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Abstract

The goal of this thesis is to provide a deeper insight into the inner workings of the matrix
tree theorem. For this it introduces G. R. Kirchhoff’s matrix tree theorem and shows differ-
ent approaches to prove it: the nowadays canonical proof via the Cauchy–Binet formula,
G. R. Kirchhoff’s original approach used in 1847, one employing the inclusion–exclusion
principle, a similar one applying a sign-reversing involution to remove subgraphs con-
taining cycles, another using deletion–contraction via induction, and a probabilistic proof
via random walks. The chapter closes with mentions of similar theorems, including the
matrix tree theorem on edges, the matrix tree theorem using the signless Laplacian, and
the Markov chain tree theorem. The previously presented methods are then applied to
prove the matrix tree theorem on semirings and for hypergraphs. To formulate these gen-
eralisations, the symmetric extension of semirings, bideterminants, arboreal hypergraphs,
hypertrees, and the Pfaffian are defined.

Das Ziel dieser Masterarbeit ist es, einen tieferen Einblick in verschiedene Aspekte des
Matrix-Baum-Theorems zu vermitteln. Es wird eine Einführung in G. R. Kirchhoffs Matrix-
Baum-Theorem geboten, wofür verschiedene Beweise präsentiert werden: der heute kanoni-
sche Beweis via die Cauchy-Binet Formel, G. R. Kirchhoffs ursprünglicher Zugang aus 1847,
ein weiterer via das Inklusion-Exklusion Prinzip, ein sehr ähnlicher Beweis mit einer soge-
nannten Vorzeichen-umkehrenden Involution, um Subgraphen mit Zyklen zu entfernen,
eine weitere Methode via Löschen und Zusammenziehen von Kanten, und ein probabilisti-
scher Beweismit Irrfahrten. Das Kapitel schließtmit Erwähnungenweiterer ähnlicher Sätze,
unter anderem dem Matrix-Baum-Theorem auf Kanten, dem Matrix-Baum-Theorem mit
der vorzeichenlosen Laplace’schen Matrix, und dem Markov-Ketten-Baum-Satz. Die zuvor
vorgestellten Methoden werden dann benutzt, um das Matrix-Baum-Theorem auf Semirin-
gen und für Hypergraphen zu beweisen. Um diese Verallgemeinerungen zu beschreiben,
werden die symmetrische Erweiterung, Bideterminanten, arboreale Hypergraphen, Hy-
perbäume und die Pfaff’sche Determinante definiert.
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Getting There 1
This first chapter is concerned with building the foundation required for the matrix tree
theorem. It consists of a short historical introduction, basic definitions and some specialised
notation. We continue with a short proof employing the Cauchy-Binet formula, which is
also proven. Finally, Cayley’s theorem and Scoins’ theorem are derived from the matrix
tree theorem as corollaries.

1.1 Introduction

The matrix tree theorem is a theorem within the field of graph theory. Its first formulation
by G. R. Kirchhoff in 1847 is concerned with galvanic currents—nowadays called direct
current or DC for short—in electrical circuits [Kir47]. He notes a way to count the combi-
nations without closed shapes (geschlossene Figuren) from his two current and voltage laws,
which he formulated in 1845 [Kir45]. His electrical circuits will later form the basis for
graphs, on which the trees—which are the combinations without closed shapes—will be
counted. We will take a closer look at this approach in Section 2.1. Interestingly enough,
this first formulation predates both the notion of matrices and of trees.1

Work on the theoremdid not stop and soW.Ahrens separated the primal formof the the-
orem from its real-world connection in electrical circuits and gave a “purely mathematical
approach” [Ahr97, p. 21], while in the meantime C. W. Borchardt and A. Cayley both inde-
pendently proved a special case nowadays known as Cayley’s theorem. C. W. Borchardt
was more interested in a mathematical formulation and A. Cayley himself tried to find a
way to count the number of combinations of paraffin wax C𝑛H2𝑛+2 [Cay75, p. 257].2 Many
years later—in 1962—H. I. Scoins proved another special case [Sco62]. In the meantime a
generalisation was found, namely Tutte’s theorem. It operates on directed graphs, in which
every connection has an intrinsic direction. This is in contrast to the electrical circuits used
by G. R. Kirchhoff, which carry current in any direction.

An early proof of the matrix tree theorem via the Cauchy–Binet formula can be found
in [Tre54]. We will follow this approach in this chapter. In 1970 J. W. Moon dedicated an
entire section to the matrix tree theorem and also gave a short synopsis on the then recent
developments [Moo70, Section 5]. We mark this as the border between the history of the
matrix tree theorem and modern developments. The different proof methods discussed in
Chapter 2 were all discovered after 1970—apart from the historical approach, which was
only formalised later.

The first chapter is concerned about building the necessary foundation for the matrix
tree theorem, which states that the number of spanning trees in a given graph is the
determinant of a minor of the Laplacian matrix. Note that we are interested in the number
of spanning trees andnot the number of different types. For example, the graph in Figure 1.1

1The term matrix was coined by J. J. Sylvester in 1850 [see Syl50] and tree was first used in a mathematical
context by A. Cayley in 1857 [see Cay57].

2This is often misattributed to [Cay57], but A. Cayley himself wrote:“In the paper of 1857, which contains
no application to chemical theory, the number of branches from a knot was unlimited” [Cay75, p. 258]. Since
this number models the chemical combinations, it had to be limited to better represent the properties of the
elements. Cayley’s theorem is therefore only a stepping stone.

1



1. Getting There

Figure 1.1: The diamond graph and all its eight spanning trees.

contains eight and not two spanning trees. This can be formalised by considering only
labelled graphs, in which vertices can be distinguished from each other. The chapter
concludes by proving the theorem via the “simple proof […] based upon the theorem of
multiplication of determinantal arrays which was discovered independently by Binet and
Cauchy” [Tre54, p. 1005] and giving some examples and applications.

The second chapter gives different approaches to only minor variations of the matrix
tree theorem. Most proofs in this chapter require minimal additional notation and can be
proven with regular methods of graph theory, linear algebra and the like. The main goal
is to present these approaches and give deeper insight in the structure and distribution of
trees within a graph.

The first of those approaches is the historical approach used by G. R. Kirchhoff, which
results in the original formulation, which is rarely used today. We show that it can be used
to formulate the matrix tree heorem in its modern form and the cycle theorem, which also
gives the number of spanning trees, albeit via a completely different approach.

The second method uses an involution, which removes subgraphs containing cycles.
This removal results in keeping all trees and only trees. The natural generalisation of this
approach is to directed graphs, for which the theorem was first proven by W. T. Tutte. We
use two different variants, where one considers sets of functions and the other working on
the trees themselves.

Another way to prove the matrix tree theorem is via an induction on the structure
of the graph and merging vertices. Using this approach thus allows one to have several
edges between two vertices. Graphs with more than one edge between vertices are called
multigraphs. While this approach was first employed by H. Hutschenreuther, he did not
consider multigraphs. These were only applied later by M. Lewin.

The final approach originates from the goal of uniformly generating random spanning
trees. Thus, it employs much notation from probability theory. Instead of considering the
set of all spanning trees, one generates a single one via random walks. Its probability is
then proportional to the number of spanning trees.

Many more special cases, variations and generalisations of the matrix tree theorem
are known. Some of these are discussed in Section 2.5 and Chapter 3. The generalisations
require amore in-depth introduction to their respective fields as they use highly specialised
notation. The first one enables us to apply thematrix tree theorem to edge-weighted graphs,
where the graphs are in a commutative semiring. The second one generalises graphs to
hypergraphs, in which an edge may contain an arbitrary amount of vertices. However,
both use previously mentioned proof strategies. Thus, they can be considered applications
of Chapter 2.

2



1.2. Preliminaries

𝑣

𝑤

𝑢

Figure 1.2: A graph with three connected components. Vertices 𝑣 and 𝑤 are connected and
therefore in the same connected component, 𝑢 is not. The connected component containing
𝑢 is also a tree.

1.2 Preliminaries

We will now recall some basic definitions of graph theory, of which the first one is the
definition of a graph itself: We distinguish between a directed graph and an undirected
graph. A directed graph 𝐺 is a pair (𝑉, 𝐸) consisting of the finite set 𝑉 ≔ {𝑣1, … , 𝑣𝑛} of
vertices and the set 𝐸 ≔ {𝑒1, … , 𝑒𝑚} of edges, where 𝑒𝑖 ≔ (𝑣𝑗, 𝑣𝑘). As a shortcut we will
often write {1, … , 𝑛} ≕ [𝑛] for the set of vertices instead. An undirected graph is a graph
in which the edges are not considered pairs, but sets 𝑒𝑖 ≔ {𝑣𝑗, 𝑣𝑘} instead. So they do
not contain an intrinsic direction. We will call them digraphs and graphs respectively.
A typical identification of undirected graphs is as directed graphs, in which every edge
(𝑣𝑖, 𝑣𝑗) ∈ 𝐸 has an inverse edge (𝑣𝑗, 𝑣𝑖) ∈ 𝐸. We will often use this identification implicitly
and write (𝑣𝑖, 𝑣𝑗) for undirected graphs also.

Vertices joined by an edge are called adjacent and are each others neighbours. The
numbers of neighbours of a given vertex 𝑣 is called the degree deg(𝑣). A walk in a graph
𝐺 is a finite sequence 𝑒1𝑒2 … 𝑒𝑘 of edges, where two subsequent edges share one vertex.
A walk that starts on the same vertex it ends on is called a closed. So a walk may have
repeated vertices and edges. If only vertices are allowed to be repeated, the walk is called
a trail; if neither are repeated, the walk is called a path. Closed trails and closed paths are
called circuits and cycles, respectively. Two vertices are called connected iff there exists a
path between them. Connected components of a graph are the maximal subsets of vertices,
which are connected with each other. A tree is a connected acyclic graph, a tree is spanning
iff it is a subgraph of 𝐺 connecting all vertices.

Example 1.2.1. An example for a graph with three connected components is given in
Figure 1.2. It consists of ten vertices, of which three are labelled with 𝑢, 𝑣 and 𝑤, and nine
edges. The vertices 𝑣 and 𝑤 are connected via an unlabelled vertex, and thus must appear
in the same connected component. The connected component containing 𝑢 is a tree, but
not a spanning tree as it does not reach all vertices of the graph. In fact, the graph cannot
contain a spanning tree as it is not connected. The connected component on the lower
right containing only a single vertex and no edges is also considered a tree.

Definition 1.2.2. Let 𝐺 be a graph, then the number of all spanning trees is 𝜅(𝐺).

We will heavily employ matrix notation for graphs, so we define some special matrices
upfront: The zero matrix, denoted by 𝟘, contains 0 in every entry, while the one matrix 𝟙
contains 1 in every entry. We will also often use the identity 𝐼𝑑, which contains 1 in its
diagonal elements and 0 otherwise.

The following definition provides three matrices, which arise naturally working with
graphs. While sets of vertices and edges suffice to define graphs, they are often not enough
for calculations on graphs.

3



1. Getting There

Definition 1.2.3 [Jan+15, Section 2.1, Section 3.1, and Section 2.20]. We will now define
three possibilities to condense the definition of a graph into a matrix:

i. The adjacency matrix 𝐴𝐺 of a graph 𝐺 is an 𝑛 × 𝑛 matrix, where (𝐴𝐺)𝑖𝑗 ≔ 1 iff (𝑖, 𝑗) ∈ 𝐸
and 0 otherwise.

ii. The oriented incidence matrix 𝐵𝐺 of a graph 𝐺 is an 𝑛 × 𝑚 matrix, where

(𝐵𝐺)𝑖𝑗 ≔
⎧{{
⎨{{⎩

1 if (𝑖, 𝑘) = 𝑒𝑗 and 𝑖 < 𝑘 for some 𝑘 ∈ 𝑉,
−1 if (𝑖, 𝑘) = 𝑒𝑗 and 𝑖 ≥ 𝑘 for some 𝑘 ∈ 𝑉,
0 otherwise.

iii. The Laplacian matrix 𝐿𝐺 of a graph 𝐺 is an 𝑛 × 𝑛 matrix, where

(𝐿𝐺)𝑖𝑗 ≔
⎧{{
⎨{{⎩

deg 𝑣𝑖 if 𝑖 = 𝑗,
−1 if 𝑖 ≠ 𝑗, (𝑖, 𝑗) ∈ 𝐸,
0 otherwise.

As the order of the vertices is chosen arbitrarily, so is the sign in Definition 1.2.3.ii. In
the literature different ways are used, so no real standard exists. We will later generalise
the notion of the incidence matrix, which will encompass all standards. For now, the
edge-orientation is predetermined by the indexation of the vertices.

The adjacency matrix, the oriented incidence matrix and the Laplacian matrix are
interconnected in the following way, which can be proved by a simple calculation.

Lemma 1.2.4 [Jan+15, Section 2.20]. Let 𝐺 be a graph without loops, then

𝐵𝐺𝐵T
𝐺 = 𝐿𝐺 = diag(deg(𝑣𝑖)) − 𝐴𝐺.

Lemma 1.2.5. Let 𝐺 be a graph with 𝑘 connected components, then

rank 𝐵𝐺 = rank 𝐿𝐺 = 𝑛 − 𝑘.

Proof. Without loss of generality let 𝑘 = 1. For more connected components the vertices
and edges can be sorted to result in a block diagonal matrix. One block now corresponds
to one connected component.

Let 𝑣 be a vector, such that 𝐵T
𝐺𝑣 = 0. The matrix 𝐵T

𝐺 is very sparsely populated, so only
two entries are ±1, while the rest are 0. These two entries are exactly the endpoints of
an edge. We therefore have 𝑣𝑖 = 𝑣𝑗 for two neighbouring vertices 𝑖 and 𝑗. This equality
transitively permeates through the whole connected component and we conclude that all
entries of 𝑣 must be the same. The kernel of 𝐵T

𝐺 therefore has a dimension of at most 1.
However, it cannot be 0, since the rows of 𝐵𝐺 are linearly dependant. This is, because

every edge contributes an entry +1 and −1 each in a single row. So if we take the sum over
all vertices, i.e. rows, each edge contributes +1 and −1 andwe get a non-trivial combination
of 0. So the rank must be 𝑛 − 1.

The ranks of 𝐵𝐺 and 𝐿𝐺 are equal, because a vector 𝑣 is in the kernel of 𝐿𝐺 iff 𝐿𝐺𝑣 =
𝐵𝐺𝐵T

𝐺𝑣 = 0. If we now multiply 𝑣T from the left, we get 𝑣T𝐵𝐺𝐵T
𝐺𝑣 = ‖𝐵T

𝐺𝑣‖ = 0 and
therefore 𝐵𝐺𝑣T = 0. Let us now assume that 𝐵𝐺𝑤T = 0 for some vector 𝑤. Then clearly
also 𝐵T

𝐺𝐵𝐺𝑤T = 𝐿𝐺𝑤T = 0. So 𝐿𝐺 and 𝐵T
𝐺 have a kernel of the same dimensionality. They

also have the same number of columns and thus the same rank.

4



1.2. Preliminaries

An immediate consequence of this is that 0 is always an eigenvalue of 𝐿𝐺. Therefore
it would also be possible to count the number of connected components by counting the
multiplicity of the eigenvalue 0, because every connected component could be interpreted
as a graph by itself having its own Laplacian matrix with the eigenvalue 0.

We will later often require so-called minors of a matrix. These are matrices, which have
several rows or columns removed. As few theorems require these as intensively as the
matrix tree theorem, there is no consensus on the notation. One, that has proven to be
quite effective, is the following:

Definition 1.2.6. Let 𝐴 be an 𝑚 × 𝑛 matrix, 𝑅 ⊆ [𝑚] and 𝐶 ⊆ [𝑛], then let 𝐴[𝑅 ∣ 𝐶] ≔
(𝐴𝑖𝑗)𝑖∈𝑅,𝑗∈𝐶 be the submatrix of 𝐴 consisting of rows in 𝑅 and columns in 𝐶. This matrix is
called a minor of 𝐴. Let also be

i. 𝐴(𝑅∣𝐶) ≔ 𝐴[[𝑚] ⧵ 𝑅∣[𝑛] ⧵ 𝐶],

ii. 𝐴[𝑅∣𝐶) ≔ 𝐴[𝑅∣[𝑛] ⧵ 𝐶],

iii. 𝐴(𝑅∣𝐶] ≔ 𝐴[[𝑚] ⧵ 𝑅∣𝐶],

and let 𝐴[𝑆] ≔ 𝐴[𝑆∣𝑆]. If the set itself is of no interest, we often omit the braces and write
𝐴[𝑟1, … , 𝑟𝑘 ∣ 𝑐1, … , 𝑐ℓ] ≔ 𝐴[𝑅∣𝐶], with 𝑅 = {𝑟1, … , 𝑟𝑘} and 𝐶 = {𝑐1, … , 𝑐ℓ}, respectively for
the variants of this notation.

Definition 1.2.7. Let 𝜋 be a bijective function on a set [𝑛], then 𝜋 is called a permutation.

Theorem 1.2.8 [GYZ13, Definition 2 in Section 6.3.1]. The set 𝑆𝑛 of all permutations on the
set [𝑛] with composition ∘ is a group, called the symmetric group.

Definition 1.2.9. The sign of a permutation 𝜋 ∈ 𝑆𝑛 is defined via its number of inversions
𝜈(𝜋) ≔ ∣{(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝜋(𝑖) > 𝜋(𝑗)}∣ as sgn(𝜋) ≔ (−1)𝜈(𝜋).

Another common way of defining the sign of a permutation is given in the following
lemma. Instead of counting the number of inversions and checking whether it is odd or
even, it condenses the sign into a single product.

Lemma 1.2.10. The sign of a permutation 𝜋 ∈ 𝑆𝑛 can be expressed as

sgn(𝜋) = ∏
1≤𝑖<𝑗≤𝑛

𝜋(𝑗) − 𝜋(𝑖)
𝑗 − 𝑖 .

Proof. We consider every factor on its own. Thus, if the permutation 𝜋 has an inversion
at (𝑖, 𝑗), we get 𝜋(𝑖) > 𝜋(𝑗) and the sign of the factor is negative. Otherwise, the factor is
positive. So the sign of the product is the same as the one of the permutation.

As 𝜋 is a bijection and the product contains every pair (𝑖, 𝑗) with 𝑖 < 𝑗, every pair
appears exactly once as a numerator and as a divisor in the product. While the order might
be swapped, the absolute values cancel out.

Theorem 1.2.11. Let 𝐴𝑛 ≔ {𝜎 ∈ 𝑆𝑛 | sgn(𝜎) = 1} be the set of even permutations, called the
alternating group. It is a subgroup of 𝑆𝑛.

The following theorem entered the canon of mathematics as a way to calculate the
determinant of the product of two rectangular matrices without explicitly multiplying
them together. This is a generalisation of the general rule det(𝐴𝐵) = det(𝐴) det(𝐵) for two
square matrices 𝐴 and 𝐵.

5



1. Getting There

Theorem 1.2.12 (Cauchy–Binet). Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐵 be an 𝑛 × 𝑚 matrix (thus 𝐴𝐵
is an 𝑚 × 𝑚 matrix), then

det(𝐴𝐵) = ∑
𝑆⊆[𝑛],|𝑆|=𝑚

det(𝐴(∅ ∣𝑆]) det(𝐵[𝑆 ∣∅)). (1.2.1)

Proof. At first, let us consider the case 𝑚 > 𝑛: Here, it holds that rank(𝐴𝐵) ≤ rank(𝐴) ≤
𝑛 < 𝑚 and therefore det(𝐴𝐵) = 0. On the other hand, there are no subsets of [𝑛] with 𝑚
elements, so the right-hand side is the empty sum and also 0.

Now let us consider 𝑚 ≤ 𝑛 and let 𝑒𝑖 be the 𝑖-th canonical basis vector with 1 in the 𝑖-th
entry and 0 otherwise. Due to the multilinearity of the determinant we can write

det(𝐴𝐵) = det
⎛⎜⎜⎜⎜⎜⎜
⎝

∑𝑛
𝑗1=1 𝐴1,𝑗1𝐵𝑗1,1 ⋯ ∑𝑛

𝑗𝑚=1 𝐴1,𝑗𝑚𝐵𝑗𝑚,𝑚

⋮ ⋱ ⋮
∑𝑛

𝑗1=1 𝐴𝑚,𝑗1𝐵𝑗1,1 ⋯ ∑𝑛
𝑗𝑚=1 𝐴𝑚,𝑗𝑚𝐵𝑗𝑚,𝑚

⎞⎟⎟⎟⎟⎟⎟
⎠

=
𝑚

∑
𝑖1,𝑖2,…,𝑖𝑚=1

𝑛
∑

𝑗1,𝑗2,…,𝑗𝑚=1
det(𝐴𝑖1,𝑗1𝐵𝑗1,1𝑒𝑖1 , 𝐴𝑖2,𝑗2𝐵𝑗2,1𝑒𝑖2 , … , 𝐴𝑖𝑚,𝑗𝑚𝐵𝑗𝑚,𝑚𝑒𝑖𝑚)

=
𝑛

∑
𝑗1,𝑗2,…,𝑗𝑚=1

det(𝐴(∅ ∣ 𝑗1, … , 𝑗𝑚]) ⋅ 𝐵𝑗1,1 ⋯ 𝐵𝑗𝑚,𝑚.

Clearly, if 𝑗ℓ = 𝑗𝑘 for some ℓ ≠ 𝑘, the determinant is 0 since the rank would not be full. Let
us now assume that all 𝑗𝑘 are distinct, then there exists a permutation 𝜎, such that the
image 𝑆 = {𝑗′1, … 𝑗′𝑚} is sorted in ascending order. Due to the linearity of the determinant,
we can write det(𝐴(∅ ∣ 𝑗1, … , 𝑗𝑚]) = sgn(𝜎) det(𝐴(∅ ∣ 𝑆]). Taking a closer look at all the
unordered sets contributing to 𝑆, after being ordered with their respective 𝜎 ∈ 𝑆𝑚, we get

∑
𝜎∈𝑆𝑚

det(𝐴(∅ ∣𝑆]) sgn(𝜎)𝐵𝑗1,1 ⋯ 𝐵𝑗𝑚,𝑚 = det(𝐴(∅ ∣𝑆]) ∑
𝜎∈𝑆𝑚

sgn(𝜎)𝐵𝑗1,1 ⋯ 𝐵𝑗𝑚,𝑚

= det(𝐴(∅ ∣𝑆]) ∑
𝜎−1∈𝑆𝑚

sgn(𝜎−1)𝐵𝑗′
𝜎−1(1),1

⋯ 𝐵𝑗′
𝜎−1(𝑚),𝑚

= det(𝐴(∅ ∣𝑆]) det(𝐵[𝑆 ∣∅)).

This holds true for all 𝑆 ⊆ [𝑛] with 𝑚 elements. So, if we consider the whole sum, we get
desired result.

We have now established a basic connection to handle graphs and connected compo-
nents via matrices. A most central part still missing is an identifier for being a tree. We
would like a way to characterise the notion of being a tree to some property of a matrix.
This is given by the determinant.

Lemma 1.2.13. Let 𝑇 be a set of 𝑛 − 1 edges of 𝐺 and 𝑣𝑖 a vertex. If 𝑇 defines a tree, then
det 𝐵𝐺(𝑖 ∣𝑇] = ±1 and 0 otherwise.

Proof. In Lemma 1.2.5 we proved that the rank of 𝐵𝐺(∅ ∣𝑇] is 𝑛 − 1 if 𝑇 is connected. Since
there are 𝑛 − 1 edges for 𝑛 vertices, there can only be a circuit iff the vertices in 𝑇 are not
all connected. So the rank is less than 𝑛 − 1 and the determinant is 0. Thus, we now only
consider a tree 𝑇. As 𝐵𝐺(∅ ∣ 𝑇] is an 𝑛 × (𝑛 − 1) matrix with rank 𝑛 − 1, removing a row
does not change the rank. So det 𝐵𝐺(𝑖 ∣𝑇] ≠ 0 iff 𝑇 is a tree. Since we have no circuits in 𝑇,
there exists an ordering of vertices and edges, such that 𝐵𝐺(∅ ∣ 𝑇] is a lower triangular
matrix and the vertex corresponding to the removed row is labelled with 𝑖. We then have
det(𝐵𝐺(𝑖 ∣𝑇]) = ±1, where the sign is directly dependant on the chosen orientation of the
edges in 𝑖.
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1.3. The Matrix Tree Theorem

1.3 The Matrix Tree Theorem

Using Theorem 1.2.12, it is possible to formulate the nowadays most canonical proof of
the matrix tree theorem. The theorem follows almost immediately from the Cauchy–Binet
formula and is thus a great example for a simple application of it.

Theorem 1.3.1 (Matrix Tree Theorem). Let 𝐺 be a graph, then det(𝐿𝐺(𝑛)) = 𝜅(𝐺).

Proof. According to Lemma 1.2.4, we have 𝐿𝐺 = 𝐵𝐺𝐵T
𝐺, so also 𝐿𝐺(𝑛) = 𝐵𝐺(𝑛 ∣∅)𝐵T

𝐺(∅ ∣𝑛).
Using Theorem 1.2.12, the determinant can be calculated via

det(𝐿𝐺(𝑛)) = ∑
𝑆⊆[𝑚],
|𝑆|=𝑛−1

det(𝐵𝐺(𝑛 ∣𝑆]) det(𝐵T
𝐺[𝑆 ∣𝑛))

= ∑
𝑆⊆[𝑚],
|𝑆|=𝑛−1

det(𝐵𝐺(𝑛 ∣𝑆])2.

Following Lemma 1.2.13, we know that det(𝐵𝐺(𝑛 ∣𝑆]) = ±1 iff the given selection 𝑆 forms
a tree with 𝑛 vertices and 𝑛 − 1 edges. Since all combinations appear exactly once, every
tree contributes 1 and thus det(𝐿𝐺(𝑛)) = 𝜅(𝐺).

Example 1.3.2. As an example, we will now calculate the number of spanning trees in the
cycle graph 𝐶𝑛 of size 𝑛 > 2, which consists of a singular cycle without any branches. The
only possible spanning trees are the ones, which remove exactly one edge. So we expect
𝜅(𝐶𝑛) = 𝑛 and, indeed, det(𝐿𝐶𝑛

(𝑛)) = 𝑛 follows.

𝐵𝐶𝑛
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1
−1 1

⋱ ⋱
−1 1

−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐿𝐶𝑛
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1

−1 ⋱
⋱ −1

−1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A popular variant of the matrix tree theorem is the following reformulation, which
disregards determinants altogether and instead uses the eigenvalues of the matrix. To
prove this algebraically—the proofs often rely on spectral theory—we will employ a trick
used in [Cam08]. We also require the following theorem.

Theorem 1.3.3 [HJ12, Theorem 1.3.12]. Let 𝐴, 𝐵 be diagonalisable 𝑛 × 𝑛 matrices. Then 𝐴 and
𝐵 commute iff they are simultaneously diagonalisable, i.e. there exists a nonsingular matrix 𝑆, such
that 𝑆𝐴𝑆−1 and 𝑆𝐵𝑆−1 are diagonal.

Theorem 1.3.4 [Big93, Corollary 6.5]. Let 𝐺 be a graph and 𝜆1 = 0, 𝜆2, … , 𝜆𝑛 the eigenvalues
of 𝐿𝐺, then the following hold:

1. Let 𝑖, 𝑗 ≤ 𝑛, then det 𝐿𝐺(1) = (−1)𝑖+𝑗 det 𝐿𝐺(𝑖 ∣ 𝑗),

2. 𝜆2 ⋯ 𝜆𝑛 = ∑𝑛
𝑘=1 det 𝐿𝐺(𝑘),

3. 𝜅(𝐺) = 𝜆2⋯𝜆𝑛
𝑛 .
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1. Getting There

Proof. We start by proving 1, for which—without loss of generality—we will only prove
that det 𝐿𝐺(1) = − det 𝐿𝐺(1 ∣ 2). We already know that ∑𝑛

𝑘=1 𝑐𝑘 = 0, where 𝑐𝑖 is the 𝑖-th
column of 𝐿𝐺. So 𝑐2 = −(𝑐1 + 𝑐3 + ⋯ + 𝑐𝑛) and we can replace this column in the matrix
and apply the multilinearity of the determinant:

det(𝐿𝐺(1)) = det(𝑐2, 𝑐3, … , 𝑐𝑛)
= det(−(𝑐1 + 𝑐3 + ⋯ + 𝑐𝑛), 𝑐3, … , 𝑐𝑛)

= det(−𝑐1, 𝑐3, … , 𝑐𝑛) +
𝑛

∑
𝑘=3

det(−𝑐𝑘, 𝑐3, … , 𝑐𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= − det(𝐿𝐺(1 ∣2))

The proof of 2 will be done in two parts: The first step is to prove det(𝐿𝐺 + 𝟙) =
𝑛2 det(𝐿𝐺(1)) and the second det(𝐿𝐺 + 𝟙) = 𝑛𝜆2 ⋯ 𝜆𝑛, where 𝟙 is the matrix with 1 in
every entry.

The first half is done by row and column operations, which do not change the deter-
minant, apart from pulling out a factor 𝑛 twice. The matrix is transformed into a block
triangular matrix, for which the determinant is straightforward to evaluate. Since summing
up all rows or columns in the Laplacian gives 0, we end up with 𝑛 in 𝐿𝐺 + 𝟙 as the only
remaining contribution is from 𝟙:

det(𝐿𝐺 + 𝟙) = det
⎛⎜⎜⎜⎜
⎝

𝑛
⋮ 𝐿𝐺(1 ∣∅) + 𝟙
𝑛

⎞⎟⎟⎟⎟
⎠

= 𝑛 det
⎛⎜⎜⎜⎜
⎝

1
⋮ 𝐿𝐺(1 ∣∅) + 𝟙
1

⎞⎟⎟⎟⎟
⎠

= 𝑛 det
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛 𝑛 ⋯ 𝑛
1
⋮ 𝐿𝐺(1) + 𝟙
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑛2 det
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
1
⋮ 𝐿𝐺(1) + 𝟙
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑛2 det
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
1
⋮ 𝐿𝐺(1)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑛2 det(𝐿𝐺(1)).

Clearly, also 𝐿𝐺𝟙 = 𝟘 = 𝟙𝐿𝐺 since multiplying with 𝟙 is essentially summing up
a row or column. Following Theorem 1.3.3 we can find a matrix 𝑆, such that both are
diagonal. The eigenvalues of 𝟙 are 𝑛, 0, … , 0 and of 𝐿𝐺 0, 𝜆2, … , 𝜆𝑛, where the eigenvectors
corresponding to 𝑛 and 0 are (1, … , 1) in both cases, and so

det(𝐿𝐺 + 𝟙) = det(𝑆(diag(𝑛, 𝜆2, … , 𝜆𝑛))𝑆−1) = 𝑛𝜆2 ⋯ 𝜆𝑛.

Combining both parts, we get 𝑛𝜆2 ⋯ 𝜆𝑛 = 𝑛2 det(𝐿𝐺(1)). Item 1 shows that the de-
terminant is independent of the removed row and column and thus we get 𝜆2 ⋯ 𝜆𝑛 =
∑𝑛

𝑘=1 det 𝐿𝐺(𝑘). Finally, 3 follows directly by applying 2 to the matrix tree theorem.

Example 1.3.5. Let us consider a complete graph 𝐾𝑛 with 𝑛 vertices. In 𝐾𝑛 every vertex is
connected to every other vertex and thus the Laplacian matrix is

𝐿𝐾𝑛
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛 − 1 −1 ⋯ −1
−1 𝑛 − 1 ⋮
⋮ ⋱ −1

−1 ⋯ −1 𝑛 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= diag(𝑛, … , 𝑛) − 𝟙.
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1.3. The Matrix Tree Theorem

Figure 1.3: The complete graphs 𝐾3, 𝐾4 and 𝐾5.

Figure 1.4: The bipartite graphs 𝐾3,3 and 𝐾2,4.

A minor of this matrix can easily transformed into an upper triangular matrix via
subtracting the last row from all others and then adding an 𝑛-th of all other rows to the
last. We end up with a matrix with 𝑛, … , 𝑛, 1 on the diagonal, −𝑛 + 2 in all other entries of
the last column and 0 everywhere else. The determinant then is 𝑛𝑛−2.

If we now take a look at the bipartite graph 𝐾𝑛,𝑚, which consists of two sets with 𝑛 and
𝑚 elements and all edges between these two sets, we get the Laplacian matrix 𝐿𝐾𝑛,𝑚

, for
which det(𝐿𝐾𝑛,𝑚

(1)) = 𝑛𝑚−1𝑚𝑛−1.

𝐿𝐾𝑛,𝑚
= ⎛⎜

⎝
diag(𝑚, … , 𝑚) −𝟙

−𝟙 diag(𝑛, … , 𝑛)
⎞⎟
⎠

} 𝑛 rows
} 𝑚 rows

Corollary 1.3.6 (Cayley’s Theorem) [Cay89]. Let 𝐾𝑛 be a complete graph with 𝑛 vertices, then
𝐾𝑛 contains 𝑛𝑛−2 spanning trees.

This result can also be reached by more basic methods. For example, since all vertices
are connected, we can count the number of sequences between the vertices. In A. Cayley’s
original proof [Cay89] he did exactly that on the example of 𝑛 = 6, where he labelled the
vertices 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, 𝜁 and noted that all vertices were interchangeable. So he could, for
example, formulate a canonical representation as a polynomial of the graphs with edges
of type (𝛼, 𝜁), (𝛼, 𝜀), (𝛼, 𝛽), (𝛽, 𝛾), (𝛾, 𝛿) ↦ 𝛼3𝛽2𝛾2𝛿𝜀𝜁. This type is illustrated in Figure 1.5.

With careful consideration he finds that there are several ways to order these canonical
representations and ends up with the polynomial

(𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀 + 𝜁)4𝛼𝛽𝛾𝛿𝜀𝜁 ,

which can be solved via the multinomial theorem. As he did not want to list all 126 sum-
mands, he allowed some form of relabelling, to ensure, that the powers always decrease
from 𝛼 to 𝜁. This is acceptable as the ultimate goal is to plug in 1 for every variable. So he
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𝛼

𝛽

𝛾 𝛿

𝜀

𝜁

𝛾

𝛼

𝛽

𝛿

𝜀

𝜁

Figure 1.5: A canonical graph used in Cayley’s theorem. All relabellings of vertices are
identified with this graph, of which the one illustrated on the right can be transformed via
𝛾 ↦ 𝛼, 𝛼 ↦ 𝛽 and 𝛽 ↦ 𝛾.

counts some canonical representation by the multiplicity of distinct orders. In sum, there
are six relabellings of 𝛼4, 30 for 𝛼3𝛽, 15 for 𝛼2𝛽2, 60 for 𝛼2𝛽𝛾, and 15 for 𝛼𝛽𝛾𝛿. If we now
plug in 1, we get 64 = 1296.

Corollary 1.3.7 (Scoins’ Theorem) [Sco62]. Let 𝐾𝑛,𝑚 be a bipartite graph with 𝑛 + 𝑚 vertices
in two sets of sizes 𝑛 and 𝑚, then 𝐾𝑚,𝑛 contains 𝑛𝑚−1𝑚𝑛−1 spanning trees.

H. I. Scoins’ original proof is based on generating functions. He constructed it by at
first counting all ordered sets with one vertex fixed. Those are not necessarily a tree, but
always a tree with 𝑛 − 𝑝 and 𝑚 − 𝑞 vertices in the two sets combined with a supplementary
subgraph with 𝑝 + 𝑞 points and 𝑝 + 𝑞 edges between the two sets of vertices. Summing
up all those combinations, he found all 𝑛𝑚−1𝑚𝑛 combinations, where one vertex is fixed.
Summing this up leads to

∞
∑
𝑛=1

∞
∑
𝑚=0

𝑚𝑛−1𝑛𝑚+1

𝑛!𝑚! 𝑥𝑛𝑦𝑚 = 𝑥 +
∞
∑
𝑝=0

∞
∑
𝑞=0

∞
∑
𝑟=1

∞
∑
𝑠=0

𝑥𝑝𝑦𝑞𝑥𝑟𝑦𝑠

𝑝!𝑞!𝑟!𝑠! 𝑆(𝑝, 𝑞)𝑟𝑇(𝑟, 𝑠)

=
∞
∑
𝑝=0

∞
∑
𝑞=0

𝑥𝑝𝑦𝑞

𝑝!𝑞! 𝑆(𝑝, 𝑞)
∞
∑
𝑟=1

∞
∑
𝑠=0

𝑥𝑟𝑦𝑠

𝑟!𝑠! 𝑟𝑇(𝑟, 𝑠). (1.3.1)

This enormous sum contains 𝑆(𝑝, 𝑞) and 𝑇(𝑟, 𝑠), which are the number of supplemen-
tary subgraphs and trees respectively. He considered 𝑔(𝑥, 𝑦) = 𝑥 + ∑∞

𝑟=1 ∑∞
𝑠=1

𝑥𝑟𝑦𝑠𝑟𝑠𝑠𝑟−1

𝑟!𝑠!
and showed that

𝑥𝜕𝑔
𝜕𝑥 = (1 + 𝑦𝜕𝑔

𝜕𝑦)𝑔(𝑥, 𝑦),

for which the left-hand side is equal to the left-hand side of (1.3.1) and the part in braces
to the first sum of the right-hand side. So therefore the remaining parts are equal too and
𝑇(𝑟, 𝑠) = 𝑟𝑠−1𝑠𝑟−1. In a closing remark he wrote that a similar construction could be done
for Cayley’s theorem.
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A Closer Look 2
In Chapter 1 we established the necessary preliminaries and a first formulation and proof
of the matrix tree theorem. As mentioned in the introduction, this is not the first proof.
G. R. Kirchhoff used a quite different approach and while the proof presented in Chapter 1
is rather short, it does not give much insight into how the matrix tree theorem works.

We change this in this section. The following proofs all highlight different features of
the spanning trees within a graph. They are sorted chronically, by the release of their initial
formulation, which is not necessarily the one presented here. This is especially prominent
for the historical approach formulated in 1847. The proofs using a sign-reversing involu-
tion and an induction via deletion–contraction, described in Section 2.2 and Section 2.3,
appeared almost simultaneously: S. Chaiken proved the theorem using an involution in
1982 [Cha82]. In the same year, M. Lewin presented the proof using deletion–contraction,
citing S. Chaiken’s work as “to appear” [Lew82, p. 70]. He also notes that his proof is
“leaning on an idea of Hutschenreuther” [Lew82, p. 56], who formulated it in 1967 [Hut67].
Not onlyM. Lewin’s proof appeared before, but in a very similar form also S. Chaiken’s—in
1978 by J. B. Orlin [Orl78]. We dedicate Section 2.2.2 to this variant and present S. Chaiken’s
proof in Section 2.2.3. So the question of “who came first” is rather convoluted.

A comparatively novel approach is presented in Section 2.4. This proof was formu-
lated in 2013 by M. J. Kozdron, L. M. Richards, and D. W. Stroock, based upon Wilson’s
algorithm to randomly generate a tree [Wil96] and the Markov chain tree theorem, proved
in 1989 [AT89]. They combined these facts and deduced the matrix tree theorem from a
probabilistic point of view.

2.1 The Historical Approach
In the proof of Section 1.3 we use that the determinant of the oriented incidence matrix of
a tree is ±1, whereas it is 0 if the graph contains a cycle, and thus also a circuit. This lemma
was not available to G. R. Kirchhoff, so he had to take a different approach: He tried to
identify a minimal set of circuits, which were then cut. To be able to formally describe this,
we introduce the following:

Definition 2.1.1 [GYZ13, Definition 17 in Section 6.4.1]. Let 𝐺 = (𝑉, 𝐸) be a graph and
𝐶1, 𝐶2 subsets of 𝐸, then the symmetric difference is

𝐶1 ⊕ 𝐶2 ≔ {𝑒 ∈ 𝐸 | 𝑒 ∈ (𝐶1 ∪ 𝐶2) ⧵ (𝐶1 ∩ 𝐶2)}.

With this, we can now perform calculations on circuits, but in general the symmetric
difference might not be a circuit. For example, we could take two circuits from differ-
ent connected components. These two circuits are obviously disjunct, so the symmetric
difference is exactly those two circuits. We can, however, find a useful algebraic structure:

Definition 2.1.2. A graph is called Eulerian iff every vertex is of even degree.

The name stems from the problem of the “Seven Bridges of Königsberg”, which was
solved by L. Euler, and states that a graph contains a circuit traversing all vertices iff it is
connected and every vertex is of even degree [Eul41].
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Lemma 2.1.3 [GYZ13, Fact 7 in Section 6.4.1]. Let 𝐺 be a graph and 𝑆 be the set of all Eulerian
subgraphs of 𝐺, then (𝑆, ⊕) is isomorphic to a vector space over the finite field ℤ2.

Proof. We will first prove that (𝑆, ⊕) is an abelian group: The symmetric difference is
only concerned about the number of appearances of an edge, so it is associative and
commutative. The neutral element is the empty set ∅. If the symmetric difference of any
subgraph is formed with itself, all edges appear twice and are removed. Therefore it is
involutory.

The scalar multiplication is trivial since ℤ2 only contains 0 and 1 and every Eulerian
subgraph is its own inverse. Multiplication with 0 returns ∅ and multiplication with 1 is
the identity. Thus, 𝑆 is isomorphic to a vector space over ℤ2.

The set 𝑆, combined with the symmetric difference, can now be interpreted as a vector
space and we will call this algebraic structure the cycle space of 𝐺. Finding a basis and the
dimension of the cycle space is of much interest as it enables counting the required cuts:
Every basis cycle has to be cut, i.e. an edge removed, in order to remove all closed shapes.
All other Eulerian subgraphs can only be generated via the symmetric difference of basis
cycles. So we can define the following:

Definition 2.1.4. Let 𝐺 be a graph and 𝑆 its cycle space, then the circuit rank of 𝐺 is
rank 𝐺 ≔ dim 𝑆.

Due to the connection of the circuit rank to the cycle space, this is also sometimes
called the cycle rank. However, we will not use this name as there exists a non-equivalent
definition also called the cycle rank. In a similar sense, we avoid calling the elements of
the cycle space cycles.

Definition 2.1.5. Let 𝐺 be a graph and 𝑆 its cycle space, then a cycle basis is a minimal set
of cycles generating 𝑆. A fundamental cycle basis is a cycle basis for which a tree 𝑇 on every
connected component of 𝐺 exists, such that every cycle in that component has exactly one
edge not in 𝑇.

Lemma 2.1.6 [GYZ13, Fact 8 in Section 6.4.1]. Every graph has a fundamental cycle basis.

Proof. Let 𝑇 be a tree of graph 𝐺 and ℬ𝑇 a set of cycles, such that every cycle contains a
single different edge not in 𝑇. This set ℬ𝑇 is a fundamental cycle basis iff it is a cycle basis.
No cycle of ℬ𝑇 can be combined by the others as it contains a unique edge. Let now 𝐶 be
an arbitrary Eulerian subgraph of 𝐺. We can then write 𝐶 = 𝐶′ ⊕ 𝐵, where 𝐵 is a Eulerian
subgraph in the subspace spanned by ℬ𝑇 and 𝐶′ is a Eulerian subgraph in 𝑇. A tree only
contains the trivial Eulerian subgraph ∅ = 𝐶′, so ℬ𝑇 is a cycle basis.

Corollary 2.1.7. Let 𝐺 be a graph and ℬ a fundamental cycle basis of 𝐺, then there exist orderings
of edges and cycles, such that 𝐼𝑑 = 𝐵(∅ ∣ [rank 𝐺]], where 𝐵𝑖𝑗 = 1 iff the 𝑖-th basis cycle contains
the 𝑗-th edge, and 0 otherwise.

Proof. Every cycle in a fundamental cycle basis contains an edge only contained in this
cycle. If we number the edges and cycles such that the 𝑖-th cycle contains the 𝑖-th edge, we
get the identity in the first rank 𝐺 rows and columns of 𝐵.

The circuit rank is closely connected to trees and, thanks to Lemma 2.1.6, we can always
choose a fundamental cycle basis. These can be quickly found via finding a tree for every
connected component and adding an edge one at a time, to form a single cycle.
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𝛽𝛼𝛾

Figure 2.1: A graph with three face cycles, of which 𝛼 is a cycle, 𝛽 a circuit and not a cycle,
and 𝛾 a closed walk and not a circuit. The closed walk 𝛾 contains an edge, which the cycle
space is oblivious to. As the walk traverses the edge twice, it is equivalent to not traversing
it at all, and thus can be ignored.

Theorem 2.1.8 [GYZ13, Fact 13 in Section 6.4.1]. Let 𝐺 be a graph with 𝑛 vertices, 𝑚 edges and
𝑐 connected components, then rank 𝐺 = 𝑚 − 𝑛 + 𝑐.

Proof. Without loss of generality, we assume 𝐺 to be connected. A tree of 𝐺 has circuit
rank 0, 𝑛 vertices and 𝑛 − 1 edges. A fundamental cycle basis has a cycle for every edge
removed and therefore rank 𝐺 = 𝑚 − (𝑛 − 1) for a connected graph.

Definition 2.1.9. A graph 𝐺 is called planar iff it can be embedded into the plane, such
that no edges intersect.

Definition 2.1.10. Let 𝐺 be a connected planar graph. It separates the plane into faces,
where a face is the set of all points of the plane that can be connected with a line not
intersecting 𝐺. A face cycle is the closed walk accompanying a face and circumscribing only
it.

The definitions surrounding planarity and faces usually rely on an intuitive under-
standing of an embedding of a graph into the plane and understanding of connectedness
in two dimensions. We too will gloss over the formal definitions as they are quite involved.

Also note that, even though the subgraphs surrounding faces are called face cycles,
they might not be cycles. This can happen if the graph is connected by a single edge. An
example is presented in Figure 2.1. This stems from them being elements of the cycle space,
which gets its name from the cycle basis.

Theorem 2.1.11 (Euler’s Polyhedron Formula) [GYZ13, Section 1.3.3]. Let 𝐺 be a connected
planar graph with 𝑛 vertices, 𝑚 edges and 𝑓 faces, then

𝑛 − 𝑚 + 𝑓 = 2.

Theorem 2.1.12. Let 𝐺 be a connected planar graph, then all but one face cycles form a linearly
independent set of size rank 𝐺.

Proof. As 𝐺 is planar, Theorem 2.1.11 holds and 𝑓 = 2 − 𝑛 + 𝑚. Due to Theorem 2.1.8, we
also know that rank 𝐺 = 𝑚 − 𝑛 + 1. Therefore rank 𝐺 = 𝑓 − 1 and all that is left to show is
the independence of the face cycles.

Let ℱ = {𝐶1, 𝐶2, … , 𝐶𝑓 −1} be the set of all face cycles. Every edge 𝑒 in a face cycle 𝐶 is
in exactly one other face cycle 𝐶′, so to construct a combination of 𝐶1 all other face cycles
have to be used in order to avoid remaining edges. Then ∅ = 𝐶1 ⊕ 𝐶2 ⊕ ⋯ ⊕ 𝐶𝑓 −1 and

13
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𝐶𝑖 = 𝐶1 ⊕ ⋯ ⊕ 𝐶𝑖−1 ⊕ 𝐶𝑖+1 ⋯ ⊕ 𝐶𝑓 −1. So ℱ is linearly dependant, but any set ℱ ⧵ {𝐶𝑖} forms
a linearly independent set of size rank 𝐺.

This theorem almost gives us a cycle basis. Unfortunately, the face cycles might not be
cycles, and thus will not form a cycle basis. If, however, all face cycles are cycles, then the
theorem proves that they are maximally linearly independent and that the set is a basis.

Usually, we will remove the face cycle belonging to the outer face containing ∞. How-
ever, this is no restriction as the embedding into the plane can be chosen arbitrarily and
any face can be drawn as the outer face.

2.1.1 Kirchhoff’s Formulation

Kirchhoff uses his two circuit laws to formulate the required equations for the matrix tree
theorem [Kir47]. For this, he introduces 𝜀𝑘, which are ±1 and describe the direction of the
edge 𝑘. This direction is chosen arbitrarily, but we will use the convention that the sign is
positive iff we move from vertex 𝑖 to vertex 𝑗 with 𝑖 < 𝑗. We will see that this convention
agrees with our definition of the oriented incidence matrix. As we also need a different
kind of incidence matrix, we repeat the previous definition and add the new one.

In contrast to our convention of using 𝑛 for the number of vertices, G. R. Kirchhoff used
𝑚 for the number of vertices, 𝑛 for the number of edges, and 𝜇 for rank 𝐺. So we use the
unambiguous notation |𝑉| and |𝐸| in this subsection.

Definition 2.1.13 [Jan+15, Chapter 3]. Let 𝐺 be a graph with |𝑉| vertices and |𝐸| edges.

i. The oriented (vertex–edge) incidence matrix 𝐵𝑉
𝐺 of 𝐺 (with an arbitrary edge-orientation)

is an |𝑉| × |𝐸| matrix, where

(𝐵𝑉
𝐺)𝑖𝑗 ≔

⎧{{
⎨{{⎩

1 if (𝑖, 𝑘) = 𝑒𝑗 for some 𝑘 ∈ 𝑉,
−1 if (𝑖, 𝑘) = −𝑒𝑗 for some 𝑘 ∈ 𝑉,
0 otherwise.

ii. Let 𝒞 be a cycle basis of 𝐺. The oriented cycle–edge incidence matrix 𝐵𝐶
𝐺 of 𝐺 (with an

arbitrary edge-orientation) is a rank 𝐺 × |𝐸| matrix, where

(𝐵𝐶
𝐺)𝑖𝑗 ≔

⎧{{
⎨{{⎩

1 if 𝑒𝑗 ∈ 𝐶𝑖,
−1 if − 𝑒𝑗 ∈ 𝐶𝑖,
0 otherwise.

We will now state Kirchhoff’s two circuit laws, which G. R. Kirchhoff first published
in 1845 [Kir45].3 There, G. R. Kirchhoff considered an electrical circuit consisting of a set
of cables and a set of points, which connect cables with each other. In the following we
consider a subset 𝐶 of cables, which form a closed shape, and a subset 𝑁 of cables, which
all share a connecting point. Solving these equations gives the matrix tree theorem in its
original form [Kir47].

3The distinction “published” is important here as C. F. Gauss formulated the circuit laws in 1833, which
can be found in the first letter of chapter Handschriftlicher Nachlass in [Gau67]. It is unknown why this was kept
unpublished, but “presumably because their [C. F. Gauss’ and W. E. Weber’s] interest centered on terrestrial
magnetism.” [May80, p. 305]
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Kirchhoff’s Voltage Law If the cables 𝑘 ∈ 𝐶 with the resistances 𝑤𝑘, intensities of cur-
rents (modern: currents) 𝐼𝑘 and electromotive forces (modern: voltage sources) 𝐸𝑘 form a
closed shape, Kirchhoff’s voltage law states:

∑
𝑘∈𝐶

𝜀𝑘𝑤𝑘𝐼𝑘 = ∑
𝑘∈𝐶

𝐸𝑘

Electromotive forces are only introduced through batteries and are otherwise 0. The
intensities make up the vector 𝐽 of unknowns. The electrical network can be interpreted as
a graph 𝐺, G. R. Kirchhoff then chose a fundamental cycle basis as the target for his current
law. This leads to the linear system of equations 𝑊 ⋅ 𝐼 = 0. As we are only concerned with
counting, we can ignore the exact values of 𝑤𝑘 and only keep the sign governed by 𝜀𝑘. This
sign introduces a direction onto all edges. The value 𝜀𝑘𝑤𝑘 is positive iff the cycle moves in
the same direction as the edge, and is negative otherwise. If all resistances 𝑤𝑘 are equal to
1, we get the oriented cycle–edge incidence matrix 𝐵𝐶

𝐺 for 𝑊.

Kirchhoff’s Current Law Kirchhoff also stated a different law, which is concerned about
individual points where cables 𝑘 ∈ 𝑁 collide: Incoming and outgoing intensities at these
points have to add up to 0. This means

∑
𝑘∈𝑁

𝜀𝑘𝐼𝑘 = 0.

If we form a matrix out of the equations for all vertices, we get the system of equations
𝐵𝑉

𝐺 ⋅ 𝐼 = 0, where 𝐵𝑉
𝐺 is the oriented vertex–edge incidence matrix. Kirchhoff took all these

rank 𝐺+|𝑉| = |𝐸|− |𝑉|+1+|𝑉| = |𝐸|+1 equations and formulated the matrix tree theorem:

Theorem 2.1.14 (Original Matrix Tree Theorem) [Kir47]. Let 𝐺 be a graph and 𝐵𝐶
𝐺 and 𝐵𝑉

𝐺 its
oriented cycle–edge and vertex–edge incidence matrices respectively, and |𝐸| the number of edges in
𝐺, then

det
⎛⎜⎜⎜
⎝

(
𝐵𝐶

𝐺

𝐵𝑉
𝐺

)(|𝐸| + 1 ∣∅)
⎞⎟⎟⎟
⎠

= ±𝜅(𝐺). (2.1.1)

This first formulation contains no mention of the Laplacian matrix of 𝐺 but instead
uses two different oriented incidence matrices. The original proof shows this relation by
using Cramer’s rule to solve the determinant [Kir47]. As mentioned before, G. R. Kirchhoff
had to use different notation. The required notation used here was not yet invented. His
proof uses the notation of the aforementioned sums, where he relabelled the 𝜀𝑗 to 𝛼𝑖

𝑗 with
𝑖 ∈ {1, … , rank 𝐺} and 𝑗 ∈ {1, … , |𝑉|} for the voltage laws and 𝑗 ∈ {|𝑉| + 1, … , |𝐸|} for the
current laws. To make this work, he also had to allow 0 for 𝛼𝑖

𝑗 if the corresponding 𝜀𝑗—and
thus the edge labelled with 𝑗—would not appear in the equation. Note that he omitted the
last equation given by the current law, which would be labelled with 𝑗 = |𝐸| + 1.

We will, however, choose a different route and show the strong connection between
this original formulation and the modern matrix tree theorem. This is due to E. C. Kirby
et al. in [Kir+04], where they first formulated the cycle theorem in this context.

2.1.2 The Cycle Theorem

We now focus on the equations resulting from the voltage law. As a tree is defined as a
connected graph without cycles, we want to resolve all those equations. Assume that we
start with a connected graph 𝐺. We remove the redundancy giving raise to the equations
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via deleting an edge in every equation. The graph stays connected, but the cycle is cut
and thus removed. If this is done for all cycles, the remaining graph is a tree. The specific
selection of deleted edges leads to a specific graph. So we expect the number of spanning
trees to be connected to the different ways of cutting all cycles.

Definition 2.1.15 [Kir+04, pp. 267–268]. Let 𝐺 be a graph and 𝒮 a set of Eulerian subgraphs
of 𝐺, then 𝑀𝒮 is the cycle-overlap matrix4, where

(𝑀𝒮)𝑖𝑗 ≔ ∑
𝑒∈𝐶𝑖

∑
𝑒′∈𝐶𝑗

⎧{{
⎨{{⎩

1 if 𝑒 and 𝑒′ overlap and are oriented in the same direction,
−1 if 𝑒 and 𝑒′ overlap and are oriented in different directions,
0 if 𝑒 and 𝑒′ do not overlap.

This definition respects the direction of the Eulerian subgraphs. So if 𝐶𝑖 and 𝐶𝑗 share
one edge and pass it in the same direction it counts as +1, whereas if one passes it in the
other direction it counts as −1. From (𝑀𝒮)𝑖𝑗 = 0 it does not follow that 𝐶𝑖 and 𝐶𝑗 share
no edges, it is also possible that they share the same number of edges in the same as in
opposite directions.

The diagonal elements of the cycle-overlap matrix indicate the self-overlap of Eulerian
subgraphs. For cycles, this is exactly their length |𝐶𝑖|. This may not hold true for general
Eulerian subgraphs as can be seen in Example 2.1.21.

Theorem 2.1.16 (Cycle Theorem) [Kir+04; Che97, Corollary 2.24]. Let 𝐺 be a graph and 𝒞 be a
set of rank 𝐺 linearly independent Eulerian subgraphs, and 𝑇 be a spanning tree of 𝐺. Let 𝑍 = (𝑧𝑖𝑗)
be the matrix of size rank 𝐺 × 𝑚 counting the signed occurrences of edge 𝑒𝑗 in 𝐶𝑖, according to an
arbitrary but fixed edge-orientation, then

det(𝑀𝒞)
det(𝑍(∅ ∣𝑇])2 = 𝜅(𝐺). (2.1.2)

Lemma 2.1.17 [Tut65, Theorem 5.46]. Let 𝐺 be a connected graph, 𝒞 a cycle basis and 𝑍 as in
Theorem 2.1.16. Let also 𝑇 and 𝑇′ be two spanning trees of 𝐺, then

det(𝑍(∅ ∣𝑇])2 = det(𝑍(∅ ∣𝑇′])2 = 1. (2.1.3)

Let 𝑆 be a subset of edges of 𝐺 that does not form a spanning tree, then det(𝑍(∅ ∣𝑆]) = 0.

Note that the matrix 𝑍 is an oriented cycle–edge incidence matrix iff the set of Eulerian
subgraphs form a cycle basis. The above lemma thus can be understood as proving a
property of the cycle incidence matrix, which will serve as a stepping stone to simplify the
proof of the cycle theorem.

Proof. Let us first consider the case that 𝑆 is not a tree. Then there exists a cycle 𝐶 in 𝑆 and
a cycle basis 𝒞′, such that 𝐶 ∈ 𝒞′. As both 𝒞 and 𝒞′ are cycle bases, there exists a full rank
transformation matrix 𝐴 and

det(𝑍(∅ ∣𝑆]) = det(𝐴) det(𝑍′(∅ ∣𝑆]) = 0.

Let otherwise 𝑍(∅ ∣ 𝑇] have full rank and 𝒞′ be the fundamental cycle basis to tree 𝑇.
Because 𝒞 and 𝒞′ are bases, there again exists a transformation matrix 𝐴, such that 𝑇𝒞 = 𝒞′

and det(𝑇) det(𝑍(∅ ∣ 𝑇]) = det(𝑍′(∅ ∣ 𝑇]) = 1 as 𝑍′(∅ ∣ 𝑇] = 𝐼𝑑. As all these matrices are
integer matrices, we know that their determinants must be integers too. So it follows that
det(𝑍(∅ ∣𝑇]) = ±1.

4This name might seem counterintuitive as we not only allow cycles, but even Eulerian subgraphs.
However, the name is derived from the cycle space, which is named after the cycle basis.
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Theorem 2.1.18 (Cycle Theorem for Cycle Bases) [Tut65, p. 18]. Let 𝐺 be a graph and 𝒞 a
cycle basis of 𝐺, then

det(𝑀𝒞) = 𝜅(𝐺). (2.1.4)

We want to solve the determinant of the product of two non-square matrices. This
is very similar to the proof of the matrix tree theorem. The main difference is using an
oriented cycle–edge incidence matrix instead of the oriented vertex–edge incidence matrix.

W. T. Tutte mentions this theorem as a direct result of Lemma 2.1.17:“This generalizes
a well known formula for the number of spanning trees” [Tut65, p. 18]. The formula he
talks about is the matrix tree theorem, which appears as a parallel theorem to the cycle
theorem for us. We will see in Section 2.3.2 how much on point his formulation is.

Proof. Lemma 2.1.17 shows that the determinant of 𝑍(∅ ∣𝑇] is ±1 iff 𝑇 is a tree. So if we use
Theorem 1.2.12 to calculate det(𝑀𝒞) = det(𝑍𝑍T), we will end up evaluating exactly those
submatrices:

det(𝑀𝒞) = ∑
𝑆⊆[𝑚],|𝑆|=𝑛−1

det(𝑍(∅ ∣𝑇]) det(𝑍𝑇[𝑇 ∣∅))

= ∑
𝑆⊆[𝑚],|𝑆|=𝑛−1

det(𝑍(∅ ∣𝑇])2 = 𝜅(𝐺).

Theorem 2.1.18 presents itself very similar to the matrix tree theorem and even the
proof consists of only minor modifications. It could therefore be considered a matrix tree
theorem by itself. The cycle theorem in combination with the modern matrix tree theorem
now form the basis for the original matrix tree theorem. G. R. Kirchhoff derived these
results from his observed circuit laws and saw no need to prove them. The above proof
shows, that there indeed is a purely formal way not relying on some specific property of
electric circuits. All that is left is to combine these two theorems.

Proof of Theorem 2.1.16. From Theorem 2.1.18 we know that det(𝑀ℬ) = 𝜅(𝐺) for a funda-
mental cycle basis ℬ, which—using Corollary 2.1.7—can express 𝑍𝒞 as

𝑍𝒞 =
⎛⎜⎜⎜⎜
⎝

𝐴
𝑧𝑐+1,1 ⋯ 𝑧𝑒,1

⋮ ⋱ ⋮
𝑧𝑐+1,𝑐 ⋯ 𝑧𝑒,𝑐

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝐼𝑑
𝑧′

𝑐+1,1 ⋯ 𝑧′
𝑒,1

⋮ ⋱ ⋮
𝑧′

𝑐+1,𝑐 ⋯ 𝑧′
𝑒,𝑐

⎞⎟⎟⎟⎟
⎠

⋅ 𝐴 = 𝑍ℬ ⋅ 𝐴.

If we now apply Theorem 2.1.18 to this, we get

det(𝑀𝒞) = det(𝑍ℬ𝐴𝐴T𝑍T
ℬ) = det(𝐴)2𝜅(𝐺),

but 𝐴 is exactly a square submatrix of 𝑍𝒞 of size rank 𝐺 with full rank, so 𝐴 = 𝑍𝒞(∅ ∣𝑇] for
some spanning tree 𝑇 of 𝐺, according to Lemma 2.1.17.

Proof of Theorem 2.1.14. Let 𝐺 be a graph with |𝑉| = 𝑛 vertices and |𝐸| = 𝑚 edges. We will
prove the original formulation of the matrix tree theorem by calculating the determinant
of the matrix

⎛⎜⎜⎜
⎝

𝐵𝐶
𝐺

𝐵𝑉
𝐺

⎞⎟⎟⎟
⎠

⋅ (𝐵𝐶
𝐺

T 𝐵𝑉
𝐺

T) =
⎛⎜⎜⎜
⎝

𝐵𝐶
𝐺𝐵𝐶

𝐺
T 𝐵𝐶

𝐺𝐵𝑉
𝐺

T

𝐵𝑉
𝐺𝐵𝐶

𝐺
T 𝐵𝑉

𝐺𝐵𝑉
𝐺

T

⎞⎟⎟⎟
⎠

.

We already know that 𝐵𝑉
𝐺𝐵𝑉

𝐺
T = 𝐿𝐺 and det(𝐿𝐺(𝑛)) = 𝜅(𝐺) by the matrix tree theorem.

There also exists a fundamental cycle basis 𝒞, such that 𝐵𝐶
𝐺𝐵𝐶

𝐺
T = 𝑀𝒞 gives us a cycle-

overlap matrix, for which det(𝑀𝒞) = 𝜅(𝐺) holds by Theorem 2.1.16. All we have to show
now is 𝐵𝐶

𝐺𝐵𝑉
𝐺

T = 0.
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If we take a closer look at one entry of this matrix, we can see that it is defined by
𝑚

∑
𝑘=1

(𝐵𝐶
𝐺)𝛼𝑘(𝐵𝑉

𝐺)𝑣𝑘,

where we sum over all edges, one cycle 𝛼, and one vertex 𝑣. As 𝛼 enters 𝑣 via edge 𝑘 we
have (𝐵𝐶

𝐺)𝛼𝑘 = ±1, according to the edge-orientation, but as we are entering 𝑣 we also have
(𝐵𝑉

𝐺)𝑣𝑘 = ∓1. So this summand is always −1. When 𝛼 then leaves 𝑣 via edge 𝑘′ we again
have (𝐵𝐶

𝐺)𝛼𝑘′ = ±1, but now the perspective of 𝑣 coincides with the one of 𝛼 and we have
the same sign and the summand for 𝑘′ is +1. As we only consider cycles, we have to leave
every vertex we enter, so this sums up to 0 and the matrix is 𝟘.

We can now plug in the known values for the submatrices and we only have to evaluate
the determinant of a block diagonal matrix for whose blocks the determinants are known:

det
⎛⎜⎜⎜
⎝

⎛⎜⎜⎜
⎝

𝐵𝐶
𝐺

𝐵𝑉
𝐺

⎞⎟⎟⎟
⎠

(𝑚 + 1∣∅)
⎞⎟⎟⎟
⎠

2

= det
⎛⎜⎜⎜
⎝

⎛⎜⎜⎜
⎝

𝐵𝐶
𝐺𝐵𝐶

𝐺
T 𝐵𝐶

𝐺𝐵𝑉
𝐺

T

𝐵𝑉
𝐺𝐵𝐶

𝐺
T 𝐵𝑉

𝐺𝐵𝑉
𝐺

T

⎞⎟⎟⎟
⎠

(𝑚 + 1)
⎞⎟⎟⎟
⎠

= det
⎛⎜⎜⎜
⎝

𝑀𝒞 𝟘

𝟘 𝐿𝐺(𝑛)

⎞⎟⎟⎟
⎠

= 𝜅(𝐺)2.

If we consider a planar graph for which the set of all face cycles contains only cycles,
we know that removing one results in a cycle basis. This is very similar to the removal of
one vertex in the Laplacian. This is no coincidence as is explored in Section 2.3.2.

2.1.3 An Application

The cycle theorem and the matrix tree theorem form a pair of theorems, which can both be
used to find the number of spanning trees in a graph. The cycle theorem requires only a set
of rank 𝐺 independent Eulerian subgraphs. However, it is much more useful to consider
a cycle basis, for which we will present two different convenient examples: For planar
graphs, this is the face cycle basis, which does not exist for non-planar graphs. In that
case we can construct a tree and get the corresponding fundamental cycle basis. Finally,
we verify the correctness of the theorem by using a set of unusual and not very practical
closed walks.

The underlying graph will always be the sun graph 𝑆3, consisting of six vertices and
nine edges, illustrated in Figure 2.2. The arrows indicate the induced edge orientation. We
depart from the convention of orienting the edges from the lower to the higher number
and instead orient the edges anticlockwise for cycles {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒, 𝑓 } and {𝑔, ℎ, 𝑖}.

Before we start with using cycles to calculate the number of spanning trees, we calculate
it via the matrix tree theorem. This requires us to formulate the 6 × 6 Laplacian matrix 𝐿𝑆3
given in (2.1.5). This gives us det(𝐿𝑆3

(6)) = 54. So there are 54 spanning trees of 𝑆3.

𝐿𝑆3
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1

−1 2 −1
−1 −1 −1 4 −1

−1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.1.5)
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𝛼″ 𝛾″
𝛽″ 𝛿″

Figure 2.2: The sun graph 𝑆3 with three sets of independent covering closed walks.

Example 2.1.19. At first wewill consider the set 𝒮 = {𝛼, 𝛽, 𝛾, 𝛿} consisting of four face cycles.
All edges of cycle 𝛿 are covered by the other three. As every cycle of a fundamental cycle
basis has a unique edge not shared by any other cycle, the set 𝒮 cannot form a fundamental
cycle basis. However, according to Theorem 2.1.12, it is a cycle basis of 𝐺. The oriented
cycle–edge incidence matrix 𝐵𝐶

𝒮 with the given edge-orientations indicated in Figure 2.2
and its cycle-overlap matrix 𝑀𝒮 are

𝐵𝐶
𝒮 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1
1 1 1

1 1 1
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑀𝒮 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 1
3 1

3 1
1 1 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As 𝒮 is a cycle basis, we do not have to use the more general cycle theorem, but instead
can use Theorem 2.1.18 for cycle bases. So the determinant of 𝑀𝒮 is the number 𝜅(𝐺) of
spanning trees and, indeed, 𝜅(𝐺) = det(𝑀𝒮) = 54.

Example 2.1.20. A more general approach would be to find a fundamental cycle basis
as every graph has one and they can be found quite quickly by constructing a spanning
tree and generating the cycles one by one via adding a single unique edge to the tree
and therefore generating exactly one cycle. These cycles then form the fundamental cycle
basis given by 𝒮′ = {𝛼′, 𝛽′, 𝛾′, 𝛿′}; the according tree 𝑇 = {𝑏, 𝑐, 𝑓 , 𝑒, 𝑖} is marked. 𝒮′ closely
resembles 𝒮 and differs only in 𝛾′ = 𝛿 ⊕ 𝛾, however there are fundamental cycle bases
which only contain a single face cycle.

𝐵𝐶
𝒮′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1
1 1 1

−1 −1 1 1
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑀𝒮′ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 −1 1
3 −1 1

−1 −1 4 −2
1 1 −2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The oriented cycle–edge incidence matrix 𝐵𝒮′ contains two negative signs in the cycle 𝛾′

as the cycle moves against the chosen direction of 𝑏 and 𝑓. This is also somewhat evident
in 𝑀𝒮′ as entries at (𝛼′, 𝛾′) and (𝛽′, 𝛾′) are −1. However, this only means that the cycles
move in opposite directions. Without any further information it is impossible to discern
which cycle moves against the direction of 𝑏 or 𝑓. Cycles 𝛾′ and 𝛿′ share two edges, but
move in opposite directions, thus we have (𝑀𝒮′)𝛾′,𝛿′ = −2.
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In line with set 𝒮, we again could use Theorem 2.1.18 to avoid finding a tree, but as
we constructed 𝒮′, we can also evaluate det(𝐵𝒮′[∅ ∣ 𝑇)). As this is rather trivial, we also
calculate it for a different tree 𝑇′ = {𝑎, 𝑐, 𝑑, 𝑒, 𝑖}. In both cases the determinant is −1 and so
𝜅(𝐺) = det(𝑀𝒮′) = 54.

det(𝐵𝒮′(∅ ∣𝑇)) =

∣
∣
∣
∣
∣
∣
∣

1
1

1
1

∣
∣
∣
∣
∣
∣
∣

= det(𝐵𝒮′(∅ ∣𝑇′)) =

∣
∣
∣
∣
∣
∣
∣

1
1

−1 −1 1
1 1 1

∣
∣
∣
∣
∣
∣
∣

= −1

Example 2.1.21. The final set 𝒮″ = {𝛼″, 𝛽″, 𝛾″, 𝛿″} is different from the previous two as it
does not form a cycle basis. On one hand, the closed walk 𝛾″ is not a cycle as it passes
through all of its edges twice and 𝐵𝒮″ therefore contains 2 in some places. On the other
hand, if we disregard the edge-orientation and only consider whether an edge is in a cycle
or not, it follows that 𝛼″ ⊕ 𝛽″ ⊕ 𝛿″ = 𝛾″.

𝐵𝐶
𝒮″ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 −1 −1 −1
−1 −1 −1

2 2 2
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑀𝒮″ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6
3 −2

−2 12 4
4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

From the cycle-overlap matrix 𝑀𝒮″ we would assume that 𝛼″ has no neighbouring
cycles as all non-diagonal entries of the first row are 0. This conclusion would be wrong as
we consider the signed overlap and cycles 𝛼″ and 𝛽″ share two edges, but while they move
in the same direction in edge 𝑓 they move in opposite directions in 𝑏. A similar argument
follows for 𝛼″ and 𝛿″.

The walk 𝛾″ also leads to unexpected results as (𝑀𝒮″)𝛾″,𝛾″ = 12, even if |𝛾″| = 6. This
is due to 𝛾″ neighbouring itself as it passes through every edge twice. So all six edges in
this cycle share an edgewith 𝛾″, and so 6+6 = 12. This is also reflected in (𝑀𝒮″)𝛽″,𝛾″ = −2
as they only share the single edge ℎ, but twice.

As 𝒮″ is no cycle basis, we have to use Theorem 2.1.16. The reason is apparent since
the determinant is not ±1:

det(𝐵𝒮″(∅ ∣𝑇)) =

∣
∣
∣
∣
∣
∣
∣

1 −1
−1
2 2

1 1 1

∣
∣
∣
∣
∣
∣
∣

= (−1)2+3(−1) ⋅
∣
∣
∣
∣
∣

1 −1
2

1 1 1

∣
∣
∣
∣
∣
= −4

To get the number of spanning trees in this case, we cannot simply calculate the determinant
of the cycle overlap matrix, but have to divide by the square of the correction matrix to get

det(𝑀𝒮″)
det(𝐵𝒮″(∅ ∣𝑇))2 = 864

16 = 54.

The previous graph illustrated the use of the cycle theorem, but did not show the
great benefits, which result from it, especially for mathematical chemists. To show this,
we consider the graph of Benzo[f]azulene illustrated in Figure 2.3, given in [Jan+15]. It
consists of three cycles of lengths 5, 7 and 6, which are connected at one edge. Double
bonds are indicated, but do not contribute to the number of different trees.
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Figure 2.3: The skeletal formula of Benzo[f]azulene and a purely graph theoretical inter-
pretation with arbitrary edge orientations.

After labelling the vertices 1, … , 16, the edges 𝑎, … , 𝑝, and the face cycles 𝛼, 𝛽, and 𝛾
we can calculate the number of spanning trees in different ways. Let us at first consider
the standard matrix tree theorem. For this, we have to define the oriented vertex–edge
incidence matrix of size 14 × 16. Due to the few branches in the graph this matrix is very
sparsely filled and consists of three blocks very similar to 𝐵𝐶𝑛

in Example 1.3.2. The sign
is dependant on the chosen edge-orientation. Determining the 14 × 14 Laplacian matrix is
much more time-consuming than calculating the cycle-overlap matrix and its determinant.
After removing one row and column, we get det(𝐿𝐺(14)) = 199 spanning trees.

Example 2.1.22. The molecule of Benzo[f]azulene can be depicted as a planar graph as in
Figure 2.3, so we can simply choose the face cycles 𝛼, 𝛽 and 𝛾 as a cycle basis. The oriented
cycle–edge incidence matrix 𝐵𝐶

𝒞 and the cycle-overlap matrix 𝑀𝒞 are given in (2.1.6) and
(2.1.7). The number of trees then results from the determinant det(𝑀𝒞) = 199.

𝐵𝐶
𝐺 =

⎛⎜⎜⎜⎜
⎝

1 −1 −1 1 −1
1 1 1 −1 1 −1 −1

1 1 1 1 1 1

⎞⎟⎟⎟⎟
⎠

, (2.1.6)

𝑀𝒞 = 𝐵𝐶
𝒞𝐵𝐶

𝒞
T =

⎛⎜⎜⎜⎜
⎝

5 −1
−1 7 −1

−1 6

⎞⎟⎟⎟⎟
⎠

. (2.1.7)

2.2 Counting Combinations
In the last sections, we found different ways to count spanning trees in graphs. Even
though they were fundamentally different, all had the luxury of a symmetric Laplacian
matrix. This is no coincidence as in a graph every edge can be traversed in both directions.
We will now consider so-called directed graphs—or digraphs for short—in which edges
have an orientation. Digraphs were already used in Section 2.1 as the cycles required an
edge-orientation. However, we did not consider this orientation while counting the trees.

Counting trees in directed graphs was first done by W. T. Tutte in 1948 [Tut48]. His
perspective was completely different and considers the ways to dissect equilateral triangles
into smaller equilateral triangles. In his introduction he mentioned that in a previous
paper, which is concerned with dissecting rectangles into squares [Bro+40], “the basis of
the theory was the association with any rectangle or square dissected into squares of an
electrical network obeying Kirchhoff’s laws” [Tut48, p. 463] and that he used “an analogue
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2. A Closer Look

of the electrical network in which the ‘currents’ obey laws similar to but not identical with
those of Kirchhoff” [Tut48, p. 463]. We will not directly follow his approach, but instead
give modern proofs of his generalisation of the matrix tree theorem, which are more in
line with other proofs presented in this thesis.

Definition 2.2.1. Let 𝐷 be a digraph, then the in-degree of a vertex 𝑣 ∈ 𝑉 is given by
deg−(𝑣) ≔ |{(𝑤, 𝑣) ∈ 𝐸 | 𝑤 ∈ 𝑉}|, whereas the out-degree is defined as deg+(𝑣) ≔
|{(𝑣, 𝑤) ∈ 𝐸 ∣ 𝑤 ∈ 𝑉}|. So the in-degree counts the incoming edges and the out-degree the
outgoing edges.

Definition 2.2.2. A digraph 𝑇 is an out-tree with root 𝑟 ∈ 𝑉 iff 𝑇 is connected, deg−(𝑟) = 0,
and deg−(𝑣) = 1 for 𝑟 ≠ 𝑣 ∈ 𝑉, respectively for in-trees with root 𝑟 ∈ 𝑉 and the out-degree
instead of the in-degree.

Other names for out-trees are directed rooted tree or arborescence, and another name for
an in-tree is anti-arborescence. As this naming convention is “out-tree”-focused, we will
stick to the more technical, unbiased names. Especially, since we are more interested in
in-trees than in out-trees and “anti-arborescence” is much longer than in-tree.

Definition 2.2.3. Let 𝐷 be a directed graph and 𝑟 ∈ 𝑉 a vertex, then the number of spanning
in-trees rooted at 𝑟 is 𝜅−

𝑟 (𝐷). Respectively for out-trees and 𝜅+
𝑟 (𝐷).

Lemma 2.2.4. Let 𝑇 be an in-tree with root 𝑟, then there exists exactly one trail from 𝑣 ∈ 𝑉 to 𝑟.

Proof. Any in-tree is connected, so there must exists a trail between 𝑣 and 𝑟, but it cannot
start at 𝑟 as deg+(𝑟) = 0. So there is a trail from 𝑣 to 𝑟. The out-degree of any non-root
vertex is 1 and there is no choice for the next vertex. Thus, there can only be one trail.

The previous lemma illustrates the motivation of calling such a structure an in-tree.
There exists exactly one trail for every vertex that moves into the root. A similar argument
can bemade for out-trees via reversing all edges, so there exists exactly one trail coming out
of the root. Historically, out-trees were studied more closely and were also used in [Cha82],
which uses a similar way to proof the matrix tree theorem as in this section.

Definition 2.2.5. Let 𝐷 be a digraph, then 𝐿−
𝐷 is the in-Laplacian matrix and 𝐿+

𝐷 the out-
Laplacian matrix, where

(𝐿−
𝐷)𝑖𝑗 ≔

⎧{{
⎨{{⎩

deg+(𝑣𝑖) if 𝑖 = 𝑗,
−1 if 𝑖 ≠ 𝑗, (𝑖, 𝑗) ∈ 𝐸,
0 otherwise.

(𝐿+
𝐷)𝑖𝑗 ≔

⎧{{
⎨{{⎩

deg−(𝑣𝑖) if 𝑖 = 𝑗,
−1 if 𝑖 ≠ 𝑗, (𝑗, 𝑖) ∈ 𝐸,
0 otherwise.

A drawback of allowing directed edges is that we lose the symmetry of the Laplacian
matrix 𝐿. Note, however, that (𝐿−

𝐷)𝑖𝑗 = (𝐿+
𝐷)𝑗𝑖 holds for 𝑖 ≠ 𝑗 as the same edges are counted,

but the focus is shifted from the outgoing vertex to the ingoing one. Thus, we cannot find
a matrix 𝑀, such that 𝑀𝑀T = 𝐿. Therefore, we require an entirely different approach:
The first step is to closer examine the determinant and derive a purely combinatorial
understanding of it in this context. This is then used for the inclusion–exclusion principle.
Finally, we combine these steps to find an equivalent of thematrix tree theorem for digraphs.
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2.2. Counting Combinations

Figure 2.4: A digraph with an in-tree and an out-tree. Roots are marked in white. The
lower edge is used in both.

2.2.1 On Counting Functional Graphs

Let us consider the simpler problem of counting the number of possible functions 𝑓 obeying
the edges of a digraph 𝐷. In other words, the function 𝑓 maps the vertices of 𝐷 onto
themselves, but 𝑓 (𝑖) = 𝑗 is only allowed if (𝑖, 𝑗) is an edge of 𝐷.

Definition 2.2.6. A functional graph 𝐹 is a digraph where every vertex 𝑣 has deg+(𝑣) = 1.

Definition 2.2.7. Let 𝐷 be a digraph with (𝑣, 𝑤) ∈ 𝐸, then a subgraph 𝐺 of 𝐷 has a fixed
edge (𝑣, 𝑤) iff deg+(𝑣) = 1 and (𝑣, 𝑤) ∈ 𝐸𝐺. The edge (𝑣, 𝑤) is a forced edge of 𝐺 iff it is a
fixed edge of 𝐺′ = (𝑉, 𝐸 ∪ {(𝑣, 𝑤)}).

So a forced edge is possibly a fixed edge of 𝐺, but if not, we still allow it. We will
use fixed edges—or rather fixed cycles—to identify functional subgraphs, which are not
spanning in-trees of the digraph. These unwanted functional subgraphs will be removed
from the set of all functional subgraphs and all remaining subgraphs will then be in-trees.

Definition 2.2.8. Let 𝐷 be a digraph, then 𝜑𝑆(𝐷) is the number of functional subgraphs of 𝐷
with fixed edges 𝑆.

Lemma 2.2.9. Let 𝐷 be a digraph, then there are 𝜑(𝐷) = ∏𝑣∈𝑉(𝐷) deg+(𝑣) functional subgraphs
of 𝐷.

Proof. As we can choose exactly one outgoing edge for every vertex, we can choose from
deg+(𝑣) possibilities for every vertex. Thus there are ∏𝑣∈𝑉(𝐷) deg+(𝑣) choices.

Of course, such a functional graph may have cycles. We also want to identify functional
subgraphs containing specific cycles, but this is rather simple: If a functional subgraph is
required to contain cycle 𝐶, the choices are fixed and the vertices in 𝐶 are removed from
the product in Lemma 2.2.9. If 𝐶 is not in 𝐷, then some edge is missing and there are no
functional subgraphs containing this cycle.

The ultimate goal is counting spanning in-trees of a digraph 𝐷. As the root 𝑣 of our
in-tree does not have an out-degree of 1, but instead 0, we simply ignore the vertex and
force an edge between 𝑣 and a vertex of 𝐷. So, similarly to the previous argument about
fixed cycles, we have a factor of 1 from the root.
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Figure 2.5: A digraph and all functional subgraphs with fixed cycle 𝐶 and a forced loop
(1, 1). The lower right subgraph 𝐺6 also contains the cycle (5, 6).

Proposition 2.2.10. Let 𝐷 be a digraph and 𝑆 a set of fixed edges, then the number of functional
subgraphs of 𝐷 with fixed edges 𝑆 is given by

𝜑𝑆(𝐷) =
⎧{{
⎨{{⎩

∏
𝑣∈𝑉(𝐷),
(𝑣,𝑤)∉𝑆

deg+(𝑣) if for all 𝑒 ∈ 𝑆 also 𝑒 ∈ 𝐸(𝐷),

0 otherwise.

Lemma 2.2.11. Let 𝐷 be a digraph. Every in-tree 𝑇 with root 𝑣 ∈ 𝑉 and forced edge (𝑣, 𝑤) is a
functional subgraph of 𝐷.

Example 2.2.12. Let 𝐷 be a digraph with six vertices and a marked root labelled 1. This
digraph 𝐷 is given in Figure 2.5. Let now 𝐶 = (2, 3, 4) be a fixed cycle. The number of
all functional subgraphs of 𝐷 with fixed 𝐶 is then given by deg+(5) ⋅ deg+(6) = 6 as the
outgoing edges of vertices 2 through 4 are fixed by the cycle 𝐶 and 1 is fixed arbitrarily
since it is the chosen root. Of those subgraphs one also contains the cycle (5, 6), and thus
would appear again if we fixed this cycle.

2.2.2 Inclusion and Exclusion

If we were to count the spanning in-trees of a digraph 𝐷, we could do this by first counting
all functional subgraphs with forced edge (𝑣, 𝑤). As some of these contain cycles, we have
to remove those combinations, which can be counted by Proposition 2.2.10. Example 2.2.12
shows that some functional graphs may be counted twice. So if the sets with one fixed
cycle were removed, then the sets with two fixed cycles have to be added again as they were
removed twice, and so on for functional graphs with more cycles. We will now introduce
the cycle notation of a permutation to formally handle this. This is due to interpreting
cycles on vertices as cycles in a permutation, which is the approach taken in [Orl78].

Definition 2.2.13. Let 𝜋 ∈ 𝑆𝑛 be a permutation. The cycle notation of 𝜋 is a set of cycles
(𝑥, 𝜋(𝑥), 𝜋2(𝑥), … , 𝜋𝑘(𝑥)), where 𝑥 is the lexicographically smallest element of a cycle and
𝑘 is the smallest integer such that 𝜋𝑘+1(𝑥) = 𝑥. Trivial cycles of length 1 are omitted. The
number ℓ(𝜋) is the amount of non-trivial cycles of 𝜋.

Lemma 2.2.14. The sign of a permutation 𝜋 is sgn(𝜋) = (−1)(𝑘1−1)+⋯+(𝑘ℓ(𝜋)−1).
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Definition 2.2.15. Let 𝐷 be a digraph, then 𝜑𝜋(𝐷) is the number of functional subgraphs
of 𝐷 with fixed cycles, which appear as non-trivial cycles of 𝜋.

Theorem 2.2.16 (Inclusion–Exclusion Principle). Let 𝑋 be a finite set and 𝐴𝑖 subsets of 𝑋, then

∣
𝑛
⋃
𝑖=1

𝐴𝑖∣ = ∑
∅≠𝐽⊆[𝑛]

(−1)|𝐽|+1∣ ⋂
𝑗∈𝐽

𝐴𝑗∣.

Theorem 2.2.17 (Matrix Tree Theorem for Digraphs) [Orl78, Section 5]. Let 𝐷 be a digraph,
then the number 𝜅−(𝐷) of in-trees with root 𝑖 and forced edge (𝑖, 𝑗) is given by

𝜅−
𝑖 (𝐷) = ∑

𝜋∈𝑆𝑛,
𝜋(𝑖)=𝑗

(−1)ℓ(𝜋)𝜑𝜋(𝐷) = (−1)𝑖+𝑗 det(𝐿−
𝐷(𝑖 ∣ 𝑗)).

Proof. Without loss of generality let the forced edge of the root be a loop (𝑛, 𝑛) as we could
attach the cycle 𝐶 = (𝑗, 𝑖, 𝑖 + 1, … , 𝑗 − 1) for 𝑖 > 𝑗, and (𝑖, 𝑗, 𝑗 + 1, … , 𝑖 − 1) otherwise at the
end. Relabelling the vertices reduces (𝑗, 𝑗) to (𝑛, 𝑛). This cycle 𝐶 introduces a sign −1 if it
is of odd length.

The first equation is a direct consequence of the inclusion–exclusion principle as the
functional subgraphs containing a single fixed cycle 𝐶𝑖 can be interpreted as the sets 𝐴𝑖,
and the intersections 𝐴𝑖 ∩ 𝐴𝑗 as the subgraphs the functional subgraphs with the fixed
cycles 𝐶𝑖 and 𝐶𝑗. In general, the set ⋂𝑗∈𝐽 𝐴𝑗 contains all the functional subgraphs containing
fixed cycles 𝐶𝑗 with 𝑗 ∈ 𝐽. As 𝑛 is fixed via a forced loop (𝑛, 𝑛), we get

𝜅−
𝑖 (𝐷) = ∑

𝜋∈𝑆𝑛−1

(−1)ℓ(𝜋)𝜑𝜋(𝐷).

To connect this formula with the determinant of 𝐿−
𝐷(𝑛), we have to introduce the sign

of permutations. However, as the sign of a permutation 𝜋 is (−1)(𝑘1−1)+⋯+(𝑘ℓ(𝜋)−1) and we
implicitly count the number of fixed edges, which is exactly the length of all non-trivial
cycles of 𝜋, it is possible to write

∑
𝜋∈𝑆𝑛−1

(−1)ℓ(𝜋)𝜑𝜋(𝐷) = ∑
𝜋∈𝑆𝑛−1

(−1)ℓ(𝜋)+∑ 𝑘𝑖𝜑𝜋(𝐷) ∏
𝑒∈𝜋

(−1)

= ∑
𝜋∈𝑆𝑛−1

sgn(𝜋)𝜑𝜋(𝐷) ∏
𝑒∈𝜋

(−1)

= det 𝐿−
𝐷(𝑛).

The last equation is due to Proposition 2.2.10, and the fact that non-diagonal elements of
𝐿−

𝐷 contain −1 iff the edge exists. Thus using the Leibniz formula, 𝜑𝜋(𝐷) ∏𝑒∈𝜋(−1) is
equal to ∏𝑛−1

𝑖=1 (𝐿−
𝐷)𝑖𝑗.

2.2.3 A Sign-Reversing Involution

In the version of this proof given by S. Chaiken, he did not use the inclusion–exclusion
principle. He instead found a function to pair up unwanted functional graphs with each
other and annihilate them [Cha82]. In his paper, he proved a more general theorem,
which we will encounter in Section 3.1.4. Furthermore, we will also apply his inversion in
Section 3.2 to prove a different generalisation on hypergraphs.
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2. A Closer Look

Lemma 2.2.18 [Cha82, Section 2]. Let 𝜄 be the function, which maps 𝐹 × 𝑆𝑛 onto itself, where 𝐹
is the set of functional subgraphs of 𝐷 with a forced edge from 𝑟 ∈ 𝑉. It is defined by (2.2.1), where
𝐶 is the lexicographically the smallest cycle in 𝐺 ∈ 𝐹. Then 𝜄 is an involution, i.e. 𝜄2 = 𝐼𝑑.

𝜄(𝐺, 𝜋) ≔
⎧{{
⎨{{⎩

(𝐺, 𝜋) if 𝐺 contains only trivial cycles,
(𝐺, 𝜋 ∪ {𝐶}) if 𝐶 ∉ 𝜋,
(𝐺, 𝜋 ⧵ {𝐶}) if 𝐶 ∈ 𝜋.

(2.2.1)

Proof. Let us first prove that 𝜄 is an involution. If 𝐺 contains no cycles, then 𝜄 = 𝐼𝑑. On
the other hand, if 𝐺 contains a cycle, then also a lexicographically smallest one 𝐶. This
cycle is either a cycle of 𝜋 or it is disjunct from all cycles in 𝜋 as 𝐺 is a functional graph.
Therefore, if any vertex is in a cycle of 𝜋 and in 𝐶, both cycles are equal since there is only
one outgoing edge from every vertex. The function 𝜄 is now applied twice, so either 𝐶 is
added and then removed or vice versa. In any case, 𝜄2 = 𝐼𝑑.

Example 2.2.19. Let us again consider the graph in Figure 2.5. All six functional subgraphs
containing 𝐶 are illustrated on the right. Our previous approach in Section 2.2.2 grouped
these together and continued with intersecting this set with others. The approach taken
here is different, in such that we now consider a fixed functional graph and try to find all
possible ways to fix cycles within it.

Five of these functional subgraphs 𝐺1 through 𝐺5 only contain the single cycle 𝐶, and
so this cycle can either be fixed or not and simply appear “by chance.” As it is the only
cycle, it is also the smallest one and the permutation 𝜋, which identifies the fixed cycles,
may be 𝐼𝑑 or {𝐶}. The involution 𝜄 therefore maps (𝐺, 𝐼𝑑) to (𝐺, {𝐶}) and vice versa. A way
to annihilate both contributions would be to count the number of fixed cycles ℓ(𝜋).

Counting the number of fixed cycles also works for more than one possible cycle as
the sixth functional subgraph 𝐺6 in Figure 2.5 indicates. The cycle 𝐶 = (2, 3, 4) is now
accompanied by 𝐶′ = (5, 6). It is still the smallest cycle as it contains the smallest vertex of
both cycles. The permutations fixing cycles may now choose from {𝐶, 𝐶′}. The involution 𝜄
changes now whether 𝐶 is fixed or not. So if we sum up all possibilities, we get

∑
𝜋⊆{𝐶,𝐶′}

(−1)ℓ(𝜋) = (−1)ℓ(𝐼𝑑)⏟⏟⏟⏟⏟
(𝐺6,𝐼𝑑)

+ (−1)ℓ({𝐶})⏟⏟⏟⏟⏟
𝜄(𝐺6,𝐼𝑑)

+ (−1)ℓ({𝐶′})⏟⏟⏟⏟⏟
(𝐺6,{𝐶′})

+ (−1)ℓ({𝐶,𝐶′})⏟⏟⏟⏟⏟⏟⏟
𝜄(𝐺6,{𝐶′})

= 1−1+1−1 = 0.

Theorem 2.2.20 (Matrix Tree Theorem for Digraphs) [Cha82, Section 3]. Let 𝐷 be a digraph
and the set ℱ ≔ {(𝐺, 𝜋) | 𝐺 is a functional subgraph of 𝐷 with cycles 𝒞, 𝜋 ⊆ 𝒞} of all tuples of
functional subgraphs paired with their cycles, then the number 𝜅−

𝑖 (𝐷) of in-trees with root 𝑖 and
forced edge (𝑖, 𝑗) is given by

𝜅−
𝑖 (𝐷) = ∑

(𝐺,𝜋)∈ℱ
(−1)ℓ(𝜋) = (−1)𝑖+𝑗 det(𝐿−

𝐷(𝑖 ∣ 𝑗)).

Proof. We will now start in a similar manner as in Theorem 2.2.17 and identify the set of
all possible ways to generate a functional subgraph of 𝐷 with forced edge from vertex 𝑖.
This is given by Proposition 2.2.10. As no cycle is fixed but all possible graphs are chosen,
this number is |𝐹 × {𝐼𝑑}|. This set contains the subset on which 𝜄 from Lemma 2.2.18 acts as
the identity. We now try to find the other elements and pair them with their image.

Let us consider 𝐹 and take a closer look at the subset with a fixed subgraph 𝐺. If this
subgraph contains no cycles, it is an in-tree and we want to preserve it. Otherwise we want
to remove it. For this we will use the method of Example 2.2.19 and count the number of
non-trivial fixed cycles. So for 𝐺 containing cycles 𝒞 = {𝐶1, … , 𝐶𝑘} we get

∑
𝜋⊆𝒞

(−1)ℓ(𝜋) = 0.
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2.3. Per Induction

Thus only cycle-free functional subgraphs remain and 𝜅−
𝑖 (𝐷) = ∑(𝐺,𝜋)∈ℱ(−1)ℓ(𝜋).

The final step is to connect this to the determinant of 𝐿−
𝐷(𝑖 ∣ 𝑗), which is defined by

∑𝜋∈𝑆𝑛−1
sgn(𝜋) ∏𝑛−1

𝑘=1 ℓ𝑘,𝜋(𝑘). The values ℓ𝑘,𝜋(𝑘) are the number of possible edges for fixed
points of 𝜋: −1 for every edge in a fixed cycles and 0 if the edge does not exist in 𝐷. So the
contribution of one pair (𝐺, 𝜋) is exactly the sign of 𝜋 times −1 to the power of vertices in
non-trivial cycles. Thus,

sgn(𝜋) ∏
𝑘∈[𝑛],𝜋(𝑘)≠𝑘

(−1) = (−1)(𝑘1−1)+⋯+(𝑘ℓ(𝜋)−1) ⋅ (−1)𝑘1+𝑘2+⋯+𝑘ℓ(𝜋) = (−1)ℓ(𝜋).

The first equation is due to Lemma 2.2.14. We sum over all pairs (𝐺, 𝜋) ∈ ℱ and so
det(𝐿−

𝐷(𝑖 ∣ 𝑗)) = ∑(𝐺,𝜋)∈ℱ(−1)ℓ(𝜋), which concludes the proof.

In the above theorem, knowledge about the setℱ is usually not required, but—in combi-
nation with 𝜑𝜋(𝐷) of Theorem 2.2.17—illustrates the difference between both approaches.

All proofs in this section were concerned about the in-trees of a digraph. Similar results
exist for out-trees. To transform a proof, the only step is to change the orientation of edges
and change 𝐿−

𝐷 to 𝐿+
𝐷. Of course, we would not be using functional graphs, but instead

graphs with a single in-edge and possibly multiple out-edges.

Theorem 2.2.21 (Matrix Tree Theorem for Out-Trees). Let 𝐷 be a digraph, then the number
𝜅+(𝐷) of out-trees with root 𝑖 and forced edge (𝑗, 𝑖) is given by

𝜅+
𝑖 (𝐷) = (−1)𝑖+𝑗 det(𝐿+

𝐷(𝑗 ∣ 𝑖)).

2.3 Per Induction

A typical way to prove something for countable constructs is to prove it by induction.
The matrix tree theorem is no different as M. Lewin showed. His approach can easily be
generalised to digraphs, which are used in Section 2.2. However, a much more intuitive
generalisation would be to allow multiple edges between two vertices. Intuitive in that
sense, that the induction does not care if the smaller already has an edge between two
vertices as long as it is a subgraph. So let a multigraph be a tuple 𝐺 = (𝑉, 𝐸), where 𝑉 is
the set of vertices and 𝐸 the multiset of edges. Thus, edges between 𝑣 and 𝑤 appear with
multiplicity 𝑚𝑣,𝑤.

As a multigraph is a generalisation of graphs, the tools used to describe graphs will be
generalised too. The degree deg(𝑣) of a vertex 𝑣 counts the adjacent edges including the
multiplicity. The generalisation of the Laplacian thus follows directly:

Definition 2.3.1. Let 𝐺 be a multigraph, then 𝐿𝐺 is the Laplacian matrix of 𝐺, where

(𝐿𝐺)𝑖𝑗 ≔
⎧{{
⎨{{⎩

deg 𝑣𝑖 if 𝑖 = 𝑗,
−𝑚𝑖,𝑗 if 𝑖 ≠ 𝑗, (𝑖, 𝑗) ∈ 𝐸 with multiplicity 𝑚𝑖,𝑗

0 otherwise.

We start by proving a very narrow version of the matrix tree theorem, which already
covers the essence of the proof.

Theorem 2.3.2 [Lew82, Theorem 1]. Let 𝐺 be a multigraph, then det(𝐿𝐺(𝑛)) = 𝜅(𝐺).
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2. A Closer Look

Proof. Without loss of generality, ignore loops as they do not contribute to the number
of trees. The induction runs on both the number of vertices and edges. Our base case
therefore is rather an edge case, in which either 𝐺 is not connected or contains 2 vertices.
There also exists a single (multi-)graph with one vertex, which is also a tree. This coincides
with the determinant of the 0 × 0 matrix. If 𝐺 is not connected, then it contains no trees
and so 𝜅(𝐺) = 0. If 𝐺 has 2 vertices, then all edges are between 1 and 2. The Laplacian
matrix then is

𝐿𝐺 = ⎛⎜
⎝

𝑚1,2 −𝑚1,2
−𝑚1,2 𝑚1,2

⎞⎟
⎠

,

so the determinants of all minors of 𝐿𝐺 are equal. This concludes the induction basis.
The induction step consists of either removing a multiedge or combining two neigh-

bouring vertices into one. Our goal is to describe 𝜅(𝐺) via smaller graphs. We split the
subtrees of 𝐺 in those using an edge between 𝑖 and 𝑗 and those that do not. Without loss of
generality let 𝑖 = 1 and 𝑗 = 2 as this can be ensured by relabelling.

There are 𝜅(𝐺′) trees not using an edge (1, 2), where 𝐺′ is 𝐺 with all edges between 1
and 2 removed, so the induction hypothesis holds. But 𝐿𝐺′ is very similar to 𝐿𝐺 as only
(𝐿𝐺′)1,1 = (𝐿𝐺)1,1 −𝑚1,2, (𝐿𝐺′)2,2 = (𝐿𝐺)2,2 −𝑚1,2 and 𝑚′

1,2 = 𝑚′
2,1 = 0 are different. If we

take a closer look at the determinant of the minor without 1, it is clear that this only affects
permutations keeping 2 fixed. This is exactly the determinant of det(𝐿𝐺′(1, 2)) multiplied
by 𝑚1,2, so

𝜅(𝐺′) = det(𝐿𝐺′(1)) = det(𝐿𝐺(1)) − 𝑚1,2 det(𝐿𝐺(1, 2)).

If we consider the trees using an edge between 1 and 2—of which there are 𝜅(𝐺″)
many—we can contract these vertices into one. All those edges are removed and a new
vertex 1′ is created instead of 1 and 2. As the induction hypothesis holds, we can express
𝜅(𝐺″) via the Laplacian. As 𝐺″ contracts two vertices into one, but leaves the other part as
it is, the Laplacian matrices are only different in 1′ and 1 and 2 for 𝐺″ and 𝐺 respectively.
Therefore

𝜅(𝐺″) = det(𝐿𝐺′(1′)) = det(𝐿𝐺(1, 2)).

Finally, we can take a look at 𝜅(𝐺) itself. As any tree of 𝐺 has to choose at most one
edge between 1 and 2 and there are 𝑚1,2 choices to use an edge and one to not, we can
write it as follows:

𝜅(𝐺) = 𝜅(𝐺′) + 𝑚1,2𝜅(𝐺″)
= det(𝐿𝐺(1)) − 𝑚1,2 det(𝐿𝐺(1, 2)) + 𝑚1,2 det(𝐿𝐺(1, 2))
= det(𝐿𝐺(1)).

2.3.1 Tree-Like Structures

In the proof of Theorem 2.3.2 we saw that contracting two vertices works by counting
the choices. Any choice corresponds to one edge, which could also be interpreted as a
spanning tree of those two vertices. This gives raise to the question if there is a way to
count “tree-like” subgraphs containing a fixed structure. We will first consider spanning
trees, which contain a fixed tree of a multigraph.

Lemma 2.3.3 [Lew82, Theorem 2]. Let 𝐺 be a multigraph and 𝑇 be a tree on vertices 𝑉′ ⊆ 𝑉,
then the number of spanning trees containing 𝑇 is 𝜅𝑇(𝐺) = det(𝐿𝐺(𝑉′)).

Proof. In a similar manner to the previous proof, we contract the tree in 𝐺 to a single vertex
𝑡 of 𝐺′. So 𝜅𝑇(𝐺) = 𝜅(𝑇) ⋅ 𝜅(𝐺′), but as 𝑇 is a fixed tree, we have 𝜅(𝑇) = 1. The number

28



2.3. Per Induction

Figure 2.6: A multigraph with a fixed tree in grey. All grey vertices are contracted to a
single vertex. On the right: The same graph with the tree contracted.

of spanning trees in 𝐺′ is the determinant of a minor of 𝐿𝐺′ , so we can choose to remove
vertex 𝑡. This vertex encompasses exactly all vertices of 𝑇 and therefore

𝜅𝑇(𝐺) = det(𝐿𝐺′(𝑡)) = det(𝐿𝐺(𝑉′)).

We can also look at contracting cycles to vertices. If a cycle 𝐶 of multigraph 𝐺 is
contracted, then 𝜅𝐶(𝐺) counts the pseudotrees with cycle 𝐶, where a pseudotree with cycle 𝐶
is a connected subgraph containing only cycle 𝐶. In general, a pseudotree is a graph, which
may contain a single cycle. Thus, every tree is also a pseudotree. Similarly, a pseudoforest is
a graph, in which every connected component is a pseudotree. The proof follows similarly
to the one of the previous lemma.

Lemma 2.3.4. Let 𝐺 be a multigraph and 𝐶 be a cycle on vertices 𝑉′ ⊆ 𝑉, then the number of
spanning pseudotrees containing 𝐶 is 𝜅𝐶(𝐺) = det(𝐿𝐺(𝑉′)).

Both these results are extremely similar as in that the internal structure of the fixed
subgraph is completely lost and ignored. Until now, all edges had to be present in the
graph. However, in Section 2.2.1 we introduced forced edges, which were edges added to
the graph if not already present and then fixed. We will again use forced edges to count
the number of forests consisting of 𝑘 trees.

Definition 2.3.5. Let 𝐺 be a graph, then a subgraph 𝐹 is called 𝑘-forest iff it has 𝑘 connected
components and every component is a tree.

Theorem 2.3.6 (All Minors Matrix Tree Theorem). Let 𝐺 be a connected multigraph, then 𝐺
contains 𝜅𝑘(𝐺) 𝑘-forests with 𝑟1, … , 𝑟𝑘 in different trees, where

𝜅𝑘(𝐺) = det(𝐿𝐺(𝑟1, … , 𝑟𝑘)).

Proof. Let us consider a new graph 𝐺′ that is similar to 𝐺, apart from the forced edges
(𝑟1, 𝑟2),…, (𝑟𝑘−1, 𝑟𝑘) between the roots of the trees. These forced edges form a tree 𝑇
themselves and 𝐺′ is connected through 𝑇. Therefore Lemma 2.3.3 can be applied and the
number of 𝑘-forests with 𝑟1, … , 𝑟𝑘 in different trees is given by

𝜅𝑘(𝐺) = 𝜅𝑇(𝐺′) = det(𝐿𝐺(𝑟1, … , 𝑟𝑘)).

Corollary 2.3.7 [Lew82, Theorem 3]. Let 𝐺 be a multigraph with 𝑘 connected components, then
𝐺 contains 𝜅𝑘(𝐺) spanning forests, where 𝑣1, … , 𝑣𝑘 are vertices in different connected components
and

𝜅𝑘(𝐺) = 𝜅𝑇(𝐺′) = det(𝐿𝐺(𝑣1, … , 𝑣𝑘)).
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𝑥
𝑦

𝑧

∞

Figure 2.7: Benzo[f]azulene with its dual graph superimposed.

2.3.2 Parallels to the Cycle Theorem

We now return to the cycle theorem of Section 2.1.2, in which we showed a very similar
result to the matrix tree theorem. Both results come from Kirchhoff’s two circuit laws.
Section 2.3.1 shows that the internal structure is lost during contraction of a subgraph 𝑆. If
the number of spanning trees of 𝑆 is remembered, we can use it to solve the number of
spanning trees by evaluating the partial solutions and combining these. Applying this
construction to a planar graph and a face cycle basis would result in following definition.

Definition 2.3.8. Let 𝐺 be a planar graph and 𝒞 be a face cycle basis of 𝐺 and 𝐶′ = ⨁𝐶∈𝒞 𝐶.
The dual graph 𝐺∗ is the graph with vertices 𝒞 ∪ {𝐶′} and edges (𝐶𝑖, 𝐶𝑗) for every edge in
𝐶𝑖 ∩ 𝐶𝑗.

It is now possible to connect the dual of a given planar graph with the cycle theorem.
This is explored implicitly in [Che97, Section 4.4 of Chapter 2].

Theorem 2.3.9. Let 𝐺 be a planar graph with 𝑛 vertices, a cycle rank rank 𝐺 = 𝑘, a face cycle
basis 𝒞, and 𝐺∗ its dual graph with 𝑘 + 1 vertices, then

𝐿𝐺∗(𝑘 + 1) = 𝑀𝒞.

Proof. All elements of the face cycle basis represent a separate, finite face, whereas 𝐶′

stands for the outer face containing ∞. So every edge of graph 𝐺 belongs to exactly two
face cycles. As the cycles are the vertices of 𝐺∗, the overlap of two cycles is a multiedge
between those two cycles. This is exactly the definition of the cycle-overlap matrix 𝑀𝒞.

So the Laplacian matrix of the dual graph, of which one vertex is removed, is equal
to the cycle-overlap matrix of the face cycle matrix. Thus, we can calculate the number
of spanning trees of a planar graph via its dual graph using the cycle theorem. This also
shows that Kirchhoff’s current law is the dual formulation to Kirchhoff’s voltage law and
explains why only one law is used in either modern formulation of the matrix tree theorem
or the cycle theorem.

Example 2.3.10. We return to Example 2.1.22, in which we calculated the number of
spanning trees in a Benzo[f]azulene molecule using the cycle theorem. While it was much
quicker than using the matrix tree theorem, it can be sped up even more using the dual
graph.

The dual graph in Figure 2.7 contains four vertices, where three are in a finite face and
the fourth is at infinity. The outer face cycle, which is labelled with ∞, has a multitude of
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O

𝑥 𝑦

Figure 2.8: The structural formula for a camphor molecule and a planar repesentation
without tails. The dual graph is superimposed, with ∞ omitted.

edges: Four edges are connected to 𝑥, five to 𝑦 and five to 𝑧—one for every shared edge in
the original graph. So the Laplacian matrix is

𝐿𝐺∗ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 −1 −4
−1 7 −1 −5

−1 6 −5
−4 −5 −5 14

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Thus, the cycle-overlap matrix 𝑀𝒞 for the face cycle basis 𝒞 is given by removing a row
and column from the Laplacian matrix of the dual graph, which corresponds to removing
∞ from the vertices. As before, det(𝐿𝐺∗(∞)) = det(𝑀𝒞) = det(𝐿𝐺(1)) = 199.

Example 2.3.11. In the previous example we saw that the dual graph can be used to
calculate the number of spanning trees. After removing ∞, this multigraph turned out to
be a regular graph. However, this was just coincidence as this example shows.

In contrast to before, the two cycles 𝑥 and 𝑦 in Figure 2.8 overlap in two edges. So the
dual graph has two edges between 𝑥 and 𝑦. The cycles 𝑥 and 𝑦 also each share three edges
with ∞, so there are edges with multiplicity 3. The Laplacian matrix of the dual graph is

𝐿𝐺∗ =
⎛⎜⎜⎜⎜
⎝

5 −2 −3
−2 5 −3
−3 −3 6

⎞⎟⎟⎟⎟
⎠

.

So we end up with det(𝐿𝐺∗(∞)) = 21 spanning trees of the camphor molecule.

2.4 Random Walks

All previous proofs came from an algebraic and discrete direction, which is expected as
the matrix tree theorem has two concepts from these fields in its name. So it is even more
astonishing to find an approach from probability theory using a stochastic process ending
up at the same result. The connecting component of graph theory with probability theory
is the study of random walks.
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2.4.1 Markov Chains

We start by giving a short introduction to Markov chains, which are a simple case of
stochastic processes.

Definition 2.4.1. Let Ω be a nonempty set, Σ a 𝜎-algebra on Ω and ℙ∶ Σ → [0, 1] a
probability measure. Then the triple (Ω, Σ, ℙ) is called a probability space.

Definition 2.4.2. Let 𝑋 ≔ (𝑋𝑖)𝑛≥0 be a sequence of random variables, called states, on
a finite set 𝑉 and a probability space (Ω, Σ, ℙ), then 𝑋 is a Markov chain iff the Markov
property

ℙ(𝑋𝑛+1 = 𝑥 ∣ 𝑋0 = 𝑥0, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) = ℙ(𝑋𝑛+1 = 𝑥 ∣ 𝑋𝑛 = 𝑥𝑛)

if ℙ(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) > 0 holds. This property is also sometimes called the
memorylessness of the Markov chain. In the context of Markov chains, the set Ω is also
called state space.

Definition 2.4.3. Let 𝑋 be a Markov chain on set 𝑉 and let 𝑣, 𝑤 ∈ 𝑉, then 𝑤 is accessible
from 𝑣, written as 𝑣 → 𝑤 iff there exist 𝑖 and 𝑗 such that ℙ(𝑋𝑖+𝑗 = 𝑤 ∣ 𝑋𝑖 = 𝑣) > 0.

Definition 2.4.4. A Markov chain 𝑋 is called homogenous iff ℙ(𝑋𝑖+1 = 𝑥 ∣ 𝑋𝑖 = 𝑦) =
ℙ(𝑋𝑗+1 = 𝑥 ∣ 𝑋𝑗 = 𝑦) for all 𝑖, 𝑗, 𝑥 and 𝑦. So the conditional probability does not depend on
the number of previous steps.

The previous definition enables us to use a transition matrix 𝑃, where the transition
probabilities are 𝑃𝑣𝑤 = ℙ(𝑋𝑖+1 = 𝑤 ∣ 𝑋𝑖 = 𝑣), to collect the probabilities of going from
vertex 𝑣 to vertex 𝑤. We can now also identify accessibility via powers of the transition
matrix, as 𝑣 → 𝑤 iff there is an 𝑛, such that (𝑃𝑛)𝑣𝑤 > 0. In the following let ℙ𝑥 be the
probability of the chain with 𝑋0 = 𝑥 and 𝔼𝑥 the expectation according to ℙ𝑥.

Lemma 2.4.5 (Strong Markov Property). Let 𝑋 be a homogenous Markov chain, then the strong
Markov property holds:

ℙ(𝑋𝑖 = 𝑥𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑚 + 𝑛) = ℙ(𝑋𝑖 = 𝑥𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑚)ℙ𝑥𝑚
(𝑋𝑖 = 𝑥𝑖 ∶ 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛).

Proof. As 𝑋 is homogenous, it holds that

ℙ(𝑋0 = 𝑥0, … , 𝑋𝑘+1 = 𝑥𝑘+1) = ℙ(𝑋0 = 𝑥0, … , 𝑋𝑘 = 𝑥𝑘)𝑃𝑥𝑘𝑥𝑘+1
=

𝑘
∏
𝑖=0

𝑃𝑥𝑖𝑥𝑖+1
.

This can be split at any point and the strong Markov property follows.

Definition 2.4.6. Let 𝑋 be a Markov chain starting from 𝑥 and 𝐴 a subset. The first hit
time 𝜏𝐴(𝑥) ≔ inf{𝑖 | 𝑋𝑖 ∈ 𝐴} is the first time the chain enters set 𝐴 and the 𝑖-th hit time
𝜏(𝑖+1)

𝐴 (𝑥) ≔ inf{𝑘 > 𝜏(𝑖)
𝐴 (𝑥) ∣ 𝑋𝑘 ∈ 𝐴, 𝑋𝑘−1 ∉ 𝐴} is the 𝑖-th time the chain enters the set

𝐴. Note that it is acceptable to move within the set without it counting as an extra hit. If
𝐴 = {𝑥} this is also called the 𝑖-th return time.

The first hit time 𝜏𝑅(𝑥) specifies the smallest 𝑘, such that 𝑋𝑘 ∈ 𝑅. So 𝜏𝑅(𝑥) = ∞ for
walks that never enter 𝑅. Even a stronger result follows as the next lemma shows.

Lemma 2.4.7 [KRS13, Lemma 3.1]. Let 𝑅 ∈ 𝑉 be accessible from all 𝑣 ∈ 𝑉, then

max
𝑣∈𝑉

𝔼𝑣(𝜏𝑅(𝑥)) < ∞.
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2.4. Random Walks

Proof. As 𝑅 is accessible from 𝑣, we know that ℙ𝑥(𝜏𝑅(𝑥) > 𝑛) ≤ 𝜃𝑥. As there are only
finitely many different states of the Markov chain, there exists 𝜃 and 𝑛, such that the
previous equation holds for all 𝑥. Using the strong Markov property, we can derive

ℙ𝑥(𝜏𝑅(𝑥) > (𝑘 + 1)𝑛) = ∑
𝑦∈𝑉

ℙ𝑥(𝜏𝑅(𝑥) > 𝑘𝑛, 𝑋𝑘𝑛 = 𝑦)ℙ𝑦(𝜏𝑅(𝑥) > 𝑛)

≤ 𝜃ℙ𝑥(𝜏𝑅(𝑥) > 𝑘𝑛)

and therefore by induction ℙ𝑥(𝜏𝑅(𝑥) > 𝑘𝑛) ≤ 𝜃𝑘 for all 𝑥.

Definition 2.4.8 [LL10, Section 4.2]. For a subset 𝑅 ⊆ 𝑉 let 𝑔𝑅 be the random walk Green’s
function regarding 𝑅, defined by

𝑔𝑅(𝑥, 𝑦) ≔ 𝔼𝑥(
𝑇𝑅

∑
𝑘=0

𝜒{𝑦}(𝑋𝑛)).

Definition 2.4.9. Let 𝐴 be a set, then the indicator function 𝜒𝐴 is given by

𝜒𝐴(𝑥) ≔
⎧{
⎨{⎩

1 if 𝑥 ∈ 𝐴,
0 otherwise.

Theorem 2.4.10 [KRS13, final result of Section 3]. Let 𝑃 be the transition matrix of a homogenous
Markov chain, then the following hold:

1. If 𝐺 is the matrix with (𝐺(𝑅))𝑥,𝑦 = 𝑔𝑅(𝑥, 𝑦), then 𝐺(𝑅) = (𝐼𝑑 − 𝑃(𝑅))−1.

2. Let 𝑟𝑅(𝑥) ≔ ℙ𝑥(𝜏𝑥(𝑥) < 𝜏𝑅(𝑥)) be the probability of a random walk starting at 𝑥 returning
to 𝑥 before hitting 𝑅, then

𝑔𝑅(𝑥, 𝑥) =
∞
∑
𝑘=0

𝑟𝑅(𝑥)𝑘 = 1
1 − 𝑟𝑅(𝑥) .

Note that in this theorem we consider the minor of matrix 𝐺, which is dependant on
the function 𝑔𝑅. Here, one of the drawbacks of using this notation is obvious as one has to
be careful whether a function with a parameter or the minor of a matrix is observed.

Proof. The first part is done by evaluating the expectation, which can be rewritten as

𝑔𝑅(𝑥, 𝑦) = 𝔼𝑥(
𝜏𝑅(𝑥)

∑
𝑘=0

𝜒{𝑦}(𝑋𝑘))

=
∞
∑
𝑘=0

ℙ𝑥(𝑋𝑘 = 𝑦, 𝜏𝑅(𝑥) > 𝑘)

=
∞
∑
𝑘=0

ℙ𝑥(𝑋min(𝑘,𝜏𝑅(𝑥)) = 𝑦).

The Markov chain 𝑋𝑅 ≔ (𝑋min(𝑘,𝜏𝑅(𝑥)))𝑘≥0 is very similar to (𝑋𝑘)𝑘≥0, but as soon as the
walk enters 𝑅 it ends. So the transition matrix for 𝑋𝑅 is 𝑃𝑅, where the entries are

(𝑃𝑅)𝑥,𝑦 =
⎧{{
⎨{{⎩

𝑃𝑥,𝑦 if 𝑥 ∉ 𝑅,
1 if 𝑥 ∈ 𝑅 and 𝑥 = 𝑦,
0 otherwise.
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So for 𝑥, 𝑦 ∉ 𝑅 it holds that ℙ𝑥(𝑋min(𝑘,𝜏𝑅(𝑥)) = 𝑦) = (𝑃𝑘
𝑅)𝑥,𝑦 = (𝑃(𝑅)𝑘)𝑥,𝑦. If we plug this

into the sum, we get the geometric series and 𝐺(𝑅) = ∑∞
𝑘=0 𝑃(𝑅)𝑘 = (𝐼𝑑 − 𝑃(𝑅))−1.

Let 𝜏(𝑖)
𝑥 (𝑥) be the 𝑖-th return time for 𝑥. For 𝑥 ∉ 𝑅 it holds that 𝜏(𝑖)

𝑥 (𝑥) < 𝜏𝑅(𝑥) iff
∑𝜏𝑅(𝑥)

𝑘=0 𝜒{𝑥}(𝑋𝑘) > 𝑖. As we can use the strong Markov property and split the chain at the
previous visit of 𝑥, we can see that

ℙ𝑥(𝜏(𝑖+1)
𝑥 (𝑥) < 𝜏𝑅(𝑥)) = ℙ𝑥(𝜏(𝑖)

𝑥 (𝑥) < 𝜏𝑅(𝑥))ℙ𝑥(𝜏(1)
𝑥 (𝑥) < 𝜏𝑅(𝑥))

= ℙ𝑥(𝜏(1)
𝑥 (𝑥) < 𝜏𝑅(𝑥))𝑖+1.

Iteratively applying this result to Green’s function, we again get a geometric series and can
write it as

(𝐼𝑑 − 𝑃(𝑅))−1
𝑥,𝑥 = 𝔼𝑥(

𝜏𝑅(𝑥)

∑
𝑘=0

𝜒{𝑦}(𝑋𝑘)) = 1
1 − ℙ𝑥(𝜏𝑥(𝑥) < 𝜏𝑅(𝑥)) .

We are now able to describe a homogenous Markov chain via its Green’s function. This
function serves as a bridge between the return times and transition matrix, and will be
used later to derive probabilities of paths on a graph 𝐺 without loops.

2.4.2 Wilson’s Algorithm

We now take a closer look at fixed movements on a graph 𝐺. This is done by interpreting
the state space as the vertices and the transition matrix as the probabilities of moving from
one vertex to another. For this we will use so called random walks.

Definition 2.4.11. Let 𝑋 be a Markov chain, then a random walk from 𝑥0 is a sequence
(𝑥0, … , 𝑥𝑛), for which 𝑥0 ≔ 𝑋0 and 𝑥𝑖 ≔ 𝑥0 + ∑𝑖

𝑘=1 𝑋𝑘.

Definition 2.4.12 [LL10, Section 9.5]. Let 𝛾 = (𝑥0, … , 𝑥𝑛) be a random walk. The loop
erasure 𝐿𝐸(𝛾) ≔ (𝑥𝑖0 , … , 𝑥𝑖𝑘) of 𝛾 is the subsequence of 𝛾 with all loops omitted, so 𝑖0 ≔ 0,
and 𝑖𝑗+1 ≔ max{𝑖 | 𝑥𝑖 = 𝑥𝑖𝑗} + 1.

The loop erasure of a random walk is a subsequence, which has all loops cut away.
As every vertex may only appear once, this is a path. Chaining such paths together will
give a tree iff one checks whether a previous path is hit. A formalisation of this is exactly
Wilson’s algorithm [Wil96]:

Algorithm 1 Wilson’s algorithm for a uniformly random tree [Wil96, Figure 1]
1: function Wilson(𝑃, 𝑉)
2: 𝑇 ← ∅
3: 𝑅 ← {𝑥𝑛} ▷ the set of roots
4: while 𝑅 ≠ 𝑉 do
5: 𝑥0 ← inf(𝑉 ⧵ 𝑅) ▷ can also be a random element of 𝑉 ⧵ 𝑅
6: 𝑌 ← 𝐿𝐸({𝑋𝑘 | 𝑋0 = 𝑥0, 0 ≤ 𝑘 ≤ 𝜏𝑅(𝑥)})
7: 𝑇 ← 𝑇 ∪ {(𝑥𝑖𝑗−1

, 𝑥𝑖𝑗) | 0 < 𝑗 < |𝑌|} ▷ add edges of the loop-erased walk
8: 𝑅 ← 𝑅 ∪ 𝑌
9: end while

10: return 𝑇
11: end function
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Figure 2.9: A graph and randomly generated spanning tree using Wilson’s algorithm.

This algorithm clearly produces a tree if the root 𝑥𝑛 is accessible from every vertex. As
the main part is “walk, until you hit something”, it can also be easily generalised to forests
by initialising 𝑅 with more than one vertex. These vertices will form the roots of the trees.

We have yet to prove that these trees are generated uniformly. In other words, that the
probability of being generated is the same for all trees.

Example 2.4.13. In this example we illustrate the way a tree is generated by Wilson’s
algorithm on the graph of Figure 2.9 on the left. This graph is very simple and the number
of trees can be counted by hand: It contains one loop of length four, and therefore all
spanning trees omit exactly one edge of this loop. So 𝜅(𝐺) = 4.

The algorithm begins by initialising 𝑅1 = {6} and starting a random walk 𝛾1 at 1.
This walk contains a loop, but this is taken care of by using the loop erasure 𝐿𝐸(𝛾1). The
edges of this loop-erased walk are added to 𝑇, which will end up as the tree. Finally,
𝑅2 = 𝑅1 ∪ 𝐿𝐸(𝛾1) which forms the hitting set for the next iteration of the loop.

As 𝑅2 ≠ 𝑉 there still exist vertices which are not covered. We take the smallest one,
which is 3, and start a random walk there. The first step of 𝛾2 leads into 𝑅2 and the walk
ends. The loop-erased walk of 𝛾2 is equal to it as 𝛾2 already contains no loops. The single
edge of 𝛾2 is added to 𝑇 and 𝑅3 = 𝑅2 ∪ 𝛾2.

Similarly to the previous cycle, 𝑅3 ≠ 𝑉 and there exist uncovered vertices. The walk 𝛾3
starting at 4 leads to 5 and then into 𝑅3. This walk again contains no loops. So 𝑇 gets the
edges of 𝛾3 and 𝑅4 = 𝑅3 ∪ 𝛾3.

The loop ends as 𝑅4 = 𝑉 and all vertices are covered by an edge. As all loops were
erased and the walks ended when hitting a previously hit vertex, the subset 𝑇 of edges
is connected and contains no loop. So 𝑇 covers all vertices in a connected, loop-less way,
thus it is a spanning tree of 𝐺.

Lemma 2.4.14 [KRS13, Theorem 2.1]. Let 𝐴 be a 𝑛 × 𝑛 matrix with non-zero determinant,
𝜎 ∈ 𝑆𝑛 a permutation and Σ1 = ∅, Σ𝑖+1 = Σ𝑖 ∪ {𝜎(𝑖)} = 𝜎([𝑖]), then

det(𝐴)−1 =
𝑛

∏
𝑘=1

(𝐴(Σ𝑘))−1
𝜎(𝑘),𝜎(𝑘).

Proof. By Cramer’s rule, it holds that (𝐴−1)𝑖,𝑗 = det(𝐴(𝑗∣𝑖))
det(𝐴) and, for our use, in general

(𝐴(Σ𝑖)−1)𝜎(𝑖),𝜎(𝑖) = det(𝐴(Σ𝑖+1))
det(𝐴(Σ𝑖)) . If this is iteratively combinedwe end upwith a telescoping

35



2. A Closer Look

product in which only the first and last factor remain, where the determinant of the 0 × 0
matrix is 1:

𝑛
∏
𝑘=1

(𝐴(Σ𝑘))−1
𝜎(𝑘),𝜎(𝑘) =

𝑛
∏
𝑘=1

det(𝐴(Σ𝑘+1))
det(𝐴(Σ𝑘)) = det(𝐴([𝑛]))

det(𝐴) .

Theorem 2.4.15 [KRS13, Section 5]. Let 𝐿𝐺 be the Laplacian matrix of a graph 𝐺 and 𝑇 a random
spanning tree of 𝐺. The probability of generating 𝑇 via Wilson’s algorithm is det(𝐿𝐺(𝑥𝑛))−1.

Proof. The first step is to find the probability of a specific random path, denoted by 𝛾 =
(𝑥1, … , 𝑥𝑘, 𝑥𝑘+1), starting at 𝑥1 and hitting set 𝑅, with 𝑥𝑘+1 being the first element of 𝛾 in 𝑅.
This probability is obviously 0 if 𝛾 contains vertices from different connected components
of 𝑉 ⧵ 𝑅. Without loss of generality, let all 𝑥𝑖 ∈ 𝛾 be from the same connected component.

We first consider a random walk with hitting set 𝑅. The loop erasure of this walk will
then be our random path. As loops are cut, many walks generate the same path, and so
we have to sum over all these walks. The probability of a given walk is the probability of
looping at the first vertex, then moving to the second one, and looping there, without ever
returning to the first as this could then be considered as a loop of the first vertex. Thus
we define 𝑅(1) ≔ 𝑅 and 𝑅(𝑖+1) ≔ 𝑅(𝑖) ∪ {𝑥𝑖}. We then take the return probability 𝑟𝑅𝑖

of
Theorem 2.4.10 combined with the probability of choosing the edge from 𝑥𝑖 to 𝑥𝑖+1:

ℙ𝑅(𝐿𝐸(𝑥1, … , 𝑥𝜏𝑅(𝑥1)) = 𝛾) =
∞
∑

ℓ1,…,ℓ𝑘=0

𝑘
∏
𝑖=1

𝑟𝑅(𝑖)(𝑥𝑖)ℓ𝑖𝑃𝑥𝑖,𝑥𝑖+1

=
𝑘

∏
𝑖=1

1
1 − 𝑟𝑅(𝑖)(𝑥𝑖)

1
deg(𝑥𝑖)

=
𝑘

∏
𝑖=1

1
deg(𝑥𝑖)

𝑔𝑅(𝑖)(𝑥𝑖, 𝑥𝑖).

A spanning tree 𝑇 now consists of serveral such random paths, with different starting
points and without intersections. Therefore the hitting set increases with every finished
path. Let us assume that 𝑇 is generated via 𝑁 random walks 𝛾𝑗 with increasing hitting
sets 𝑅1 ≔ {𝑣𝑛} and 𝑅𝑗+1 = 𝑅𝑗 ∪ 𝛾𝑗. Denote the probability of generating 𝑇 via Wilson’s
Algorithm by ℙ𝑊(𝑇), then

ℙ𝑊(𝑇) =
𝑁

∏
𝑗=1

ℙ𝑅𝑗
(𝐿𝐸(𝑥𝑗,1, … , 𝑥𝑗,𝜏𝑅𝑗(𝑥1)) = 𝛾𝑗)

=
𝑁

∏
𝑗=1

𝑘𝑗

∏
𝑖=1

1
deg(𝑥𝑗,𝑖)

𝑔𝑅(𝑖)
𝑗

(𝑥𝑗,𝑖, 𝑥𝑗,𝑖), (2.4.1)

which was first shown by G. F. Lawler and V. Limic [LL10, Section 9.7]. The 𝑅(𝑖)
𝑗 are an

increasing sequence if ordered first by 𝑖 and then by 𝑗 and go from 𝑅(1)
1 = {𝑥𝑛} to 𝑉. We

want to apply Theorem 2.4.10.1, so we rewrite 𝑔𝑅(𝑖)
𝑗

(𝑥𝑗,𝑖, 𝑥𝑗,𝑖) = (𝐺(𝑅(𝑖)
𝑗 )). By Lemma 2.4.14

it follows that

𝑁
∏
𝑗=1

𝑘𝑗

∏
𝑖=1

𝑔𝑅(𝑖)
𝑗

(𝑥𝑗,𝑖, 𝑥𝑗,𝑖) = det(𝐺(𝑥𝑛))

= (𝐼𝑑 − 𝑃(𝑥𝑛))−1.
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As of now, we have just considered the tree generation in the context of a transition
matrix 𝑃, but the Laplacian matrix 𝐿𝐺 and the transition matrix can easily be generated
from each other since 𝐿𝐺(𝑅) = 𝐷(𝑅)(𝐼𝑑 − 𝑃(𝑅)), where 𝐷 = diag(deg 𝑥1, … , deg 𝑥𝑛).
Combining all of this with (2.4.1) leads to

ℙ𝑊(𝑇) = det(𝐺(𝑥𝑛))
det(𝐷(𝑥𝑛))

= 1
det(𝐷(𝑥𝑛)) det(𝐼𝑑 − 𝑃(𝑅))

= 1
𝐿𝐺(𝑥𝑛) .

Corollary 2.4.16 (Matrix Tree Theorem). Let 𝐺 be a graph, then det(𝐿𝐺(𝑛)) = 𝜅(𝐺).

Proof. There are exactly 𝜅(𝐺) spanning trees of 𝐺. Since every tree is generated with the
same probability of det(𝐿(𝑥𝑛))−1, it must hold that 𝜅(𝐺) = det(𝐿𝐺(𝑛)).

As we were only concerned about the entries of a transition matrix 𝑃, the upper proof
can be easily modified to allow digraphs, counting the in-trees. As the transition matrix
only contains probabilities of moving from one vertex to another, we can also introduce
multiple edges by weighing edges differently than others. The usual constraint of counting
in whole edges does not apply here. It must be taken into account that the (out-)degrees
in 𝐷 change accordingly. The number of spanning trees then more represents the sum of
all weights of spanning trees, where the weight of a spanning tree is the product of the
weights of its edges.

Theorem 2.4.17 (Matrix Tree Theorem for Weighted Trees). Let 𝐺 be a weighted graph with
weights 𝑤, then

det(𝐿𝐺(𝑛)) = 𝜅(𝐺, 𝑤),

where 𝜅(𝐺, 𝑤) denotes the sum of weights of all spanning trees of 𝐺.

While this theorem could be proven directly with this approach, we will prove a
more general version of this weighted matrix tree theorem in Section 3.1 using a method
described earlier.

2.5 Close Relatives

Until now, many different approaches to the matrix tree theorem were discussed and most
cases allowed us to find small generalisations. As these generalisations often introduce
extra steps in the proofs, we reduced them to a minimum, to show the general idea of the
proof.

The historical approach provided us with a way to use cycles instead of vertices, which
may reduce the size of the required matrices. We later found that this formulation enables
us to use the dual graph in finding the number of spanning trees. Explicitly counting led
to two ways of proving the theorem. One via the inclusion–exclusion principle and the
other via a sign-reversing involution. In either case we were able to generalise the result to
digraphs. Induction used the deletion or contraction of subgraphs to reduce the graph to a
smaller one. Sowewere able to force a substructure and derive the theorem formultigraphs
and generalise it to the all minors matrix tree theorem. Finally, the probabilistic approach
led to using weighted edges and counting not the trees themselves, but the sum of their
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weights. If these weights are integers, they can be interpreted as the multiplicity of a
multiedge.

Instead of trying to generalise the matrix tree theorem, many tried to modify it and
either adapt it to their requirements or simply try to find other related results. This has
led to a multitude of similar theorems, with many applications on their own. As they
themselves could fill a book, we give only an incomplete list, in which we state the results.
The proofs can be found in their respective sources.

2.5.1 A Most Versatile Matrix Tree Theorem

Apart from Section 2.1, every approach highlighted a different generalisation. This most
general version of the matrix tree theorem is often considered as the modern formulation.
The directed counterpart is often called Tutte’s matrix tree theorem as W. T. Tutte first
formulated it in 1948 [Tut48].

S. Chaiken and W.-K. Chen both formulated an extremely general version, which will
be generalised here to weighted graphs:

Definition 2.5.1. Let 𝐺 be a (di)graph and 𝑤∶ 𝐸 → ℝ a weight function. 𝐺 with 𝑤 is then
called a weighted (di)graph.

The adjacency matrix, Laplacian matrix and the several kinds of incidence matrices
can all be generalised to weighted (di)graphs. Instead of marking an edge by writing 1,
or in the case of multigraphs, writing the multiplicity 𝑚𝑖𝑗, we write the edge weight 𝑤(𝑒).
In the case of the Laplacian, we have to replace deg(𝑣𝑖) with ∑𝑖∈𝑒∈𝐸 𝑤(𝑒). If we consider
digraphs, we replace deg+(𝑣𝑖) with ∑𝑗∈𝑉 𝑤((𝑖, 𝑗)) as non-existent edges can be considered
as edges with weight 0.

Definition 2.5.2. The weight of a weighted (di)graph 𝐺 with weights 𝑤 is ∏𝑒∈𝐸 𝑤(𝑒).

Theorem 2.5.3 (Weighted All Minors Matrix Tree Theorem). Let 𝐺 be a weighted (di)graph
with 𝑛 vertices and 𝐼 ⊆ {𝑛}, then

det(𝐿𝐺(𝐼))

is the sum of weights 𝑤(𝑇) of spanning (in-)forests 𝑇 with |𝐼| (in-)trees.

Both got to this theorem in the context of matroid theory, which generalises the concept
of linear dependence to arbitrary sets. W.-K. Chen also mentioned the cycle theorem as
Corollary 2.24 in [Che97]. S. Chaiken continued to generalise this theorem to gammoids,
which are matroids in the context of graphs. However, we will not follow this direction. In
general, the path taken in Section 2.1.2 can easily be reformulated to matroids as it already
closely resembles them. The cycle theorem is then a result parallel to its dual, using the
cut space instead of the cycle space.

In fact, the theorem given above is not a direct generalisation of the theorem S. Chaiken
and W.-K. Chen provided as they considered det(𝐿𝐺(𝐼 ∣ 𝐽)) for 𝐼, 𝐽 ⊆ [𝑛]. However, this
results in a much more complicated expression. We will reach a true generalisation of
their theorem later in Section 3.1.4.

2.5.2 The Matrix Tree Theorem on Edges

In Section 1.1 we used the vertex–edge incidence matrix 𝐵𝐺 to calculate 𝐿𝐺 = 𝐵𝐺𝐵T
𝐺. This

results in a matrix, which relates vertices with other vertices. If we reverse the order and
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Figure 2.10: The structural formula for n-butane and its corresponding line graph.

calculate 𝐵T
𝐺𝐵𝐺 we end up with a matrix that relates edges with edges. Let this matrix be

denoted by 𝐾𝐺. This matrix is dependant on a given edge-orientation.
It cannot be explained as directly as 𝐿𝐺, but shows some interesting relations for special

graphs. If 𝐺 is bipartite, then 𝐾𝐺 = 2𝐼𝑑 − 𝐴𝐺′ , where 𝐺′ is the line graph of 𝐺, which is a
similar concept as dual graphs are. The edges of 𝐺 are the vertices of line graph 𝐺′ with
connecting edges if they share a vertex of 𝐺.

Definition 2.5.4 [Wie47, definition of 𝑤]. Let 𝐺 be a graph, then the Wiener index of 𝐺 is
𝑊(𝐺) defined as the sum of lengths of all shortest paths between two vertices.

Example 2.5.5. H. Wiener calculated in [Wie47] the Wiener index for n-butane and longer
straight-chain alkanes explicitly. For these alkanes, the shortest path is quite easy to find
as there is only one straight chain of carbon atoms. So for n-butane there is one path of
length 3, two paths of length 2 and three paths to a neighbouring vertex of length 1. In
sum, the Wiener index of n-butane is 1 ⋅ 3 + 2 ⋅ 2 + 3 ⋅ 1 = 10.

We generalise this formula for straight-chain alkanes with 𝑛 carbon atoms. As paths
have no direction, we count paths starting at a vertex to all right vertices. So there are no
paths for the rightmost vertex, one path of length 1 from the left neighbour, and a sum of
∑𝑘−1

𝑖=0 𝑖 = 1
2(𝑘 − 1)𝑘 for the 𝑘-th vertex. So for 𝑛 vertices we get a Wiener index of

𝑛
∑
𝑘=0

(𝑘 − 1)𝑘
2 = (𝑛 − 1)𝑛(𝑛 + 1)

6 .

This is exactly the (𝑛 − 1)-th tetrahedral number.

The Wiener index also appears in the edge version matrix tree theorem if it is applied
to a tree. The following theorem is formulated in a more general way in [Mer89].

Theorem 2.5.6 (Edge Version Matrix Tree Theorem) [Mer89]. Let 𝑇 be a tree and oriented,
such that the entries of 𝐾𝑇 are non-negative, then

det 𝐾𝑇(𝑖) = 𝑤(𝑒𝑖),

where 𝑤(𝑒𝑖) is the product of the number of vertices on one side of the edge times the ones on the
other side.

This theorem can—similarly to the matrix tree theorem—also be formulated via the
eigenvalues of the Laplacian. To prove this connection, we first have to define the adjugate
of a matrix.

Definition 2.5.7. Let 𝐴 be an 𝑛 × 𝑛 matrix. The adjugate adj(𝐴) is the transpose of the
cofactor matrix. In other words,

adj(𝐴) ≔
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

+𝑀1,1 −𝑀2,1 ⋯ (−1)𝑛+1𝑀𝑛,1
−𝑀1,2 +𝑀2,2 ⋮

⋮ ⋱ −𝑀𝑛,𝑛−1
(−1)𝑛+1𝑀1,𝑛 ⋯ −𝑀𝑛−1,𝑛 +𝑀𝑛,𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where 𝑀𝑖,𝑗 = det(𝐴(𝑖 ∣ 𝑗)).
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Lemma 2.5.8. Let 𝐴, 𝐵 be matrices, then 𝐴𝐵 and 𝐵𝐴 have the same eigenvalues with the same
multiplicity.

Proof. Let 𝑥 be an eigenvector corresponding to eigenvalue 𝜆 of 𝐴𝐵. Thus, 𝐵𝑎 ≠ 0 and

𝜆𝐵𝑥 = 𝐵𝜆𝑣
= 𝐵(𝐴𝐵)𝑥
= (𝐵𝐴)𝐵𝑥.

So 𝐵𝑥 is an eigenvector corresponding to eigenvalue 𝜆 of 𝐵𝐴.

Corollary 2.5.9 [Mer89, Corollary]. Let 𝑇 be a tree and 𝜆2, … 𝜆𝑛 the non-zero eigenvalues of 𝐿𝐺.
The Wiener index of a tree 𝑇 is given by

𝑊(𝑇) = ∑
𝑒∈𝐸

𝑤(𝑒)

= 𝑛
𝑛

∑
𝑖=2

1
𝜆𝑖

Proof. Every edge in 𝑇 is traversed by every path from the left to the right. So, if there are
𝑎 vertices to the left and 𝑏 vertices to the right, then there exist 𝑎𝑏 = 𝑤(𝑒) paths through 𝑒.
This leads to

∑
𝑒∈𝐸

𝑤(𝑒) = ∑
𝑒∈𝐸

det(𝐾𝑇(𝑒))

= tr(adj(𝐾𝑇))

= 𝑛
𝑛

∑
𝑖=2

𝜅(𝑇)
𝜆𝑖

.

The last equation follows as the sum of diagonal elements is the trace of a matrix, and
the 𝐾𝑇(𝑒) are the diagonal elements of the adjugate of 𝐾𝑇. In general, if the eigenvalues of
a matrix 𝑀 are 𝜇1, … , 𝜇𝑛, then the eigenvalues of the adjugate are ∏𝑖∈[𝑛]⧵{𝑘} 𝜇𝑖, for 𝑘 = 1
to 𝑛. Using Lemma 2.5.8 and the decompositions of 𝐾𝑇 and 𝐿𝑇 into 𝐵𝑇, in combination
with the fact that the product of non-zero eigenvalues of 𝐿𝑇 is 𝜅(𝑇), we get 𝜅(𝑇)

𝜆𝑖
for the

eigenvalues of adj(𝐿𝑇), but 𝑇 is a tree, so 𝜅(𝑇) = 1.

Example 2.5.10. Let us continue the previous example by calculating the Wiener index
via Corollary 2.5.9. The structural formula and the according line graph 𝐺′ are pictured in
Figure 2.10. So the adjacency matrix of 𝐺′ is

𝐴𝐺′ =
⎛⎜⎜⎜⎜
⎝

1
1 1

1

⎞⎟⎟⎟⎟
⎠

and 𝐾𝐺 = 2𝐼𝑑 + 𝐴𝐺′ . Therefore the determinants of the minors 𝐾𝐺(1), 𝐾𝐺(2) and 𝐾𝐺(3)
are 3, 4 and 3 respectively. Calculating the sum gives 10, which is the Wiener index. The
other given method of calculating the Wiener index is by using the non-zero eigenvalues
of 𝐿𝐺, which are 2 and 2 ± √2. So 4 ⋅ (1

2 + 1
2+√2

+ 1
2−√2

) = 10.

𝐿𝐺 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1
−1 2 −1

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

40



2.5. Close Relatives

The Wiener index is of much interest in the chemistry of some alkenes, which are
acyclic hydrocarbons. So the restriction of Theorem 2.5.6 to trees is no restriction in its
application. H. Wiener himself stated a formula for the boiling point of alkenes in relation
to theWiener index. Later works foundmanymore correlations to theWiener index [RK02,
Table 1].

2.5.3 The Kirchhoff Polynomial

In Section 1.3 we briefly mentioned A. Cayley’s original approach of explicitly counting
the trees by labelling the vertices. However, in finding the explicit trees it would be more
beneficial to directly label the edges as this would give the edges instead of a list of vertices,
fromwhich the edgeswould have to be reconstructed. These lists could then be represented
as a polynomial, called Kirchhoff polynomial, in which every monomial represents a tree.

Definition 2.5.11. Let 𝐺 be a graph and 𝒯 the set of all spanning trees on 𝐺. The Kirchhoff
polynomial is given by

𝒦𝐺 ≔ ∑
𝑇∈𝒯

∏
𝑒𝑖∈𝑇

𝑥𝑖.

Corollary 2.5.12. Let 𝐺 be a graph, then 𝜅(𝐺) = 𝒦𝐺(1, … , 1).

Definition 2.5.13. Let 𝐺 be a graph, then the combinatorial Laplacian matrix of 𝐺 is ℒ𝐺,
where

(ℒ𝐺)𝑖𝑗 ≔
⎧{{
⎨{{⎩

∑𝑖∈𝑒𝑘∈𝐸 𝑥𝑘 if 𝑖 = 𝑗,
−𝑥𝑘 if 𝑖 ≠ 𝑗, 𝑒𝑘 = (𝑖, 𝑗) ∈ 𝐸,

0 otherwise.

The proof for the matrix tree theorem for the Kirchhoff polynomial is straightforward
and can be derived in a similar way to the previous proofs.

Theorem 2.5.14. Let 𝐺 be a graph, then 𝒦𝐺 = detℒ𝐺(𝑖).

Apart from the use of explicitly listing the spanning trees of a graph via the Kirchhoff
polynomial, it found use in quantum theory in solving Feynman integrals on Feynman
graphs. This is due to the connection to the first Symanzik polynomial 𝒰 [BW10; Bro10],
which can be expressed as

𝒰𝐺(𝑥1, … , 𝑥𝑘) = 𝒦𝐺( 1
𝑥1

, … , 1
𝑥𝑘

) ∏
𝑒𝑖∈𝐸

𝑥𝑖.

2.5.4 Signless Laplacian Matrix

Anotherway tomodify the knownmatrix tree theorem is to use a different kind of Laplacian.
The classical results all stem from the signed Laplacian matrix 𝐿𝐺 = 𝐵𝐺𝐵T

𝐺, where 𝐵𝐺 is the
oriented incidence matrix. This matrix requires an arbitrary edge-orientation. Getting rid
of this choice by simply assigning +1 to both ends of an edge gives the unoriented incidence
matrix 𝐵̃𝐺, where

(𝐵̃𝐺)𝑖𝑗 ≔
⎧{
⎨{⎩

1 if (𝑖, 𝑘) = 𝑒𝑗,
0 otherwise.
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From this we can derive the signless Laplacian matrix 𝑄𝐺 ∶= 𝐵̃𝐺𝐵̃T
𝐺. It also holds that

(𝑄𝐺)𝑖𝑗 =
⎧{{
⎨{{⎩

deg 𝑣𝑖 if 𝑖 = 𝑗,
1 if 𝑖 ≠ 𝑗, (𝑖, 𝑗) ∈ 𝐸,
0 otherwise.

Theorem 2.5.15 (Signless Matrix Tree Theorem) [HM19, Theorem 2.9]. Let 𝐺 be a connected
graph and 𝑄𝐺 its signless Laplacian matrix, then det(𝑄𝐺(𝑖)) = ∑𝐻∈𝒫𝑜

4𝑐(𝐻), where 𝒫𝑜 is the set
of all subgraphs of 𝐺 with 𝑛 − 1 edges, consisting of one tree and 𝑐(𝐻) pseudotrees with an odd
cycle-length.

Corollary 2.5.16 [HM19, Corollary 2.11.a]. Let 𝐺 be a connected graph, then

det(𝑄𝐺(𝑖)) ≥ 𝜅(𝐺).

The regular matrix tree theorem counts the number of trees in a graph, but another
interpretation is that it counts the number of “tree-like” subgraphs with 𝑛 − 1 edges. This
coincides with the number of remaining rows and columns of 𝐿𝐺(𝑖) and, if we consider
the all minors matrix tree theorem, which allows the removal of 𝑘 rows and columns we
can also count the number of “tree-like” subgraphs with 𝑛 − 𝑘 edges, which are forests.
As there are no “tree-like” structures with 𝑛 edges, we expect det(𝐿𝐺) = 0, which holds
true. However, the same interpretation can be applied to the signless matrix tree theorem.
However, this variation counts subgraphs consisting, in which every connected component
is either a tree or a pseudotrees with an odd cycle-length. These subgraphs are called
TU-graphs5 [HM19]. Thus, we do not expect det(𝑄𝐺) = 0, as there are TU-subgraphs with
𝑛 edges, for example spanning pseudotrees with odd cycle lengths.

Theorem 2.5.17 [HM19, Theorem 3.4]. Let 𝐺 be a connected graph, then the determinant of
𝑄𝐺 is given by det(𝑄𝐺) = ∑𝐻∈𝒫𝑜

4𝑐(𝐻), where 𝒫𝑜 is the set of all subgraphs of 𝐺 with 𝑛 edges,
consisting of 𝑐(𝐻) pseudotrees with an odd cycle-length.

As a result, we get an upper bound for spanning pseudoforests of 𝐺, in which every
cycle is of odd length. As every cycle can be extended to a pseudotree, this also gives an
upper bound for the number of odd cycles in 𝐺.

Corollary 2.5.18 [HM19, Corollary 3.6]. Let 𝐺 be a graph, then there are at most det(𝑄𝐺)
4

spanning pseudoforests of 𝐺, in which every cycle is of odd length.

2.5.5 The Markov Chain Tree Theorem

In Section 2.4 we showed a probabilistic proof of the matrix tree theorem for the minor of
the Laplacian matrix, but there is also a version of the theorem via eigenvalues, given in
Theorem 1.3.4. The authors of [KRS13] also gave a probabilistic proof for this variant.

In passing, they give a proof of the Markov chain tree theorem, which is concerned
about the unique stationary distribution 𝜋 of a Q-matrix 𝑄 ≔ 𝑅(𝐼𝑑−𝑃), i.e. 𝜋𝑄 = 0 [KRS13,
Section 4]:

Definition 2.5.19. Let 𝑋 be a Markov chain and 𝑥 ∈ 𝑉 an element of the state space. Then
𝑥 is recurrent iff ℙ𝑥(𝜏𝑥 < ∞) = 1.

5The name presumably is an abbreviation for “tree or odd unicyclic graph” as pseudotrees, which are not
trees, are sometimes called unicyclic.
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Lemma 2.5.20. Let 𝑋 be a Markov chain and 𝑥, 𝑦 ∈ 𝑉 elements of the state space. If 𝑥 is recurrent
and 𝑦 is accessible from 𝑥, then 𝑦 is also recurrent and 𝑥 is accessible from 𝑦.

Proof. If 𝑥 was not accessible from 𝑦, but 𝑦 from 𝑥, there exists a path, which enters 𝑦 before
it enters 𝑥. Then this path could never return to 𝑥 and ℙ𝑥(𝜏𝑥 < ∞) < 1. So 𝑥 is accessible
from 𝑦, but then any path moving to 𝑦 is always able to return, thus 𝑦 is recurrent.

Theorem 2.5.21 (Markov Chain Tree Theorem) [KRS13, Theorem 4.2]. Let 𝑃 be a transition
matrix, 𝑅 a diagonal matrix with positive entries, and 𝑄 = 𝑅(𝐼𝑑 − 𝑄) a Q-matrix of a continuous
Markov chain. Then the following hold:

1. det(−𝑄(𝑥)) > 0 for all 𝑥 ∈ 𝑉.

2. If dim(ker(𝑄)) = 1, then det(−𝑄(𝑥]) > 0 iff 𝑥 is recurrent.

3. If dim(ker(𝑄)) = 1, then the unique stationary distribution 𝜋 with ∑ 𝜋𝑥 = 1 is given by

𝜋𝑥 = det(−𝑄(𝑥))
𝜆2 ⋯ 𝜆𝑛

,

where 𝜆2, … , 𝜆𝑛 are the non-zero eigenvalues of −𝑄.

While this is a probabilistic result and the proof given in [KRS13] is also of this nature,
there exists also a purely graph theoretical proof [KGW10]. In fact, the Markov chain tree
theorem can be proven from the matrix tree theorem and vice versa [PT18].
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Expanding the Horizon 3
The matrix tree theorem gives a most central formula in finding the number of spanning
trees in a given graph. While the usual approach gives only the number of trees of a
graph, this was readily generalisable to give also the number of in-trees of a digraph or
multigraph and finally weights of in-trees of a digraph.

We consider two generalisations, which drastically change the matrix tree theorem. In
one, we again consider weighted graphs, but now with weights in a commutative semiring.
This introduces a very central problem: The notion of determinants requires additive
inverses, which are not guaranteed to exist in semirings. The second generalisation is
concerned about trees in hypergraphs. The possibility of edges having more than two
endpoints restricts us from directly using matrices.

Even though these problems seem very fundamental, much can be salvaged and the
general idea of the theorempreserved. Wewill also give special cases, inwhich the theorem
mostly keeps the known look.

3.1 Semirings

In this section we will generalise the matrix tree theorem to allow graphs with weights
in commutative semirings. At first we will give a short introduction to semirings. We
continue by defining matrices an a similar notion to determinants on semirings. This
mostly follows Chapters 5 and 6 and concludes with Chapter 12 of [Gol03].

Definition 3.1.1. Let 𝑆 be a non-empty set and ⊕∶ 𝑆 × 𝑆 → 𝑆 an associative function, with
𝑎 ⊕ 𝜀 = 𝜀 ⊕ 𝑎 = 𝑎 for all 𝑎 ∈ 𝑆. Then the triple (𝑆, ⊕, 𝜀) is called a monoïd.

Definition 3.1.2. The tuple (𝑆, ⊕, ⊗, 𝜀, 𝑒) is called semiring iff

i. (𝑆, ⊕, 𝜀) is a commutative monoïd,

ii. (𝑆, ⊗, 𝑒) is a monoïd, and

iii. the multiplication ⊗ is distributive with respect to addition ⊕, so

𝑎 ⊗ (𝑏 ⊕ 𝑐) ≔ (𝑎 ⊗ 𝑏) ⊕ (𝑎 ⊗ 𝑐),
(𝑎 ⊕ 𝑏) ⊗ 𝑐 ≔ (𝑎 ⊗ 𝑐) ⊕ (𝑏 ⊗ 𝑐).

In a similarway to omitting the operator ⋅ in the usualmultiplication, wewill also omit⊗
whenever there is little chance of confusing it with a different operation. Additionally, we
will often write 𝑆 instead of (𝑆, ⊕, ⊗, 𝜀, 𝑒) for the semiring.

Definition 3.1.3 [Gol03, p. 14]. Let (𝑆, ⊕, ⊗, 𝜀, 𝑒) be a semiring. If for an element 𝐴 ∈ 𝑆 it
holds that 𝑎 ⊕ 𝑏 = 𝑎 ⊕ 𝑐 iff 𝑏 = 𝑐 for all 𝑏, 𝑐 ∈ 𝑆, then 𝑎 is called cancellable. If all elements of
𝑆 are cancellable, then the semiring is cancellative.
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Example 3.1.4. If we consider the set of non-negative integers ℕ with the usual addition
and multiplication, the tuple (ℕ, +, ⋅, 0, 1) is a semiring:

(ℕ, +, 0) is a commutative monoïd as (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐), so addition is associative,
and 0 is the neutral element. The addition is commutative as 𝑎 + 𝑏 = 𝑏 + 𝑎.

A similar argument follows for (ℕ, ⋅, 1). As this too is a commutative monoïd and mul-
tiplication is distributive with respect to addition, we even have a commutative semiring.

We can also check whether the cancellative property holds. As 0 is neutral element, it
holds that 0 + 𝑎 = 0 + 𝑏 iff 𝑎 = 𝑏. The successor function on ℕ is injective, so (𝑐 + 1) + 𝑎 =
(𝑐 + 1) + 𝑏 iff (𝑐 + 𝑎) + 1 = (𝑎 + 𝑏) + 1 iff 𝑐 + 𝑎 = 𝑐 + 𝑏, which holds by induction hypothesis.

Definition 3.1.5 [Gol03, p. 14]. Let 𝑆 be a semiring. An element ∞ is called an infinite
element iff 𝑎 ⊕ ∞ = ∞ for all 𝑎 ∈ 𝑆.

The infinite element is necessarily unique since if there are two infinite elements ∞
and ∞′, we have ∞ = ∞ ⊕ ∞′ = ∞′ ⊕ ∞ = ∞′. It also follows directly that infinite
elements are cancellative iff the semiring 𝑆 is trivial. Otherwise there are 𝑎 ≠ 𝑏 in 𝑆, but
𝑎 ⊕ ∞ = ∞ = 𝑏 ⊕ ∞.

Example 3.1.6. In the previous example, we saw that the naturals form a cancellative,
commutative semiring in the natural sense. If we add an infinite element ∞ to the naturals,
we get ℕ∞. The semiring (ℕ∞, +, ⋅, 0, 1) is still commutative, but not cancellative. For
example ∞ + 1 = ∞ + 0, but 1 ≠ 0.

Example 3.1.7. Let again ℕ∞ ≔ ℕ ∪ {∞} be the naturals with infinity ∞. If we take the
minimum 𝑎 ⊕ 𝑏 = min(𝑎, 𝑏) as the addition and the sum 𝑎 ⊗ 𝑏 = 𝑎 + 𝑏 as multiplication
with 𝜀 = ∞ and 𝑒 = 0, we get the tropical semiring [Gol03, p. 16]. So in this case, the zero
element is ∞ and the one element is 0.

This is another common example for a non-cancellative, commutative semiring as
min(0, 0) = min(0, 1), but 0 ≠ 1.

Example 3.1.8. If a commutative semiring (𝑆, ⊕, ⊗, 𝜀, 𝑒) is given, we can also define the
polynomials over 𝑆. A polynomial is defined by 𝑝(𝑋) ≔ ⨁𝑁

𝑘=0 𝑠𝑘𝑋𝑘, with 𝑠𝑘 ∈ 𝑆 and 𝑋
being an indeterminate. The set of these polynomials is denoted by 𝑆[𝑋] and is a semiring
on its own, where the zero element is 𝜀𝑋0 and the one element is 𝑒𝑋0.

Definition 3.1.9 [Gol03, p. 5]. Let (𝑆, ⊕, ⊗, 𝜀, 𝑒) be a semiring. A non-empty subset 𝐼 ⊆ 𝑆
is called a (two-sided)6 ideal iff

i. 𝐼 is closed under addition,

ii. if 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝑆, then 𝑎𝑏 ∈ 𝐼 and 𝑏𝑎 ∈ 𝐼.

Usually, ideals are defined over rings. The definition does not change visibly as both
parts are some closing condition: On one hand, ideals are closed under addition with
respect to the ideal itself, and closed under multiplication with respect to the semiring.

Lemma 3.1.10. Let (𝑆, ⊕, ⊗, 𝜀, 𝑒) be a semiring and 𝐼 an ideal of 𝑆, then (𝐼, ⊕, 𝜀) is a submonoïd
of (𝑆, ⊕, 𝜀).

6One could also consider one-sided, i.e. left- or right-ideals. However, they will not be required later.
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Proof. As any ideal 𝐼 is non-empty, it contains at least one element 𝑎. We can then consider
𝑎𝜀 = 𝜀 ∈ 𝐼, due to Definition 3.1.9.ii. So 𝐼 contains 𝜀 and is closed under additions, and it is
a submonoïd.

Definition 3.1.11. Let 𝑆 be a semiring and 𝐼 ⊆ 𝑆 an ideal of 𝑆, then [𝑎]𝐼 denotes the set of
elements which only differ in an element of 𝐼, so

[𝑎]𝐼 ≔ {𝑎 ⊕ 𝑖 | 𝑖 ∈ 𝐼}.

Theorem 3.1.12. Let 𝑆 be a semiring and 𝐼 ⊆ 𝑆 an ideal of 𝑆, then 𝑆/𝐼 ≔ {[𝑎]𝐼 | 𝑎 ∈ 𝑆} with the
operations [𝑎]𝐼 ⊕𝐼 [𝑏]𝐼 ≔ [𝑎 ⊕ 𝑏]𝐼 and [𝑎]𝐼 ⊗𝐼 [𝑏]𝐼 ≔ [𝑎 ⊗ 𝑏]𝐼.

Proof. At first, we show that the operations are well-defined. Let 𝑎, 𝑎′ ∈ [𝑎]𝐼 and 𝑏, 𝑏′ ∈ [𝑏]𝐼,
then there are 𝑖𝑎 and 𝑖𝑏 ∈ 𝐼, such that 𝑎⊕𝑖𝑎 = 𝑎′ and 𝑏⊕𝑖𝑏 = 𝑏′. So 𝑎′ ⊕𝑏′ = 𝑎⊕𝑖𝑎 ⊕𝑏⊕𝑖𝑏 =
𝑎 ⊕ 𝑏 ⊕ 𝑖 for some 𝑖 ∈ 𝐼, by Lemma 3.1.10. Thus ⊕𝐼 is well-defined.

Consider now 𝑎′ ⊗𝑏′ = (𝑎⊕𝑖𝑎)⊗(𝑏⊕𝑖𝑏) = 𝑎𝑏⊕(𝑎𝑖𝑏 ⊕𝑖𝑎𝑏⊕𝑖𝑎𝑖𝑏). Due to Definition 3.1.9.ii
all summands are in the ideal, and due toDefinition 3.1.9.i the sum is too. So 𝑎′⊗𝑏′ ∈ [𝑎⊗𝑏]𝐼
and ⊗𝐼 is well-defined as well.

The zero element of 𝑆/𝐼 is [𝜀]𝐼 = 𝐼 and the one element is [𝑒]𝐼. As (𝑆, ⊕, 𝜀) is a com-
mutative monoïd, it follows that (𝑆/𝐼, ⊕𝐼, 𝐼) is too. From (𝑆, ⊗, 𝑒) being a monoïd it also
follows for (𝑆/𝐼, ⊗𝐼, [𝑒]𝐼). The distributive laws in 𝑆/𝐼 too are a direct consequence from
the laws in 𝑆.

For any semiring 𝑆, the subsets {𝜀} and 𝑆 are ideals. But we can derive even more. Let
the set of all ideals of 𝑆 be denoted by ℐ(𝑆). It is then possible to formulate the following
theorem:

Theorem 3.1.13 [Gol03, p. 7]. Let (𝑆, ⊕, ⊗, 𝜀, 𝑒) be a semiring and ℐ(𝑆) be the set of all ideals
of 𝑆, then (ℐ(𝑆), ⊕ℐ, ⊗ℐ, {𝜀}, 𝑆) is a semiring, where 𝐴 ⊕ℐ 𝐵 ≔ {𝑎 ⊕ 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and
𝐴 ⊗ℐ 𝐵 ≔ {⨁𝑁

𝑘=1 𝑎𝑘 ⊗ 𝑏𝑘 | 𝑎𝑘 ∈ 𝐴, 𝑏𝑘 ∈ 𝐵, 𝑁 ∈ ℕ}.

Proof. We start by showing that (ℐ(𝑆), ⊕ℐ, {𝜀}) is a commutative monoïd. Any ideal 𝐴
already contains 𝜀, so 𝐴 ⊕ℐ {𝜀} = 𝐴 and as ⊕ is commutative, so is ⊕ℐ. What remains is
that 𝐶 = 𝐴 ⊕ℐ 𝐵 is an ideal. Let 𝑎 ⊕ 𝑏 and 𝑎′ ⊕ 𝑏′ be elements of 𝐶 and 𝑠 ∈ 𝑆, then

(𝑎 ⊕ 𝑏) ⊕ (𝑎′ ⊕ 𝑏′) = (𝑎 ⊕ 𝑎′) ⊕ (𝑏 ⊕ 𝑏′) ∈ 𝐴 ⊕ℐ 𝐵,
(𝑎 ⊕ 𝑏) ⊗ 𝑠 = (𝑎 ⊗ 𝑠) ⊕ (𝑏 ⊗ 𝑠) ∈ 𝐴 ⊕ℐ 𝐵,
𝑠 ⊗ (𝑎 ⊕ 𝑏) = (𝑠 ⊗ 𝑎) ⊕ (𝑠 ⊗ 𝑏) ∈ 𝐴 ⊕ℐ 𝐵.

We now show that (ℐ(𝑆), ⊗ℐ, 𝑆) is a monoïd. The semiring 𝑆 is the multiplicative
neutral element as every ideal 𝐴 is already closed under multiplication with respect to
𝑆, so 𝑎 ⊗ 𝑠 ∈ 𝐴 for 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆. As 𝐴 is also closed under addition, it holds that
⨁𝑁

𝑘=1 𝑎𝑘 ⊗ 𝑠𝑘 ∈ 𝐴 for 𝑎𝑘 ∈ 𝐴 and 𝑠𝑘 ∈ 𝑆. In general, 𝐴 ⊗ℐ 𝐵 is an ideal as sums can be
concatenated and

(
𝑁

⨁
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘) ⊗ 𝑠 =
𝑁

⨁
𝑘=1

𝑎𝑘 ⊗ (𝑏𝑘 ⊗ 𝑠) ∈ 𝐴 ⊕ℐ 𝐵,

𝑠 ⊗ (
𝑁

⨁
𝑘=1

𝑎𝑘 ⊗ 𝑏𝑘) =
𝑁

⨁
𝑘=1

(𝑠 ⊗ 𝑎𝑘) ⊗ 𝑏𝑘 ∈ 𝐴 ⊕ℐ 𝐵.
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Only the proof for left-distributiveness is given as right-distributiveness follows from a
similar argument. Let 𝐴, 𝐵 and 𝐶 be ideals of 𝑆, then

𝐴 ⊗ℐ (𝐵 ⊕ℐ 𝐶) = {
𝑁

⨁
𝑘=1

𝑎𝑘 ⊗ (𝑏𝑘 ⊕ 𝑐𝑘) ∣ 𝑎𝑘 ∈ 𝐴, 𝑏𝑘 ∈ 𝐵, 𝑐𝑘 ∈ 𝐶}

= {
𝑁

⨁
𝑘=1

(𝑎𝑘 ⊗ 𝑏𝑘) ⊕ (𝑎𝑘 ⊗ 𝑐𝑘) ∣ 𝑎𝑘 ∈ 𝐴, 𝑏𝑘 ∈ 𝐵, 𝑐𝑘 ∈ 𝐶}

= (𝐴 ⊗ℐ 𝐵) ⊕ℐ (𝐴 ⊗ℐ 𝐶).

The ideals of a semiring again form a semiring. However, if the ideals of a ring are
considered, nothing is gained and they still only form a semiring. This is due to the absence
of additive inverses of ideals.

3.1.1 Matrices

J. S. Golan noted that “matrix semirings over semirings are very closely associated with
graph-theoretical problems” [Gol03, p. 64]. As we are in the process of generalising the
graph-theorecical problem of counting spanning trees to semirings, this will also be the
case here. Therefore we give a small introduction to matrices in this context, although
much follows from the known cases of matrices over fields.

Thematrix operationswill be defined in the usual sense, which is element-wise addition
and summation of the product of the column of the first matrix and the row of the second
matrix for matrix multiplication. The operations are lifted from the underlying semiring.
As we are only interested in square matrices, we will only consider this case. However,
the general case can be easily derived. For matrices 𝐴 and 𝐵 in the setℳ𝑛(𝑆) of all 𝑛 × 𝑛
matrices with entries in 𝑆, it holds that

𝐴 + 𝐵 ≔
⎛⎜⎜⎜⎜
⎝

𝑎11 ⊕ 𝑏11 ⋯ 𝑎1𝑛 ⊕ 𝑏1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⊕ 𝑏𝑛1 ⋯ 𝑎𝑛𝑛 ⊕ 𝑏𝑛𝑛

⎞⎟⎟⎟⎟
⎠

𝐴 ⋅ 𝐵 ≔
⎛⎜⎜⎜⎜
⎝

⨁𝑛
𝑘=1 𝑎1𝑘 ⊗ 𝑏𝑘1 ⋯ ⨁𝑛

𝑘=1 𝑎1𝑘 ⊗ 𝑏𝑘𝑛
⋮ ⋱ ⋮

⨁𝑛
𝑘=1 𝑎𝑛𝑘 ⊗ 𝑏𝑘1 ⋯ ⨁𝑛

𝑘=1 𝑎𝑛𝑘 ⊗ 𝑏𝑘𝑛

⎞⎟⎟⎟⎟
⎠

.

Lemma 3.1.14 [Gol03, p. 59]. Let (𝑆, ⊕, ⊗, 𝜀, 𝑒) be a semiring, then the set ℳ𝑛(𝑆) of all 𝑛 × 𝑛
matrices is a semiring (ℳ𝑛(𝑆), +, ⋅, 𝟘, 𝐼𝑑), where 𝟘 is the zero element with 𝜀 in every place and
𝐼𝑑 ≔ diag(𝑒, … , 𝑒) the one element.

Proof. (ℳ𝑛(𝑆), +, 𝟘) is a commutative monoïd as for 𝐴, 𝐵 ∈ ℳ𝑛(𝑆) we have element-wise
addition. It also follows that 𝟘 must be chosen as the zero element.

Showing that (ℳ𝑛(𝑆), ⋅, 𝐼𝑑) is a monoïd is a bit more involved, but follows a similar
approach. Let 𝑐𝑖𝑗 be the element of 𝐶 = 𝐴𝐵 in the 𝑖, 𝑗 coordinate, then 𝑐𝑖𝑗 ≔ ⨁𝑛

𝑘=1 𝑎𝑖𝑘 ⊗ 𝑏𝑘𝑗.
The addition ⊕ is commutative, so the order within the sum is irrelevant, however 𝐴𝐵 is
not necessarily the same as 𝐵𝐴, which is similar to matrices over fields. Multiplying with
𝐼𝑑 gives the same matrix, so it can be chosen as the one element.

Finally, 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 can be shown by a straightforward calculation. So
multiplication is distributive with respect to addition.

Lemma 3.1.15 [Gol03, p. 60]. Let 𝐴, 𝐵 ∈ ℳ𝑛(𝑆) a matrix semiring, then (𝐴𝐵)T = 𝐵T𝐴T.
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3.1.2 Symmetric Extension

While in a semiring 𝑆 additive inverses may not exist, we want to classify elements, which
have some notion of inverses. In general, not all elements will have an inverse. Some
elements may already have one, for some others there might be an extension of 𝑆, such that
there is an inverse in the extension. If this is possible for all elements of 𝑆, the semiring 𝑆
is embeddable into a ring.

Lemma 3.1.16 [Gol03, Proposition 6.1]. Let 𝑆 be a semiring and 𝐼 an ideal of 𝑆. The set 𝒟(𝑆, 𝐼)
is a subsemiring of ℳ𝑛(𝑆), where

𝒟(𝑆, 𝐼) ≔ {(𝑎 𝑏
𝑏 𝑎

) ∈ ℳ𝑛(𝑆) ∣ 𝑎 ∈ 𝑆, 𝑏 ∈ 𝐼}.

𝒟(𝑆, 𝐼) is a commutative subsemiring iff 𝑆 is commutative.

Proof. Clearly, 𝒟(𝑆, 𝐼) ⊆ ℳ𝑛(𝑆) and all that is left to show is that 𝒟(𝑆, 𝐼) is a semiring.
Every ideal 𝐼 contains 𝜀, so 𝟘 and 𝐼𝑑 are elements of𝒟(𝑆, 𝐼). Addition is straightforward to
show as

(𝑎 𝑏
𝑏 𝑎

) = (𝑎 𝜀
𝜀 𝑎

) + (𝜀 𝑏
𝑏 𝜀

)

and 𝑎 ∈ 𝑆, 𝑏 ∈ 𝐼. As addition is applied element-wise and 𝑆 and 𝐼 are closed under it, so is
𝒟(𝑆, 𝐼). We now consider the product of two matrices

(𝑎 𝑏
𝑏 𝑎

)(𝑐 𝑑
𝑑 𝑐

) = (𝑎𝑐 ⊕ 𝑏𝑑 𝑏𝑐 ⊕ 𝑎𝑑
𝑏𝑐 ⊕ 𝑎𝑑 𝑎𝑐 ⊕ 𝑏𝑑

),

for which 𝑎𝑐 ⊕ 𝑏𝑑 is in 𝑆 and both 𝑏𝑐 and 𝑎𝑑 are the product of an element of 𝑆 with an
element of 𝐼, so they must be in 𝐼. Since ideals are closed under addition, the sum 𝑏𝑐 ⊕ 𝑎𝑑
is in 𝐼. Therefore𝒟(𝑆, 𝐼) is closed under multiplication.

For 𝑆 commutative, we can rearrange the elements in 𝑎𝑐 ⊕ 𝑏𝑑 and 𝑏𝑐 ⊕ 𝑎𝑑, which, in
turn, reverses the order of the matrices in the matrix product. On the other hand, if 𝑎𝑐 ⊕ 𝑏𝑑
or 𝑏𝑐 ⊕ 𝑎𝑑 cannot be rearranged in general, the order of matrices is relevant. Thus,𝒟(𝑆, 𝐼)
is a commutative subsemiring iff the underlying semiring is commutative.

In the above proof, it is possible to show that for ideals 𝐼, 𝐼′ ⊆ 𝑆 the subset 𝒟(𝐼, 𝐼′) is
an ideal of𝒟(𝑆, 𝐼). The argument follows similarly. The only difference is restricting the
elements 𝑎 and 𝑐 to 𝐼 instead of 𝑆. As ideals are closed under multiplication with respect to
the semiring, the products are in 𝐼 too.

We will now take a closer look at the largest subsemiring of this kind, which is𝒟(𝑆, 𝑆).
In general, the subsemirings have the same ordering as the ideals defining them. The
smallest possible ideal included in all others is {𝜀}, while the largest ideal is 𝑆 itself.

Definition 3.1.17 [Gol03, pp. 82–83]. Let 𝑆 be a semiring. Then ̂𝑆 ≔ 𝒟(𝑆, 𝑆) is called the
symmetric extension of 𝑆. Furthermore, we define three subsets on ̂𝑆:

i. Elements of the form (𝑎 𝜀
𝜀 𝑎

) are denoted by ̂𝑝𝑎 and are called positive,

ii. Elements of the form (𝜀 𝑏
𝑏 𝜀

) are denoted by ̂𝑛𝑏 and are called negative,
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iii. Elements of the form (𝑎 𝑎
𝑎 𝑎

) are denoted by ℎ̂𝑎 and are called balanced.

Lemma 3.1.18. The semiring 𝑆 is isomorphic to 𝒟(𝑆, {𝜀}).

Proof. The mapping 𝛾(𝑎) = ̂𝑝𝑎 for all 𝑎 ∈ 𝑆 is the required isomorphism. It is bijective as
all matrices ̂𝑝𝑎 are unique and all matrices in𝒟(𝑆, {𝜀}) are diagonal. The compatibility of
the mapping with the operations can be shown via a straightforward calculation.

The names of the elements in Definition 3.1.17 suggest that a positive element plus
its negative results in 𝜀. While this is not true, they do act similarly to positives and
negatives as ̂𝑝𝑎 ̂𝑝𝑏 = ̂𝑛𝑎 ̂𝑛𝑏 = ̂𝑝𝑎𝑏 and ̂𝑛𝑎 ̂𝑝𝑏 = ̂𝑝𝑎 ̂𝑛𝑏 = ̂𝑛𝑎𝑏. Also, there is some sense of zero
in the symmetric extension. If we take a balanced number and multiply it with another
number, it will result in a balanced number, and if we add a positive to its negative, we get
̂𝑝𝑎 + ̂𝑛𝑎 = ℎ̂𝑎. It would therefore be useful to factor out these balanced numbers.

Lemma 3.1.19 [Gol03, p. 83]. Let 𝑆 be a semiring, then the set ℬ(𝑆) of balanced elements of the
symmetric extension ̂𝑆 is an ideal of ̂𝑆.

Proof. The zero matrix 𝟘 is ℎ̂𝜀 and all matrices only have one distinct entry, so the balanced
elements are closed under element-wise addition. As every element of ̂𝑆 can be written as
̂𝑝𝑎 + ̂𝑛𝑏, it holds that

( ̂𝑝𝑎 + ̂𝑛𝑏)ℎ̂𝑐 = ̂𝑝𝑎ℎ̂𝑐 + ̂𝑛𝑏ℎ̂𝑐 = ℎ̂𝑎𝑐⊕𝑏𝑐.

Definition 3.1.20 [Gol03, p. 5]. Let 𝑆 be a semiring and ̂𝑆 its symmetric extension. Then
the Bourne relation ≡ for the set ℬ(𝑆) of balanced elements of ̂𝑆 is given by ̂𝑎 ≡ ̂𝑏 iff there
exist elements ℎ̂, ℎ̂′ ∈ ℬ(𝑆) such that ̂𝑎 + ℎ̂ = ̂𝑏 + ℎ̂′.

The Bourne relationwas first mentioned by S. Bourne as a generalisation of “the concept
of the Jacobson radical […] to arbitrary semirings” [Bou51, p. 164]. This proves quite useful
as we can factor a given semiring by the Bourne relation and end up with a ring:

Lemma 3.1.21 [Gol03, Proposition 6.12]. Let 𝑆 be a cancellative semiring, then it holds that
̂𝑝𝑎 ≡ ̂𝑝𝑏 iff 𝑎 = 𝑏.

Proof. If 𝑎 = 𝑏, then ̂𝑝𝑎 + 𝟘 = ̂𝑝𝑏 + 𝟘 and ̂𝑝𝑎 ≡ ̂𝑝𝑏.
If now ̂𝑝𝑎 ≡ ̂𝑝𝑏 holds, then ̂𝑝𝑎 + ℎ̂𝑐 = ̂𝑝𝑏 + ℎ̂𝑑 for some 𝑐, 𝑑 ∈ 𝑆. Since positive elements

represent diagonal matrices, it must also hold that 𝜀 ⊕ 𝑐 = 𝜀 ⊕ 𝑑 and 𝑎 ⊕ 𝑐 = 𝑏 ⊕ 𝑑 = 𝑏 ⊕ 𝑐.
The semiring is cancellative, so 𝑎 = 𝑏.

Lemma 3.1.22 [Gol03, Proposition 6.15]. Let 𝑆 be a cancellative semiring such that ≡ is not the
universal relation, then ̂𝑆/≡ is a non-trivial ring.

Proof. Let ̂𝑝𝑎 + ̂𝑛𝑏 be an element of ̂𝑆, then ( ̂𝑝𝑎 + ̂𝑛𝑏) + ( ̂𝑝𝑎 + ̂𝑛𝑏) ̂𝑛𝑒 = ℎ̂𝑎⊕𝑏. If ≡ is taken into
account, we get ℎ̂𝑎⊕𝑏 ≡ ℎ̂𝜀 and therefore every element has an inverse.

Corollary 3.1.23 [Gol03, Corollary 6.16]. A non-trivial semiring is cancellative iff it can be
embedded into a non-trivial ring.

Example 3.1.24. Let ℕ be the semiring of the naturals as in Example 3.1.4. The semiring is
cancellative, so by Lemma 3.1.21 we expect that ̂𝑝𝑎 ≡ ̂𝑝𝑏 iff 𝑎 = 𝑏. This can easily be verified
by hand. So ℕ̂/≡ can be embedded into a ring. We can even show that ℕ̂/≡ is isomorphic
to (ℤ, +, ⋅, 0, 1). The ideal ℬ(ℕ) is mapped to 0, while [ ̂𝑝𝑎]≡ and [ ̂𝑛𝑎]≡ are mapped to 𝑎
and −𝑎 respectively.
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Example 3.1.25. We continue Example 3.1.6, in which we formulated the semiring of
positive integers with an infinity element ∞. This is an example for a commutative, but
not cancellative semiring.

Let us consider the symmetric extension ℕ̂∞. In this semiring, the balanced elements
contains ℎ̂∞ and it holds that ∞ = 𝑎 + ∞ for all 𝑎 ∈ ℕ∞. This makes the Bourne relation
rather uninteresting, since then

(𝑎 𝑏
𝑏 𝑎

) + ℎ̂∞ = (∞ ∞
∞ ∞

) = (𝑐 𝑑
𝑑 𝑐

) + ℎ̂∞.

Thus all elements of ℕ̂∞ are in relation with each other and the ring ℕ̂∞/≡ is the trivial
ring with one element 𝜀 = 𝑒. While unsatisfying, this was to be expected as in any other
case we would have to find an inverse for ∞, such that (𝑎 + ∞) − ∞ = 𝑎 for all elements in
ℕ̂∞/≡. This is not possible if there is more than one element.

The symmetric extension of a semiring proved itself very useful in gaining some notion
of inverses. While elements in the shape of ̂𝑛𝑎 are not the inverses of ̂𝑝𝑎, we can still use
them like negative elements. The biggest drawback is that ̂𝑝𝑎 + ̂𝑛𝑎 ≠ 𝟘 in general. So, in
order to allow negatives, we have to give up the uniqueness of the zero element and thus
the uniqueness of all elements. In the lucky case of being in a cancellative semiring, we
can consider the quotient semiring 𝑆/≡, which is a ring.

3.1.3 Determinants and Bideterminants

The lack of additive inverses prohibits us in defining the determinant. This is a fundamental
problem as the determinant is commonly defined via

det(𝐴) ≔ ∑
𝜎∈𝑆𝑛

(sgn(𝜎)
𝑛

∏
𝑘=1

𝑎𝑘,𝜎(𝑘)).

There exists an alternative to the determinant that omits the sign of the permutation, called
the permanent of 𝐴. This is of no use as it would count something completely different.
If we consider the approach in Section 2.2, we can see that the permanent would not
remove subgraphs with cycles and, instead, still add them to the count. So, even though
the permanent can be defined on semirings, it would not aid in counting spanning trees.

The symmetric extension, however, does help as it allows some sense of negative
elements. Using this, we can split the determinant into a positive and a negative part. The
positive part consists of the even permutations given in Theorem 1.2.11, and the negative
part of all odd permutations.

Definition 3.1.26 [Gol03, pp. 181–182]. Let 𝐴 ∈ ℳ𝑛(𝑆) be an 𝑛 × 𝑛 matrix with entries
in a semiring 𝑆. The positive bideterminant det+(𝐴) and negative bideterminant det−(𝐴) are
combined to form the bideterminant. They are defined by

det+(𝐴) ≔ ⨁
𝜎∈𝐴𝑛

𝑛
⨂
𝑘=1

𝑎𝑘,𝜎(𝑘),

det−(𝐴) ≔ ⨁
𝜎∈𝑆𝑛⧵𝐴𝑛

𝑛
⨂
𝑘=1

𝑎𝑘,𝜎(𝑘),

bid(𝐴) ≔ ̂𝑝det+(𝐴) + ̂𝑛det−(𝐴).
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The positive and negative bideterminants are elements of 𝑆, whereas the bideterminant
is an element of the symmetric extension ̂𝑆. If it is possible to embed the semiring into
a ring via the mapping 𝛾(𝑎) = ̂𝑝𝑎 of Lemma 3.1.18, the bideterminant is mapped to the
determinant. The aforementioned permanent perm(𝐴) can be written as ̂𝑝det+(𝐴) + ̂𝑝det−(𝐴)
and therefore det(𝐴) = perm(𝐴) ⊖ det−(𝐴) ⊖ det−(𝐴) in rings.

While we defined bideterminants for all semirings, most properties of determinants are
lost if the multiplication is non-commutative. Many attempts have been made to fix this
[e.g. Asl96; GR91], but they come with their own drawbacks. Even if we were to preserve
some properties, the matrix tree theorem would be generalised for generalisation’s sake as
the edges of a graph have no distinct order.

Example 3.1.27. As an example of a very fundamental property that is lost, wewill calculate
the determinants of twomatrices over the skew field of the quaternions ℍ. The quaternions
are a similar extension of the reals like the complex numbers, with the difference of having
three independent imaginary parts 𝑖, 𝑗 and 𝑘, for which 𝑖2 = 𝑗2 = 𝑘2 = −1, but 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖
and 𝑘𝑖 = 𝑗. If we reverse the order, the sign is reversed too, so 𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖 and 𝑖𝑘 = −𝑗.

𝐴 = (1 𝑖
𝑗 𝑘

), 𝐵 = (𝑖 1
𝑘 𝑗

), 𝐶 = (1 𝑖𝑖
𝑗 𝑘𝑖

), 𝐷 = (1𝑖 𝑖
𝑗𝑖 𝑘

).

We now consider the determinant of matrix 𝐴 ∈ ℳ2(ℍ) and 𝐵, which is 𝐴 with the
columns reversed. So det(𝐴) = 1𝑘 − 𝑗𝑖 = 𝑘 + 𝑘 = 2𝑘, but det(𝐵) = 𝑖𝑗 − 𝑘1 = 𝑘 − 𝑘 = 0. Thus,
we cannot swap the order of rows or columns of 𝐴.

The determinant also loses its multilinearity as we would expect det(𝐶) = det(𝐷) =
det(𝐴)𝑖, but instead only det(𝐶) = det(𝐴)𝑖 = 2𝑗 holds by coincidence as the last column is
multiplied from the right, which leads to multiplying every product of the determinant
with 𝑖 from the right. Since multiplication is non-commutative and the order of when to
multiply with 𝑖 is different in 𝐷, we get det(𝐷) = 0.

At least one aspect of multilinearity is preserved as adding rows or columns can be
interchanged with calculating the determinant. This holds due to the distributive laws of
the semiring.

We will now prove a series of properties for bideterminants, which hold for determi-
nants and can be generalised to commutative semirings. A few properties also work on
semirings, in which case we present that proof.

Proposition 3.1.28 [Gol03, Proposition 12.24]. Let 𝑆 be a semiring and 𝐴 ∈ ℳ𝑛(𝑆). If a
column of 𝐴 is 𝜀 in every entry, then bid(𝐴) = ℎ̂𝜀.

Proof. The positive bideterminant is given by det+(𝐴) = ⨁𝜎∈𝐴𝑛
⨂𝑛

𝑘=1 𝑎𝑘,𝜎(𝑘). Every prod-
uct is 𝜀 as one element from each column is chosen, but one column consists only of 𝜀.
Thus, the sum is 𝜀. A similar argument follows for the negative bideterminant.

Proposition 3.1.29 [Gol03, Proposition 12.27]. Let 𝑆 be a semiring and 𝐴 ∈ ℳ𝑛(𝑆) with the
𝑖-th column of 𝐴 being 𝑎′

𝑖 + 𝑎″
𝑖 , then

bid(𝐴) = bid(𝑎1, … , 𝑎′
𝑖, … , 𝑎𝑛) + bid(𝑎1, … , 𝑎″

𝑖 , … , 𝑎𝑛).

Proof. We consider a fixed permutation 𝜎. The according product in the bideterminant is

𝑎1,𝜎(1) ⊗ ⋯ ⊗ (𝑎′
𝑖,𝜎(𝑖) ⊕ 𝑎″

𝑖,𝜎(𝑖)) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎(𝑛) = 𝑎1,𝜎(1) ⊗ ⋯ ⊗ 𝑎′
𝑖,𝜎(𝑖) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎(𝑛)

⊕ 𝑎1,𝜎(1) ⊗ ⋯ ⊗ 𝑎″
𝑖,𝜎(𝑖) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎(𝑛)
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due to the distributive laws of 𝑆. As this holds for all permutations, we get the desired
result.

Proposition 3.1.30 [Gol03, Proposition 12.26]. Let 𝑆 be a commutative semiring, 𝐴 ∈ ℳ𝑛(𝑆)
and let 𝐴′ be similar to 𝐴 with two columns swapped, then bid(𝐴′) = ̂𝑛𝑒 bid(𝐴).

Proof. Let the two swapped columns have indices 𝑖 and 𝑗, with 𝑖 < 𝑗, 𝜎 ∈ 𝑆𝑛 be a per-
mutation, and 𝜎 ′ = 𝜎 ∘ (𝑖, 𝑗) with an additional swap of 𝑖 and 𝑗. The sign of 𝜎 ′ is always
different to the sign of 𝜎 as (𝑖, 𝑗) is a permutation with a single cycle of length 2, so using
Lemma 2.2.14, its sign is −1. As 𝑆 is commutative, we get

𝑎1,𝜎∘(𝑖,𝑗)(1) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎∘(𝑖,𝑗)(𝑛) = 𝑎1,𝜎′(1) ⊗ ⋯ ⊗ 𝑎𝑖,𝜎′(𝑖) ⊗ ⋯ ⊗ 𝑎𝑗,𝜎′(𝑗) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎′(𝑛)

= 𝑎1,𝜎′(1) ⊗ ⋯ ⊗ 𝑎𝑗,𝜎′(𝑗) ⊗ ⋯ ⊗ 𝑎𝑖,𝜎′(𝑖) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎′(𝑛).

So for every permutation 𝜎 ∈ 𝐴𝑛 there exists a permutation 𝜎 ′ ∈ 𝑆𝑛 ⧵ 𝐴𝑛, such
that the according summand of det+(𝐴) is a summand of det−(𝐴′). Thus, it holds that
det+(𝐴) = det−(𝐴′) and det−(𝐴) = det+(𝐴′) and therefore bid(𝐴) = ̂𝑛𝑒 bid(𝐴′).

An immediate result from this is that if a matrix 𝐴 in a commutative semiring 𝑆 has
two columns, which are the same, bid(𝐴) ∈ ℬ(𝑆) holds.

Proposition 3.1.31. Let 𝑆 be a commutative semiring, then the bideterminant of 𝑆 is a multilinear
function.

Proof. To show multilinearity, we have to check whether vector addition and scalar multi-
plication can be swapped with applying the bideterminant. This means showing

bid(𝑎1, … , 𝑎′
𝑖 + 𝑎″

𝑖 , … , 𝑎𝑛) = bid(𝑎1, … , 𝑎′
𝑖, … , 𝑎𝑛) + bid(𝑎1, … , 𝑎″

𝑖 , … , 𝑎𝑛),
bid(𝑎1, … , 𝑟𝑎𝑖, … , 𝑎𝑛) = ̂𝑝𝑟 bid(𝑎1, … , 𝑎𝑖, … , 𝑎𝑛).

The first equation holds in all semirings via Proposition 3.1.29. The second equation
holds for commutative semirings as we need to swap places in the multiplication. We
proof the equation for the positive bideterminant as the negative is proven in a similar
way and it follows for the bideterminant. Let 𝐴′ = (𝑎1, … , 𝑟𝑎𝑖, … , 𝑎𝑛), then

det+(𝐴′) = ⨁
𝜎∈𝐴𝑛

(𝑎𝑘,𝜎(𝑘) ⊗ ⋯ ⊗ 𝑟𝑎𝑖,𝜎(𝑖) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎(𝑛))

= 𝑟 ⨁
𝜎∈𝐴𝑛

(𝑎𝑘,𝜎(𝑘) ⊗ ⋯ ⊗ 𝑎𝑖,𝜎(𝑖) ⊗ ⋯ ⊗ 𝑎𝑛,𝜎(𝑛))

= 𝑟 det+(𝐴) = det+(𝐴)𝑟.

We now know that det+(𝐴′) = 𝑟 det+(𝐴) and det−(𝐴′) = 𝑟 det−(𝐴), and therefore
bid(𝐴′) = ̂𝑝𝑟 bid(𝐴). So both equations hold and the bideterminant is a multilinear
function.

3.1.4 The Matrix Tree Theorem on Commutative Semirings

The previous subsections did the groundwork for generalising the matrix tree theorem
to commutative semirings. We are now able to allow weights in commutative semirings
and show that the theorem still holds. It takes on a different look as subtraction is not
possible. So the determinant cannot be used. This is why in Section 3.1.3 we formulated
an alternative, which does not require subtraction. However, we also use subtraction in a
not yet addressed place. The Laplacian matrix is most central in the matrix tree theorem,
but is based on the relation 𝐿𝐺 = diag(deg(𝑣𝑖)) − 𝐴𝐺 in the original sense.
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Definition 3.1.32. Let 𝑆 be a commutative semiring and 𝐷 a digraph. The pair (𝐷, 𝑤) is
called a weighted digraph in 𝑆 iff 𝑤∶ 𝐸 → 𝑆 is a function, which assigns weights to all edges
of 𝐷.

The weight of a weighted digraph in 𝑆 is 𝑤(𝐷) ≔ ⨂𝑒∈𝐸 𝑤(𝑒).

It is allowed to assign weights of 𝜀 and so one could always choose the complete graph
𝐾𝑛 as the underlying graph and remove edges from being counted via assigning them a
weight of 𝜀. This is mirrored in the following definition.

Definition 3.1.33. Let (𝐷, 𝑤) be a weighted digraph in a semiring 𝑆, then the Minoux matrix
𝑀𝐷 is a 2𝑛 × 2𝑛 matrix, where

𝑀𝐷 ≔ (
𝐴𝐷 𝑊
𝐼𝑑 𝐼𝑑

), (3.1.1)

with 𝑊 ≔ diag(⨁𝑛
𝑘=1 𝑤(1, 𝑘), … , ⨁𝑛

𝑘=1 𝑤(𝑛, 𝑘)) and 𝐴𝐺 being the adjacency matrix, where
(𝐴𝐷)𝑖,𝑗 ≔ 𝑤(𝑖, 𝑗), or 𝜀 if 𝑖 and 𝑗 do not share an edge.

The Minoux matrix separates the parts of diagonal elements and the adjacency matrix
as subtraction is not possible. If we were to calculate the Minoux matrix over a ring, we
could transform the matrix into

𝑀′
𝐷 = (

−𝐿𝐷 𝐴𝐷
𝟘 𝐼𝑑

), (3.1.2)

for which if we were to remove the 𝑖-th row and column, we would get det(𝑀′
𝐷(𝑖)) =

det(−𝐿𝐷(𝑖)) ⊗ det(𝐼𝑑) = det(−𝐿𝐷(𝑖)). This looks very much like the matrix tree theorem
and is a central goal of this section. M. Minoux himself called this reduced matrix 𝐵
and defined it slightly different in [Min97, definition of 𝐵 in Section 3.1], but used the
aforementioned arrangement in [Min99, definition of 𝐵 in Section 3.1].

To reach this goal, we will employ a similar approach used by S. Chaiken, described in
Section 2.2.3. We will again find an involution between functional subgraphs with an even
or odd number of cycles and what remains are the functional subgraphs with no cycles.
The main difference here is that we are not directly counting spanning trees, but instead
adding their weights.

Similarly to S. Chaiken in [Cha82], M. Minoux followed the same convention and
proved the theorem for out-trees in [Min97]. This is changed here to in-trees, to enable
using functional graphs in the proof. This does not substantially change the proof.

We recapitulate some definitions of Section 2.2.1 and reformulate them in the context
of weighted digraphs in semirings.

Definition 3.1.34. Let (𝐷, 𝑤) be a weighted digraph with (𝑣, 𝑤) ∈ 𝐸, then a subgraph 𝐺
of 𝐷 has a fixed edge (𝑣, 𝑤) iff 𝐴𝑣,𝑣 = 𝑤(𝑣, 𝑤) and (𝑣, 𝑤) ∈ 𝐸𝐺. The edge (𝑣, 𝑤) is a forced
edge of 𝐺 iff it is a fixed edge of (𝑉, 𝐸 ∪ {(𝑣, 𝑤)}) and 𝑤(𝑣, 𝑤) = 𝑒.

Definition 3.1.35. Let (𝐷, 𝑤) be a digraph, then 𝜑𝐹(𝐷, 𝑤) is the weight of functional sub-
graphs of 𝐷 with fixed edges 𝐹.

Lemma 3.1.36. Let (𝐷, 𝑤) be a weighted digraph, then the weight of functional subgraphs is
𝜑(𝐷, 𝑤) = ⨂𝑣∈𝑉 𝐴𝑣,𝑣.

Proof. The approach used here is the one of Lemma 2.2.9: The values 𝐴𝑣,𝑣 consist of sums
over the outgoing edges of 𝑣. A functional graph chooses exactly one outgoing edge for
every vertex 𝑣 ∈ 𝑉. If we iteratively apply the distributive laws to ⨂𝑣∈𝑉 𝐴𝑣,𝑣, we get a
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sum with ∏𝑣∈𝑉(𝐷) deg+(𝑣) summands. Every one of those represents the weight of an
in-tree.

Definition 3.1.37. Let (𝐷, 𝑤) be a weighted digraph, then the weight of in-trees rooted at
vertex 𝑖 of 𝐷 is 𝜅−

𝑖 (𝐷, 𝑤), and the weight of out-trees of 𝐷 is 𝜅+
𝑖 (𝐷, 𝑤).

The next step is to restrict the functional graphs as we did in Proposition 2.2.10. This
again follows directly from our definition of fixed edges as we consider a subgraph and
can apply Lemma 3.1.36 to it. The only thing to do is to reformulate it in the context of the
whole graph 𝐷.

Proposition 3.1.38. Let (𝐷, 𝑤) be a weighted digraph and 𝐹 a set of fixed edges, then the weight
of functional subgraphs of 𝐷 with fixed edges 𝐹 is given by

𝜑𝐹(𝐷, 𝑤) =
⎧{{
⎨{{⎩

⨂
𝑒∈𝐹

𝑤(𝑒) ⊗ ⨂
𝑣∈𝑉(𝐷),
(𝑣,𝑤)∉𝐹

𝐴𝑣,𝑣 if for all 𝑒 ∈ 𝐹 also 𝑒 ∈ 𝐸(𝐷),

𝜀 otherwise.

Lemma 3.1.39. Let (𝐷, 𝑤) be a weighted digraph, 𝜎 ∈ 𝑆2𝑛 and let ⨂𝑖∈[2𝑛](𝑀𝐷)𝑖,𝜎(𝑖) ≠ 𝜀, then
𝜎 is uniquely defined by (the partial permutation) 𝜎(𝑖) = 𝑗 for 𝑖, 𝑗 ≤ 𝑛.

Proof. We have to show that if we know the fixed values 𝜎(𝑖) = 𝑗 for 𝑖, 𝑗 ≤ 𝑛, we can derive
all other elements of this permutation. If 𝜎(𝑖) > 𝑛 for 𝑖 ≤ 𝑛, then it has to be 𝜎(𝑖) = 𝑛 + 𝑖
as otherwise the element of 𝑀𝐷 would be 𝜀.

For all 𝑖 + 𝑛, with 𝑖 ≤ 𝑛, there are only two possible elements of (𝑀𝐷)𝑖+𝑛,𝜎(𝑖+𝑛) not
equal to 𝜀. One choice is 𝜎(𝑖 + 𝑛) = 𝑖 and the other is 𝜎(𝑖 + 𝑛) = 𝑖 + 𝑛. If 𝜎(𝑖) > 𝑛 and thus
𝜎(𝑖) = 𝑖 + 𝑛, we have to choose 𝜎(𝑖 + 𝑛) = 𝑖. Else if 𝜎(𝑖) ≤ 𝑛, we choose 𝜎(𝑖 + 𝑛) = 𝑖 + 𝑛.
The case, in which both 𝑖 and 𝑖 + 𝑛 are already occupied by images of 𝑖 ≤ 𝑛 can never
be relevant as permutations are bijections and thus (𝑀𝐷)𝑖+𝑛,𝜎(𝑖+𝑛) = 𝜀 and the product
evaluates to 𝜀.

This rather technical lemma states that if the product of the permutation is nonzero,
we only require knowledge of the upper left block and the rest follows. So, in reverse, we
can consider the partial permutations 𝜎 of 𝑆2𝑛 on [𝑛] and, if we restrict us to “relevant”
permutations in the sense of the previous lemma, we get a bijection 𝜃 between those
permutations and all permutations 𝜋 on 𝑆𝑛. The bijection is

𝜃∶ 𝜎 ↦ ⎛⎜
⎝

𝑖 ↦
⎧{
⎨{⎩

𝜎(𝑖) for 𝑖 with 𝜎(𝑖) ≤ 𝑛,
𝜎(𝑖) − 𝑛 otherwise.

⎞⎟
⎠

. (3.1.3)

So it overlays the upper two blocks and ignores the lower blocks. This is similar to the
connection between the Minoux matrix and the Laplacian matrix.

Theorem 3.1.40 (Matrix Tree Theorem on Commutative Semirings) [seeMin97, Section 3.1].
Let (𝐷, 𝑤) be a weighted digraph with weights in a commutative semiring, then

̂𝑛𝑛−1
𝑒 bid(𝑀𝐷(𝑖)) = ̂𝑝𝜅−

𝑖 (𝐷,𝑤) + ℎ̂det−(𝑀𝐷(𝑖)).

As we are mostly interested in the weight of the in-trees of 𝐷, we could write only
the positive part of the main result, which is det+(𝑀𝐷(𝑖)) = 𝜅−

𝑖 (𝐷, 𝑤) ⊕ det−(𝑀𝐷(𝑖)). If
the semiring can be embedded into a ring, we can rewrite this via the determinant as
det(𝑀𝐷(𝑖)) = det+(𝑀𝐷(𝑖)) ⊖ det−(𝑀𝐷(𝑖)) = 𝜅−

𝑖 (𝐷, 𝑤). Using the transformations on the
Minoux matrix from (3.1.2), we get the standard matrix tree theorem.

55



3. Expanding the Horizon

Proof. We start by considering the positive bideterminant det+(𝑀𝐷(𝑖)). It consists of a sum
over permutations, of which we showed in Lemma 3.1.39 that only a small part suffices to
identify a unique permutation. So the positive bideterminant can be written as

det+(𝑀𝐷(𝑖)) = ⨁
𝜎∈𝐴2𝑛,
𝜎(𝑖)=𝑖

⨂
𝑘∈[2𝑛]⧵{𝑖,𝑖+𝑛}

(𝑀𝐷)𝑘,𝜎(𝑘),

in which we forced the choice 𝜎(𝑖) = 𝑖. This choice results in a forced 𝜎(𝑖 + 𝑛) = 𝑖 + 𝑛 as
the 𝑖 + 𝑛 − 1-th row of 𝑀𝐷(𝑖) has the single non-zero entry 𝑒 in the 𝑖 + 𝑛 − 1-th column.

In fact, the positive determinant of 𝑀𝐷(𝑖) is not quite given by the above formula as
𝑀𝐷(𝑖) is a 2𝑛 − 1 × 2𝑛 − 1 matrix, and thus the permutations are in 𝑆2𝑛−1. It is possible to
add one fixed point at the end and relabelling the elements closes the gap.

It would be ideal if the sign of 𝜎 were the same as 𝜃−1(𝜎), with 𝜃 being the bijection
in (3.1.3). Unfortunately, this is not the case. However, the non-trivial cycles of 𝜎 are
preserved and loops at vertices 𝑣 are changed to cycles (𝑣, 𝑣 + 𝑛). Thus, to link the positive
bideterminant with a sum of weights of functional graphs, we can identify the non-trivial
cycles with fixed cycles 𝐹 in the weight 𝜑𝐹,𝑤(𝐷) of functional subgraphs of (𝐷, 𝑤). The
fixed loop (𝑖, 𝑖) is also reflected by forcing the choice of 𝜃−1(𝜎)(𝑖) = 𝑖 for all permutations
in the bideterminant. So the sign of 𝜃−1(𝜎) can be expressed via the non-trivial cycles 𝒞𝜋
of 𝜎 and loops ℒ𝜋, which are split into cycles of length 2. The sign is

sgn(𝜃−1(𝜎)) = ∏
𝐶∈𝒞𝜋

(−1)|𝐶|−1 ∏
𝐶∈ℒ𝜋

(−1)

= (−1)𝑛−1(−1)ℓ(𝜋),

where ℓ(𝜋) is the number of non-trivial cycles, defined in Definition 2.2.13. The formula
holds as 𝜎 contains 𝑛 − 1 elements and every one either appears in a cycle or loop. We
require the bideterminant to rely on the number of non-trivial cycles and have to keep track
of where the in-trees are located. This is guaranteed by possibly swapping the positive
and negative bideterminant. Applying this to the sum for 𝑛 − 1 even leads to

det+(𝑀𝐷(𝑖)) = ⨁
𝜋∈𝜃(𝐴2𝑛),

𝜋(𝑖)=𝑖

⨂
𝑘∈[2𝑛]⧵{𝑖,𝑖+𝑛}

(𝑀𝐷)𝑘,𝜃−1(𝜋)(𝑘)

= ⨁
𝜋∈𝜃(𝐴2𝑛),

𝜋(𝑖)=𝑖

𝜑𝜋,𝑤(𝐷),

where 𝑤 is the weight function of the digraph, but the forced loop (𝑖, 𝑖) has to be considered,
so 𝑤(𝑖, 𝑖) = 𝑒. A similar result follows for the negative bideterminant, which can be
rewritten as

det−(𝑀𝐷(𝑖)) = ⨁
𝜋∈𝜃(𝑆2𝑛⧵𝐴2𝑛)

𝜋(𝑖)=𝑖

𝜑𝜋,𝑤(𝐷).

If 𝑛 − 1 is odd, then a swap between the positive and negative bideterminant has to be
considered.

What is left to show is to identify the in-trees in these subsets and show equivalence
of the rest. As in-trees do not have any cycles except for the forced loop and the only
permutation without non-trivial cycles is the identity 𝐼𝑑 ∈ 𝐴2𝑛, the weights of in-trees are
only counted in 𝜑𝐼𝑑,𝑤(𝐷).

For all other functional subgraphs a corresponding graph in the sets of the negative
bideterminant is required. To prove this, we again utilise the sign-reversing involution 𝜄

56



3.1. Semirings

of Section 2.2.3. All cycles in a functional graph are disjunct as every vertex has only one
outgoing edge. So, as soon as two cycles overlap, they can never separate and must be
the same. We take the lexicographically smallest cycle 𝐶. The graph and its weight do
not change by fixing 𝐶, but it changes whether they are counted towards the positive
or negative bideterminant as can be seen in Example 2.2.19. A +1 in this example can
be considered as a contribution to the positive or negative bideterminant and a −1 as a
contribution to the other. Thus

det+(𝑀𝐷(𝑖)) = 𝜅−
𝑖 (𝐷, 𝑤) ⊕ det−(𝑀𝐷(𝑖)).

This solves the positive part of the formula. However, the negative part is rather trivial
as 𝜀 is the additive neutral element and thus det−(𝑀𝐷(𝑖)) = 𝜀 ⊕ det−(𝑀𝐷(𝑖)). Combining
this with the above results and implementing the swap via ̂𝑛𝑛−1

𝑒 gives the formula.

If we compare the matrix tree theorem on commutative semirings to Theorem 2.2.20,
we see that it is not a direct generalisation as in semirings we require the Minoux matrix,
which is is a 2𝑛 × 2𝑛 matrix, and not the Laplacian matrix. So the minor cannot be directly
understood as the graph with one vertex removed. This can be easily fixed as the following
corollary shows. This is also the theorem given by M. Minoux.

Corollary 3.1.41 [Min97, Section 3.1]. Let (𝐷, 𝑤) be a weighted digraph with weights in a
commutative semiring, then

̂𝑛𝑛−1
𝑒 bid(𝑀𝐷(𝑖, 𝑖 + 𝑛)) = ̂𝑝𝜅−

𝑖 (𝐷,𝑤) + ℎ̂det−(𝑀𝐷(𝑖,𝑖+𝑛)).

Proof. Forcing the choice 𝜎(𝑖) = 𝑖 in the determinant also results in a forced 𝜎(𝑖+𝑛) = 𝑖+𝑛
as the 𝑖+𝑛−1-th row of 𝑀𝐷(𝑖) has the single non-zero entry 𝑒 in the 𝑖+𝑛−1-th column. So
every permutation contains both fixed points, of which the contribution is amultiplicative 𝑒,
which changes nothing.

Definition 3.1.42 [Min99, Section 2.3; Cha82, Section 2]. Let 𝐴 and 𝐵 be two subsets of [𝑛]
with equal cardinality. A bijection from 𝐴 to 𝐵 is called a matching.

The notion of a matching is almost forced upon us, however they are often called partial
permutations. As we later describe perfect matchings, we choose this name. It should be
noted that the name matching also defines two different notions, where the other is a set of
edges not sharing any vertices.

Clearly, every permutation is a matching as we can choose 𝐴 = 𝐵 = [𝑛]. So it makes
sense to also generalise a few definitions on permutations to matchings. We write 𝑆𝐴,𝐵 for
matchings between 𝐴 and 𝐵.

Usually, matchings are defined in a narrower sense, in which we additionally require
that 𝐴 ∩ 𝐵 = ∅. This would disallow loops, which are desirable here.

Definition 3.1.43 [Cha82, Section 2]. The sign of a matching 𝜋∶ 𝐴 → 𝐵 is defined via its
number of inversions 𝜈(𝜋) ≔ ∣{(𝑖, 𝑗) ∈ 𝐴2 | 𝑖 < 𝑗, 𝜋(𝑖) > 𝜋(𝑗)}∣ as sgn(𝜋) ≔ (−1)𝜈(𝜋).

Note that the product formula for the sign given in Lemma 1.2.10 does not hold for
matchings. A simple counterexample is the matching mapping 1 to 2 and 4 to 3, for which
the formula would give 1

3 . However, the sign of the product still coincides with the sign of
the matching.

Definition 3.1.44. A matching 𝜋′ ∶ 𝐴′ → 𝐵′ extends another matching 𝜋∶ 𝐴 → 𝐵, written
𝜋′ ⊇ 𝜋 iff 𝐴′ ⊇ 𝐴, 𝐵′ ⊇ 𝐵 and 𝜋′(𝑎) = 𝜋(𝑎) for all 𝑎 ∈ 𝐴.
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1 3

6 8

2 4

5 7

Figure 3.1: A digraph with eight vertices. Its chosen roots are marked in white and
vertices, of which every tree must contain exactly one, are marked in grey. The leftmost
and rightmost edges are necessarily in-trees in all subforests, but two choices are available
for the center, illustrated on the right. The resulting forced edges are marked in grey.

If we have amatching 𝜋, which is just missing a single value, there is a unique extension
to a full permutation 𝜋′. This is not the case with more missing values, since if 𝑖, 𝑖′ ∈ 𝐴 and
𝑗, 𝑗′ ∈ 𝐵 are not assigned, we can choose either 𝜋′(𝑖) = 𝑗, 𝜋′(𝑖′) = 𝑗′ or 𝜋′(𝑖) = 𝑗′, 𝜋′(𝑖′) = 𝑗
as extensions. Even worse, these extensions have different signs.

These matchings prove to be very useful in describing permutations with forced edges,
which might not be explicitly given, but only given through edges (𝑖, 𝑗) of subsets 𝑖 ∈ 𝐼
and 𝑗 ∈ 𝐽. These forced edges are then exactly the missing part of matchings. Up until
now, we either considered trees with forcing an edge (𝑖, 𝑗) as in Section 2.2, or forests,
with interpreting the forced edges as a fixed subgraph as in Section 2.3, which is already
solved. So there would have been little to no gain in using matchings to handle forced
edges. This changes here as we have to closely follow the sign of a given permutation to
decide whether it is in the positive or negative bideterminant.

Furthermore, we will usually force edges, which do not already form a cycle. So there
might be forests, whose underlying matchings and permutations have different signs as
the following example shows. They will therefore be counted differently.

If we interpret matchings in a set theorist’s view as sets of tuples, we can write 𝜋 ∪ 𝜋′

for two matchings 𝜋∶ 𝐴 → 𝐵 and 𝜋′ ∶ 𝐴′ → 𝐵′, as long as 𝐴 ∩ 𝐴′ = 𝐵 ∩ 𝐵′ = ∅. This new
matching 𝜋 ∪ 𝜋′ can then be described via

𝜋 ∪ 𝜋′(𝑖) =
⎧{
⎨{⎩

𝜋(𝑖) if 𝑖 ∈ 𝐴,
𝜋′(𝑖) if 𝑖 ∈ 𝐴′.

The matching 𝜋 ∪ 𝜋′ thus extends both 𝜋 and 𝜋′. We will use this notation to extend
matchings to permutations.

Example 3.1.45. We consider the digraph illustrated in Figure 3.1 and try to find subforests,
with roots marked in white and vertices, of which every tree must contain exactly one,
marked in grey. This configuration has only two different forests, which are easily found
by hand. Both are given on the right in Figure 3.1. The corresponding cycle for the upper
solution 𝐹 is one large cycle along the outer edges, whereas the lower solution 𝐹′ contains
two smaller cycles using the inner edges. Thus, the upper forest has a sign (−1)7 = −1
and the lower a sign (−1)3(−1)3 = 1. We expect them to be in the negative and positive
bideterminant, respectively.
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However, the bideterminant of the minor of 𝑀𝐷 would only be concerned about the
matchings from {2, 4, 5, 7} to {1, 3, 6, 8} as the other vertices (and their indices) do not
appear in the reduced matrix. The matchings are

𝜋𝐹 = ⎛⎜
⎝

2 4 5 7
3 8 1 6

⎞⎟
⎠

, 𝜋𝐹′ = ⎛⎜
⎝

2 4 5 7
6 8 1 3

⎞⎟
⎠

and their signs are sgn(𝜋𝐹) = −1 and sgn(𝜋𝐹′) = 1. So, once again, their signs are different.
In general, the sign of a matching and one of its extending permutations might be different.

We have seen that it is not possible to find a direct connection between the sign of a
matching and its extensions. If we fix the extension, we can find a indirect connection, in
which we need the sign of subsets of [𝑛].

Definition 3.1.46. Let 𝐴 ⊆ [𝑛], then the number of inversions of 𝐴 is

𝜈(𝐴) ≔ ∣{(𝑖, 𝑗) | 𝑖 < 𝑗, 𝑖 ∈ [𝑛] ⧵ 𝐴, 𝑗 ∈ 𝐴}∣

and the sign is sgn(𝐴) ≔ (−1)𝜈(𝐴).

This definition is well-defined even without specifying 𝑛 as long as 𝑛 ≥ max(𝐴) since
all 𝑘 ∈ [𝑛], which are greater than all elements in 𝐴, are removed via 𝑖 < 𝑗. At first, it
might seem counterintuitive to use a notation for permutations, but we can find a bijection
between the subsets of [𝑛] and the permutationswith 𝑛 elements. This bijection is identified
by the inversions given in Definition 3.1.46.

Example 3.1.47. Let 𝐴 = {1, 3, 7}. To find the sign of 𝐴, we have to list all inversions. The
largest element of 𝐴 is 7, so we choose [7] as our basis set. The number of inversions thus
is

𝜈(𝐴) = |{(2, 3), (2, 7), (4, 7), (5, 7), (6, 7)}| = 5.

We will now construct the corresponding permutation, which consists of exactly these
inversions. We notice that there are no inversions including 1, so 𝜎(1) = 1. The next
integer 2 has two inversions, so 𝜎(2) > 𝜎(3), 𝜎(2) > 𝜎(7) and 𝜎(2) > 𝜎(1) as this would
otherwise be counted as an inversion with 1. Thus, 𝜎(2) = 4. No further inversions contain
3, so it is assigned the next free value 𝜎(3) = 2. This pattern continues, until we reach the
permutation

𝜎 = ⎛⎜
⎝

1 2 3 4 5 6 7
1 4 2 5 6 7 3

⎞⎟
⎠

.

The sign of 𝐴 is −1 and, by construction, so is the sign of 𝜎 as we chose the same inversions.

Lemma 3.1.48 [Cha82, Section 2]. Let 𝐴 be a subset of [𝑛], then the number of inversions of 𝐴 is
given by

𝜈(𝐴) = ∑
𝑎∈𝐴

𝑎 − |𝐴|(|𝐴| + 1)
2 .

Proof. Due to 𝑖 < 𝑗 in the definition of the inversions, all first elements of the tuples are
smaller than the second ones, and all inversions are between 𝐴 and 𝐴. The first restriction
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introduces 𝑗 − 1 inversions for 𝑗 ∈ 𝐴. From this, we have to remove all combinations
between different elements of 𝐴, which is a choice of two different elements of 𝐴. So

𝜈(𝐴) = ∑
𝑎∈𝐴

(𝑎 − 1) − (|𝐴|
2 )

= ∑
𝑎∈𝐴

𝑎 − |𝐴|(|𝐴| + 1)
2 .

Proposition 3.1.49 [Min99, Lemma 1; Cha82, Corollary in Section 2]. Let 𝐴, 𝐵 be subsets of
[𝑛], and 𝜋∶ 𝐴 → 𝐵, 𝜋′ ∶ 𝐴 → 𝐵 be matchings, such that 𝜋 ∪ 𝜋′ is a permutation on [𝑛]. Then the
sign of 𝜋 ∪ 𝜋′ is given by

sgn(𝜋 ∪ 𝜋′) = sgn(𝜋) sgn(𝜋′) sgn(𝐴) sgn(𝐵). (3.1.4)

Proof. The proof consists of disassembling the permutation 𝜋 ∪ 𝜋′ into different permuta-
tions, for which the signs can be deduced in a straightforward way. At first, we transform
𝜋 into a permutation on a possibly smaller set [𝑘]. Let 𝑎𝑖 denote the 𝑖-th smallest element
of 𝐴 and 𝑏𝑖 the 𝑖-th smallest element of 𝐵, then 𝜋 can be written as

𝜋 = ⎛⎜
⎝

𝑎1 𝑎2 ⋯ 𝑎𝑘
𝑏𝜎(1) 𝑏𝜎(2) ⋯ 𝑏𝜎(𝑘)

⎞⎟
⎠

.

The permutation 𝜎 has the same inversions of 𝜋, but all gaps, which appear in 𝐴 and 𝐵,
are removed. This can be imagined as shifting all values of 𝐴 and 𝐵 together.

We perform a similar construction for 𝜋′ and 𝜎 ′. Instead of shifting the ℓ values of
𝜎 ′ to [ℓ], we shift them to [𝑛] ⧵ [𝑘] = {𝑘 + 1, … , 𝑘 + ℓ}. Doing this introduces no further
inversions.

So 𝜎 and 𝜎 ′ can be combined into one permutation 𝜎 ∪𝜎 ′, its sign being sgn(𝜎) sgn(𝜎 ′).
This is, because 𝜎 and 𝜎 ′ do not exchange values between each other, and thus no inversions
are introduced by combining both. The final step is to reorder the permutations, such
that the correct values are mapped via 𝜋 ∪ 𝜋′. We can do this by utilising the bijection
presented in Example 3.1.47. It follows that the permutation 𝜋 ∪ 𝜋′ = 𝜎𝐵 ∘ (𝜎 ∪ 𝜎 ′) ∘ 𝜎𝐴,
where 𝜎𝐴 and 𝜎𝐵 are the permutations corresponding to 𝐴 and 𝐵 respectively.

As the permutation 𝜎 ∪ 𝜎 ′ was constructed via respecting the inversions, its sign is
sgn(𝜋) sgn(𝜋′). Reordering this permutation via 𝜎𝐴 and 𝜎𝐵 introduces their signs and
the formula follows.

Lemma 3.1.50 [Min99, Lemma 2; Cha82, Theorem in Section 2]. Let 𝐴, 𝐵 be subsets of [𝑛],
and 𝜋∶ 𝐴 → 𝐵 be a matching. Let 𝜋′∶ 𝐴 → 𝐵 be a matching given by

𝜋′(𝑖) ≔
⎧{
⎨{⎩

𝑖 for 𝑖 ∈ 𝐴 ∩ 𝐵,
𝑗 if 𝜋 contains a path from 𝑗 ∉ 𝐵 to 𝑖 ∉ 𝐴,

then the sign of 𝜋 can be written as

sgn(𝜋) = sgn(𝜋′) sgn(𝐴) sgn(𝐵) ∏
𝑃 is a path in 𝜋

(−1)|𝑃| ∏
𝐶 is a cycle in 𝜋

(−1)|𝐶|−1.

Note that 𝜋′ is uniquely defined, since 𝜋 is a matching and thus a bijection. If it is now
interpreted as a graph, then consists of disconnected cycles and paths. The cycles play no
role in 𝜋′ and the paths each have exactly one element not in 𝐵, and one not in 𝐴.
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Proof. Every path of length |𝑃| of 𝜋 is completed to a cycle of 𝜋 ∪ 𝜋′ of length |𝑃| + 1 as
the only added edge is from the last vertex 𝑖 to the first vertex 𝑗 of the path. The sign of a
permutation can be expressed via Lemma 2.2.14 and its cycles, so

sgn(𝜋 ∪ 𝜋′) = ∏
𝐶 is a cycle in 𝜋∪𝜋′

(−1)|𝐶|−1

= ∏
𝑃 is a path in 𝜋

(−1)|𝑃| ∏
𝐶 is a cycle in 𝜋

(−1)|𝐶|−1.

Another expression results from applying Proposition 3.1.49. Solving for sgn(𝜋) and
plugging in the above formula completes the proof.

Example 3.1.51. Let 𝜋 and 𝜋′ be two matchings, which can be combined to form an
extending permutation 𝜋 ∪ 𝜋′, defined via

𝜋 = ⎛⎜
⎝

1 3 7
2 1 4

⎞⎟
⎠

, 𝜋′ = ⎛⎜
⎝

2 4 5 6
5 3 6 7

⎞⎟
⎠

.

The first step is to transform those matchings into permutations on the correct sets as to
prepare them for combination. In none of the transformation steps a new inversion is
introduced, so the sign does not change.

𝜋 = ⎛⎜
⎝

1 3 7
2 1 4

⎞⎟
⎠

↦ ⎛⎜
⎝

1 2 3
2 1 3

⎞⎟
⎠

= 𝜎,

𝜋′ = ⎛⎜
⎝

2 4 5 6
5 3 6 7

⎞⎟
⎠

↦ ⎛⎜
⎝

1 2 3 4
2 1 3 4

⎞⎟
⎠

↦ ⎛⎜
⎝

4 5 6 7
5 4 6 7

⎞⎟
⎠

= 𝜎 ′.

It remains to calculate the permutations 𝜎{1,3,7} and 𝜎{1,2,4}. The first permutation is
the one appearing in Example 3.1.47. The second one contains only a single inversion
(3, 4), thus it consists only of the swap of 3 and 4. Combining all those steps leads to

𝜋 ∪ 𝜋′ = ⎛⎜
⎝

1 2 3 4 5 6 7
1 2 4 3 5 6 7

⎞⎟
⎠

∘ ⎛⎜
⎝

1 2 3 4 5 6 7
2 1 3 5 4 6 7

⎞⎟
⎠

∘ ⎛⎜
⎝

1 2 3 4 5 6 7
1 4 2 5 6 7 3

⎞⎟
⎠

,

from which the sign of 𝜋 ∪ 𝜋′ can be calculated. The signs of 𝜎𝐴, 𝜎𝐵, 𝜋 and 𝜋′ are all
negative, so the sign of 𝜎 ∪ 𝜎 ′ is positive and so is the sign of 𝜋 ∪ 𝜋′.

With matchings and a deeper understanding of the relation of their signs we can
formulate the all minors matrix tree theorem on commutative semirings. However, as the
goal is the most general formulation, allowing in-forests with roots in 𝑅 and a set 𝐶 of
chosen vertices, from which every in-tree must contain exactly one.

This causes a problem as the in-forests were constructed by forcing edges between
roots and chosen vertices. These forced edges can be considered as a matching between
𝑅 and 𝐶. These matchings can have a sign of either +1 or −1, which dictates whether
they appear in the positive or negative bideterminant, and thus also if the corresponding
in-forest is counted positively or negatively. This is not a problem if the in-forest consists
of one tree as then |𝑅| = |𝐶| = 1 and the only matching has a positive sign.

If the in-forests contain more than one tree, the problem of distributing the in-forests
over two subsets, according to the sign of the correspondingmatching, arises. However, not
all matchings appears as in-forests. An additional requirement is that every tree contains
exactly one element of 𝑅 and 𝐶. If there are elements in 𝑅 ∩ 𝐶, the matching must fix
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them as a forced loop. Otherwise, the tree, which contains 𝑟 ∈ 𝑅 and the chosen vertex
𝑐 ∈ 𝑅 ∩ 𝐶, contains two elements in 𝑅. Similarly for a tree with root 𝑟 ∈ 𝑅 ∩ 𝐶 and chosen
vertex 𝑐 ∈ 𝐶.

These forced loops prove to be very beneficial as, if 𝑅 = 𝐶, the only allowed matching
is the identity, which has positive sign. Thus, all trees are described by the positive
bideterminant. We generalise the definition of 𝜅−

𝑖 (𝐷, 𝑤) to consider the sign of thematching
and allow us to formulate the matrix tree theorem in a more general way.

Definition 3.1.52. Let (𝐷, 𝑤) be a weighted digraph, 𝑅 ⊆ 𝑉 the set of roots and 𝐶 ⊆ 𝑉 a
set of chosen vertices with |𝑅| = |𝐶|. Then the weight of in-forests of 𝐷 rooted at 𝑅, where
every in-tree contains exactly one vertex of 𝐶, is 𝜅−

𝑅,𝐶(𝐷, 𝑤), and the weight of out-forests is
𝜅+

𝑅,𝐶(𝐷, 𝑤).
Let also 𝜅−⊕

𝑅,𝐶(𝐷, 𝑤) and 𝜅−⊖
𝑅,𝐶(𝐷, 𝑤) be the weight of in-forests of 𝐷 rooted at 𝑅, where

every tree contains exactly one vertex of 𝐶 and the corresponding matching is even, re-
spectively odd. For semirings 𝑆, the signed weight of all those in-forests is defined as

̂𝜅−
𝑅,𝐶(𝐷, 𝑤) ≔ ⎛⎜

⎝

𝜅−⊕
𝑅,𝐶(𝐷, 𝑤) 𝜅−⊖

𝑅,𝐶(𝐷, 𝑤)
𝜅−⊖

𝑅,𝐶(𝐷, 𝑤) 𝜅−⊕
𝑅,𝐶(𝐷, 𝑤)

⎞⎟
⎠

∈ ̂𝑆.

With this generalised and extended notation the above findings can nowbe summarised
in the following lemma. It will be used to bridge the gap between the general all minors
matrix tree theorem and the special cases of Chapter 2.

Lemma 3.1.53. Let (𝐷, 𝑤) be a weighted digraph. If 𝑅 = 𝐶 or |𝑅| = |𝐶| = 1, then

𝜅−⊖
𝑅,𝐶(𝐷, 𝑤) = 𝜀.

Theorem 3.1.54 (All Minors Matrix Tree Theorem on Commutative Semirings). Let (𝐷, 𝑤)
be a weighted digraph with weights in a commutative semiring 𝑆, 𝑅, 𝐶 ⊆ [𝑛], and Δ ∈ 𝑆, then

̂𝑛
𝑛−|𝑅|+∑𝑖∈𝑅 𝑖+∑𝑗∈𝐶 𝑗
𝑒 bid(𝑀𝐷(𝑅∣𝐶)) = ̂𝜅−

𝑅,𝐶(𝐷, 𝑤) + ℎ̂Δ.

This is again not exactly the version given in [Min99, Section 3.1] asM.Minoux removed
additional rows and columns. The theorem stated in [Min99, Section 3.1] is given as
Corollary 3.1.55.

Proof. The idea to this proof is similar to the one of Theorem 3.1.40. The main difference is
that not all in-forests have to be counted in the positive bideterminant as can be seen in
Example 3.1.45. None the less, we start by taking a closer look at the positive bideterminant.
In contrast to the previous proof, we now employ matchings. The previous proof does not
benefit from introducing them as the matchings would be permutations with a fixed point,
which is not counted. In this case, we remove rows 𝑅 and columns 𝐶, so we can interpret
the permutations on 𝑀𝐷(𝑅∣𝐶) as matchings on 𝑀𝐷 from 𝑅′ ≔ [2𝑛] ⧵ 𝑅 to 𝐶′ ≔ [2𝑛] ⧵ 𝐶.

det+(𝑀𝐷(𝑅∣𝐶)) = ⨁
𝜋∈𝐴2𝑛−|𝑅|

2𝑛−|𝑅|
⨂
𝑘=1

(𝑀𝐷(𝑅∣𝐶))𝑘,𝜋(𝑘)

= ⨁
𝜋′∈𝐴𝑅′,𝐶′

⨂
𝑘∈[2𝑛]⧵𝑅

(𝑀𝐷)𝑘,𝜋′(𝑘).

It turns out that many of those matchings do not contribute to the bideterminant as
they contain 𝜀 in the product. To identify the relevant matchings, we approach the problem
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3.1. Semirings

Figure 3.2: The in-forests of Figure 3.1 with forced edges in line with Lemma 3.1.50. The
choice of 𝜎 does not change the outcome. Vertices in grey are in 𝐶 and white roots are in 𝑅.
Grey edges are forced by 𝜎.

from another side. The matching 𝜋 on 𝑆𝑅,𝐶 can be interpreted as a functional graph with
fixed cycles 𝒞𝜋 in 𝑅 ∩ 𝐶 and fixed paths 𝒫 from 𝑅 to 𝐶. This is a functional graph for a
function from 𝑅 to 𝐶. These graphs are extended to functions on [𝑛] via 𝜎. This extension
𝜎 is not unique, but as long as it is fixed for a set of fixed paths from 𝑅 to 𝐶, it can be
chosen arbitrarily. So it is chosen in line with Lemma 3.1.50. A graphical interpretation of
this is loops for roots, which require only themselves as marked vertex in their in-trees,
and a forced edge from the root to the chosen vertex otherwise. This always yields legal
in-forests and a sign

sgn(𝜋) = sgn(𝜎) sgn(𝑅) sgn(𝐶) ∏
𝑃∈𝒫𝜋

(−1)|𝑃| ∏
𝑍∈𝒞𝜋

𝑍 is non-trivial

(−1)|𝑍|−1 ∏
𝑍∈𝒞𝜋

𝑍 is a loop

(−1)|𝑍|−1⏟⏟⏟⏟⏟
=(−1)0

= sgn(𝜎) sgn(𝑅) sgn(𝐶)(−1)|𝑅|−|𝒞𝜋|.

What remains is to show the contribution of 𝜃−1. The bijection keeps most elements the
same, but changes fixed points 𝑣 to cycles (𝑣, 𝑣 + 𝑛). This shows in the sign in the different
sign of loops, which leads to the introduction of the number of non-trivial cycles ℓ(𝜋).

sgn(𝜃−1(𝜋)) = sgn(𝜎) sgn(𝑅) sgn(𝐶) ∏
𝑃∈𝒫𝜋

(−1)|𝑃| ∏
𝑍∈𝒞𝜋

𝑍 is non-trivial

(−1)|𝑍|−1 ∏
𝑍∈𝒞𝜋

𝑍 is a loop

(−1)|𝜃−1(𝑍)|−1⏟⏟⏟⏟⏟⏟⏟
=(−1)1

= sgn(𝜎) sgn(𝑅) sgn(𝐶)(−1)|𝑅|−ℓ(𝜋).

Matchings 𝜃−1(𝜋) appear in the bideterminant and the sign decides whether a match-
ing is counted towards the positive or negative bideterminant. The contribution of 𝑅
and 𝐶 is the same for all matchings and can be considered fixed. Let us assume that no
swap is required as similar steps hold for the other case. So the sign is only dependant
on the sign of 𝜎, which is not yet determined, and the number of non-trivial cycles of 𝜋.
By the definition of 𝜅−⊕

𝑅,𝐶(𝐷, 𝑤) and 𝜅−⊖
𝑅,𝐶(𝐷, 𝑤) in Definition 3.1.52, we define 𝜎 such that

for in-forests sgn(𝜃−1(𝜋)) = sgn(𝜋) holds. In-forests do not contain any cycles and so
do the corresponding matchings, thus +1 = sgn(𝜋) = sgn(𝜎) for positive in-forests, and
−1 = sgn(𝜋) = sgn(𝜎) for negative in-forests respectively.

The bijection 𝜃 associates the non-trivial matchings in the bideterminant with the
non-trivial matchings identifying the functional graphs. So the above steps work for all
required matchings and, with the continued assumption of no required swap, we can
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3. Expanding the Horizon

express the positive bideterminant as

det+(𝑀𝐷(𝑅∣𝐶)) = ⨁
𝜋′∈𝐴𝑅′,𝐶′

⨂
𝑘∈[2𝑛]⧵𝑅

(𝑀𝐷)𝑘,𝜋′(𝑘)

= ⨁
𝜋∈𝐴𝑅,𝐶

⨂
𝑘∈[2𝑛]⧵𝑅

(𝑀𝐷)𝑘,𝜃−1(𝜋)(𝑘)

= ⨁
𝜋∈𝐴𝑅,𝐶

𝜑𝜋(𝐷, 𝑤),

and if sgn(𝑅) sgn(𝐶)(−1)|𝑅| = −1, as a similar expression with summing over 𝑆𝑅,𝐶 ⧵ 𝐴𝑅,𝐶
instead of 𝐴𝑅,𝐶. In the last step, Proposition 3.1.38 is used to express the product via the
weight of functional subgraphs with fixed transitions 𝜋. A similar expression exists for the
negative bideterminant.

The final step is formulating the sign-reversing involution 𝜄 of Section 2.2.3, also ap-
pearing in the proof of Theorem 3.1.40. The functional graphs corresponding to in-forests
may now have cycles, but all of those cycles contain an edge between 𝑅 and 𝐶. So this
time the involution considers the smallest cycle, which does not contain such an edge.
This corresponds to 𝜋 containing a cycle. Let the set of these pairs (𝐺𝜋, 𝜋) be ℱ+

𝑐 for even
matchings and ℱ−

𝑐 for odd ones. Everything else stays the same in comparison to the
previous usages: If the smallest cycle 𝐶 gets fixed, the functional graph and its weight
stays the same, whereas its contribution switches from the positive determinant to the
negative and vice versa. So the involution equates the contributions of the positive and
negative bideterminant-parts not relating to in-forests. So

⨁
(𝐺,𝜋)∈ℱ+

𝑐

𝑤(𝐺) = ⨁
(𝐺,𝜋)∈ℱ−

𝑐

𝑤(𝐺) = Δ.

All that is left is some clean-up. At first the symmetric extension is used to display
the equations. Secondly, the constant factor sgn(𝑅) sgn(𝐶)(−1)|𝑅| consists of signs of
complements and (−1)|𝑅| = (−1)𝑛−|𝑅|. So, via Lemma 3.1.48 and the knowledge that
|𝑅| = |𝐶|, an expression with all complements taken care of follows from

𝜈(𝑅) + 𝜈(𝐶) = ∑
𝑖∈𝑅

𝑖 − |𝑅|(|𝑅| + 1)
2 + ∑

𝑗∈𝐶

𝑗 − |𝐶|(|𝐶| + 1)
2

= (∑
𝑖∈𝑅

𝑖 + ∑
𝑗∈𝐶

𝑗 + 2 ∑
𝑘∈[𝑛]

𝑘) − 2 ∑
𝑘∈[𝑛]

𝑘

= (∑
𝑖∈𝑅

2𝑖 + ∑
𝑖∈𝑅

𝑖 + ∑
𝑗∈𝐶

2𝑗 + ∑
𝑗∈𝐶

𝑗) − 2 ∑
𝑘∈[𝑛]

𝑘

= ∑
𝑖∈𝑅

𝑖 + ∑
𝑗∈𝐶

𝑗 + 2(∑
𝑖∈𝑅

𝑖 + ∑
𝑗∈𝐶

𝑗 − ∑
𝑘∈[𝑛]

𝑘).

Thus, it holds that sgn(𝑅) sgn(𝐶)(−1)|𝑅| = (−1)𝑛−|𝑅|+∑𝑖∈𝑅 𝑖+∑𝑗∈𝐶 𝑗. This can be used to
collect all above cases into one formula as the sign swaps the positive and negative bideter-
minants, which is exactly the multiplication with ̂𝑛𝑒. Deciding the case thus reduces to a

multiplication with ̂𝑛
𝑛−|𝑅|+∑𝑖∈𝑅 𝑖+∑𝑗∈𝐶 𝑗
𝑒 .

In the following we write for set 𝐴 and integer 𝑛 the element-wise sum 𝐴 + 𝑛 ≔
{𝑎 + 𝑛 | 𝑎 ∈ 𝐴} and grant it higher precedence than the union. This is used here as the
Minoux matrix is composed of four blocks. We proved the all minors matrix tree theorem

64



3.1. Semirings

on commutative semirings by removing only rows and columns in the upper left block.
This can be extended to also remove rows and columns in the lower right block, which
further reduces the size of the matrix.

Corollary 3.1.55 [Min99, Section 3.1]. Let (𝐷, 𝑤) be a weighted digraph with weights in a
commutative semiring, then

̂𝑛
𝑛−|𝑅|+∑𝑖∈𝑅 𝑖+∑𝑗∈𝐶 𝑗
𝑒 bid(𝑀𝐷(𝑅 ∪ (𝑅 ∪ 𝐶) + 𝑛∣𝐶 ∪ (𝑅 ∪ 𝐶) + 𝑛)) = ̂𝜅−

𝑅,𝐶(𝐷, 𝑤) + ℎ̂Δ.

Proof. The non-zero entries of 𝑀𝐷 with indices beyond 𝑛 all have indices (𝑖, 𝑖 + 𝑛), (𝑖 + 𝑛, 𝑖)
or (𝑖 + 𝑛, 𝑖 + 𝑛).

If the row 𝑟 ∈ 𝑅 is removed, then so is the entry (𝑟, 𝑟 + 𝑛), thus all permutations, which
have a non-zero contribution to the determinant, have to choose (𝑟 + 𝑛, 𝑟 + 𝑛). As the entry
(𝑀𝐷)𝑟+𝑛,𝑟+𝑛 = 𝑒, it can be omitted and thus the row and column 𝑟 + 𝑛 removed.

If the column 𝑐 ∈ 𝐶 is removed, then so is the entry (𝑐 + 𝑛, 𝑐) and a similar conclusion
follows. So the 𝑐 + 𝑛-th row and column can be removed. In conclusion, we can remove
the rows and columns with indices in (𝑅 ∪ 𝐶) + 𝑛.

Example 3.1.56. We continue Example 3.1.45 and calculate the signed weight of all in-
forests of Figure 3.1 with roots in 𝑅 = {1, 3, 6, 8} and chosen vertices in 𝐶 = {2, 4, 5, 7}. So
𝜈(𝑅) + 𝜈(𝐶) = 36 and thus ̂𝑛36

1 = ̂𝑝1. We already explicitly counted all those in-forests of
(𝐷, 𝑤), and know, that 𝜅−⊕

𝑅,𝐶(𝐷, 𝑤) = 𝜅−⊖
𝑅,𝐶(𝐷, 𝑤) = 1. In fact, there are no other functional

subgraphs with forced edges from 𝑅 to 𝐶, so we expect

̂𝑛8−4+∑8
𝑖=1 𝑖

1 bid(𝑀𝐷(𝑅 ∪ (𝑅 ∪ 𝐶) + 𝑛∣𝐶 ∪ (𝑅 ∪ 𝐶) + 𝑛)) = ̂𝜅−
𝑅,𝐶(𝐷, 𝑤) = ℎ̂1.

TheMinouxmatrix of (𝐷, 𝑤) is a 16×16 matrix, of with we can remove twelve rows and
columns. The crossed out rows and columns directly correspond to the roots and chosen
vertices. The boxed values are all the only non-zero entry in their column and so must be
chosen. Their rows and columns can therefore be crossed out too. A similar argument
follows for the circled values as they are the only non-zero entry in their respective rows.
Due to the rare coincidence that 𝑅 ∪ 𝐶 = [𝑛], we can remove all rows and columns with
indices beyond 𝑛.

𝑀𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1
1 1 2

1 1
1 1

1 1
1 1

1 1 2
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The reduced Minoux matrix is thus a 4 × 4 matrix. This matrix has two rows, which
are equal, so due to Proposition 3.1.30, the positive and negative bideterminant must be
equal. Their exact values are 𝑒 as 𝜎 is the only odd permutation and 𝜎 ′ the only even.
Their corresponding matchings from 𝑅 to 𝐶 are given in Example 3.1.45 and are 𝜋𝐹′ and
𝜋𝐹 respectively.

𝜎 = ⎛⎜
⎝

1 2 3 4
2 4 1 3

⎞⎟
⎠

, 𝜎 = ⎛⎜
⎝

1 2 3 4
3 4 1 1

⎞⎟
⎠

.

While the all minors matrix tree theorem on commutative semirings is the most general
version of the matrix tree theorem we can expect to find, we reformulate it in the context
of rings as calculating the bideterminant is computationally very expensive. A closer
overview can be found in Section 3.2.4.

Corollary 3.1.57 (All Minors Matrix Tree Theorem on Commutative Rings). Let (𝐷, 𝑤) be
a weighted digraph with weights in a commutative ring, then

(⊖𝑒)∑𝑖∈𝑅 𝑖+∑𝑗∈𝐶 𝑗 det(𝐿𝐷(𝑅∣𝐶)) = 𝜅−
𝑅,𝐶(𝐷, 𝑤).

Note, that we can use the additive inverse ⊖𝑒 as the weights are now elements of a
commutative ring. This is not possible in semirings, which led to the introduction of the
symmetric extension in Section 3.1.2.

Proof. The proof uses the transformation given in (3.1.2). The sign of 𝑛 − |𝑅| columns has
to be inverted, so the determinant has to be multiplied via (⊖𝑒)𝑛−|𝑅|, which thus appears
twice and can be ignored.

Using the all minors matrix tree theorem on commutative semirings it is now possible
to derive all previous versions of the matrix tree theorem. The undirected case can be
simulated by using a directed graph and replacing the undirected edge with a pair of
directed edges. We can also derive the Kirchhoff polynomial from Section 2.5.3 if the
weights of edges are in the commutative polynomial ring ℝ[𝑥1, … , 𝑥𝑚], and 𝑤(𝑒𝑖) = 𝑥𝑖.

3.1.5 Grassmann–Berezin Calculus

A similar result in commutative rings can be reached via an approach using the notation
of quantum field theory. This path was chosen and generalised in a different direction
by A. Abdesselam. The introduction to the Grassmann–Berezin calculus is echoed and
shortened here.

Definition 3.1.58. Let 𝑅 be a commutative ring with units containing ℚ. The Grassmann
algebra 𝑅[𝜒] ≔ 𝑅[𝜒1, … , 𝜒𝑛] is defined by

𝑅⟨𝜒1, … , 𝜒𝑛⟩/(𝜒𝑖𝜒𝑗 + 𝜒𝑗𝜒𝑖 | 𝑖, 𝑗 ∈ [𝑛]),

where 𝑅⟨𝜒1, … , 𝜒𝑛⟩ denotes the free R-algebra (which can be understood as a polynomial
ring with non-commuting variables) and (𝜒𝑖𝜒𝑗 + 𝜒𝑗𝜒𝑖 | 𝑖, 𝑗 ∈ [𝑛]) the ideal generated by all
expressions 𝜒𝑖𝜒𝑗 + 𝜒𝑗𝜒𝑖.

The Grassmann algebra is intensively used to study fermions, which obey the anticom-
mutative laws dictated by the ideal [NO98].
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Proposition 3.1.59 [Abd04, Proposition 1]. 𝑅[𝜒] is a free R-module with basis

𝐵 ≔ {𝜒𝑖1 ⋯ 𝜒𝑖𝑘 | 0 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛}.

This basis has 2𝑘−1 elementswith 𝑘 factors and therefore the basis𝐵 contains 2𝑛 elements
in total. So every element 𝑓 ∈ 𝑅[𝜒] can be uniquely written as ∑𝑏∈𝐵 𝑓𝑏𝑏, with 𝑓𝑏 ∈ 𝑅. It is
also useful to consider the distinction between even and odd elements 𝑓 of 𝑅[𝜒], where
𝑓𝑏 = 0 if 𝑏 consists of an odd number of factors, respectively an even number. The sub-R-
module of even elements is written as 𝑅[𝜒]even and of the odd elements 𝑅[𝜒]odd.

Theorem 3.1.60 (Pauli Exclusion Principle) [Abd04, Proposition 2]. Let 𝑓 ∈ 𝑅[𝜒]odd, then
𝑓 2 = 0.

We also define derivations 𝜕
𝜕𝜒𝑖

in the usual sense, in such that

𝜕
𝜕𝜒𝑗

𝜒𝑖1 ⋯ 𝜒𝑖𝑘 ≔
⎧{
⎨{⎩

0 for 𝑗 ∉ {𝑖1, … , 𝑖𝑘},
(−1)ℓ−1𝜒𝑖1 ⋯ 𝜒𝑖ℓ−1

𝜒𝑖ℓ+1
⋯ 𝜒𝑖𝑘 for 𝑗 = 𝑖ℓ,

where the sign stems from swapping 𝑗 = 𝑖ℓ to the left via the application of the anticommu-
tative laws. So we can now consider a sub-Grassmann algebra 𝑅[𝜒𝐼] ≔ 𝑅[𝜒𝑖1 , … , 𝜒𝑖𝑘] with
𝐼 = {𝑖1, … , 𝑖𝑘}, which can be naturally embedded into 𝑅[𝜒]. The image of the derivation

𝜕
𝜕𝜒𝑗

lies completely within 𝑅[𝜒{𝑗}], which is the Grassmann algebra 𝑅[𝜒] with 𝜒𝑗 removed.
Thus, we introduce the Berezin integral, which relies on a matching 𝜎 on subsets of [𝑛] as

∫ d𝜒𝜎(1) ⋯ d𝜒𝜎(𝑘) ∶
⎧{
⎨{⎩

𝑅[𝜒] → 𝑅[𝜒𝜎([𝑘])]
𝑓 ↦ ( 𝜕

𝜕𝜒𝜎(1)
∘ ⋯ ∘ 𝜕

𝜕𝜒𝜎(𝑘)
) 𝑓 .

If the integral integrates over all variables, the result is in 𝑅 and the sign is determined
by the sign of the permutation 𝜎 as in the 𝑗-th step, the correct variable 𝜒𝑗 has to be swapped
to the left. So all inversions are applied and are counted via the anticommutative laws.
This results in

∫ d𝜒𝜎(1) ⋯ d𝜒𝜎(𝑛) 𝑓 = sgn(𝜎) ∫ d𝜒1 ⋯ d𝜒𝑛 𝑓 (3.1.5)

= sgn(𝜎)𝑓𝜒1𝜒2⋯𝜒𝑛
.

One can also define the exponential function on 𝑅[𝜒]. For this, we use that all 𝑓 ∈ 𝑅[𝜒]
with 𝑓1 = 0 are nilpotent as can be shown via Theorem 3.1.60. So the infinite sum in (3.1.6)
ends after finitely many steps.

exp(𝑓 ) ≔
∞
∑
𝑖=0

𝑓 𝑖

𝑖! (3.1.6)

We also identify the values 𝜒1, … , 𝜒𝑛 with their vector 𝜒, and write 𝜓T𝐴𝜒 ≔ ∑𝑛
𝑖,𝑗=1 𝜓𝑖𝐴𝑖𝑗𝜒𝑗,

which is an element of 𝑅[𝜒].
The goal is to formulate the determinant in the context of the Grassmann–Berezin

calculus. This requires so-called entangled variables 𝜓 and 𝜓, for which a shorthand notation
𝜓𝑖1𝜓𝑗1

⋯ 𝜓𝑖𝑘𝜓𝑗𝑘
≕ (𝜓𝐼𝜓𝐽)ent is defined. The convention for 𝐼 and 𝐽 is to be increasingly

ordered, so 𝑖ℓ < 𝑖ℓ′ and 𝑗ℓ < 𝑗ℓ′ for ℓ < ℓ′. We also define the entangled Berezin integral over
the Grassmann algebra with entangled variables 𝑅[𝜓, 𝜓] as

∫ d(𝜓, 𝜓)ent ≔ ∫ d𝜓1d𝜓1 ⋯ d𝜓𝑛d𝜓𝑛.

From this, the formula for the determinant follows after some calculation steps.
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3. Expanding the Horizon

Theorem 3.1.61 [Abd04, Proposition 5]. Let 𝐴 ∈ ℳ𝑛(𝑅) and 𝐼, 𝐽 be subsets of [𝑛] with the
same cardinality, then the determinant can be expressed via

(−1)∑𝑖∈𝐼 𝑖+∑𝑗∈𝐽 𝑗 det(𝐴(𝐼 ∣ 𝐽)) = ∫ d(𝜓, 𝜓)ent(𝜓𝐼𝜓𝐽)ent exp(−𝜓T𝐴𝜓).

The above theorem enables us to interpret the determinant of a reduced matrix as a
Berezin integral. We could now prove the matrix tree theorem for commutative rings, but
we already proved it for a more general case of commutative semirings. A. Abdesselam did
not just prove the theorem, but instead generalised it in a different direction. He considered
a general matrix, in which the rows may not add up to zero. This leads to the enumeration
of a different set of forests.

Instead of explicitly giving a set 𝐼 of roots and a set 𝐽 of chosen vertices, of which every
tree must contain exactly one vertex, we also allow an arbitrary amount of trees in addition
to the fixed trees. The roots of those variable trees are collected inℛ. A pair (𝐹,ℛ) is called
admissible with relation to 𝐼 and 𝐽 iff 𝐹 is a forest and every tree either contains exactly one
vertex of 𝐼 and 𝐽 or one vertex ofℛ. Let the set of all admissible pairs of a graph be denoted
by 𝒜. Let 𝜎𝐹 be also the unique matching from 𝐼 to 𝐽, such that 𝜎(𝑖) and 𝑗 are in the same
tree for all 𝑖 ∈ 𝐼. The generalised matrix tree theorem is as follows:

Theorem 3.1.62 [Abd04, Theorem 1]. Let 𝐴 ∈ ℳ𝑛(𝑅) and 𝐼, 𝐽 be subsets of [𝑛], then

det(𝐴(𝐼 ∣ 𝐽)) = (−1)∑𝑖∈𝐼 𝑖+∑𝑗∈𝐽 𝑗 ∑
(𝐹,ℛ)∈𝒜

sgn(𝜎𝐹) ∏
𝑗∈ℛ

(
𝑛

∑
𝑖=1

𝐴𝑖𝑗) ∏
(𝑖,𝑗)∈𝐹

(−𝐴𝑖𝑗).

At first it is necessary to make sense of the product assigned to an admissible pair
(𝐹,ℛ). The inner product ∏(𝑖,𝑗)∈𝐹(−𝐴𝑖𝑗) is nothing new as this resembles the edge-weights
𝑤(𝑖, 𝑗) = −𝐴𝑖𝑗 of the forest. The sum before is new. If we interpret 𝐴𝑖𝑖 as the usual sum of
edge-weights to vertex 𝑖, this would evaluate to 0. This is in line with our usual under-
standing of the theorem, which disregards forests, in which not all vertices are connected
to a root in 𝐼. These forests were imagined as non-spanning sub-forests of the graph.
However, we now allow extra trees, which are not forced by 𝐼 and 𝐽, but are rooted at 𝑟 ∈ ℛ.
These trees require a starting weight 𝑤(𝑟), which is assigned to the vertex 𝑟. The diagonal
elements then become

𝐴𝑟𝑟 = 𝑤(𝑟) − ∑
𝑖≠𝑟

𝑤(𝑖, 𝑟) = 𝑤(𝑟) + ∑
𝑖≠𝑟

𝐴𝑖𝑟,

and the sum in the formula evaluates to the weight of the emerging root 𝑟. The weight of
the admissible pair is thus the weight 𝑤(𝐹) of the forest multiplied with the weight of the
emergent roots 𝑤(𝑟).

The following proof presented here omits a most central part, which corresponds to
identifying whether a sub-graph is counted or not. The complete proof can be found
in [Abd04, Section 3]. There, A. Abdesselam also mentioned that a proof using the de-
terminant expansion of [Moo94] would be possible, but did not state it, and neither did
J. W. Moon. This direct proof would not require any notation from quantum field theory.

Proof. Due to Theorem 3.1.61, we can express the determinant as an entangled Berezin
integral multiplied by the factor (−1)∑𝑖∈𝐼 𝑖+∑𝑗∈𝐽 𝑗. The next step is to separate the vertex-
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weight from the rest of the matrix, which we express as

𝜓T𝐴𝜓 =
𝑛

∑
𝑖,𝑗=1

𝜓𝑖𝐴𝑖𝑗𝜓𝑗

=
𝑛

∑
𝑗=1

𝜓𝑗(
𝑛

∑
𝑖=1

𝐴𝑖𝑗
⏟
=𝑤(𝑗)

)𝜓𝑗 +
𝑛

∑
𝑖,𝑗=0

(𝜓𝑖 − 𝜓𝑗)𝐴𝑖𝑗𝜓𝑗.

As the Grassmann algebra is anti-commutative, swapping two factors inverts the sign.
So the integral can be expressed via

∫ d(𝜓, 𝜓)ent(𝜓𝐼𝜓𝐽)ent exp(−
𝑛

∑
𝑗=1

𝑤(𝑗)𝜓𝑗𝜓𝑗 −
𝑛

∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝜓𝑖 − 𝜓𝑗)𝜓𝑗)

= ∫ d(𝜓, 𝜓)ent(𝜓𝐼𝜓𝐽)ent(
𝑛

∏
𝑗=1

𝑒−𝑤(𝑗)𝜓𝑗𝜓𝑗)(
𝑛

∏
𝑗=1

𝑒−𝐴𝑖𝑗(𝜓𝑖−𝜓𝑗)𝜓𝑗)

= ∫ d(𝜓, 𝜓)ent(𝜓𝐼𝜓𝐽)ent(
𝑛

∏
𝑗=1

(1 − 𝑤(𝑗)𝜓𝑗𝜓𝑗))(
𝑛

∏
𝑗=1

(1 − 𝐴𝑖𝑗(𝜓𝑖 − 𝜓𝑗)𝜓𝑗)),

where the last line follows by the Pauli exclusion principle and that all elements of 𝑅[𝜒]
with 𝑓1 = 0 are nilpotent. We can now separate the vertex-weights and the matrix 𝐴 from
the integral to get

(−1)∑𝑖∈𝐼 𝑖+∑𝑗∈𝐽 𝑗 det(𝐴(𝐼 ∣ 𝐽)) = ∑
(𝐹,ℛ)∈[𝑛]2×[𝑛]

(∏
𝑟∈ℛ

𝑤(𝑟))( ∏
(𝑖,𝑗)∈𝐹

(−𝐴𝑖𝑗))Ω𝐹,ℛ,

where Ω𝐹,ℛ is sgn(𝜎𝐹) for admissible pairs and 0 otherwise. The expression hidden behind
Ω𝐹,ℛ contains the Berezin integral with all variables:

Ω𝐹,ℛ ≔ ∫ d(𝜓, 𝜓)ent(𝜓𝐼𝜓𝐽)ent(
𝑛

∏
𝑗=1

(𝜓𝑗𝜓𝑗))(
𝑛

∏
𝑗=1

(𝜓𝑖 − 𝜓𝑗)𝜓𝑗)

The evaluation of Ω𝐹,ℛ takes up a good part of the proof of the theorem and is omitted
here. For an in-depth proof see [Abd04, Lemma 1].

Example 3.1.63. Consider Example 1.3.5, in which we calculated the number of spanning
trees of the complete graphs 𝐾𝑛. We can now use Theorem 3.1.62 to provide a different
proof. As the graphs 𝐾𝑛 are undirected we can select an arbitrary vertex 𝑖 as the designated
root for a spanning tree. Let 𝑖 = 1. We now force no roots or chosen vertices in the
usual sense, but disregard trees, which are not rooted in 𝑖. This is done by setting the
vertex-weights to 𝑤(1) = 1 and all others 0. This leads to the matrix

𝐴 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛 −1 ⋯ −1
−1 𝑛 − 1 ⋮
⋮ ⋱ −1

−1 ⋯ −1 𝑛 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As we do not remove any rows or columns, the number of spanning trees is given by the
determinant det(𝐴) = 𝑛𝑛−2, which agrees with the result of Example 1.3.5.
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3. Expanding the Horizon

A different question would be to count the number of spanning forests on the complete
graph 𝐾𝑛. For this we allow all vertices to spawn trees, and thus 𝑤(𝑣) = 1 for all vertices.
This leads to

𝐴′ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛 −1 ⋯ −1
−1 𝑛 ⋮
⋮ ⋱ −1

−1 ⋯ −1 𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which is 𝐿𝐾𝑛+1
(𝑖). So we can conclude that the complete graph with 𝑛 vertices contains

𝑛𝑛−2 spanning trees and (𝑛 + 1)𝑛−1 spanning forests.

3.2 Hypergraphs
While graphs have been intensively studied, hypergraphs are a much more recent gener-
alisation. The step from graphs to hypergraphs is rather intuitive as the main restriction
of graphs is the number of endpoints for an edge. So the most reasonable generalisation
would be to allow any number of vertices within an edge.

Definition 3.2.1 [Ber89, p. 1]. Let 𝑉 be a non-empty set of vertices and 𝐸 a set of non-empty
subsets of 𝑉. These subsets 𝑒 ∈ 𝐸 are called hyperedges. If no confusion can arise, they will
be also called edges for short. For |𝑒| odd the edge is called odd. The tuple (𝑉, 𝐸) is called a
hypergraph.

We also can immediately generalise paths and connectedness, but then the easy general-
isations stop already as even the generalisation of a cycle or tree is not as easy to formulate
and not consistent in the literature. We consider two possible perspectives for trees, but
first we have to establish other notation, which would be trivial for graphs.

Definition 3.2.2 [Ber89, p. 1]. A hypergraph 𝐻 is called simple iff for all edges 𝑒, 𝑒′ ∈ 𝐸 it
follows that 𝑒 ⊆ 𝑒′ implies 𝑒 = 𝑒′.

Definition 3.2.3 [Ber89, p. 2]. A hypergraph 𝐻 is an 𝑛-graph, also called an 𝑛-uniform
hypergraph, for 𝑛 ∈ ℕ iff for all edges 𝑒 ∈ 𝐸 it holds that |𝑒| = 𝑛.

Clearly, every 𝑛-graph is a simple hypergraph as all edges have the same number of
vertices, and a graph in the usual sense is a 2-graph. We will also require a way to construct
a graph out of a hypergraph.

Definition 3.2.4 [MV02, p. 1404]. Let 𝐻 be a hypergraph and ℰ ≔ {(𝑣, 𝑒) ∈ 𝑉 × 𝐸 | 𝑣 ∈ 𝑒},
then the graph |𝐻| ≔ (𝑉 ∪ 𝐸,ℰ) is the topological realisation of 𝐻.

The topological realisation |𝐻| of a hypergraph 𝐻 is always a bipartite graph as the
edges of |𝐻| always connect an edge of 𝐻 with a vertex of 𝐻. So a cycle in the topological
realisation can be written as a sequence 𝑣1𝑒1 ⋯ 𝑒𝑛𝑣1. It is possible that two hyperedges
connect two vertices without being the same edge, so it is relevant which edge was chosen
for a given cycle. Thus, a cycle within a hypergraph is defined via an alternating sequence
of vertices and hyperedges, such that the cycle of 𝐻 is a cycle in |𝐻|. The length of a cycle
is still defined by the number of distinct vertices.

This definition of a cycle is sometimes called a Berge-cycle as it was first formulated
in [Ber89]. This is to separate it from the notion of tight cycles, in which the 𝑖-th hyperedge
not only contains the 𝑖-th vertex of the cycle, but all ℓ − 1 previous vertices also, where
ℓ = |𝑒𝑖|, and loose cycles, in which the edges are as separated as possible. This means that
𝑒𝑖−1 ∩ 𝑒𝑖 = {𝑣𝑖} and 𝑒𝑖 ∩ 𝑒𝑗 = ∅ for 𝑗 ∉ {𝑖, 𝑖 + 1}. For a more in-depth explanation see [Ver16].
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2

3 4

𝑒4

𝑒5
𝑒3

𝑒1

𝑒2

Figure 3.3: The hypergraph 𝐻 with five vertices and five edges and its topological realisa-
tion |𝐻|, which consists of ten vertices and thirteen edges.

Example 3.2.5. Consider the hypergraph 𝐻 with five vertices and hyperedges 𝑒1 = {1, 2, 3},
𝑒2 = {1, 3, 4}, 𝑒3 = {2, 4, 5}, 𝑒4 = {1, 5} and 𝑒5 = {4, 5}, illustrated in Figure 3.3. The edges
𝑒4 and 𝑒5 have only two endpoints, while the other edges have three endpoints. Due to 𝑒5
being a subset of 𝑒3, this is not a simple graph. The topological realisation |𝐻| thus contains
|𝑉| + |𝐸| = 10 vertices and ∑𝑒∈𝐸 |𝑒| = 13 edges.

The hypergraph 𝐻 contains many cycles. If we consider the cycle 1, 𝑒4, 5, 𝑒5, 4, 𝑒2, 1, we
see that all edges have an intersection of exactly one vertex. So this cycle is also a loose
cycle. The cycle 3, 𝑒1, 2, 𝑒3, 4, 𝑒2, 3 is an example for a non-loose cycle as 𝑒1 and 𝑒2 share two
vertices.

We are now ready to identify two different notions of hypertrees. One is widely used
and is characterised in [Ber89] as arboreal hypergraphs, which we will adopt. We will use
the other to define hypertrees.

Definition 3.2.6 [Ber89, Section 5.4]. Let 𝐻 be a simple hypergraph. It is called arboreal iff
the following two properties hold:

i. If 𝐽 is a subset of edges such that 𝑒 ∩ 𝑒′ ≠ ∅ for 𝑒, 𝑒′ ∈ 𝐽, then ⋂𝑒∈𝐽 𝑒 ≠ ∅.

ii. All cycles of length greater than 2 contain at least three edges with non-empty inter-
section.

The first property is also called the Helly property [Ber89, Section 1.5].

Definition 3.2.7 [see MV02, Definition 3.2]. A hypergraph 𝐻 is called a hypertree iff it is
connected and contains no cycles.

Hypergraphs and hypertrees are direct generalisations of graphs and trees. Thus, we
will generalise the notions of weights of graphs and trees in a direct sense. The definition
of 𝜅(𝐻, 𝑤), which is the sum of weights of all hypertrees in 𝐻, follows directly.

C. Berge gave in [Ber89] another characterisation for arboreal hypergraphs, which he
contributed to [Duc78]. It is concerned with finding a tree on the vertices, which is always
a tree if the vertices are restricted to the ones of any hyperedge.

Theorem 3.2.8 [Ber89, Theorem 13 in Chapter 5]. A hypergraph 𝐻 = (𝑉, 𝐸) is arboreal iff
there exists a tree 𝑇 on 𝑉, such that the subgraphs of 𝑇 restricted to the vertices of hyperedges 𝑒 ∈ 𝐸
are still trees.
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Figure 3.4: A hypergraph, a tree on the same vertices, and the topological realisation. This
hypergraph is arboreal, but not a hypertree.

Lemma 3.2.9 [MV02, Proposition 3.3.ii]. Let 𝐻 be a 𝑘-uniform hypertree, then the number of
vertices of 𝐻 is given by |𝑉| = (𝑘 − 1)|𝐸| + 1.

Proof. The lemma is proven by a simple induction on the number of edges. A hypertree
consisting of a single hyperedge contains exactly those vertices. As 𝐻 is 𝑘-uniform, the
edge contains 𝑘 vertices. Every further edge must be connected to exactly one vertex of the
hypertree. If otherwise the edge is connected to two vertices, the topological realisation
would contain a cycle. If the edge is not connected at all, then the hypergraph would not
be connected and thus not be a hypertree.

Definition 3.2.10. Let 𝐻 be a hypergraph with weights 𝑤, then the weight of all 𝑘-uniform
hypertrees of 𝐻 is defined as 𝜅[𝑘](𝐻, 𝑤).

Eventhough G. Masbaum and A. Vaintrob mentioned that Proposition 3.3 in [MV02]
proves the equivalence of arboreal hypergraphs and hypertrees, this is not the case. Prob-
lems arise when the choice of a subtree within a hyperedge is restricted by neighbouring
hyperedges as the following example shows.

Example 3.2.11. Figure 3.4 shows a hypergraph, which is an arboreal hypergraph, but not
a hypertree. To check whether it is arboreal, we could, on one hand, check all subsets
and cycles of length ≥ 3, or find a tree, such that the restriction to the vertices of a single
hyperedge is still a tree. The only such tree is given in the middle. All other trees of these
six vertices have a disconnected subtree.

The topological realisation of 𝐻, illustrated on the right, contains cycles. Thus, the
hypergraph 𝐻 is not a hypertree. This is to be expected as there are many hyperedges 𝑒
and 𝑒′, which share two vertices 𝑣 and 𝑣′, so the topological realisation contains the cycle
𝑒, 𝑣, 𝑒′, 𝑣′, 𝑒.

A different way to check whether the graph is a hypertree, is to check the requirement
given in Lemma 3.2.9. As there are six vertices, but five edges, the equation 6 = 2 ⋅ 5 + 1 is
false.

Ifwe consider Figure 3.3, we can find arboreal subhypergraphs and spanning hypertrees.
For example, the hyperedges 𝑒1, 𝑒2 and 𝑒5 form an arboreal subhypergraph, which is not a
hypertree, and the edges 𝑒1 and 𝑒2 form a spanning hypertree. Every spanning hypertree
is arboreal as they contain no cycles at all.

Thus, we can map hypertrees and arboreal hypergraphs to graphs. As hypertrees are
a special class of arboreal hypergraphs, we can interpret them in two different ways as
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a graph. In the first one, we add vertices for edges and form a bipartite graph, while in
the second we choose a spanning tree on the same vertices, such that hyperedges induce
subtrees. Both interpretations avoid cycles. We will now introduce a third interpretation,
which introduces a cycle for every hyperedge.

Definition 3.2.12. A connected graph 𝐺 is a cactus graph iff any two cycles overlap in at
most one vertex. So no cycles share any edges.

So any hypertree can be mapped to a cactus graph via interpreting all hyperedges as a
cycles. This cycle is not unique as many can be formed on a set of vertices. To restrict this
to a unique graph, we introduce an orientation, which we imagine as walking through
all vertices in a anticlockwise manner. In this case, the orientation is dependant on the
visualisation of the hypergraph, so we aim for a more formal approach.

3.2.1 Orientations

We define an orientation on hyperedges in an arbitrary manner and build the aforemen-
tioned intuition from there. The advantage of this approach is that we are independent of
the way the hypergraph is pictured.

Definition 3.2.13 [see MV02, Definition 3.6]. Let 𝑒 be a hyperedge. An orientation o(𝑒) is
defined as a cyclic permutation on the vertices of 𝑒.

The first question is if the orientation of a hypergraph is well-defined. Initially, there is
no predetermined sequence of hyperedges, but as it turns out, this does not matter as we
are only interested in the length of the cycle ∏𝑒∈𝐻 o(𝑒) for a hypergraph 𝐻.

Proposition 3.2.14 [see MV02, Proposition 3.4]. Let 𝑇 be an hypergraph with only odd hyper-
edges, then ∏𝑒∈𝐻 o(𝑒) is a cyclic permutation for all orientations of 𝑒 and permutations of o(𝑒) iff
𝑇 is a hypertree.

Proof. We begin by assuming that 𝑇 is a hypertree with 𝑘 edges and prove by induction on
the number of edges that 𝜎 ≔ ∏𝑒∈𝐻 o(𝑒). If 𝑘 = 1 consists of a single edge, this is true as
o(𝑒) is already the whole tree and a cyclic permutation.

For the induction step, let the edges 𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑘 form a subtree 𝑇′ of 𝑇. As
a cyclic rearrangement of the product 𝜎 ′ ≔ o(𝑒1) ∘ ⋯ ∘ o(𝑒𝑖−1) ∘ o(𝑒𝑖+1) ∘ ⋯ ∘ o(𝑒𝑘) can
be interpreted as 𝜋−1 ∘ 𝜎 ′ ∘ 𝜋 with 𝜋 = o(𝑒1) ∘ ⋯ ∘ o(𝑒𝑖+1), we can relabel the edges and
assume that the subgraph without 𝑒𝑘 is a hypertree. So the permutation for 𝑇 is given by
𝜎 ′ o(𝑒𝑘) and is cyclic as 𝑒𝑘 and 𝑇′ share exactly one vertex and so do their permutations.
The cycle is indicated in Figure 3.5 on the right.

If, on the other hand, the hypergraph is not a tree, it is either disconnected, in which
every connected component is a hypertree and thus defines a cycle in the permutation, or it
contains a cycle 𝐶. We now take a closer look at the cycle 𝐶 and show that its permutation
consists of two cycles. Let 𝑒1, … , 𝑒𝑗 be the edges of 𝐶 and 𝑣𝑖 ≔ 𝑒𝑖 ∩ 𝑒𝑖+1 be the vertices
between edges 𝑒𝑖 and 𝑒𝑖+1.

The orientation of edge 𝑒𝑖 can therefore be expressed as (𝑣𝑖𝜎 ′
𝑖 𝑣𝑖+1𝜎″

𝑖 ). All elements of
𝜎 ′

𝑖 and 𝜎″
𝑖 only appear in edge 𝑒𝑖, whereas 𝑣𝑖 appears in exactly two edges. So, once a cycle

enters 𝜎 ′
𝑖 , it has to walk through all elements. A permutation of 𝐶 is thus given by

(𝑣1𝜎 ′
1𝑣2𝜎″

1 ) ∘ (𝑣2𝜎 ′
2𝑣3𝜎″

2 ) ∘ ⋯ ∘ (𝑣𝑗𝜎 ′
𝑗 𝑣1𝜎″

𝑗 ) = (𝑣𝑗𝜎 ′
𝑗 𝜎 ′

1𝑣2𝜎 ′
2𝑣3 ⋯ 𝜎 ′

𝑗−1)(𝑣1𝜎″
𝑗 𝜎″

𝑗−1 ⋯ 𝜎″
1 ).

This permutation contains two cycles. We can imagine this as cycle 𝐶 splitting the walked
path in two, one on the “left” side of the cycle and one on the “right” as illustrated in
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𝑣5

𝑣7𝑣6…
Figure 3.5: On the left: A cycle 𝐶 in a hypergraph. The corresponding permutation consists
of two cycles, with one containing all 𝜎″

𝑖 and the other containing all 𝜎 ′
𝑖 . On the right: A

hypertree with a branch. This hypertree can be expressed as a cyclic permutation. Every
hyperedge is assumed to be oriented anticlockwise.

Figure 3.5 on the left. This split happens as soon as a cycle is a subgraph. Hypertrees
growing from vertices of 𝐶 can be reduced to a cyclic permutation with one point shared
with one of the cycles of 𝐶 as of the first part of the proof.

Using Proposition 3.2.14, we can identify odd hypertrees via their permutation. We
will now build upon this permutation and define another permutation, which we will
call the essence of a hypertree. The sign of the essence does not depend on the number of
vertices, and so different spanning hypertrees on the same graph may lead to different
signs.

Definition 3.2.15. Let 𝑇 be an odd hypertree with fixed edge orientations and sequence,
then the permutation ess(𝑇) is called the essence of 𝑇 and is given by

(ess(1) ess(2) ⋯ ess(𝑛)) ≔ ∏
𝑒∈𝑇

o(𝑒), (3.2.1)

where the left-hand side is written in cycle notation. The sign of an odd hypergraph is
given by sgn(ess(𝑇)).

The essence of a hypertree is not unique and depends on the edge orientation and
the order of the edges in the product. While the order does not change whether the
permutation is cyclic, the exact permutation may change. Luckily, the sign of essences is
the same for a fixed hypertree.

Lemma 3.2.16 [MV02, Proposition 3.8]. Let 𝑇 be an odd hypertree, then the sign of 𝑇 does not
depend on the edge order. If the orientation of an edge 𝑒 is changed from o′(𝑒) to o(𝑒), then the sign
of 𝑇 changes multiplicatively by sgn(𝜎), where o(𝑒) = 𝜎 ∘ o′(𝑒) ∘ 𝜎.

Proof. We start by proving the second part. Every cyclic permutation 𝜋 can be transformed
into any other 𝜎 via chaining the swaps (𝑖𝑗) before and after the permutation, such that
𝜋 = (𝑖𝑗) ∘ ⋯ ∘ (𝑖′𝑗′) ∘ 𝜎 ∘ (𝑖′𝑗′) ∘ ⋯ ∘ (𝑖𝑗). Without loss of generality, we can restrict us to
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𝑒1 𝑒2

𝑒4

Figure 3.6: An odd hypertree consisting of the edges {1, 7, 9}, {1, 3, 8}, {1, 6, 11} and
{2, 4, 5, 6, 10}.

changing the orientation from o′(𝑒) to o(𝑒) of a single edge via a single swap of (𝑖𝑗). These
orientations have different signs. The corresponding essences 𝜎 ′ and 𝜎 can be related by
𝜎 ′ = (𝑖𝑗) ∘ 𝜎. Thus, the sign changes too.

It is left to show that changing the order does not change the sign. Without loss of
generality, let the two swapped edges 𝑒 and 𝑒′ be next to each other. If they do not share
a vertex, nothing changes. So we assume that they share a single vertex 1, which can
be reached via relabelling. Let this vertex be the root of subtrees 𝑆 and 𝑆′ containing 𝑒
and 𝑒′ respectively. These subtrees define cyclic permutations 𝜎 and 𝜎 ′, which appear in
the cyclic permutation ∏𝑒∈𝑇 o(𝑒). These two subsequences swap places. Let 𝑣 and 𝑣′ be
the starting vertices of these subsequences, then the later sequence is moved to the front,
whereas the first sequence, and everything in between, is moved to the back. Let 𝑘 and 𝑘′

be the respective lengths. The essence is based upon these permutations, and the goal is
to prepend a permutation, to move from one to the other. We get

𝜋 = ⎛⎜
⎝

1 2 ⋯ 𝑣 ⋯ 𝑣 + 𝑘 − 1 ⋯ 𝑣′ ⋯ 𝑣′ + 𝑘′ − 1 ⋯ 𝑛
1 2 ⋯ 𝑣′ ⋯ 𝑣′ + 𝑘′ − 1 ⋯ 𝑣 ⋯ 𝑣 + 𝑘 − 1 ⋯ 𝑛

⎞⎟
⎠

.

This permutation essentially swaps the indices, such that the essences can be mapped
to each other. The most important part is that, since 𝑇 is an odd hypertree, the subtrees
contain an odd number of vertices and thus can be expressed through odd cycles. We
remove the vertex 1 from both subtrees and swap these now even cycles. Since the step-
sizes 𝑘 and 𝑘′ are even, they may never swap neighbouring vertices. So for every cycle in 𝜋,
there exists a twin, which does the same, except moved to the right by one. Thus, the sign
of 𝜋 is always even, and subsequently, swapping does not change the signs of essences.

The properties mentioned above seem somewhat technical, but they allow us to easily
calculate essences and signs of hypertrees. For one, we do not have to consider the order
in which we choose the edges. We can also choose an arbitrary orientation, which may be
changed later as long as we include the changing sign.

Example 3.2.17. We consider a very similar hypertree to the one presented in [HR04],
illustrated in Figure 3.6. It consists of four hyperedges {1, 7, 9}, {1, 3, 8}, {1, 6, 11} and
{2, 4, 5, 6, 10} and eleven vertices.

We fix an orientation for all edges, which is chosen anticlockwise in Figure 3.6. For
example, the orientation of the edge with five vertices is o({2, 4, 5, 6, 10}) = (2, 5, 6, 10, 4).
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The next step is to find a cyclic permutation for the tree. So we choose an arbitrary order
of edges and get

o({1, 3, 8}) ∘ o({1, 11, 6}) ∘ o({2, 4, 5, 6, 10}) ∘ o({1, 7, 9}) = (1 9 7 11 6 10 4 2 5 8 3).

This cyclic permutation can be easily constructed by reading off all the vertices in the graph
in Figure 3.6 in an anticlockwise manner, starting at 1: We first encounter 9 and 7, as 1
is already known we pass it, and add 11, 6, 10, 4, 2 and 5. Then we skip 6 and add 8 and
finally 3. This closes the cycle. It also contains several interesting subsequences. If we
remove 1 from it, we get the sequences (9 7), (11 6 10 4 2 5) and (8 3), which are all the
remaining vertices in anticlockwise order of subtrees rooted at 1. After the first observation,
this is expected as we walk through all subtrees in an anticlockwise orientation.

However, we are more interested in the sign of the essence. The corresponding essence
to the above permutation can easily be read off if we interpret the cycle notation as the
one-line notation of permutations.7 So both look exactly the same, but look similar. The
essence thus can be written as

⎛⎜
⎝

1 2 3 4 5 6 7 8 9 10 11
1 9 7 11 6 10 4 2 5 8 3

⎞⎟
⎠

= (2 9 5 6 10 8)(3 7 4 11),

and its sign is (−1)5+3 = 1.
Instead of going anticlockwise, we can also choose to walk clockwise. In this case, we

get the cyclic permutation (1 7 9 3 8 6 5 2 4 10 11) and thus the essence (2 7 5 8)(3 9 4).
This cyclic permutation corresponds to

(1 6 11) ∘ (2 5 6 10 4) ∘ (1 3 8) ∘ (1 7 9).

The sign here is (−1)3+2 = −1. This follows from Lemma 3.2.16 as the orientation of every
edge was changed. Changing the orientation of a hyperedge with three vertices from
anticlockwise to clockwise requires a single swap. So, for example, we get (1 6 11) =
(6 11) ∘ (1 11 6) ∘ (6 11). Since sgn(6 11) = −1, the sign of the tree changes accordingly.
To change the orientation of the edge with five vertices, we have to apply two swaps and
the sign of (4 5)(6 10) is even. Thus, three edges change the sign an we get the expected
result.

We can now describe hypertrees via permutations and can assign them signs via their
essences. This sign will later take on the role of the sign in the hypertree variant of the
matrix tree theorem.

3.2.2 Pfaffians

Another required change is the move from the determinant to the so-called Pfaffian of a
matrix. It can be imagined as the root of the determinant as it behaves very much like it.

Definition 3.2.18 [MV02, Section 4]. Let 𝐴 be a 2𝑛 × 2𝑛 skew-symmetric matrix, then the
Pfaffian pf(𝐴) is given by

pf(𝐴) ≔ ∑
𝜎∈𝑃

sgn(𝜎)
𝑛

∏
𝑖=1

𝐴𝜎(2𝑖−1),𝜎(2𝑖), (3.2.2)

where 𝑃 ≔ {𝜎 ∈ 𝑆2𝑛 | 𝜎(2𝑖 − 1) < 𝜎(2𝑖 + 1) and 𝜎(2𝑖 − 1) < 𝜎(2𝑖) for 𝑖 ∈ [𝑛]}.
7The one-line notation is not mentioned before and will not be mentioned later as it is rather confusing

if used in conjunction with the cycle notation of cyclic permutations. It is essentially the two-line notation
omitting the first line.
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This definition is restricted to matrices with an even number of rows and columns.
Sometimes, the Pfaffian is defined to be 0 for odd skew-symmetric matrices. As we will
consider only Pfaffians of odd hypergraphs with the root removed, we will always be in
the first case.

The set 𝑃 is very restrictive on its permutations. The first inequality forces the odd
indices to be increasingly ordered, while the second inequality implies that the image
of even numbers is greater than the image of their predecessors. So we can deduce that
𝜎(2𝑖 − 1) < 𝜎(𝑘) for all 𝑖 ∈ [𝑛] and 𝑘 > 2𝑖 − 1. This does not hold true for even values.
Thus, the image of 1 is smaller than all others, and 𝜎(1) = 1.

A common identity of the Pfaffian is given via perfect matchings, which can be considered
a special case of Definition 3.1.42, in which 𝐴 ∪ 𝐵 = [𝑛] and 𝐴 ∩ 𝐵 = ∅. So 𝐴 and 𝐵 form a
partition of [𝑛]. As the matching is a bijection, 𝐴 and 𝐵 have the same number of elements
and a perfect matching may only exist for even 𝑛. As the direction is not relevant for us,
we further restrict a perfect matching 𝜋 by requiring 𝑖 < 𝜋(𝑖) for all 𝑖. If this is not the case,
we can transform the matching by using 𝜋−1 in that case. However, it is more useful to
consider perfect matchings as sets of edges, given by {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ 𝐼}. We will identify
theses sets with the notion derived from matchings.

Definition 3.2.19 [HR04, p. 60]. The crossing number of a perfect matching 𝜋 is

cross(𝜋) ≔ |{(𝑖, 𝑗, 𝜋(𝑖), 𝜋(𝑗)) | 𝑖 < 𝑗 < 𝜋(𝑖) < 𝜋(𝑗)}|.

Lemma 3.2.20 [MV02, Equation (4.4); see Ste90, Section 2]. Let 𝐴 be a 2𝑛×2𝑛 skew-symmetric
matrix. The Pfaffian of 𝐴 can also be expressed as

pf(𝐴) = 1
2𝑛𝑛! ∑

𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛

∏
𝑖=1

𝐴𝜎(2𝑖−1),𝜎(2𝑖) (3.2.3)

= ∑
𝜋∈𝑆𝐼,𝐼 ,𝑖<𝜋(𝑖),

𝐼⊂[2𝑛],|𝐼|=𝑛

(−1)cross(𝜋) ∏
𝑖∈𝐼

𝐴𝑖,𝜋(𝑖). (3.2.4)

Note that J. R. Stembridge, who first formulated (3.2.4), showed equivalence via the
identity Theorem 3.2.26 [Ste90, Proposition 2.2]. However, this is only a strong indicator
and does not prove the equivalence of our definition and (3.2.4) as the signs may differ.

Proof. The first expression can be proven in a straightforward way if the permutations are
grouped by their products. The product does not change for 𝜎 and 𝜎 ′, where 𝜎 ′ = 𝜎, except
for 𝜎 ′(2𝑖 + 1) = 𝜎(2𝑖 − 1), 𝜎 ′(2𝑖 + 2) = 𝜎(2𝑖), 𝜎 ′(2𝑖 − 1) = 𝜎(2𝑖 + 1) and 𝜎 ′(2𝑖) = 𝜎(2𝑖 + 2).
So the images of 2𝑖 and 2𝑖 + 2, as well as the images of 2𝑖 − 1 and 2𝑖 + 1 are swapped. This
leads to a swap in the product as 𝐴𝜎(2𝑖−1),𝜎(2𝑖) = 𝐴𝜎′(2𝑖+1),𝜎′(2𝑖+2) and 𝐴𝜎(2𝑖+1),𝜎(2𝑖+2) =
𝐴𝜎′(2𝑖−1),𝜎′(2𝑖), but multiplication is commutative. This accounts for 𝑛! permutations. We
can also swap the images of 𝜎(2𝑖 − 1) and 𝜎(2𝑖). As the matrix is skew-symmetric, we
introduce a negative sign this way, but we also introduce an inversion to the permutation.
Thus, the products in (3.2.3) stay the same. This can be done for every pair, of which there
are 𝑛. In total, there are 2𝑛𝑛! permutations in (3.2.3) for every permutation in (3.2.2).

The second equation is a reformulation of the definition as 𝐼 = {𝜎(2𝑗 − 1) | 𝑗 ∈ [𝑛]}
and 𝜋 maps every 𝜎(2𝑗 − 1) to its corresponding partner 𝜎(2𝑗) ∈ 𝐼. The sign of 𝜎 stems
from a specific ordering, which changes from the number of inversions of 𝜎 to the crossing
number cross(𝜋).

This further shows that the Pfaffian is 0 for matrices of odd sizes as there are no perfect
matchings on an odd number of vertices. We can also describe the crossing number
between two perfect matchings.
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Figure 3.7: The three perfect matchings of the complete graph 𝐾4. The crossing number is
visible if the vertices are positioned anticlockwise.

Lemma 3.2.21 [Ste90, Lemma 2.1]. Let 𝜋 be a perfect matching and let 𝜋′ be the perfect matching,
which swaps 𝜋(𝑖) with 𝜋(𝑗) for an arbitrary pair (𝑖, 𝑗), then cross(𝜋) and cross(𝜋′) differ by an
odd number.

Proof. As 𝜋 and 𝜋′ are equal apart from 𝑆 ≔ {𝑖, 𝜋(𝑖), 𝑗, 𝜋(𝑗)}, the crossings are the same.
On one hand, one crossing is added or removed by swapping 𝜋(𝑖) with 𝜋(𝑗). So let 𝑘 be
matched with 𝜋(𝑘) and let 𝑐 be the number of crossings with 𝑆. Changing from 𝜋 to 𝜋′

introduces or removes two crossings, so for odd 𝑐 the new number of crossing 𝑐′ is still
odd, respectively for even 𝑐 and 𝑐′. Thus, the crossings change, but as we consider powers
of −1 in the crossing numbers cross(𝜋) and cross(𝜋′) they are only different due to the
crossing within 𝑆. So the sign changes.

Example 3.2.22. We consider the 4 × 4 matrix 𝐴. It is given by 𝐴𝑖𝑖 = 0 and 𝐴𝑖𝑗 = −𝐴𝑗𝑖.
There are 4! permutations in 𝑆4, but we are only interested in perfect matchings, of which
there are only three. This also follows by 4!

222! = 3. All permutations can be grouped in
these three subsets.

The perfect matchings on 𝐾4 are illustrated in Figure 3.7 and are written as

𝜋1 = ⎛⎜
⎝

1 3
2 4

⎞⎟
⎠

, 𝜋2 = ⎛⎜
⎝

1 2
3 4

⎞⎟
⎠

, 𝜋3 = ⎛⎜
⎝

1 2
4 3

⎞⎟
⎠

.

The illustrations show a quick way to visualise the crossing number: If the vertices are
ordered by their number and are connected via the matching, the crossovers of those
edges are the crossings counted by the crossing number. So they are given by cross(𝜋1) =
cross(𝜋3) = 0 and cross(𝜋2) = 1. Thus, the Pfaffian of 𝐴 can be expressed as

pf(𝐴) = 𝐴1,𝜋1(1)𝐴3,𝜋1(3) + 𝐴1,𝜋2(1)𝐴2,𝜋2(2) − 𝐴1,𝜋3(1)𝐴2,𝜋3(2)

= 𝐴1,2𝐴3,4 − 𝐴1,3𝐴2,4 + 𝐴1,4𝐴2,3.

For the inductive approach to the hypertree variant of the matrix tree theorem we will
also need a recursive formula for the Pfaffian. This proof will then follow a similar line of
thought to the deletion and contraction argument in Section 2.3.

Lemma 3.2.23 [MV02, Equation (4.5)]. Let 𝐴 be a 2𝑛 × 2𝑛 skew-symmetric matrix. The Pfaffian
of 𝐴 can be calculated via the minors of 𝐴:

pf(𝐴) =
2𝑛
∑
𝑖=1

(−1)𝑖𝐴1,𝑖 pf(𝐴(1, 𝑖)). (3.2.5)
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Proof. We construct the sum by evaluating all possible first elements 𝐴𝜎(1),𝜎(2). Every
permutation in 𝑃 of (3.2.2) contains 𝜎(1) = 1 as the image of 1 has to be smaller than
all other images. So we can remove 1 and 𝜎(2) from 𝜎 and get a smaller matching. By
removing this part, we also remove 𝜎(2) inversions. So these have to be considered. It is
then possible to use the permutation 𝜎 ′ used in the proof of Proposition 3.1.49, which fills
the gaps in 𝜎. These 𝜎 ′ will be the permutations operating on 𝐴(1, 𝜎(2)).

As a final result, we will prove the statement, with which we motivated the Pfaffian.
To show that the Pfaffian acts like the square root of the determinant for some matrices,
we first have to prove a normal form for skew-symmetric matrix. This normal form can be
used to prove a stepping stone in the final result.

Lemma 3.2.24 [Hab15, Theorem 2]. Let 𝐴 be a 2𝑛 × 2𝑛 skew-symmetric matrix, then there exists
a 2𝑛 × 2𝑛 matrix 𝐵, such that

𝐵𝐴𝐵T = diag(( 0 1
−1 0), … , ( 0 1

−1 0), 0, … , 0).

Proof. This can be shown by induction. As the matrix is skew-symmetric, its diagonal
is 0. We also observe that the first row of 𝐴 is equal to the first column, with its sign
reversed. So we apply row-operations to transform the first column into (0, −1, 0, … , 0)T

respectively. Afterwards the same operations are applied as column-operations, which
leads to (0, 1, 0 … , 0) in the top row. As the first column is now 0, apart from in the second
row, we can add multiples of it to the other columns, such that they are also zeroed. The
same column-operations are applied afterwards, and such we get the first block ( 0 1

−1 0). So
we can observe the remaining matrix and apply the same induction on it if it is neither
empty nor 𝟘. Otherwise the induction is complete.

Lemma 3.2.25 [Hab15, Theorem 3]. Let 𝐵 and 𝐴 be skew-symmetric matrices. Then

pf(𝐵𝐴𝐵T) = pf(𝐴) det(𝐵). (3.2.6)

Proof. If 𝐴 has an odd number of rows and columns, then both Pfaffians are 0 and the
equation holds.

Otherwise let the matrices have 2𝑛 rows and columns. We then use the expression of
(3.2.3), in which all permutations appear. So the Pfaffian of 𝐵𝐴𝐵T can be rewritten as

pf(𝐵𝐴𝐵T) = 1
2𝑛𝑛! ∑

𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛

∏
𝑖=1

(𝐵𝐴𝐵T)𝜎(2𝑖−1),𝜎(2𝑖)

= 1
2𝑛𝑛! ∑

𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛

∏
𝑖=1

2𝑛
∑

𝑘,ℓ=1
𝐵𝜎(2𝑖−1),𝑘𝐴𝑘,ℓ𝐵𝜎(2𝑖),ℓ.

As 𝐴𝑖𝑖 = 0 for all 𝑖, we can ignore the case for 𝑘 = ℓ, and suchwe can define a permutation 𝜑,
with 𝜑(𝜎(2𝑖 − 1)) = 𝑘 and 𝜑(𝜎(2𝑖)) = ℓ in a given summand. So for every 𝜎 there exists a
corresponding 𝜑 and let 𝜓 = 𝜑 ∘ 𝜎. We now swap sum and product and get

pf(𝐵𝐴𝐵T) = 1
2𝑛𝑛! ∑

𝜎∈𝑆2𝑛

sgn(𝜎) sgn(𝜓)
𝑛

∏
𝑖=1

𝐵𝜎(2𝑖−1),𝜓(2𝑖−1)𝐵𝜎(2𝑖),𝜓(2𝑖)𝐴𝜓(2𝑖−1),𝜓(2𝑖)

= 1
2𝑛𝑛! ∑

𝜑∈𝑆2𝑛

sgn(𝜑)
𝑛

∏
𝑖=1

𝐵2𝑖−1,𝜑(2𝑖−1)𝐵2𝑖,𝜑(2𝑖)𝐴𝜑(2𝑖−1),𝜑(2𝑖)

= pf(𝐴) det(𝐵).
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This also enforces the knowledge that Pfaffians are—similarly to determinants—0 for
matrices without full rank. We use this lemma to prove the general relation between the
Pfaffian and the determinant hinted at in the beginning of this subsection.

Theorem 3.2.26 [Hab15, Theorem 4]. Let 𝐴 be a skew-symmetric matrix, then

pf(𝐴)2 = det(𝐴). (3.2.7)

Proof. If 𝐴 is singular, then we can transform the matrix via Lemma 3.2.24 into a canonical
form. As there are rows consisting entirely out of zeroes, every product in the Pfaffian
contains 0 and the Pfaffian itself equals 0. A similar argument follows for the determinant.
If 𝐴 has an odd number of rows, then the Pfaffian is by definition 0. The determinant of an
odd skew-symmetric matrix is 0 too as det(𝐴) = det(𝐴T) = det(−𝐴) = − det(𝐴).

Thus, we can assume 𝐴 to be of full rank with 2𝑛 rows and columns. We then apply
Lemmata 3.2.24 and 3.2.25, to transform the Pfaffian of 𝐴 to the Pfaffian of the diagonal
matrix 𝐷 = diag(( 0 1

−1 0), … , ( 0 1
−1 0)), which can now be calculated by hand:

pf(𝐴) = pf(𝐵𝐷𝐵T)
= pf(𝐷) det(𝐵)
= 1 ⋅ det(𝐵). (3.2.8)

On the other hand, we can simplify the determinant of 𝐴 in a similar manner, such that we
get det(𝐴) = det(𝐷) det(𝐵)2 = 1 ⋅ det(𝐵)2. If we square (3.2.8) and divide it by this matrix
identity, we get

pf(𝐴)2

det(𝐴) = det(𝐵)2

det(𝐵)2 .

The right-hand side is 1, and thus pf(𝐴)2 = det(𝐴).

This does not mean that √det(𝐴) = pf(𝐴) as the sign might be negative. Such an
assertion can only be made if the sign is already known. An example would be counting
hypertrees as there can never be a negative amount of trees. However, this may not be
extended to weighted hypergraphs.

We conclude this subsection by proving a similar theorem to Theorem 1.3.4.1, which
equates the determinant of minors of the Lagrangian. As the Pfaffian is only defined on
skew-symmetric matrices, we choose 𝑖 = 𝑗. The choice of 𝐿𝐺 in the theorem is translated to
the restriction ∑𝑛

𝑖=1 𝐴𝑖𝑗 = 0 for all 𝑗.

Theorem 3.2.27 [MV02, Lemma 4.1]. Let 𝐴 be a 𝑘 × 𝑘 skew-symmetric matrix satisfying the
equation ∑𝑘

𝑖=1 𝐴𝑖𝑗 = 0 for all 𝑗, then

pf(𝐴(1)) = (−1)𝑖−1 pf(𝐴(𝑖)). (3.2.9)

Proof. If 𝑘 is odd, then the Pfaffian is 0 and the equation holds. Otherwise let 𝑘 = 2𝑛.
Without loss of generality let 𝑖 = 2. From Lemma 3.2.24 and the fact that 𝐴(1) and 𝐴(2)
have the same rank, we can find 𝐵, such that 𝐵𝐴(1)𝐵T = 𝐴(2). Due to the requirement
∑𝑘

𝑖=1 𝐴𝑖𝑗 = 0, this 𝐵 is explicitly given by

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 −1 −1 ⋯ −1
0 1 0 ⋯ 0
0 0 1 ⋮
⋮ ⋮ ⋱ 0
0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Using Lemma 3.2.25, we get pf(𝐴(2)) = pf(𝐴(1)) det(𝐵) = − pf(𝐴(1)).
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3.2.3 The Pfaffian Matrix Tree Theorem

We have seen many parallels between the determinant and the Pfaffian. A strong indicator
of a similar theorem to the matrix tree theorem is given by Theorem 3.2.27 as something
similar also holds for the Laplacian matrix as is shown in Theorem 1.3.4.1. Lemma 3.2.9
shows that 𝑘-graphs contain hypertrees iff the number of vertices is one more than a
multiple of (𝑘 −1). As Pfaffians are zero for matrices of odd sizes, we hope for a connection
between 3-uniform hypertrees and the Pfaffian of a 3-graph. We will formulate two proofs
of this connection in this subsection: One using the approach of deletion and contraction
described in Section 2.3, and the other using the sign-reversing involution of Section 2.2.

For this, we have to generalise the Laplacian matrix. As seen before, the notation
of hypergraphs is not yet standardised, thus there are many non equivalent notions of
Laplacians for hypergraphs.

Definition 3.2.28 [MV02, Equation (1.8)]. Let 𝐻 be a 3-graph, then the hyper-Laplacian
matrix Λ𝐻 of 𝐻 is an 𝑛 × 𝑛 matrix with 0 in its diagonal and

∑
𝑒∈𝐸

sgn𝑒(𝑖, 𝑗)𝑤(𝑒) (3.2.10)

in entries (𝑖, 𝑗), where 𝑤(𝑒) is the weight of 𝑒 and sgn𝑒(𝑖, 𝑗) ≔ 1 iff o(𝑒)(𝑖) = 𝑗, −1 iff the
roles of 𝑖 and 𝑗 are reversed and 0 otherwise.

This definition leads to a skew-symmetric matrix as entries (𝑖, 𝑗) and (𝑗, 𝑖) contain the
same sum, but the cyclic permutations are swapped, so the sign changes too. This also
one way to explain the zeroes on the diagonal. In the 𝑖-th row we have the contribution
from (𝑖, 𝑗, 𝑘) in the entry (𝑖, 𝑗), but also (𝑖, 𝑘, 𝑗) in entry (𝑖, 𝑘). So, if we assign the diagonal
elements the sum of all edges with 𝑖, we get 0.

The sign in the definition of the hyper-Laplacian is very similar to the sign described
in [RR12], but different.8 N. Reff and L. J. Rusnak used it to define the oriented adjacency
matrix of a hypergraph. This highlights further parallels and differences between the
regular and hyper-Laplacian: The Laplacian used for graphs is based upon the adjacency
matrix, but then contains the degree of vertices as the diagonal elements, whereas the
diagonal here is 0. This is due to the sign, which is dependant on the direction.

In [RR12] they used the oriented adjacency matrix to define their version of the Lapla-
cian for hypergraphs. This Laplacian is more in line with the one for graphs as its diagonal
contains the degrees of the vertices. It is again slightly different from the very early
definition of the Laplacian of hypergraphs in [Chu93], which includes a normalisation
factor.

With our choice for the hyper-Laplacian, we can now state the central theorem of this
section. The general look does not change much. The only changes are a correction factor
of the sign and a different function on a minor of the Laplacian. The function used here is
the Pfaffian instead of the determinant or bideterminant of Section 3.1.

Theorem 3.2.29 (Pfaffian Matrix Tree Theorem) [MV02, Theorem 5.1]. Let 𝐻 be a 3-graph
and 1 ≤ 𝑖 ≤ 𝑛, then

(−1)𝑖−1 pf(Λ𝐻(𝑖)) = 𝜅[3](𝐻, 𝑤).

Thus, this theorem can be used to calculate the weight 𝜅[3](𝐻, 𝑤) of all 3-hypertrees
of 𝐻 defined in Definition 3.2.10. As mentioned before, two proofs will be given here in
chronological order. The first one, proven by G. Masbaum and A. Vaintrob in [MV02], uses

8The sign in [RR12] is defined via −𝜎(𝑖, 𝑒)𝜎(𝑗, 𝑒) and, thus, cannot change if 𝑖 and 𝑗 are swapped.
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3. Expanding the Horizon

Figure 3.8: On the left: A 3-graph, on which the deletion–contraction step is applied to the
edge marked in grey. On the right: The same graph with the grey edge contracted. Note
that another edge was removed as it shared two vertices with the grey edge. Deletion of
would lead to a disconnected graph as the vertices remain.

deletion and contraction, which was first used by M. Lewin and described in Section 2.3.
Deletion–contraction employs an induction on the number of vertices and edges, which
gives some insight on the construction of graphs, but none on the distribution of graphs
within the sum. The second proof, by S. Hirschman and V. Reiner in [HR04], employs a
sign-reversing involution, which was first applied to the matrix tree theorem by S. Chaiken.
This involution concentrates on the internal distribution of graphs and exploits the implied
direction of a cycle.

Proof via deletion–contraction. The proof closely follows the induction of Theorem 2.3.2.
On one hand we have the sum of weights, which we count directly. On the other hand,
the formula via the Pfaffian is used. Lemma 3.2.9 shows that 3-uniform hypertrees may
only exist for an odd number of vertices. If 𝑛 is even, there are no spanning hypertrees.
Simultaneously, the Pfaffian is 0 for odd matrices. The minors of Λ𝐻 are odd, so the
theorem holds in these trivial cases.

The other case with 𝑛 odd is solved via induction. The base case is the hypergraph with
one vertex and no edges. The only spanning hypertree is consists of this single vertex and
no edges. The minor of the hyper-Lagrangian is the 0 × 0 matrix, of which the Pfaffian is 1.
A further required base case as we not only contract edges, but also delete them without
reducing the number of vertices, is the hypergraph with 𝑛 > 1 vertices and no edges. This
is equivalent to every weight being 0, so we calculate the Pfaffian of the zero-matrix, which
itself is 0. As there are no spanning trees, this base case holds too.

The induction step now consists of reducing a hypergraph with 𝑛 vertices and 𝑘 edges
to hypergraphs with either 𝑛 − 2 or 𝑛 vertices and 𝑘 − 1 edges. Without loss of generality
let 𝑖 = 1. So 𝜅[3](𝐻, 𝑤) can be separated into the trees using edge 𝑒 and those that do not.
Without loss of generality, let 𝑒 = {1, 2, 3} as this can be ensured by relabelling.

The trees using this edge can be described via 𝜅[3](𝐻′, 𝑤′), where 𝐻′ is the hypergraph,
where the vertices of 𝑒 are contracted to a single vertex 1′. The weight function 𝑤′ is similar
to 𝑤, but with vertices 1, 2 and 3 replaced by 1′. All edges that contain at least two vertices
of 𝑒 are removed as they are never used in a tree and would degenerate to edges with two
vertices. The resulting graph 𝐻′ is smaller, thus we can apply the induction hypothesis
and get 𝜅[3](𝐻′, 𝑤′) = pf(Λ𝐻′(1′)) = pf(Λ𝐻(1, 2, 3)). To reconstruct the weights of the
hypertrees in 𝐻, we have to multiply the weights of trees in 𝐻′ with 𝑤(𝑒) as this edge is
missing in all trees.
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3.2. Hypergraphs

What remains are the trees, which do not use edge 𝑒. We call the hypergraph with
𝑒 removed 𝐻″. This graph has fewer edges, and thus the induction hypothesis can be
applied. So we get 𝜅[3](𝐻″, 𝑤″) = pf(Λ𝐻″(1)). The hyper-Laplacian of 𝐻″ is very similar
to the one of 𝐻 as the weights 𝑤 and 𝑤″ only differ in 𝑒. We can now apply Lemma 3.2.23
and express the Pfaffian of 𝐻″ via its minors:

pf(Λ𝐻″(1)) = −
𝑛

∑
𝑘=1

sgn{2,2,𝑘}(2, 𝑘)𝑤″({2, 2, 𝑘}) pf(Λ𝐻″(1, 2, 2))

+
𝑛

∑
𝑘=1

sgn{2,3,𝑘}(3, 𝑘)𝑤″({2, 3, 𝑘}) pf(Λ𝐻″(1, 2, 3))

∓ ⋯ +
𝑛

∑
𝑘=1

sgn{2,𝑛,𝑘}(𝑛, 𝑘)𝑤″({2, 𝑛, 𝑘}) pf(Λ𝐻″(1, 2, 𝑛)).

We now exploit the similarity of 𝑤 and 𝐻 to 𝑤″ and 𝐻″. The only differences are if
𝑤({1, 2, 3}) appears. This is either everywhere in the first row and column of 𝐻, which
does not concern us, or in (2, 3) and (3, 2). The Pfaffian is expanded along the second
row and column, so both remaining entries do not appear in the minors of 𝐻″, and thus
𝐻″(1, 2, 𝑘) = 𝐻(1, 2, 𝑘). The edge 𝑒 appears exactly once: in the second summand with
𝑘 = 1 as sgn{2,3,1}(3, 1)𝑤″({2, 3, 1}) pf(Λ𝐻″(1, 2, 3)) = 0. This missing part is exactly the
contribution from 𝐻′. So we conclude that

𝜅[3](𝐻, 𝑤) = 𝑤(𝑒)𝜅[3](𝐻′, 𝑤′) + 𝜅[3](𝐻″, 𝑤″)
= 𝑤(𝑒) pf(Λ𝐻(1, 2, 3)) + pf(Λ𝐻″(1))

= −
𝑛

∑
𝑘=1

sgn{2,2,𝑘}(2, 𝑘)𝑤({2, 2, 𝑘}) pf(Λ𝐻(1, 2, 2))

+
𝑛

∑
𝑘=1

sgn{2,3,𝑘}(3, 𝑘)𝑤({2, 3, 𝑘}) pf(Λ𝐻(1, 2, 3))

∓ ⋯ +
𝑛

∑
𝑘=1

sgn{2,𝑛,𝑘}(𝑛, 𝑘)𝑤({2, 𝑛, 𝑘}) pf(Λ𝐻(1, 2, 𝑛))

= pf(Λ𝐻(1)),

which again follows from applying Lemma 3.2.23. This proves the theorem for 𝑖 = 1. Other
𝑖 can be derived via Lemma 3.2.25 and using the correct transformation matrix 𝐵 to swap
rows and columns. This introduces det(𝐵) = (−1)𝑖−1 to the equation.

The structure of this proof is similar to Theorem 2.3.2. The main difference is that the
entries of Λ𝐻 do not contain the weight of a single edge, but the weights and orientations
of all edges that share two vertices. Similarly, we will have to extract the weight of a single
hypergraph from the sums of Λ𝐻 to apply the sign-reversing involution.

Proof via a sign-reversing involution. At the core of the proof lies the sign-reversing involu-
tion also used in Section 2.2. This involution maps a hypergraph with a cycle to the same
hypergraphwith the cycle interpreted differently, such that the sign is inverted. Hypertrees
do not have any cycles, so the involution will be the identity on these hypergraphs.

We start with removing a vertex 1. This vertex is akin to the root of all hypertrees. The
next step is to utilise the alternative formulation for the Pfaffian using perfect matches. Let
𝜋 be the perfect matching from 𝐼 to 𝐼. We define a function 𝑓 ∶ 𝐼 → 𝐼 ∪ {𝑛}. This function
connects matched pairs with another and, in combination with 𝜋, generates hyperedges
{𝑖, 𝜋(𝑖), 𝑓 (𝑖)}.

83



3. Expanding the Horizon

Figure 3.9: A 3-graph with a single cycle. The two vertices on the same side of the edges
are considered to be matched. The involution 𝜄 changes the matching, such that the cycle
changes its direction from clockwise to anticlockwise.

These hyperedges contribute to the sums in Λ𝐻 with the sign sgn(o({𝑖, 𝜋(𝑖), 𝑓 (𝑖)})) and
their weight 𝑤({𝑖, 𝜋(𝑖), 𝑓 (𝑖)}). Using 𝑓, we can swap the sum and product in the Pfaffian
of Λ𝐻. For this we define a set of perfect matchings with functions 𝑓 to complete them to
3-graphs. Let 𝑀 ≔ {(𝜋, 𝑓 ) | 𝐼 ⊂ [2𝑛], |𝐼| = 𝑛, 𝜋 ∈ 𝑆𝐼, 𝐼 , 𝑖 < 𝜋(𝑖), 𝑓 ∶ 𝐼 → 𝐼 ∪ {𝑛}} be this set.
So the Pfaffian can be expressed as

pf(Λ𝐻″(1)) = ∑
𝜋∈𝑆𝐼,𝐼 ,𝑖<𝜋(𝑖),

𝐼⊂[2𝑛],|𝐼|=𝑛

(−1)cross(𝜋) ∏
𝑖∈𝐼

∑
𝑒∈𝐸

sgn𝑒(𝑖, 𝜋(𝑖))𝑤(𝑒)

= ∑
(𝜋,𝑓 )∈𝑀

(−1)cross(𝜋) ∏
𝑖∈𝐼

sgn{𝑖,𝜋(𝑖),𝑓 (𝑖)}(𝑖, 𝜋(𝑖))𝑤({𝑖, 𝜋(𝑖), 𝑓 (𝑖)}).

If this pair (𝜋, 𝑓 ) generates a hypertree, then we want to preserve it, otherwise (𝜋, 𝑓 )
should be paired up with 𝜄(𝜋, 𝑓 ) = (𝜋′, 𝑓 ′), such that the sign is different. As the sign
is dependant only on 𝜋, we define the involution by carefully choosing a beneficial 𝜋′.
The only additional restriction is that there must exist an 𝑓 ′, such that the hypergraph
generated by (𝜋′, 𝑓 ′) is the same as the one of (𝜋, 𝑓 ).

Relabelling the vertices may change the sign as follows by Lemma 3.2.25, but it does
so simultaneously for (𝜋, 𝑓 ) and (𝜋′, 𝑓 ′). So let the vertices in the cycle be [2𝑘] and the
restriction of matching 𝜋 be from 𝐼 ≔ {1, … , 𝑘} to 𝐼 = {𝑘 + 1, … , 2𝑘}. The vertices in 𝐼 form
the core of the cycle, while the hanging tips are in 𝐼 as is illustrated in Figure 3.9. The
image of 𝜄 is thus defined as

𝜋′(𝑖) ≔
⎧{
⎨{⎩

𝜋(𝑖) if 𝑖 > 2𝑘,
𝑓 (𝑖) otherwise,

𝑓 ′(𝑖) ≔
⎧{
⎨{⎩

𝑓 (𝑖) if 𝑖 > 2𝑘,
𝜋(𝑖) otherwise.

We now have to check that the sign changes. On one hand, the 𝜋′ can be reconstructed
by cyclically swapping the images. This requires 𝑘 − 1 swaps, and changes the sign by
(−1)𝑘−1. On the other hand, we are comparing edges {𝑖, 𝜋(𝑖), 𝑓 (𝑖)} and {𝑖, 𝜋′(𝑖), 𝑓 ′(𝑖)} =
{𝑖, 𝑓 (𝑖), 𝜋(𝑖)}. The edges are the same, but their orientation is reversed. With Lemma 3.2.16
we deduce that the sign changes by (−1)𝑘 if there are 𝑘 edges in the cycle. Combined, this
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gives a change of (−1)2𝑘−1 = −1 and thus the contributions of hypergraphs given by (𝜋, 𝑓 )
and 𝜄(𝜋, 𝑓 ) annihilate each other. What remains are all contributions of hypertrees.

We have now proven the Pfaffian matrix tree theorem using two different methods.
A. Abdesselam, who used the Grassman–Berezin calculus to prove a generalisation to the
all minors matrix tree theorem on commutative semirings, also gives a generalisation of
the Pfaffian matrix tree theorem using the same formalism. It is the main result of [Abd04]
and titled “hyperpfaffian cactus theorem” as he interprets the hypertrees as cacti.

Theorem 3.2.30 (Hyperpfaffian Cactus Theorem) [Abd04, Theorem 2]. Let 𝐻 be a weighted
odd hypergraph with weights 𝑤, then the weight of all odd hypertrees in 𝐻 is given by

𝜅[odd](𝐻, 𝑤) = ∫d𝜒𝑛⋯ d𝜒1 𝜒𝑖 exp( ∑
3≤𝑘≤𝑛
𝑘 odd

1
(𝑘 − 1)! ∑

𝑒=(𝛼1,…,𝛼𝑘)∈[𝑛]𝑘

𝑤(𝑒)𝜒𝛼2
⋯ 𝜒𝛼𝑘

).

This theorem is givenwithout proof here, which can be found in [Abd04]. Comparing it
to the Pfaffianmatrix tree theorem gives many parallels: The exponent is due to the Berezin
integral and can be considered the Pfaffian in the 3-uniform case, the inner sum adds all
contributions of hyperedges, using the weight and—hidden in the order of the 𝜒𝛼𝑖

—the
sign of the orientation of the hyperedge. This is due to the anti-commutative property
expressed in (3.1.5), which introduces the sign of the required reordering.

A. Abdesselam also mentioned the “special case where all the 𝑦 tensors [i.e. the edge-
weights 𝑤(𝑒)] are zero except for a specific odd integer 𝑘, 3 ≤ 𝑘 ≤ 𝑛” [Abd04, p. 65], which
leads to a formula for the weight 𝜅[𝑘](𝐻, 𝑤) of all 𝑘-uniform hypertrees. He also noted that
choosing 𝑘 = 3 leads to the Pfaffian matrix tree theorem [Abd04, p. 66].

3.2.4 Complexity

Until now, the complexity of finding the number or weight of all trees in a graph was rather
uninteresting. It is essentially as complex as computing a determinant, which can be done
in polynomial time. Checking whether a graph contains a spanning tree is similarly easy
as a matching algorithm can check for connectedness, which suffices for the existence. This
problem is essentially the same for forests or directed graphs. Answering these questions
for hypergraphs is not as easy as Example 3.2.11 shows. To discuss the complexity of these
problems, we define9 some complexity classes and formalise the problems.

A decision problem is a Yes/No-question. Adecision problem is in P, respectively inNP iff
for an input of size 𝑘 there exists a deterministic program, respectively non-deterministic,
such that the required number of calculation steps to answer this question is at most
polynomial in 𝑘.

A counting problem is, in comparison to the decision problem, a question, which does
not ask “does there exist”, but instead asks “how many do exist”. Thus, the counting
problem corresponding to a given decision problem is in ♯P iff it counts the number of
possible calculation paths to reach Yes requiring at most polynomially many computation
steps [Val79a]. Clearly, the counting problem is at least as hard as the corresponding
decision problem as knowing the number of solution implies knowing of the existence of
solutions.

9We abstain from defining them via one of the usual formalisms like computably enumerable sets, Turing
machines or RAM machines, and instead use an intuitive approach via programming languages.
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We are now ready to define the following decision problems:

i. 𝑘-Uniform Spanning Hypertree (𝑘-SHT):
Given a 𝑘-uniform hypergraph, does there exist a spanning hypertree?

ii. Exact Cover by 𝑘-Sets (X𝑘C):
Given sets 𝑋 and 𝐶, such that 𝑐 ⊆ 𝑋 and |𝑐| = 𝑘 for all 𝑐 ∈ 𝐶 holds, does there exist a
subset 𝐶′ of 𝐶, such that ⋃𝑐∈𝐶′ 𝑐 = 𝑋 and 𝑐 ∩ 𝑐′ = ∅ for all 𝑐, 𝑐′ ∈ 𝐶′?

As mentioned before, the matrix tree theorem is based on evaluating the determinant,
for which polynomial algorithms exist [KV05]. This theorem even returns the number
of solutions, so it is the corresponding counting problem to 2-SHT and in P. A slight
modification of the determinant—the permanent—is known to be ♯P-complete and thus
one of the hardest problems in ♯P [Val79a]. Therefore calculating the bideterminant is at
least as hard as a simple reduction from it is given by perm(𝐴) = det+(𝐴) ⊕ det−(𝐴). So,
by our methods, we can deduce that the matrix tree theorem on commutative semirings is
♯P-complete as knowing the bideterminant implies knowing det+(𝐴) and det−(𝐴).

Now the questions arises: How complex is it to determine the existence and number of
𝑘-uniform hypertrees in a given hypergraph? To answer this question, we will find a reduc-
tion from X𝑘C to (𝑘 +1)-SHT. Exact Cover, without the restriction on the size of the sets, is
one of R. M. Karp’s 21 NP-complete problems [Kar72]. X3C is also NP-complete [GJ79] and
thus X𝑘C for 𝑘 ≥ 3 as we could add superfluous vertices to every hyperedge to transform
X3C to X𝑘C.

Proposition 3.2.31 [Car+08; DF95, Theorem 4]. 𝑘-SHT is NP-complete for 𝑘 ≥ 4 and in P for
𝑘 ≤ 2.

Proof. The cases 𝑘 = 0 and 1 are trivial. If 𝑘 = 2, then we can compute the existence via the
determinant, which is in P [KV05].

We now formulate the reduction from X𝑘C to (𝑘 + 1)-SHT. The goal is to find an exact
cover of the set via finding a hypertree. Every subset contains 𝑘 vertices, whereas every
edge contains 𝑘 + 1 vertices. This is due to the addition of a single vertex ∞, which is
contained in every edge. The other vertices of the edges consist of the subsets. Thus,
if a hypertree is found, the sets corresponding to these edges are the desired cover. So
(𝑘 + 1)-SHT is at least as hard as X𝑘C.

On the other hand, (𝑘 + 1)-SHT cannot be more complex as checking whether a given
solution is correct can be done in polynomial time via a marking algorithm. This algorithm
recursively traverses all connected edges and marks its vertices as visited. If any edge
contains a marked vertex (apart from its root) the hypergraph contains a cycle. If the
algorithm terminates and not all vertices were visited, the graph is not connected. This
algorithm is in NPsince it non-deterministically guesses the solution in polynomial time
and then checks its correctness.

As X2C is essentially finding a perfect matching, where the sets of X2C are inter-
preted as edges, this problem can be solved polynomially by J. Edmonds’s blossom al-
gorithm [Edm65]. So the reduction of X2C to 3-SHT would only yield that 3-SHT is at
least polynomial in its complexity. However, the corresponding counting problem is
♯P-complete [Val79b, Problem 2]. Thus, using the same reduction as above, we get the
following proposition:

Proposition 3.2.32. The corresponding counting problem to 𝑘-SHT is ♯P-complete for 𝑘 ≥ 3 and
in P for 𝑘 ≤ 2.
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3.2. Hypergraphs

So all that is missing is the complexity of 3-SHT. We omit the proof here, but it can
be shown that it can be solved polynomially [LP86]. Summarising, we find that checking
the existence is “easy” for graphs and 3-graphs, but otherwise “hard”. Usually, we are
more interested in finding the weight of all hypertrees, and thus do not only care about the
existence, but also the count. This changes nothing for graphs, but does so for hypergraphs
as the problem is now ♯P-complete.
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Conclusion and Outlook 4
G. R. Kirchhoff’s matrix tree theoremwas born out of physical properties of electric circuits.
Abstraction and new notation, like the determinant, raised it to a fully fleshed theorem,
which entered the mathematical canon at a time as the concept of trees was just being
formulated.

While the historical approach gives much insight in the structure of the underlying
graph, modern approaches often use the Cauchy–Binet formula as proving the theorem
does not require any additional knowledge about the graph apart from the Laplacian
matrix. Unfortunately, the insight is lost with it. While Chapter 1 presents all that is
usually required from the matrix tree theorem, Chapter 2 takes a closer look at different
approaches. These might seem cumbersome in comparison to the Cauchy–Binet formula,
but all highlight different aspects of the internal structure.

The historical approach, described in Section 2.1, features a seemingly roundabout
way of proving the theorem via closed walks and using incidence matrices instead of the
Laplacian. It is thus much closer to G. R. Kirchhoff’s circuit laws. Combining this approach
with the modern theorem enables the formulation of two separate matrix tree theorems:
On one hand, we get the classical matrix tree theorem, but on the other hand, we can also
derive the cycle theorem. The matrix tree theorem uses the current law, while the cycle
theorem uses the voltage law. This is especially useful if the graph consists of few, but long
cycles, and thus interesting for organic chemists, who often have to deal with these kinds
of graphs in the form of molecules.

The approach explored next was via a sign-reversing involution, formulated by S.
Chaiken. The idea is as ingenious as it is simple: We construct all subgraphs and assign
them their weight. A result of calculating the weight of all trees is the introduction of
a seemingly arbitrary sign. This sign is used by the involution as it is also assigned to
subgraphs containing cycles. The proof takes the permutations 𝜋 of the determinant and
interprets them as fixing edges for 𝜋(𝑖) ≠ 𝑖, the fixed points are considered free choices.
Now a graph with a cycle appears multiple times: A choice exists for every cycle whether
it has been fixed or not. Since the sign in the determinant is dependant on the permutation
𝜋, it changes accordingly. It turns out that fixing a cycle inverts the sign. Thus, a graph
containing a cycle annihilates itself. What remains are the trees. A very similar approach
can be taken via the inclusion–exclusion principle, which operates not on the graphs
themselves, but on the sets of graphs with the same fixed cycles.

Another approach is given by induction on the structure of the graph. A graph consists
of vertices and edges in between, so it is natural to try to reduce the graph to smaller ones.
The two obvious choices are either removing an edge if it is not needed, or contracting it,
so its two endpoints merge if it is always used. This exactly describes the two operations
in the deletion–contraction induction: Trees avoiding a specific edge must be connected in
another way and thus are trees, even if the edge is removed. On the other hand, if a tree
uses an edge, this edge gives no additional information and a similar tree exists in its place
if the edge is contracted. Only the weight of the edge has to be considered. So the trees of
a graph can be grouped into two classes: those that use a given edge, and those that do
not. This encapsulates the induction step. The induction basis consists of graphs without
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4. Conclusion and Outlook

edges, which are only trees if they contain one vertex.
UsingMarkov chains to prove the matrix tree theorem takes on only a minor part in this

thesis as it uses completely different notation and concepts. However, especially because of
this, it must not be omitted as it shows a strong connection to a completely different field of
mathematics. The idea is to determine a root and then starting a randomwalk on the graph.
This walk will be used to form the branch of a tree, but as it may contain loops, these have
to be removed. So the probability of choosing a specific walk without loops consists of the
probabilities of the walks with their loops removed. If the first walk is chosen, the visited
vertices are added to the tree. Another walk is generated in a similar sense. It stops if it
reaches an already visited vertex. If all vertices were visited, the algorithm ends and the
output is the collection of loop-erased walks, which combined form a tree. The incredible
property is now that every tree is generated with equal probability, which is exactly the
inverse of the usual result of the matrix tree theorem.

All these approaches allow us to prove the samematrix tree theorem, but each also force
a generalisation upon us: The historical approach gives the cycle theorem almost in passing,
the sign-reversing involution internally uses directed graphs even for the undirected
theorem, deletion–contraction automatically contracts all edges between two vertices and
thus uses multigraphs, it can also contract subgraphs and, if they are forced, allows us to
count forests instead of trees, andMarkov chains require a transition probability, which can
be changed arbitrarily, resulting in weighted graphs. Every one of those generalisations can
be combined in one single theorem, given in Section 2.5.1. This theorem is the culmination
of the classical approaches.

Of course, modifying the premise of the matrix tree theorem also leads to many useful
theorems, of which some are presented in Section 2.5. Each one of them with a plethora of
generalisations, special cases and applications.

The last chapter consists of two generalisations, which do not follow by themselves.
After generalising the matrix tree theorem to weighted graphs, it directly follows for
weights in rings. However, generalising the theorem to semirings implies much work, all
stemming from the lack of an additive inverse. Thus, we redefine the determinant in two
halves, called the positive and negative bideterminant. They are then paired up in the
symmetric extension of the semiring, which simulates the additive inverse, to form the
bideterminant. Using this bideterminant, we can prove the all minors matrix tree theorem
on commutative semirings via a sign-reversing involution.

The other generalisation shown in this thesis is for 3-graphs, which are hypergraphs, in
which every edge has exactly three endpoints. Hypertrees are still identified as connected
subhypergraphs with no cycles. The determinant again has to be swapped out with a
different function, called the Pfaffian. The Pfaffian is only defined for skew-symmetric
matrices and acts similarly to the square root of the determinant. We also cannot use the
Laplacian as now several different hyperedges may connect two vertices 𝑖 and 𝑗. Thus,
we define the hyper-Laplacian, which sums up all these edges. This leads to edges {𝑖, 𝑗, 𝑘}
contributing to entries (𝑖, 𝑗), (𝑗, 𝑘), (𝑖, 𝑘) and (𝑗, 𝑖), (𝑘, 𝑗), (𝑘, 𝑖). While these all correspond
to the same edge, they are interpreted differently and lead to a different sign. This sign
can be described by introducing an orientation on all edges. With all those preparation
steps done, two proofs of the Pfaffian matrix tree theorem are presented: The first uses
deletion–contraction and the second a sign-reversing involution. Both proofs thus are
closely related to the respective proofs of the matrix tree theorem.

Further generalisations of those presented in Chapter 3 are mentioned, both of which
are proven using the Grassman–Berezin calculus. Only a short overview is given, to enable
the formulation of the theorems. While A. Abdesselam’s paper and this thesis discuss
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𝜅[3] and 𝜅[odd], there do not seem to exist similar theorems for 𝜅[even] or 𝜅[2𝑘] with 𝑘 > 1.
However, A. Abdesselam’s paper [Abd04] marks the border of this thesis’ scope.

Of course, A. Abdesselam’s paper does not mark the endpoint in generalisations of the
matrix tree theorem. A. Duval, C. Klivans, and J.Martin formulated thematrix tree theorem
for simplicial complexes, which can be interpreted as a class of special hypergraphs. Much
work has also been done to formulate higher order matrix tree theorems [BS06; BPT15;
DKM16; Aal+18].

A generalisation related to cacti can also be reached by proving the Good–Lagrange
formula, presented in [Bou+03; GK97]. These include coloured vertices, which are then
used to form 𝑘-uniform graphs, for which a matrix tree theorem is proven. Another way
of generalising graphs is via matroid theory, which readily gives the cycle theorem. While
the results might be well known and discussed in [Che97], this formalism was not used in
this thesis. However, it gives further insight in the connections of the graph and its dual
interpretations. This connection is hinted at in Section 2.3.2. A similar parallel to the cycle
theorem and the cycle space uses the so-called cut space. Instead of cycles, the cut space
considers edges as vertices and thus operates on the line graph.

It appears that not much literature exists on the connection between the cycle or cut
space and their use in combination with hypergraphs. As the dual graph is only defined
for planar graphs, the connection shown in Section 2.3.2 cannot be generalised directly. If
one tries to find the dual of a non-planar graph using the cycle space, the resulting graph
is a hypergraph. While this connection might be implicitly given, there does not seem to
exist a visual connection.

In Section 2.5.2 we show an edge version of the matrix tree theorem. There has also
been development, which led to a generalisation to the parallel theorem to the all minors
matrix tree theorem [BGK00] not explored here. Another aspect not discussed here is the
application of the proof-concepts to other theorems. An example for this is the Lindström–
Gessel–Viennot lemma, which can be proven using a sign-reversing involution [GVM89],
or Knuth’s theorem, which provides a similar statement to the matrix tree theorem for line
graphs [Knu67].
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