R, then f(z) is BR-admissible in everyset R � (0, R).(iv) Let f(z) be BR-admissible in R. For every k 2 N,ki � 1, the funtion g(z) := f(zk)is BR-admissible, too.As a simple example take ez, whih is H-admissible and thus BR-admissible in
R. This funtion has a fundamental region [−π, π] and we an set Θ(r) = [0, δ(r)]where δ(r) is the funtion of De�nition 3.1 (in this ase, we an use δ(r) = r−2/5).The funtion ez2 is BR-admissible (but not H-admissible) with fundamental region
[−π/2, π/2] and Θ(r) = [0, δ(r)/2].(v) Besides R � R

d
+, De�nition 4.5 does not impose any restrition on the set R.Thus, one has to verify that BR-admissibility holds in a region R having the rightshape before applying this onept. In Setion 5.2.3, we onsider a funtion whihis BR-admissible only in regions whih annot be used for proving an asymptotinormal distribution.(vi) Theorem 4.8 allows one to ompute asymptotis for the oeÆients of BR-admissiblefuntions if one has got suÆiently good estimates for the solution rn of a(r) = nas well as f(rn) and rn

n.(vii) In many ases, BR-admissibility an be used to establish loal limit theorems:Suppose that f(z,u) is BR-admissible and ordinary in u. Partition all vetorsand matries into blok form aording to the two sets of variables x and y. Solve
a(r,1) = (n,k�) for r asymptotially in terms of n and use this to ompute k� and
B(r,1) asymptotially in terms of n. Let n → ∞ in a way suh that (r,1) 2 R anddetB(r,1) → ∞. It follows that [znuk]f(z,u) satis�es a loal limit theorem withmeans vetor asymptoti to k� and ovariane matrix asymptoti to�

B2,2 − B 0
1,2(B1,1)

−1B1,2

�−1where
B(z,u) =

 
B1,1 B1,2

B 0
1,2 B2,2

!is the blok form aording to the variable sets x and y.If z and u are 1-dimensional then the variane is given by detB/B1,1.Note, that BR-admissibility does not neessarily entail a loal limit theorem. Seesetion 5.2.3 for a ounter example.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 52If we want to ombine funtions having di�erent sets of variables, we have to extend thesefuntions and the de�nitions of R, Θ, a and B to inlude all ourring variables.
Remark 4.11. Let f(z) be BR-admissible in R with angles Θ and let y be a variablenot appearing in f. Set�R = R� (0,∞) and �Θ(r, ρ) = Θ(r)� [−π, π]for r 2 R and ρ 2 (0,∞). The funtions a and B are extended to �a and �B by addingentries of zeroes. Note that det �B = 0.Generalisation to more variables is straight forward.From now on, we will always assume that the funtions are properly extended as desribedabove.
Theorem 4.9. Let f and g be BR-super-admissible in Rf with angles Θf and in Rg withangles Θg, resp. Assume that det(�Bf + �Bg) is unbounded in R = �Rf \ �Rg.If there are onstants C and k suh thatdet(�Bf(r) + �Bg(r)) � Cmin(det(Bf(r))k,det(Bg(r))k), r 2 R, (4.19)then fg is BR-super-admissible in R with angles Θ = �Θf \ �Θg and we may take

afg = �af + �ag and Bfg = �Bf + �Bg.Furthermore, we have Λ = �Λf + �Λg.
Theorem 4.10. Let f be BR-(super-)admissible in R with angles Θ. If the funtion
g(reiθ) is analyti for r 2 R and for some funtions ag and Bg, g satis�es(i) Λg � Λf;(ii) for r 2 R and θ 2 Θ

(reiθ) = g(r) exp �ia 0gθ − θ 0Bgθ + oB(1)
�

;(iii) there is a onstant C suh that |g(reiθ| � Cg(r) for r 2 R;(iv) there is a onstant K suh that det(Bf + �Bg) � KdetBf for r 2 R.Then fg is BR-(super-)admissible in R with angles Θ and we may take
afg = af + ag and Bfg = Bf + Bg.

Theorem 4.11. Let f(z) =
∑

anzn be BR-(super-)admissible. For any sublattie Λ of
Λf de�ne

g(z) =
∑

n2Λ

ak+nzk+nwhere k is suh that ak 6= 0. Then the funtion g is BR-(super-)admissible with
Λg = Λ, ag = af, Bg = Bf, Rg = Rf, and Θg = Θf.
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Theorem 4.12. Assume that� f(z) =

∑
n�1 anzn is H-admissible in |z| < R;� S is a subset of {0, 1, . . . ,m − 1};� for 0 � k < m, hoose λk 2 R+ suh that λk > 0 if and only if k 2 S;� for n > m, de�ne λn = λk whenever n � k mod m;� de�ne

g(z) =

∞∑

n=0

λnanznand �λ = m−1
∑m−1

k=0 λk.Then(i) For some R0 < R, the funtion h(z) = eg(z) is BR-super-admissible in R = (R0, R)with angles Θ(r) = {θ : |θ| < g(r)−1/3−ε} and the funtions a and B, provided ε > 0is suÆiently small.(ii) For some R0 < R and all δ > 0, the funtion h(x, y) = eyg(x) is BR-super-admissiblein R =
{

(r, s)
���R0 < r < R and g(r)δ−1 < s < g(r)1/δ

}with angles
Θ(r, s) =

{
θ
���|θk| < (sg(r))−1/3−ε

}and funtions a and B, provided ε > 0 is suÆiently small.
Example 12. Consider the funtion

F(z, u,w) = eu(osh z−1)ewsinhz.The oeÆient of znukwm/n! in F(z, u,w) equals the number of partitions of a set ofsize n having k bloks of even size and m bloks of odd size. We show that F(z, u,w) isBR-admissible.We onsider the two funtions
f(z, u) = eu(osh z−1) and h(z,w) = ewsinhz.Theorem 4.12, applied to the H-admissible funtion ez − 1 with m = 2, S = {0} and

λ0 = 1 shows that f(z, u) is BR-super-admissible inRf =
{

(r, s)
��� R0 < r and (osh r − 1)δ−1 < s < (osh r − 1)1/δ

}with angles
Θf(r, s) =

{
(θ1, θ2)

��� |θk| < (s(coshr − 1))−ǫ1−1/3 , k = 1, 2
}
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Bf(r, s) = s

 
r2 osh r + r sinh r r sinh r

r sinh r osh r − 1

!for any δ > 0, any R0 > 0 and ǫ1 suÆiently small. Putting S = {1} and λ1 = 1 instead,we see that h(z,w) is BR-super-admissible inRh =
{
(r, t)

��� R0 < r and (sinh r)δ−1 < t < (sinh r)1/δ
}with angles

Θh(r, t) =
{
(θ1, θ2)

��� |θk| < (t sinh r)−ǫ2−1/3 , k = 1, 2
}and matrix

Bh(r, t) = t

 
r2 sinh r + r osh r r osh r

r osh r sinh r

!for any δ > 0, any R0 > 0 and ǫ2 suÆiently small.We now extend the funtions f and h and the orresponding matries to inlude allvariables ourring as desribed in Remark 4.11 and set B(r, s, t) = �Bf(r, s, t)+ �Bh(r, s, t),that is
B(r, s, t) =

0B� r(rs + t) osh r + r(rt + s) sinh r rs sinh r rt osh r

rs sinh r s(osh r − 1) 0

rt osh r 0 t sinh r

1CA .Furthermore, we set R = �Rf \ �Rh.The determinants of the matries Bf, Bh and B are given bydetBf(r, s) = rs(sinh r − r)(osh r − 1)detBh(r, t) = rt(osh r sinh r − r)detB(r, s, t) = (sinh r)detBf(r, s) + (osh r − 1)detBh(r, t).For brevity we set detBf = detBf(r, s) and detBh = detBh(r, t). We havedetBf ∼ s
re2r

4
and detBh ∼ t

re2r

4
as r → ∞and therefore detBfdetBh

∼
s

t
, t 6= 0, r → ∞.Now if (r, s, t) 2 R then

(osh r − 1)δ−1

(sinh r)1/δ
<

s

t
<

(osh r − 1)1/δ

(sinh r)δ−1whih gives
e−r(1−δ+1/δ)

21−δ
(1 + o(1)) <

s

t
<

er(1−δ+1/δ)

21/δ
(1 + o(1)), r → ∞.
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e−r(1−δ+1/δ)

22−δ
<

s

t
<

er(1−δ+1/δ)

21/δ−1
, r � R0,as well as

s
re2r

8
< detBf < s

re2r

2
and t

re2r

8
< detBh < t

re2r

2we see that there exist onstants C > 0 and η > 1 suh thatdetBf < K(detBh)η and detBh < K(detBf)
η.Sine sinh r ∼ osh r − 1 ∼ er/2 as r → ∞ we getdetB � K ((detBf)

κ, (detBh)κ)for some onstants K > 0 and κ > 1.Hene, by noting that detB(r, s, t) is unbounded in R we see that all assumptions ofTheorem 4.9 are satis�ed and we onlude that F(z, u,w) is BR-super-admissible in Rwith angles
Θ(r, s, t) = �Θf(r, s) \ �Θh(r, t)

=
h
−(s(osh r − 1))−ǫ1−1/3, (s(osh r − 1))−ǫ1−1/3

i2�� h−(t sinh r)−ǫ2−1/3, (t sinh r)−ǫ2−1/3
iand matrix B(r, s, t).

4.3.1 Perturbation of BR-admissible FunctionsIf f(z2) is BR-admissible then g(z) = f(z2)+z is not. The reason for this lies in the de�nitionof the orresponding latties. We have Λf = 2Z and Λg = Z, but learly [z2k+1]g(z) = 0 for
k > 0. Bender and Rihmond [BR96℄ remarked that the de�nition of BR-admissibility ouldbe modi�ed to inlude g(z). But then the produt rules for BR-admissible funtions wouldnot hold anymore.In this setion we show that if f(z) is BR-admissible then (f+g)(z) is BR-admissible, too,provided that g(z) is suÆiently small and that Λf+g � Λf. Our reasoning will essentially bethe same as in the proof of Theorem 3.7 for H-admissible funtions. As a matter of fat theproof for this theorem is a bit shorter than the orresponding one for H-admissible funtions.For details see the remark following the proof.
Remark 4.12. Suppose that f : C

n → C is BR-admissible in R with angles Θ andfuntions a = a(r) and B = B(r).We may suppose that for r 2 R
Θ(r) � {

θ 2 [−π, π]n
�� θ 0Bθ � 2 logm(r)

} (4.20)
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m(r) = max(1,detB)sine otherwise we should have for θ 0Bθ > 2 logm(r)exp �−θ 0Bθ/2

�
< exp (− logm(r)) = m(r)−1whih implies implies (4.13) for f(z).

Theorem 4.13. Let f(z) be BR-super-admissible in R with angles Θ and funtions aand B and let g(z) be a funtion suh that(i) g(z) is analyti for |z| 2 R;(ii) Λg � Λf.(iii) for any t > 0 we have max
|z|=r

|g(z)| =
oB(f(r))

(detB(r))t
, r 2 R; (4.21)Then f + g is BR-super-admissible in R with angles Θ and funtions a and B.If f is BR-admissible and g satis�es ondition (iii) with t = 1, then f + g is BR-admissible.Proof. We adopt the notation of Remark 4.12 and assume that Θ(r) satis�es (4.20).First, we note that

f(r) = f(r) + g(r) − g(r) = (f + g)(r)(1 + oB(1)) (4.22)by (4.21).Suppose now that θ 62 Θ(r). Sine f(z) is BR-super-admissible we have
f(reiθ) =

oB(f(r))

(detB(r))tfor any t > 0. Now we get from this, (4.21) and (4.22)
(f + g)

�
reiθ

�
=

oB(f(r))

(detB(r))t
+

oB(f(r))

(detB(r))t

=
oB(f(r))

(detB(r))t
=

oB((f + g)(r))

(detB(r))tuniformly for θ 62 Θ(r) whih implies (4.14) for f + g. In the same way we obtain (4.13) forBR-admissible f.If θ 2 Θ(r) then we get from (4.20)���f�reiθ
���� = f(r)(1 + oB(1))e−θ0Bθ/2 � f(r)

m(r)
(1 + oB(1))



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 57where m(r) = max(1,detB). As a onsequene of this and (4.21) we obtain
g(reiθ)

f(reiθ)
� g

�
reiθ

�m(r)

f(r)
(1 + oB(1)) = oB(1)uniformly for θ 2 Θ(r). Hene by BR-admissibility of f and (4.22) we get

(f + g)
�
reiθ

�
= f(reiθ)(1 + oB(1)) = f(r)(1 + oB(1))eia(r)θ−θ0Bθ/2

= (f + g)(r)(1 + oB(1))eia(r)θ−θ0Bθ/2uniformly for θ 2 Θ(r). This proves (4.12) for f + g.
Remark 4.13. De�nition 4.5 does only require the existene of funtions a(r) and B(r)but does not assume that these are equal to the �rst and seond logarithmi derivativesof f(z).This results in a shorter proof ompared to the proof of Theorem 3.7 where wealso had to show that the asymptotis hold with the appropriate funtions (namely thelogarithmi derivatives).
Example 13. Consider the funtion

G(z, u,w) =
�
eu(osh z−1) − 1 − u(osh z − 1)

�
ewsinhzwhih is a simple modi�ation of the funtion F(z, u,w) onsidered in Example 12.

G(z, u,w) is the exponential generating funtion for set partitions having at least 2bloks of even ardinality and the oeÆient of znukwm/n! in G(z, u,w) equals thenumber of partitions of size n having k bloks of even ardinality and m bloks of oddardinality.We adopt the notation of Example 12 and set
f(z, u) = eu(osh z−1) and g(z, u) = 1 + u(osh z − 1)We have max

|z|=r,|u|=s
g(z, u) = g(r, s) = 1 + s(osh r − 1) < 1 + s

er

2and for r � R0

f(r, s)detBf(r, s)
> 2

f(r, s)

rse2r
> 2

erser/2

rse2rwhih gives
g(r, s)

f(r, s)/ detBf
<

rs

2

e2r + se3r/2

erser/2
= o(1), r → ∞.The last asymptoti is suÆient for proving (4.21) sine detBf remains bounded in Rif r remains bounded. The other onditions of Theorem 4.13 are satis�ed, too, andtherefore we may onlude that G(z, u,w) is BR-super-admissible in R with angles Θas de�ned in Example 12.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 58
4.4 E-admissibilityIn this setion we present a bivariate analogon of H-admissibility developed by Drmota,Gittenberger, and Klausner [DGK05℄. In their paper [DGK05℄ they de�ned lasses of bivariatefuntions f(z, u), alled extended-admissibility (e-admissible) funtions, suh that the randomvariable X de�ned by

Pn{X = k} =
[znuk]f(z, u)

[zn]f(z, 1)
, k � 0, (4.23)satis�es a entral limit theorem. An important property of these lasses of e-admissiblefuntions is the existene of many simple losure properties whih simplify the task of es-tablishing e-admissibility and an be used to automatially prove a entral limit theorem for

X given only a deonstrution of the ombinatorial lass onsidered. For details onerningthis automation we refer to their paper [DGK05℄ where they also present an implementationof this onept using Maple.Roughly speaking, a bivariate gf f(z, u) is e-admissible if it is� H-admissible w.r.t. z for u in some real interval around u = 1 and� satis�es Lemma 3.1 w.r.t. u for z 2 R
+.Some additional requirements are needed in order to have simple algebrai losure properties.We have

Definition 4.6 (e-admissibility). Let f(z, u) =
∑

n,k�0 ankznuk be a bivariate funtionanalyti in the domain
∆R,η =

{
(z, u) 2 C

2 : |z| < R, |u| < 1 + η
}for some R > 0 and η > 0. Assume further that there exists R0 < R suh that

f(r, 1) > 0, R0 < r < R.Let a, �a, b, �b, c denote the derivatives of log f(z, u) w.r.t. log z and log u, that is
a(z, u) = z

fz(z, u)

f(z, u)
, �a(z, u) = u

fu(z, u)

f(z, u)
,

b(z, u) = zaz(z, u) = z
fz(z, u)

f(z, u
+ z2fzz(z, u)

f(z, u)
− z2

�
fz(z, u)

fz, u

�2

,�b(z, u) = u�au(z, u), c(z, u) = uau(z, u).The funtion f(z, u) is alled e-admissible in ∆R,η if and only if(i) Let K > 0 be an arbitrary onstant and set
ǫ(r) = K

 �b(r, 1) −
c(r, 1)2

b(r, 1)

!−1/2

. (4.24)



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 59Then, for eah hoie of K there exists a funtion δ(r) : (R0, R) → (0, π) suh thatuniformly for |φ| < δ(r) and 1 − ǫ(r) � u � 1 + ǫ(r) we have
f(reiφ, u) ∼ f(r, u) exp iφa(r, u) −

φ2

2
b(r, u)

!
, as r → R, (4.25)and uniformly for δ(r) � |φ| � π and 1 − ǫ(r) � u � 1 + ǫ(r) we have

f(reiφ, u) =
o(f(r, u))p

b(r, u)
, as r → R. (4.26)(ii) b(r, 1) → ∞ as r → R;(iii) Uniformly for 1 − ǫ(r) � u � 1 + ǫ(r) we have b(r, u) ∼ b(r, 1) as r → R.(iv) For r 2 (R0, R) and u 2 [1 − ǫ(r), 1 + ǫ(r)] we have

a(r, u) = a(r, 1) + c(r, 1)(u − 1) + O(c(r, 1)(u − 1)2). (4.27)(v) For all r < R and u in some arbitrary but �xed omplex neighbourhood of 1 wehave �a(r, u) = O(�a(r, 1)) and �b(r, u) = O(�b(r, 1)). (4.28)(vi) �b(r, 1) −
c(r,1)2

b(r,1)
→ ∞ as r → R;(vii) ǫ(r)3�b(r, 1) → 0 as r → R;(viii) For every λ > 0 we have, as r → R,�a(r, 1) = O(f(r, 1)λ) and �b(r, 1) = O(f(r, 1)λ).

Remark 4.14. The lass of funtions that are e-admissible in a domain ∆R,η will bedenoted by ER.
Remark 4.15. The de�nition of e-admissibility implies that for every f(z, u) 2 ER wehave f(z, 1) 2 HR.
Theorem 4.14. Let f(z, u) be e-admissible for |z| < R. Then we have

[zn]f(z, u) =
f(r, u)

rn
p

2πb(r, u)

 exp −
(a(r, u) − n)2

2b(r, u)

!
+ o(1)

!uniformly in n and u 2 [1 − ε(r), 1 + ε(r)] as r → R.The same arguments as in the proof of Theorem 3.1 an be used to prove Theorem 4.14.
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Theorem 4.15. Let f(z, u) be e-admissible in ∆R,η suh that for suÆiently large n alloeÆients ank are nonnegative. Let (Xn) be the sequene of random variables relatedto f(z, u) via (4.23). The positive solution of a(r, 1) = n will be denoted by rn.For n � 0 set

µn = �a(rn, 1),

σ2
n =

|detB(rn, 1)|

b(rn, 1)
= �b(rn, 1) −

c(rn, 1)2

b(rn, 1)

Yn =
Xn − µn

σn
.Then the following entral limit theorem holds:

Yn
w→ N (0, 1), n → ∞. (4.29)Furthermore, we have, as n → ∞,

EXn = µn + o(σn)2 (4.30)and
VXn = σn(1 + o(1)). (4.31)Proof. First note that f(z, 1) is H-admissible and therefore rn is uniquely determined at leastfor n suÆiently large and rn → R as n → ∞.Next, onsider the moment generating funtion of Xn,

mn(t) =
[zn]f(z, et)

[zn]f(z, 1)
, |t| < ǫ(rn).We note that t → 0 as n → ∞. An appliation of Theorem 4.14 gives

[zn]f(z, 1) =
f(rn, 1)

rn
n

p
2πb(rn, 1)

(1 + o(1))

[zn]f(z, et) =
f(rn, et)(1 + o(1))

rn
n

p
2πb(rn, et)

exp −
(a(rn, et) − a(rn, 1))2

2b(rn, et)

!as n → ∞. (4.28) ensures appliability of Lemma 3.1 to the seond argument of f(r, et), viz.
f(r, et) = f(r, 1) exp t�a(r, 1) +

t2

2
�b(r, 1) + O(�b(r, 1)t3)

!
, r → R.Conditions (iii) and (iv) of De�nition 4.6 give, as n → ∞ (and so t → 0),

(a(rn, et) − a(rn, 1))2

2b(rn, et)
=

c(rn, 1)(et − 1)2 + O(c(rn, 1)(et − 1)3)

2b(rn, 1)(1 + O(t))

=
c(rn, 1)t2

2b(rn, 1)

 
1 + O

 
c(rn, 1)2

b(rn, 1)
t3

!!
.
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mn(t) = exp tµn +

t2

2
σ2

n + O

 
c(rn, 1)2

b(rn, 1)
t3

!
+ o(1)

!for |t| < ǫ(rn) as n → ∞. Condition (vi) shows that c(r, 1) < �b(r, 1)b(r, 1) and thereforeondition (vii) �nally gives
mn(t) = exp tµn +

t2

2

 �b(rn, 1) −
c(rn, 1)2

b(rn, 1)

!!
(1 + o(1)) (4.32)for |t| < ǫ(rn) as n → ∞.Hene the moment generating funtion of Yn is given by

Mn(s) = e−sµn/σnmn

�
s

σn

�
= es2/2(1 + o(1)) (4.33)for |s| < K whih proves (4.29).The onvergene Mn(s) → et2/2, n → ∞, is uniform in every ompat set and thereforethe sequene (Yn) has an exponential tail (see [Flajolet,Soria,Se.4℄ for details). This impliesthe onvergene of all moments. In partiular we have

EXn = µn + σnEYn = µn + o(σn)

VXn = σ2
nVYn = σ2

n(1 + o(1)).Without proof we state the following two theorems whih establish various losure prop-erties satis�ed by ER. The proofs an be found in [DGK05℄.
Theorem 4.16. The following lasses of funtions are e-admissible:� Let P(z, u) =

∑
npnzknuln be a polynomial in z and u with real oeÆients andset P(z, 1) =

∑
mbmzm. De�ne

K = maxE = max{

ki + kj : det ki li
kj lj

! 6= 0

}

I = {(i, j) : ki + kj = K}.Then eP(z,u) 2 E∞ if and only if the following onditions are satis�ed:(i) For every d > 1 there exists an m 6� 0 mod d suh that bm 6= 0. Moreover,for md = max{m 6� 0 mod d : bm 6= 0} we have bmd
> 0.(ii) E 6= ; and

∑

(i,j)2I

pipj

 det ki li
kj lj

!!2

> 0.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 62(iii) max{kj : pj 6= 0} < 3K/5.� If f(z) 2 HR and g(u) is analyti for |u| � 1 + ζ and satis�es g(1) > 0 as well as
g 0(1) + g 00(1) >

g0(1)2

g(1)
, then exp �g(u)f(z)

� 2 ER.
Theorem 4.17. Suppose that f(z, u), g(z, u) 2 ER, h(z) 2 HR and P(z, u) is a polynomialwith positive real oeÆients. Then the following funtions are in ER, too:� f(z, u)g(z, u)� h(z)f(z, u)� P(z, u)f(z, u)� ef(z,u)� eP(z,u)h(z) if P(z, u) is not independent of u� eP(z,u)+h(z) if R = ∞ and P(z, u) is not independent of u� f(z, u) + Q(z, u) where Q(z, u) is an arbitrary polynomial.
Example 14. Consider the bivariate gf for permutations having yles of length � ℓonly with u marking the number of yles, viz.

g(z, u) = exp0�u

ℓ∑

k=1

zk

k

1A .In order to establish e-admissibility for g(z, u) we have to hek the onditions of The-orem 4.16:We see that K is well-de�ned if and only if ℓ � 2. In this ase K = 2ℓ − 1 and
I = {(ℓ − 1, ℓ), (ℓ, ℓ − 1)}. Conditions (i) and (ii) are learly satis�ed and from ondition(iii) we see that g(z, u) is e-admissible if and only if ℓ > 3.The same argumentation shows that all funtions of the formexp0�u

ℓ∑

k=1

αkzk

1A , αk > 0,are e-admissible if and only if ℓ > 3.



Chapter 5

Number of ComponentsLet C and S denote two labelled ombinatorial lasses with exponential generating funtions
C(z) =

∑
n�1 Cnzn and S(z) =

∑
n�0 Snzn respetively. We assume that C does not ontainobjets of size zero and that every objet of S an be uniquely represented as a disjoint unionof objets in C. The elements of C will be referred to as onneted objets. Theorem 1.4 tellsus that C(z) and S(z) are related via

S(z) = eC(z). (5.1)Bell, Bender, Cameron, and Rihmond [BBCR00℄ investigated the possible behaviour ofthe sequene Cn/Sn and proved the following theorem.
Theorem 5.1. Let S, C, S(z) and C(z) be as desribed above. Furthermore, assume that
C(z) is analyti in |z| < R, 0 � R < ∞.Consider the sequene {ρn : n 2 I} where ρn = Cn/Sn and I = {n 2 N : Sn 6= 0} andset

ρinf = lim inf
n2I

ρn, ρsup = lim sup
n2I

ρn.Then(i) If R = 0 then 0 � ρinf � ρsup = 1;(ii) If R > 0 and C(R) diverges then 0 = ρinf � ρsup � 1;(iii) If R > 0 and C(R) onverges then (ρinf, ρsup) 2 [0, 1]2 − {(0, 0), (1, 1)}.If S(z) is an H-admissible funtion then the seond impliation of the last theorem applies.But in this ase, we an say even more as was shown by Bender, Cameron, Odlyzko, andRihmond [BCOR99℄.
Theorem 5.2. We adopt the notation of the last theorem. If S(z) is H-admissible in
|z| < R, 0 < R � ∞, then C(R) diverges and we have ρn → 0 as n → ∞. That is, theprobability of onnetedness tends to zero as the size of the strutures onsidered tendsto in�nity. 63



CHAPTER 5. NUMBER OF COMPONENTS 64Proof. The H-admissibility of S(z) implies that S(r) → ∞ as r → R and this implies that
C(R) = ∞ whih means divergene.Set b(r) =

�
d

dlog r

�2 log S(r). Then we have for any 0 < ε < 1 and M = (1 − ε)2/2

Sn ∼
eC(rn)

rn
n

p
2πb(rn)

>
e(1−ε)C(rn)

rn
n

> MC(rn)
C(rn)

rn
n

� MC(rn)Cn.Hereby, the �rst relation is a onsequene of H-admissibility (Corollary 3.2) and the seondone follows from the fat that b(r) = S(r)ε for all ε > 0 (Corollary 3.3). The remaininginequalities hold sine the sum of nonnegative terms is at least as large as a single term.The proof is ompleted by noting that C(rn) → ∞ as n → ∞.In the remaining of this setion we onsider some instanes of the general setting desribedabove.
5.1 The Polynomial CaseCan�eld [Can77℄ established the normal limit law for polynomials C(z) having real nonneg-ative oeÆients.Although all funtions (exept the degenerated ase) onsidered in this setion are BR-admissible, too, Can�eld's assumptions an be heked more easily and a entral limit theo-rem follows without muh work.Can�eld's method of proof is similar to the one establishing the normal limit law fore-admissible funtions (see Theorem 4.15): using Hayman's ideas, Can�eld proved the limitlaw via pointwise onvergene of the orresponding moment generating funtions. The proofswill be omitted an an be found in [Can77℄.
Theorem 5.3. Let C(z) =

∑m
k=1 ckzk be a polynomial having real nonnegative oeÆientsand set

S(z, u) = euC(z).Further de�ne the funtions
A(z) = zC 0(z) and B(z) = zA 0(z)and let r(z) denote the inverse funtion of A(z). Without loss of generality, we assumethat gd{k : ck 6= 0} = 1 and m > 1.Then the random variable Xn de�ned by

P{Xn = k} =
[znuk]S(z, u)

[zn]S(z, 1)
8n 2 I, 8k 2 N

dwhere I onsists of those numbers for whih [zn]S(z, 1) > 0 is asymptotially normalwith mean
µn = C(r(n))
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σ2

n =

s
C(r(n)) − A(r(n))2

B(r(n)
.

Remark 5.1. (i) If gd{k : ck 6= 0} = d > 1 then we have Cn = 0 if d 6 |n and thepolynomial C(z1/d) satis�es the requirements of the last theorem.(ii) The ase m = 1 onstitutes a degenerate ase sine then the whole probabilitymass is onentrated at µn.We ontinue with the example of Setion 2.3.1. Note that this funtion is not e-admissible(see Setion 4.4, Example 14).
Example 15. Reall the egf P(z, u) for the permutations having only yles of length 1and 2 (u marking the number of yles):

P(z, u) = eu(z+z2/2).Thus, we have
C(z) = z +

z2

2
, A(z) = z + z2, B(z) = z + 2z2.The inverse funtion r(x) of A(x) for x 2 [−1/4,∞) is given by

r(x) = −
1

2
+

s
1

4
+ x.Therefore, one sees, using Theorem 5.3, that the number of yles is asymptotiallynormal with mean

µn =
n

2
+

1

2

s
1

4
+ n −

1

4and variane (setting y = n + 1
4
)

σ2
n =

s
y2 + y(1 − 2

p
y)

4(2y −
p

y)
=

r
y

8

vuut1 +
1 − 3

2

p
y

y − 1
2

p
y

∼

s
n

8
+

1

32
.This shows that the distribution is asymptotially onentrated.

5.2 Set PartitionsThe exponential generating funtion for the number of partitions of a set of size n is givenby
F(z) =

∑

n�0

̟n
zn

n!
= exp (ez − 1) . (5.2)The number ̟n is known as the n-th Bell number.Applying the onepts of Hayman [Hay56℄ and Harris and Shoenfeld [HS68℄ we obtainasymptotis for ̟n as n → ∞. We will then study some parameters on the set of partitionsas n → ∞ and obtain limit laws for these parameters.
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5.2.1 Total NumberThe funtion F(z) is seen to be H-admissible in C with the funtions

a(r) = rer and b(r) = (r + 1)rer.Thus, we get a �rst approximation to ̟n by an appliation of Corollary 3.2, viz.
̟n ∼

n! exp (ern − 1)

rn
n

p
2πnrn

(5.3)where rn is the unique positive solution of the equation
rer = n. (5.4)De Bruijn [dB81, se. 2.4℄ shows that, for n large enough, the solution of (5.4) an berepresented as

rn = logn − log logn +
∑

k�0

∑

m�0

ckm
(log logn)m+1

(log n)k+m+1
, ckm 2 C. (5.5)As F(z) is the exponential of an H-admissible funtion it is HS-admissible, too, and wean get a full asymptoti expansion by an appliation of Theorem 4.1. The quantities ofDe�nition 4.1 now read

A(z) = ez − 1

Bk(z) =

{
z(ez − 1) if k = 1
zk

k!
ez else

B(z) =
zez

2

�
1 + z − e−z

�
Cm(un, un) = −

2um+1
n

(m + 2)! (1 + un − e−un )
−

(−1)m (1 − e−un )

(m + 2) (1 + un − e−un )where un is the unique positive solution of
u(eu − 1) = n + 1. (5.6)Thus we get the re�nement

̟n =
n!eeun −1

2un
n

p
πB(un)

 
1 +

1

8

u2
n

eun
+

5

24

u3
n + 2un(1 − e−un )

eun (1 + un − e−un )
+ o(e−un )

!
. (5.7)We lose this setion by showing that the expressions (5.7) and (5.3) are indeed asymp-totially equal. For brevity set u = un and r = rn. Setting u = r + w in (5.6) yields

n(ew − 1) + wer+w = u + 1. (5.8)
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u + 1 ∼ logn − log logn, n → ∞and therefore we know that w → 0 as n → ∞. Moreover, sine er

∼ n/ logn as n → ∞ wehave
n(ew − 1) + wer+w

∼ n

�
ew − 1

wewlogn

�
∼ nw.Combining these results we obtain

w = wn ∼
logn

n
, n → ∞.Hene un admits the same asymptoti expansion (5.5) as rn. Now we have

un = (r + w)n = rn

�
1 +

w

r

�n

= rn

�
1 +

1

n
+ o(n−1)

�n

∼ ern

eu − er = er (ew − 1) ∼
nlogn

logn

n
= 1

B(u) ∼
u2eu

2
∼

r2er

2
∼

nrn

2whih shows that (5.7) and (5.3) are asymptotially equal.
5.2.2 Stirling Numbers of the Second KindWe determine the behaviour of the number of subsets of a randomly hosen partition of aset of size n onsists of as n → ∞.The bivariate exponential generating funtion with u marking the parameter \number ofsubsets" is given by

G(z, u) = exp (u (ez − 1)) =
∑

n�0

∑

k�0

Sn,kukzn

n!where the Sn,k denote the Stirling numbers of the seond kind. The �rst and seond loga-rithmi derivatives read
a(z, u) =

 
a(z, u)�a(z, u)

!
=

 
uzez

u(ez − 1)

!
B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
u(z + z2)ez uzez

uzez u(ez − 1)

!
.Setting m = 0 and λ0 = 1 in theorem 4.11 we see that G(z, u) is BR-admissible inR =

{
(r, s)

���R0 < r and er(δ−1) < s < er/δ
}



CHAPTER 5. NUMBER OF COMPONENTS 68with angles
Θ(r, s) =

{
θ
���|θ| < (s(er − 1))−1/3−ε

}for some R0 > 0, any δ > 0 and ε > 0 suÆiently small.Let (rn,k, sn,k) 2 R denote the solution to a(r, s) = (n, k). The solution of reκr = n,
κ > 0, satis�es κr = logn − log logn + log κ + o(1) as n → ∞ and we therefore see that� rn,k satis�es, as n → ∞,

1 + o(1)

δ
logn � rn,k � δ(1 + o(1))

1 + δ
lognand� we have

n

k
=

rn,k

1 − e−rn,k
∼ rn,k, n → ∞.Hene, for any positive onstants c and C, Theorem 4.8 provides uniform asymptotis for

Sn,k when
cnlogn

< k <
Cnlogn

.The equation a(r, 1) = (n, k�) leads to
rer = n

er − 1 = k�. (5.9)The solutions rn and k�n of (5.9) satisfy
rn ∼ log n − log logn ∼ logn,

k�n ∼
nlognas n → ∞. CalulatingdetB(rn, 1)

b(rn, 1)
= (ern − 1) −

(rnern )2

(r2
n + rn)ern

∼
ern

rn
∼

n

(log n)2
, n → ∞,we see that Sn,k satis�es a loal limit law with mean and variane asymptoti to n/ logn and

n/(log n)2, respetively.The funtion G(z, u) is seen to be e-admissible, too, by Theorem 4.17 and the Sn,ktherefore satisfy a entral limit law with mean and variane�a(rn, 1) = k�n ∼
nlogn

, n → ∞,detB(rn, 1)

b(rn, 1)
∼

n

(logn)2
, n → ∞.
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5.2.3 Singleton BlocksNow, we determine the asymptoti behaviour of the parameter \number of singleton bloks"as n → ∞.The bivariate gf f(z, u), exponential w.r.t. z, with u marking the subsets of ardinality 1is given by

f(z, u) = exp (ez − 1 − z + uz) . (5.10)The �rst and seond logarithmi derivatives are given by
a(z, u) =

 
a(z, u)�a(z, u)

!
=

�
zez − z + uz

�
B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
z + z2)ez − z + uz uz

uz uz

!and we have detB(z, u) = uz2ez(z + 1 − e−z). (5.11)Write
f(z, u) = exp (ez − 1) euz−z. (5.12)Theorem 3.5 shows that exp (ez − 1) is H-admissible in C with δ(r) = (er − 1)−2/5.Now, let k1 and k2 denote arbitrary reals satisfying 0 < k1 < k2 < ∞ and setR =

{
(r, s) 2 R

2
+

���� k1 � s

r
� k2

}
,

Θ(r, s) = [0, δ(r)]2 , (r, s) 2 R.In the following, we will also use the abbreviation α = (φ, θ) 0. Let (r, s) 2 R. For α 2 Θ(r, s)we have, as r → ∞,
f
�
reiφ, seiθ

�
= f(r, s)(1 + o(1))eia(r,s)0α−α0B(r,s)α/2. (5.13)If α 2 [−π, π]2 − Θ(r, s) then���exp �rsei(φ+θ) − reiφ

���� � ers−rer (5.14)and from the proof of Theorem 3.5 we obtain���exp �ereiφ

− 1
���� � exp (er − 1) exp �−r1/4e3r/8

� (5.15)as r → ∞. Combining (5.15) and (5.14) yields
f
�
reiφ, seiθ

�
= f(r, s)o

�exp �−er/4
��

, r → ∞. (5.16)
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B(r, s) � r3er, r → ∞. (5.17)Hene (5.13) and (5.16) imply (4.12) and (4.13) respetively and therefore f(z, u) is BR-admissible in R with angles Θ(r, s) and funtions a(r, s) and B(r, s). We may therefore applyTheorem 4.8 to f(z, u). The ombinatorial interpretation of f(z, u) reveals that Λf = Z

2, thatis d(Λf) = 1, and the equation a(r, s) = (n, k) 0 reads
rer − r + rs = n,

rs = k.
(5.18)This leads to

rer
�
1 − e−r

�
= n − k (5.19)and therefore we see that the solution rn,k has got the same asymptoti expansion as rn−kin (5.5).Let (rn,k, sn,k) 2 R denote the solution to (5.18). Theorem 4.8 now yields

[znuk]f(z, u) =
f(rn,k, sn,k)r−n

n,ks−k
n,k

2π
q

r3
n,ke

rn,k

(1 + oB(1)) (5.20)and from (5.18) we see that (5.20) is valid for (n, k) satisfying
k1(1 + o(1)) � k

(logn)2
� k2(1 + o(1)), n → ∞.An interesting fat to note is that normality annot be established using the onept ofBR-admissibility. Adopting the notation of De�nition 4.5, we have

Proposition 5.1. If f(z, u) is BR-admissible in R � R
2
+ with angles Θ, then detB(r, 1)is bounded in R.Proof. If r is bounded away from 0, it follows from (5.11) thatdetB(r, s) � r3ser.Therefore, we haveqdetB(r, s)

|f(r, seiθ)|

f(r, s)
� s1/2r3/2 exp�r(s os θ − s +

1

2
)

�
. (5.21)Observing that the exponent of (5.21) is nonnegative foros θ � 1 −

1

2s
(5.22)and using the inequality os x � 1 − x2

2
, x 2 R, we see thatdiamΘ(r, s) � 1p

s
. (5.23)
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f(z, u) is BR-admissible and thus, we know thatdiamΘ(r, s) = oB(1), (r, s) 2 R. (5.24)Combining (5.23) and (5.24) we see that detB(r, s) is bounded in R if s remains bounded.The funtion (5.10) is seen to be e-admissible by Theorem 4.17 and thus the parameteronsidered is asymptotially normal distributed. The solution rn of a(r, 1) = rer = n satis�es
rn ∼ logn − log logn as n → ∞ and therefore the asymptoti mean and variane are givenby �a(rn, 1) ∼ logndetB(rn, 1)

b(rn, 1)
=

(r3
n + r2

n)ern − r2
n

rn(rn + 1)ern
∼ lognrespetively.

5.2.4 A Multivariate Limit LawIn Setion 4.3, Example 12 we showed that the funtion
F(z, u,w) = eu(osh z−1)ewsinhzis BR-admissible inR =

{
(r, s, t)

��� R0 � r, (osh r − 1)δ−1 < s < (osh r − 1)1/δ, (sinh r)δ−1 < t < (sinh r)1/δ
}with matrix

B(r, s, t) =

0B� r(rs + t) osh r + r(rt + s) sinh r rs sinh r rt osh r

rs sinh r s(osh r − 1) 0

rt osh r 0 t sinh r

1CA .The orresponding funtion a(r, s, t) is given by
a(r, s, t) =

0B� r(s sinh r + t osh r)

s(osh r − 1)

t sinh r

1CA .In order to determine the loal limit we proeed as desribed in Setion 4.3, Remark 4.10.The equation
a(r, 1, 1) =

0B� rerosh r − 1sinh r

1CA =

0B� n

k�
m� 1CA
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n asymptotially given by

rn ∼ logn − log logn

k�n ∼
n

2 log n

m�
n ∼

n

2 log nas n → ∞. Furthermore, we have
B(r, 1, 1) ∼

0B� n logn n
2

n
2

n
2

n
2logn

0
n
2

0 n
2 logn

1CA , n → ∞.In this ase we have
B1,1 = n log n, B1,2 =

1

2

 
n

n

!
, B2,2 =

1

2

 
nlogn

0

0 nlogn

!whih gives
D = B2,2 − B1,2(B1,1)

−1B 0
1,2 =

1

2

 
n

2 logn
− n

2logn

− n
2logn

n
2 logn

!
.Now, let (Xn : n � 0) denote the sequene of random variables assoiated with F(z, u,w)as desribed in Setion 1.4. If π is a partition of a set of size n, then Xn(π) = (k,m) where

k is the number of bloks of π of even ardinality and m is the number of bloks of oddardinality. Furthermore,
P{Xn = (k,m)} =

[znukwm/n!]F(z, u,w)

[zn]F(z, 1, 1)
.It follows from the BR-admissibility of F(z, u,w) that Xn satis�es a loal limit theoremwith means vetor asymptotially equal to (k�n,m�

n) and ovariane matrix asymptotiallyequal to D as n → ∞. So we an expet that a randomly hosen partition has about equallymany bloks of even and odd size.
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