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4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Threshold Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 The Giant Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 The Clustering Coefficient of Classical Random Graphs . . . . . . . . . . . 38
4.5 The Degree Sequence of Random Graphs . . . . . . . . . . . . . . . . . . . 41
4.6 The Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Small-World Networks 53

5.1 The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 First Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



Contents

5.2.1 A Toy Small-World Network . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 The Mean-Field Solution . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Some Rigorous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 A Markov Chain Small-World Model . . . . . . . . . . . . . . . . . . 58
5.3.2 Spatial Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Models with Preferential Attachment 65

6.1 The Preferential Attachment Model of Barabási and Albert . . . . . . . . . 65
6.2 First Calculations, Explanations, and Criticism . . . . . . . . . . . . . . . . 66

6.2.1 A Mean-Field Approach . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Linear and Non-linear Preferential Attachment . . . . . . . . . . . . 66
6.2.3 Some Problems with the Barabási-Albert Model . . . . . . . . . . . 67

6.3 An Extension of the Barabási-Albert Model . . . . . . . . . . . . . . . . . . 68
6.4 Some Rigorous Results on Exact Models . . . . . . . . . . . . . . . . . . . . 69

6.4.1 The Diameter and Clustering Coefficient of the LCD Model . . . . . 69
6.4.2 The Buckley-Osthus Model and the Degree Distribution . . . . . . . 73

7 More Models 77

7.1 The Copying Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 The Cooper-Frieze Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Thickened Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Protean Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6



1 Introduction

Recent years have seen an upsurge in the study of so-called “complex networks.” Various
vast data bases are now available for investigation that were not given only a few years
ago; they are mostly so large that research would not be possible without the help of very
powerful, modern computers. Some examples are e-mail records, GPS navigation systems
that capture travel patterns and the World Wide Web (www). Social Networks, which
have been studied for a very long time already [23, 34], are now being looked into in a
different way, i.e. through citation networks [2, 4, 17, 38]. All these examples would be
called complex networks, and have influenced a major part of the work presented in this
diploma thesis greatly.

To generalize from these examples, each consists of a very large set of objects that have
some kind of relation to each other — that is, where the relation exists, it is the same
type of relation between any pair of objects. (Compare for example with definition 2.1.)
Mathematically, a network is nothing else than a graph [17].

The subject of this diploma thesis is the modelling of complex networks. The road map
is as follows:
In this chapter, I will first state some basic graph theoretical preliminaries, and then go on
to describe what typical properties of complex networks are, i.e. what we will be looking
for in the models. This will be illustrated by motivating examples in chapter 2. Then, in
chapter 3, I will briefly refresh some mathematical areas and state a few theorems used,
and give explanations to some methods used by physicists. Chapter 4 will deal with the
first model of random graphs, the Erdős-Réyni model. It is fairly long, and is the chapter
where theorems are given with rigorous proofs. Chapters 5 and 6 are more modern, dealing
with models that try to put the complex networks as we understand them at the time into
models. If available, an outline of the proofs will be given. Finally, chapter 7 mentions some
other models that were very important in the forming of the theory of complex networks,
as well as some newer models.

1.1 Some Notes on the Models

There are several reasons to model these huge networks, and it is not only out of theoretical
curiosity (Are they really random? Do they form according to a system?) that researchers
have been striving to understand these interwoven systems [2].

Be it a model that could predict when a small power failure could lead to a major
electricity shortage — see [46] — or an accurate model of the World Wide Web, the web
graph, helping to solve problems that are computationally difficult directly on the web (for
example, testing new algorithms [32]), the applications are manifold.

7



1 Introduction

1.1.1 State of the Art

Bollobás nicely summarized what type of investigations of complex networks exist in [10].
Briefly, there are

• direct investigations of real networks, where nodes, degrees and so forth are counted
and various properties are examined.

• These studies are followed by new models that try to explain why the properties
measured are what they are.

• Often these models are examined via computer simulations,

• and/or a heuristic analysis of their properties.

• Very rarely in comparison, a mathematically rigorous study is successfully under-
taken.

1.2 Graph Theoretical Preliminaries

Following definitions are necessary for the most basic understanding of this diploma thesis,
and may be skipped if the basic concepts of graph theory are known to the reader. All
definitions in this section are made with help of [8].

As stated above, a network is actually a graph:

Definition 1.1 (Graph). An undirected graph G(V,E) consists of an ordered pair of sets,
the vertices (or nodes) V of a graph and the edges E of a graph, where E ⊂ V (2), the set
of unordered pairs of V .

Definition 1.2. A directed graph G(V,E) (also called digraph) also consists of an ordered
pair of sets; the difference is that here E ⊂ V × V , the set of ordered pairs of V . These
elements of E are called arcs.

Most results will be brought for undirected graphs, thus when we write graph we mean
an undirected graph. It will only be emphasized when a graph is directed.

When referring to the vertice or edge set of a certain graph G(V,E), we will speak of
V (G) or E(G), respectively. |G| is defined as |V (G)|.
Definition 1.3. An edge {u, v} joins (or connects, or links) the vertices u and v. It will
also be denoted by uv. u is said to be a neighbor of v. These vertices are also called
adjacent. u and v are both incident with the edge uv. For an arc (u, v) in a directed graph,
we say that the arc begins in u and ends at v.

Definition 1.4 (Multigraph). A graph that contains multiple edges and edges of the form
{v, v} (so-called loops) is called a multigraph. A graph without loops containing no multiple
edges is called simple.

Note that there are
(n
2

)

possible edges in a simple, undirected graph. A graph where all
possible edges are present is called a complete graph; for |V (G)| = n, it is denoted by Kn.

G̃ is said to be a subgraph of G if V (G̃) ⊆ V (G) and E(G̃ ⊆ G). This is written as
G̃ ⊆ G. For W ⊆ V (G), G−W means deleting all vertices in W and all the edges adjacent
to them. We will denote this by [G/W ].

8



1.3 Properties of Complex Networks

Two graphs G and G′ are called isomorphic if there exists a bijective function Φ : V (G) →
V (G′) such that for every uv ∈ E(G), Φ(u)Φ(v) ∈ E(G′), we write this as G ∼= G̃

For a vertex v ∈ V (G) we denote by d(v) the degree of this vertex: It is defined as the
number of edges adjacent to v. Similarly, the out-degree dout(v) in a directed graph is the
number of arcs that begin in v and the in-degree din(v) of a vertex v is the number of arcs
that end in v.

A graph P of the form E = {v0v1, v1v2, . . . vn−1vn} is called a path. v0 is called the initial
vertex of P and vn the end vertex. The number of edges in a path is called the path length.
If v0 = vn then P is called a circuit. If a circuit C does not have a vertex u such that u is
used twice (i.e. viu ∈ E(C) and vju ∈ E(C), i 6= j) C is called a cycle. A graph without a
cycle is called a forest.

The vertices of a graph that are reachable from each other via paths are said to be part
of the same connected component. A graph where the largest connected component is the
graph itself is said to be connected. A graph G on n vertices, n large, whose greatest con-
nected component consists of l vertices so that l = O(n) is said to have a giant component.
A connected forest is called a tree. A recursive tree is defined to be a labelled tree that
is formed via a graph process. Starting with node 1, the root, each new vertex j connects
to an older vertex of the system at time j so that the path from any vertex to the root is
always ascending.

For Digraphs, we distinguish the strongly connected and weakly connected. The latter is
the case when the digraph, seen as an undirected graph, is connected, for the former there
must be directed paths from any vertex to any other vertex.

The diameter of a graph is defined as

diam G = max
{vi,vj}∈V ×V

min
P⊂G

P is a path from vi to vj

|E(P )|.

Note that the diameter of an unconnected graph is usually said to equal infinity.

A graph is said to be bipartite if V can be partitioned into two disjoint sets V1 and V2

such that there exists no edge in E(G) that connects two vertices in the same set.

1.3 Properties of Complex Networks

There does not seem to exist an exact definition of what makes a network complex. Vaguely
speaking, a network is called complex when it has, in some sense, generated itself (see
chapter 2 for examples) without a “construction plan” to guide the evolution. In most
complex networks, there is still a certain dynamic in the network itself — it is still growing
(or perhaps shrinking) over time, it is changing, optimizing itself again and again, vertices
are born while other vertices or edges die.

Funnily, even though there are completely different types of complex networks that evolve
at very different speeds — the World Wide Web is changing far quicker than protein
networks that have taken centuries and more to form — there are similarities between them
that give them the label of “complex network”. In this section, most of these properties
will be presented.
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1 Introduction

1.3.1 Big and Sparse

The quantity that is at the same time the easiest and the hardest to grasp is probably
the size of these networks, size meaning the number of vertices. Most of them are huge.
For example, in comparison, the network of protein-protein interactions of yeast proteome
is comparatively small with only 1870 vertices and 2240 edges. However, collaboration
networks of over a million nodes have been analyzed (see section 2.2), and those are still
not the biggest networks available. The largest network being analyzed again and again,
and because of its size often only in part, is the World Wide Web — it is growing so quickly
that it is hard to say how many web pages there are. A recent statement by the official
Google blog1 states that the web had over a trillion (1012) pages in 2008, while scientific
papers only spoke of 11.5 billion in 2005. (See subsection 2.3.2. Numbers from [17].)

No matter how big the web may be today, these number are enormous. So big that
they are very hard to imagine, and also so big that it is no longer possible to visualize the
corresponding graph in any way that would measure all its properties [38].

Conversely, from the web to many other real world networks, these graphs are actually
fairly sparse [11]. Sparse here means that not too many of the possible edges are present;
this can be interpreted that globally — looking at the graph structure from far away —
these graphs have a somewhat tree-like structure.

1.3.2 The Small-World Effect

What was coined as “six degrees of separation” is what we shall call the small world effect.

Roughly speaking, this means that the average distance between pairs of vertices in a
graph G with n vertices will be small, i.e. if d(vi, vj) denotes the distance between vertices
vi and vj, then

l̄ =
2

n(n − 1)

∑

i≥j

d(vi, vj)

should be small, small meaning that l̄ should scale about the same as the corresponding
value of a classical random graph, l̄ = O(log n) [38]. (See section 4.6.)

Some authors also measure the diameter; a small diameter is of course a slightly stronger
statement than a small mean distance. Both measurements need to be redefined when the
graph is not connected.

1.3.3 The Clustering Coefficient

Most complex networks have a rather high number of cliques, that is complete subgraphs.
Intuitively, this is fairly logical: Individuals in a system that have things in common will
form groups.

The way to measure this is with the so-called clustering coefficient [38]. It is a measure
for the number of triangles in a graph i.e. cycles of length three — especially social networks
seem to have a high clustering coefficient, which seems clear: If A and B are friends, and
B and C are friends, then it is likely that A and C will be friends as well. The clustering
coefficient measures the transitivity of a graph.

1http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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1.3 Properties of Complex Networks

The clustering coefficient C can be defined in two different ways, as a local or as a global
property. Globally, it measures the fraction of adjacent pairs of edges such that all three
possible edges connecting them are present [10]:

Cg =
3 × number of triangles in the network

number of pairs of adjacent edges
.

Note that there exist definitions that are not necessarily unambigious. For example, for
following definition [38, 36]:

Cprob =
3 × number of triangles in the network

number of connected triples of vertices

needs a verbal explanation to be equivalent. Basically, C should measure the mean prob-
ability of two neighbors of a certain vertex being neighbors themselves. However, by con-
sidering the graph K3, where the clustering coefficient should obviously be 1, we see that
Cprob can not be right — if we count ordered triples of connected vertices, Cprob = 1/2,
if we count unordered triples, Cprob = 3. A “connected triple” is defined in [36] to be a
vertex which is connected to an unordered pair of other vertices. For different pairs the
same vertex can then be counted several times.

Locally, the clustering coefficient is defined as

Cl(v) =
number of triangles connected to vertex v

number of triples centered on vertex v

or, equivalently (see [10])

Cl(v) =
number of edges between neighbors of v

(

d(v)
2

)
.

Note that for a graph of size n Cg can be obtained by Cl by [10]

Cg(G) =

(

vn
∑

v=v1

(

d(v)

2

)

Cl(v)

)/

vn
∑

v1

(

d(v)

2

)

.

If not otherwise stated, when talking of the clustering coefficient C we will mean Cg.

1.3.4 Scale-free Networks

The total degree distribution of a network of size n is defined as

P (k, n) =
1

n

n
∑

i=1

p(k, vi, n)

where p(k, vi, n) is the probability of vertex vi having degree k. It is thus the probability
that a random vertex will have degree k. It is natural to expand this definition for directed
graphs and in- and out-degree distributions [17].

For a given graph G on n vertices let Nk(G) denote the number of vertices with degree
k. Studies have shown that for various networks very different in type — social networks,

11



1 Introduction

citation networks, the web graph — the empirical degree distribution, i.e. 1
nNk(G) follows

a power law. (See for example [11, 17, 38].)
For k 6= 0, a power-law distribution P (k) is defined as

P (k) ∼ k−γ ,

where γ > 0 is the exponent of the distribution. There is no scale in the network (i.e. it
does not depend on the size n of the network) which is why this distribution is called scale
free.

Notice that this distribution is also fat tailed. This means that even for very large k,
there is still a fair possibility of there being a vertex of degree k. This distribution does not
tend to zero as fast as a Poisson distribution, for example, or an exponential distribution.
(See figure 1.1.) Also note that if the average degree of a network is finite, it must hold
γ > 2.

It is important to point out that, seeing that real networks are always finite in number,
this distribution will have a natural cut-off for an analyzed “real life” network.

x
5 10 50 100 1000

ln p x

K20

K15

K10

K5

0

log-log plot of Power Law distribution

(a) Power Law distribution

x
5 10 50 100 1000

ln p x
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K3,000
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K1,000

log-log plot of Poisson distribution

(b) Poisson distribution

x
5 10 50 100 1000

ln p x

K2,500

K2,000

K1,500

K1,000

K500

log-log plot of Exponential distribution

(c) Exponential distribution

Figure 1.1: Log-Log plots for several distributions for values 1, . . . , 1000.
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2 Touching upon Real Networks

2.1 Going from Social Networks . . .

Applying graph theory to the social sciences is not a new concept. Networks of friendships
have been investigated since at least the 1920’s [23]. Understanding the structure of human
interactions is interesting not only for its own sake, but also the implications of such theories
are important: How information spreads, as well as diseases, can be modelled with network
theory [37]. While there are several different approaches to social network analysis (for
example, see [46, p. 47ff.]), for our purposes, this definition will be sufficient:

Definition 2.1. A Social Network is a set of people or groups of people with some pattern
of contacts or interactions between them [38, p. 174].

Among the most fascinating studies concerning social networks are probably the so-called
“small-world” experiments conducted by Milgram in 1967. Milgram asked a few hundred
random individuals in Omaha, Nebraska, to convey a letter to some target person in Boston,
Massachusetts. They were only to pass these letters on to other people they knew on a first
name basis. About a quarter of these letters arrived; on average, each letter only passed
through six people before arriving at its goal.

Albeit not aiming to prove anything about networks, this experiment later coined the
phrase “six degrees of separation,” which is not only the title of a play [25] but also the
basic idea behind the small world effect as discussed in subsection 1.3.2.

The classical approach to social networks has some flaws that render it difficult to work
with from the point of view of the sciences. First of all, due to the nature of human
interactions, it is often necessary to obtain information by directly interviewing people via
questionnaires and the like. This is time and cost intensive, and leads to comparatively
small sample sizes. The information obtained is often inaccurate, because respondants
interpret questions differently. For example, there is no universal definition of the word
friend [38, p. 175].

Other methods of analyzing social networks needed to be found; the vast databases now
available facilitated research. Investigations of so-called collaboration networks started. A
link between two individuals exists here exactly when a trace of their collaboration is in
the database.

For example, the network of movie actors (nearly half a million people) has been studied
with the help of the Internet Movie Database1 [39]. This network can be studied in two
ways:

1. As a bipartite graph G(A ∪ M , E), where there are edges connecting the nodes A
(actors) and the nodes M (movies). There is an edge between ai ∈ A and mj ∈ M
iff ai has starred in mj

1http://www.imdb.com/
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2 Touching upon Real Networks
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Figure 2.1: One mode projection

2. As the so-called one-mode projection. where all vertices represent actors, and there
is a link between two actors if they have played in a movie together. (See Fig. 2.1.)

Note that in the one mode projection, some information is lost. Also, as most films
are made with more than two actors, the projection of the vertices obviously causes many
triangles, which will influence the clustering coefficient. It is also necessary to point out
that even though two actors appeared in the same film, this does not imply that they had
any other social contact apart from that; as such, it is questionable if the net of movie
actors is representative of human interactions.

2.2 . . . over Scientific Collaboration Networks . . .

The idea behind scientific collaborations is similar. One of the first papers treating this topic
from a graph theoretical view was written by Newman who investigated several concepts
of complex networks in four vast databases [37].

The concept of investigating scientific collaborations is not completely new, either. In
the mathematics community, a very central figure was Paul Erdős (one of the two founders
of the theory we will use in chapter 4). He wrote over 1,400 papers during his lifetime,
which outnumbers all other mathematicians. In fact, Paul Erdős is so central that mathe-
maticians started calculating their Erdős numbers, which is the distance (via co-authorship
of papers) they have to this exceptional scientist. Having co-authored a paper with Paul
Erdős gives Erdős number one, a co-author of someone who has Erdős number one has
Erdős number two, and so on. Erdős numbers are so popular that there is an application
on the site of the American Mathematical Society2 to calculate the distance between any
two mathematicians, with Erdős being the default value.

2http://www.ams.org/mathscinet/collaborationDistance.html
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2.2 Scientific Collaboration Networks

medline Los Alamos spires ncstrl

Total papers 2,163,923 98,502 66,652 13,169
Total authors 1,520,251 52,909 56,627 11,994
Mean papers/author 6.4 5.1 11.6 2.55
Mean authors/paper 3.754 2.530 8.96 2.22
Collaborators/author 18.1 9.7 173 3.59
Cutoff zc 5,800 52.9 1,200 10.7
Exponent τ 2.5 1.3 1.03 1.3
Size of giant component 1,395,693 44,337 49,002 6,396
As a percentage 92.6% 85.4% 88.7% 57.2%
Second largest component 49 18 69 42
Mean distance 4.6 5.9 4.0 9.7
Maximum distance 24 20 19 31
Clustering coefficient C 0.066 0.43 0.726 0.496

Table 2.1: Findings from four different networks [37].

As seems natural, in [37] two scientists are linked if they published a paper together.
Newman’s data came from medline (papers on biomedical research), the Los Alamos
e-Print Archive (preprints in theoretical physics), spires (papers and preprints in high
energy physics) and ncstrl (preprints in computer science), where he investigated the
papers issued during the five year period 1995–1999.

Newman checked all the essential questions of complex networks. Some of his findings
(more sub-cases were investigated) are summarized in table 2.1. On average, authors wrote
four papers between 1995 and 1999; each paper has an average of three authors, which
slightly biases the clustering coefficient C. Note that the average number of collaborators
of an author varies strongly between the different papers. For ncstrl (computer science),
it is below four, while for medline the number already rises to 18, reaching 173 for spires.
This can be explained by the nature of the sciences involved: papers published in spires

are by high-energy experimentalists, where many people are involved per paper just to run
the experiments.

Newman also tried to fit the number of collaborators z with a power-law form, which did
not work. However, he succeeded quite well in fitting the data by a power-law form with
an exponential cutoff:

P (z) ∼ z−τe−z/zc

where τ and zc are constants. One explanation for the cutoff is the finiteness of the data
— only five years of numbers. The values of τ and zc are given in table 2.1, they vary
considerably.

Note that for all these sets of researchers, the giant component of their collaboration
graphs comprises more than half of all vertices, in three of them around 90%. This, and
the fact that the second largest components are all truly tiny in comparison, show how
strongly connected the networks of these scientists are.

They also exhibit the “small-world” property: the average distance between a random
pair of vertices is around six. In fact, splitting the data into the different (sub-)groups of
scientists, we can see in Fig. 2.2 that this data can be fitted to match the definition of
the “small-world” property, as the average distance of two random researchers is plotted
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2 Touching upon Real Networks

Figure 2.2: Average distance of researchers to average distance in random graph [37]

against the average distance in a random graph with the same number of vertices and
edges.

These networks exhibit very high clustering coefficients. One explanation is (as with
movie actors) that a paper written by three or more authors already induces at least one
triangle. However, the values here are so high that this cannot be the only explanation.
Interestingly, medline’s clustering coefficient is much lower in comparison. This may be
because of the hierarchical structure of biological laboratories, which could cause tree-like
networks without many loops.

Other studies of collaboration networks followed, which have treated new models, for
example, see [5]. To summarize Newman’s findings, overall, they fulfilled our expectations
which we described in section 1.3. We shall see that collaboration networks are not the
only networks that “perform” in this way.

2.3 . . . to the Internet and www . . .

Two of the driving factors in network theory are the internet and the World Wide Web
(www). These massive networks are intriguing in their size, fast dynamics and almost com-
plete self-organization. Apart from purely scientific reasons, this research is important in
applications: web crawls and search engines, network stability questions and understanding
the sociology of content creation are only a small number of possible examples [12].

2.3.1 The Internet

First note the difference between the internet and the www [17, p. 34 ff]. The internet is
made up of physical components on different levels, such as computers that have activated
their connection to the net (hosts), servers that provide service to the web, and routers
that arrange traffic across the internet. Edges in this network are the connections between
the different components, they are undirected.
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2.3 The Internet and www

In the beginning of 2001, it contained about 100 million (108) hosts. Going up one level,
we study the internet at the router or interdomain level. Mid 2000 there existed about 150
000 routers in total, a year later there were about 220 000.

Dorogovtsev and Mendes [17] compare several studies of the internet at interdomain level
done between 1999 and 2002. At the time, this graph was quite small and sparse; in 1999,
it had only n = 5287 vertices, their number and the number of edges connecting them
fluctuates considerably. From 1997 to 1999, the average degree increased from 3.42 to 3.8,
meaning that connections grow stronger than vertices. The average distance l̄ between
two nodes was always below four, and the ratio of l̄ to the equivalent number of the
corresponding random graph was 0.6, meaning that the internet shows signs of having the
“small-world” effect. The maximum length of separation was around 11, and the clustering
coefficient C of 0.2 was considerably higher than that of a classical random graph. The
degree distribution manifested a power-law with exponent 2.2.

Note that, because we are talking about physical components here — hardware, cables,
and so on — geographical as well as economical influences matter: For example, the fluctu-
ations in n are due to providers opening or going out of business, while locations of routers
etc. have been shown to be closely related to population density.

2.3.2 The World Wide Web

In comparison, the www consists of documents (pages) containing information [11, 17].
When these pages refer to each other, they are connected by hyperlinks. The webpages are
the vertices of the web-graph, while the connections are the arcs.

Note that this gives a directed graph. For each page, we are thus looking at links coming
in and going out, so we also distinguish in- and out-degrees.

The web is growing quickly [11]. In 1997, there were supposedly 320 million web pages.
In 1999, around 800 million were found. A current and accurate estimate is hard to come
by, but in 2005 it was stated that the web had about 11.5 billion pages, while shortly after
this number was claimed to be 53.7 billion, with 34.7 billion of these pages indexed by
Google3.

The directedness of the web changes our definition of the giant component and the way
we see the structure of the net. We say the www has a bow-tie structure, and we call the
giant strongly connected component (GSCC) the core or knot of the bow. We call vertices
connecting to the core part of the giant in component (GIN) and vertices that have edges
connecting from the GSCC part of the giant out component (GOUT). Note that the GSCC
is the intersection of GIN and GOUT. The remaining vertices are either not connected to
the giant component, or they are so-called tendrils that connect to the GOUT, or lead
away from the GIN. For a schematic view of the (weakly) connected component of the web,
see figure 2.3. The connectivity of the web is becoming stronger, as the apparent growth of
the core shows: While in 2000, it was estimated that a third of all pages were in the core,
a 2006 estimate placed two thirds of all web pages in the GSCC [11].

The first investigation of the web of this size was conducted by Broder, [12], where 200
million pages and 1.5 billion links were examined via the altavista web crawl in 1999.
Though the www has grown considerably in the mean time, the first findings remain of
interest: Especially the repeated occurrence of power-law distributions is fascinating, as

3www.google.com
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2 Touching upon Real Networks
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Figure 2.3: GSCC

well as the results concerning the giant component.

In fact, it was found that the in-degree of the www has a power-law with exponent around
two, i.e. pin

k ∼ 1
k2.1 , a number already reported in earlier, smaller searches. The out-degree

distribution was also a power-law with exponent 2.72. Interestingly, the distribution of the
sizes of the weakly connected components also exhibited a power law, with exponent 2.5.

Treating the www as an undirected graph, 91% (186 million) of all nodes were in the
giant (weakly connected) component. This component was shown to be surprisingly robust
and well connected: if all edges to pages of degree greater than 5 had been removed, the
graph would have still contained a weakly connected component of 59 million vertices. The
average undirected distance was shown to be 6.83.

The distribution of the sizes of strongly connected components also exhibits a power
law. Broder’s study [12] also found the (directed) diameter of the www to be at least 28,
counting only pairs of vertices for which there actually exists a directed path connecting
them.

2.4 . . . and Beyond

A myriad of applications can be described by complex networks. In this last section, I will
name a few more, and briefly describe some.

One fairly old idea that has been revived lately is the investigation of citation networks,
an overview given in [17]. Papers citing other papers form a so-called citation graph. In this
model, papers are the nodes and citations are the arcs. A new paper links to older papers,
and older papers do not change, so they cannot form any new links. When preprints are
disregarded, this directed network is acyclic, even though the underlying undirected graph
may have cycles. Also note that most empirical surveys of citation graphs measure the
current state of the graph, and not how it evolves over time.

In fact, one of the first studies to report a power-law degree distribution P (k) was about
citation networks by Redner [42]. He investigated data from the Institute for Scientific
Information (ISI database) including 783,339 papers and 6,717,198 citations, and data
from Physical Review D (PRD) of 24,296 papers with 351,872 citations.

Redner tried to fit the data with a stretched exponential,

P (k) ∼ exp

(

(

− k

x0

)β
)

,
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2.4 Brief Outlook

but this did not explain for the (few, widely scattered) very big values of degree k. For ISI
only 64 out of over 700,000 paper are cited more than 1000 times, 282 are cited more than
500 times, while over 300,000 papers are uncited. Redner looked for a function that was
less smooth, and showed that the data fitted well to P (k) ∼ k−α, with α close to 3.

It was later proposed to fit the data with (k + const)−α, where α = 2.9 for the ISI net,
and α = 2.6 for the PRD data, and even later it was stated that the data was still not
large enough to be sure that the distribution is really fat-tailed. Different possibilities to fit
the data exist, although there is evidence for preferential attachment in the citing process.
This would imply a scale-free distribution.

Another science where graph theory has been implied to model “real-world” networks
is biology: From directed food webs (arcs indicating who eats whom) to neural networks
(There are 100 billion neurons in the human brain, the largest network mentioned in [17].),
from metabolic reactions to protein networks (such as protein-protein-interactions (PPIs)).
Some criteria of complex networks (small world effect, etc.) are always present.

Other graphs the theory of complex networks is analyzing are the Word Web of human
language, various communication networks (mail networks, the telephone call graph, . . . )
as well as power grid networks, energy landscape networks and many, many more. For a
very vivid description of why the latter two are important, see the opening chapter of [46].
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3 Methods

In this chapter, a few of the methods, definitions and notations used throughout this
diploma thesis are presented. It is divided into three sections:

• Methods used by physicists that a mathematician might not have seen on the core
course curriculum,

• a brief refreshment of methods used in probability theory, as well as some theorems
that might not be familiar, and

• notations and abbreviations used.

3.1 Methods from Statistical Physics

3.1.1 The Mean Field Method and other Continuum Approaches

The mean field method seems to stem from statistical physics; statistical mechanics, to be
exact. Finding an exact definition of the mean field method in general (as opposed to some
application of mean field theory to some particular example) has proved difficult.

The basic idea behind is to view a discrete process as a continuous one by considering
the same model several times, and then taking the mean of the outcome. This comes from
the fact that, when particles are being considered, the mean over time is more relevant
than the exact number of particles passing through the investigated area. The same thing
is possible when quantities of considerable size are being treated. Quoting from [17]

. . . , master equations become very simple. At first sight, this must work for
large degrees, but mathematicians know that such limiting is an extremely
dangerous operation. Sometimes it works, sometimes not, and while using the
continuum approximation, you have to check your work all the time. However,
for simple growing networks this approximation usually yields exact results for
most useful quantities or produces unimportant deviations.

This is the reason why, as noted in subsection 1.1.1, there are many heuristic results and
rather few rigorous ones — they are easier to find. Most (but not all) have been proved
true when rigorous treatment was possible.

3.1.2 The Master Equation

When dealing with Markov chains (see subsection 3.2.3), an important aspect is the master
equation. It gives the rate of change of the probability P (x, t) due to transitions into the
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3 Methods

state x from all other states and due to transitions out of a state x into all other states [43],
i.e. for a system with n possible states

∂P (x, t)

∂t
=

n
∑

i=1

((P (i, t)pi,x(t) − P (x, t)px,i(t)) ,

where pi,j(t)∆t is the probability of a transition from state i to state j during the time
change t → t + ∆t.

3.2 Methods from Probability Theory

3.2.1 Some Distributions

• We say a random variable X has Poisson distribution, X ∼ Po(λ) if

P(X = i) =
λi

i!
e−λ for i = 0, 1, . . . ; λ > 0.

• We say a random variable X has exponential distribution, X ∼ E(x, λ) if for its
density function f(x) it holds

f(x) = λe−λx for x > 0.

For its distribution F (x), it holds F (x) = 1 − e−λx.

• For a random variable X with Bernoulli distribution with mean p, we will write
X ∼ Be(p).

• For a random variable X with binomial distribution with parameters n and p, we will
write X ∼ Bi(n, p). For

(

n
k

)

pk(1 − p)n−k we will use the notation Bi(k; n, p).

3.2.2 Two familiar Inequalities

Let us just state these inequalities (both from [28]) again as a reminder to the reader:

Theorem 3.1 (Chebyshev’s inequality). For a random variable X, if Var(X) exists it
holds

P (|X − EX| ≥ t) ≤ Var(X)

t2
, t > 0.

Theorem 3.2 (Markov’s Inequality). For a random variable X ≥ 0 almost surely, it holds

P(X ≥ t) ≤ EX

t
, t > 0.

For a series of random variables Xn we say Xn converges in distribution to Z as n → ∞
written as Xn

d→ Z if P(Xn ≤ x) → P(Z ≤ x) for every real x that is a continuity point of
P(Z ≤ x). Equivalently, for integer-valued random variables, P(Xn = k) → P(Z = k) [28].

22



3.2 Methods from Probability Theory

3.2.3 Markov Chains

For a sequence of random variables (xn)n∈N, let {xn} denote the filtration of the sequence
up to time n, i.e. the event that (x0 ∈ X0, x1 ∈ X1, . . . , xn ∈ Xn) for some events
X0,X1, . . . ,Xn.

Definition 3.1 (Markov Process [29]). Let (Ω,B, µ) be a filtration space with a denumerable
stochastic process (xn)n∈N defined from Ω to a denumerable state space S of more than one
element. The process is called a denumerable Markov process if, for any n,

P (xn+1 ∈ cn+1 | x0 ∈ c0 ∩ · · · ∩ xn−1 ∈ cn−1 ∩ xn ∈ cn) = P (xn+1 ∈ cn+1 | xn ∈ cn)

for any states c0, . . . , cn+1 such that P (x0 ∈ c0 ∩ · · · ∩ xn−1 ∈ cn−1 ∩ xn ∈ cn) > 0.

For a finite, time homogenous Markov process with n possible states, [n] := {1, 2, . . . n},
we call the matrix P ∈ Rn×n the transition matrix where pij is the probability of passing
from state i to state j.

Note that in Pm, the element p
(m)
ij gives the probability of passing from step i to step j

in m steps. A state i in a Markov chain is called ergodic if, for every state j it is possible
to go from i to j, possibly via several steps. This is equivalent to saying that there exists

an m so that p
(m)
ij > 0 for every j. A Markov chain that consists of ergodic states is called

irreducible.
If there exists a subset of states A ⊂ [n] such that pij = 0 for every pair (i, j) such that

i ∈ A, j ∈ [n] /A, this subset is called an absorbing subset. Once an absorbing subset is
reached, it is no longer possible to leave this subset. These subsets are also called essential
classes. If a Markov Chain has an absorbing subset of size 1, it is called reducible.

If there are absorbing subsets of a finite Markov process that also has ergodic states, it
is always possible to write the transition matrix P in this form:

P =



















R 0

S′ Q



















, (3.1)

where R is the square matrice associated with the absorbing states of the process, while
Q is the square matrice associated with the ergodic states. It can be shown that, with
probability tending to 1 a process that is not irreducible will end in an absorbing state.

We consider a Markov chain consisting of both ergodic and absorbing states. We denote
the set of ergodic states by I. Let us denote the random variable Zij as the number of
visits to state j ∈ I starting from i ∈ I, (Zii ≥ 1). Then

Zi =
∑

j∈I

Zij , i ∈ I

is the time to absortion of the chain starting from i ∈ I. We denote EZij with mij and
EZi with mi. Let M be the matrix whose entries consist of mij and m the vector of the
mis. Then following theorem holds:
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Theorem 3.3 ( [44]). Under the assumptions stated above,

M = (I − Q)−1, (3.2)

m = Me = (I − Q)−1e, (3.3)

where Q is the submatrix of the transition matrix P as defined in (3.1), I is the identity
matrix, and e is a vector consisting of ones.

3.2.4 Martingales

Definition 3.2 (Martingale [28]). For a probability space (Ω,F , P) and an increasing se-
quence of sub-σ-fields F0 = {∅, Ω} ⊆ F1 ⊆ · · · ⊆ Fn = F , a sequence of random variables
X0,X1, . . . ,Xn (with finite expectations) is called a martingale if for each k = 0, . . . , n−1,
E(Xk+1 | Fk) = Xk.

Often, Ω is a finite space and F the family of all subsets; Fk corresponds to a partition
Pk of Ω, with finer partitions for larger k. Note that it is also possible to consider sequences
of sub-σ-fields of the form (Fn)n∈N with corresponding sequences of random variables of
the form (Xn)n∈N.

Theorem 3.4 (Azuma-Hoeffding inequality [28]). If (Xk)n
0 is a martingale with Xn = X

and X0 = EX, and there exist constants ck > 0 such that

|Xk − Xk−1| ≤ ck

for each k ≤ n, then, for every t > 0,

P(X ≥ EX + t) ≤ exp

(

− t2

2
∑n

k=1 c2
k

)

,

P(X ≤ EX − t) ≤ exp

(

− t2

2
∑n

k=1 c2
k

)

.

3.3 Notations and Abbreviations

Throughout this diploma thesis, the following standard notation is used to describe asymp-
totics, see i.e. [28]. For a sequence of two numbers, an ∈ R and bn > 0, depending on a
parameter n → ∞, we write

• an = O(bn) as n → ∞ if there are constants C and n0 such that |an| ≤ Cbn for
n ≥ n0, i.e., the sequence an/bn is bounded for n ≥ n0.

• an = Ω(bn) as n → ∞ if there exist constants c > 0 and n0 such that an ≥ cbn for
n ≥ n0.

• an = Θ(bn) as n → ∞ if there exit constants C, c ≥ 0 and n0 such that cbn ≤ an ≤
Cbn, i.e. an and bn are of the same order of magnitude. We may also use the notation
an ∝ bn.

• an ∼ bn if an/bn → 1.
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3.3 Notations and Abbreviations

• an = o(bn) as n → ∞ if an/bn → 0.

• an ≪ bn or bn ≫ an if an ≥ 0 and an = o(bn).

Both the abbreviations a.a.s., meaning asymptotically almost surely, as well as whp,
meaning with high probability are used to describe that a property En of a random structure
that depends on n holds with P(En) → 1 as n → ∞. U.a.r. stands for uniformly at random.

For two events E1 and E2, we say that E1 ⊂ E2 if E1 ⇒ E2. We use the notation
(n)k := n!

(n−k)! , as well as the notation [n] := {1, 2, . . . , n}.
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4 The “classical” Random Graph Model by

Erdős and Rényi

4.1 The Model

The initial model of random graphs goes back to Erdős and Rényi, see e.g. [22]. There
are two essentially equivalent approaches to see random graphs [28], denoted by Gn,N and
Gn,p. In both models, we have n labeled vertices, v1, v2, . . . , vn. Both models are random;
they differ in the way the edges are chosen.

In Gn,N , N edges are chosen at random from the
(

n
2

)

possible edges, where each edge is

chosen with equal probability. Out of the
(

(n
2)
N

)

=: Cn,N possible resulting graphs, each

one appears with equal probability, i.e. each resulting Graph Gn,N appears with probability
1

Cn,N
. This model is called the uniform random graph model.

Contrarely, in the model Gn,p each of the
(n
2

)

possible edges appears with probability
0 ≤ p ≤ 1. Thus, for p = 0 we will have a graph on n vertices containing no edges, i.e.
Gn,0, while for p = 1 we will have Gn,(n

2)
, the complete graph Kn. A graph thus obtained

is also called binomial random graph.

To be correct, we should denote by Gn,N and Gn,p the set of all graphs obtained by the
uniform and binomial random graph models, respectively. However, by abuse of notation,
when it is clear with which we are dealing, will refer to both the set of all random graphs
as well as a certain graph picked from the set with Gn,N and Gn,p.

Definition 4.1. For a given graph G we define the corresponding random graph as a
Erdős-Rényi random graph Gn,N with n = |G| and N = |E(G)|.

Another approach concerning Gn,N is the following: Out of the
(n
2

)

possible edges, we
choose at first only one. Then, out of the remaining

(n
2

)

− 1 edges, we chose another one at
random, and so forth until we chose our N th edge out of

(n
2

)

−N+1. In this model, the inter-
est lies in increasing N . This can be seen as a random graph process, which we will denote
by (G(n,N))N . Letting N = N(n) and n → ∞, investigations of “typical behavior” are
made, depending on N(n). This can mean that if limn→∞ Pn,N{Gn,N has property Q} = 1,
“almost all” Graphs in Gn,N have this characteristic Q.

Several properties of random graphs have been thouroughly examined, questions such
as: How large must N be so that almost all graphs in Gn,N have a cycle of order k? How
many graphs do not have any tree of order l? If we let An,N denote the number of graphs

of Gn,N having a certain property Q, obviously Pn,N(A) =
An,N

Cn,N
is the probability that any

chosen graph of Gn,N will have Q.

Definition 4.2. We define a property Q on graphs G = G(V,E), |V | = n, formally in the

following way: Q ⊆ 2( n
2 ), where 2( n

2 ) := {G : G ⊆ Kn ∧ |V (G)| = n}
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4 The “classical” Random Graph Model by Erdős and Rényi

Intuitively, Gn,p and Gn,N are equivalent; Gn,N can be seen as a random graph {Gn,p :
|E| = N}. Asymptotically, this is in fact so, as the following theorems show [28]. In the rest
of this chapter, we will use either Gn,p or Gn,N , depending on which is more convenient.
Note that, even though the notation is the same, it will always be clear from context which
model is being treated.

Proposition 4.1. Let Q be a random property of subgraphs of the complete graph Kn a
graph G may or may not have, p = p(n) ∈ [0, 1] and 0 ≤ a ≤ 1. If for every sequence N =

N(n) such that N =
(n

2

)

p+O
(√

(n
2

)

pq
)

, where q = 1−p, it holds that P(Gn,N ∈ Q) → a

as n → ∞, then also P(Gn,p ∈ Q) → a as n → ∞.

For a proof of this theorem, see [28].
For the other direction no equivalence can be found in such generality. A counterexam-

ple is the property of a graph containing exactly N edges. However, with the following
definition and lemma, a result can be obtained.

Definition 4.3. A family of subgraphs Q ⊆ 2Kn is called increasing if A ⊆ B and A ∈ Q
imply that B ∈ Q. Vice-versa, a family of subgraphs is called decreasing if its complement
is increasing. An increasing or decreasing family is called monotone.

Lemma 4.1. Let Q be an increasing property of subgraphs of Kn, 0 ≤ p1 ≤ p2 ≤ 1 and
0 ≤ N1 ≤ N2 ≤

(n
2

)

. Then

P(Gn,p1 ∈ Q) ≤ P(Gn,p2 ∈ Q)

and

P(Gn,N1 ∈ Q) ≤ P(Gn,N2 ∈ Q).

Proof. For this proof we first apply the so-called two-round exposure technique, which
applies to the binomial model, viewing the random graph process GN,p as the union of
two independent random graph processes Gn,p1 and Gn,p2 , where the edges of each model
are taken, and double edges are replaced by one edge, for p = p1 + p2 − p1p2. We set
p0 = (p2 − p1)/(1 − p1). Now, Gn,p2 can be viewed as a union of two independent random
graph processes, Gn,p0 and Gn,p1. Thus, Gn,p1 ⊆ Gn,p2, and with Q increasing, the first
inequality follows, as the event of Gn,p1 ∈ Q implies Gn,p2 ∈ Q.

To prove this lemma for the uniform model, it suffices to construct a random graph
process {G (n,N)}N . Gn,N is now the N th process in order, and obviously Gn,N1 ⊆ Gn,N2 .
With the same arguments as in the first part of the proof, the second inequality is shown.

Proposition 4.2. Let Q be a monotone property of subgraphs of Gn, 0 ≤ N ≤
(n
2

)

, and
0 ≤ a ≤ 1. If for every sequence p = p(n) ∈ [0, 1] such that

p =
N
(

n
2

) + O





√

√

√

√

N
((n

2

)

− N
)

(n
2

)3





it holds that P(Gn,p) → a, then P(Gn,N ) → a.

For a proof of this proposition, see [28].
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4.2 Threshold Functions

4.2 Threshold Functions

For many graph properties E there exist so-called threshold functions [22, 28] which we
shall denote by A(n), A(n) → ∞ for n → ∞ such that

lim
n→∞

Pn,N(n)(E) =







0 if lim
n→∞

N(n)
A(n) = 0

1 if lim
n→∞

N(n)
A(n) = +∞

It can be shown (see [28, page 20]) that every monotone property has a threshold.
The next theorem is a good example of threshold functions; several properties are special

cases of following general case. Out of historical interest, the proof is from the original
paper by Erdős and Rényi [22]. The same result can be shown much quicker using modern
probabilistic tools [28].

Definition 4.4. A graph is said to be balanced if it has no subgraph of strictly larger
average degree. This means a graph G(V,E) with |V | = k and |E| = l is balanced if for
every subgraph with k′ vertices and l′ edges it holds that l′ ≤ k′l/k.

Theorem 4.1. For k, l ∈ N, k ≥ 2, k − 1 ≤ l ≤
(

k
2

)

let

Bk,l =
{

B1
k,l, . . . , B

R
k,l : ∀i 6= j : Bi

k,l ≇ Bj
k,l

}

, 1 ≤ R ≤
(
(

k
2

)

l

)

,

be a set of balanced graphs consisting each of k vertices and l edges. Then the threshold
function for the property that any random Graph G from Gn,N should contain at least one
subgraph isomorphic to some element of Bk,l is n2−k/l.

Proof. Let Pn,N(Bk,l) denote the probability that a random graph of Gn,N contains at least
one subgraph isomorphic to one element of the class Bk,l. There are

(n
k

)

possibilities of
selecting k vertices from which we form a graph in Bk,l (which can be done in R possible
ways). The remaining N − l edges can be selected from the

(n
2

)

− l other possible edges.
(Note that we are counting some graphs more than once.) Thus,

Pn,N(Bk,l) ≤
(

n

k

)

R

(

(n
2 )−l

N−l

)

(

( n
2 )
N

) = O

(

N l

n2l−k

)

.

Assuming that N = o(n2−k/l), then Pn,N(Bk,l) = o(1), so there are no subgraphs isomorphic
to a subgraph in Bk,l almost sure.

The other direction is a bit longer:

Let B(n)
k,l := {S ⊆ Kn : ∃Bi

k,l ∈ Bk,l : S ∼= Bi
k,l}. For any S ∈ B(n)

k,l we define

1(S) :=

{

0 if S ⊆ Gn,N

1 if S * Gn,N

Then it follows
(

∑

S∈B(n)
k,l

1(S)

)

=

(

n

k

)

R
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4 The “classical” Random Graph Model by Erdős and Rényi

E

(

∑

S∈B(n)
k,l

1(S)

)

=
∑

S∈B(n)
k,l

E1(S) =

(

n

k

)

R

(

(n
2)−l

N−l

)

(

(n
2)
N

) ∼ R

k!

(2N)l

n2l−k
.

If S1 ∈ B(n)
k,l , S2 ∈ B(n)

k,l , E(S1) ∩ E(S2) = ∅, then

E (1(S1)1(S2)) =

(

(n
2)−2l

N−2l

)

(

(n
2)
N

) .

If |V (S1) ∩ V (S2)| = s and |E(S1) ∩ E(S2)| = r, 1 ≤ r ≤ l − 1, i.e. S1 and S2 have s
mutual vertices and r mutual edges, then

E (1(S1)1(S2)) =

(

(n
2)−2l+r

N−2l+r

)

(

(n
2)
N

) = O

(

N2l−r

n4l−2r

)

.

As S1 ∩ S2 ⊆ Si, i = 1, 2, i.e. a subgraph, and by our supposition every S is balanced, it
follows r

s ≤ l
k , so s ≥ rk

l . At most we then have

R2
k
∑

j= rk
l

(n

k

)

(

k

j

)(

n − k

k − j

)

= O
(

n2k− rk
l

)

pairs of such subgraphs. We then obtain

E

(

∑

S∈B(n)
k,l

1(S)

)2

=

=
∑

S∈B(n)
k,l

1(S) +
n!R2

(k!)2(n − 2k)!

(

(n
2 )−2l

N−2l

)

(

(n
2 )
N

) + O

(

(

N l

n2l−k

)2 l
∑

r=1

(

n2−k/l

N

)r)

. (4.1)

From the fact that, for C > 0, M,N, x ∈ N,

f(x) = log C

(

M − x

N − x

)

= log C

(

M − x

M − N

)

is a concave function, i.e. f(x) + f(y) < 2f
(x+y

2

)

, it follows that

n!

(k!)2(n − 2k)!

(

( n
2 )−2l

N−2l

)

(

( n
2 )
N

) ≤
(n

k

)2

(

( n
2 )−l

N−l

)2

(

(n
2 )
N

)2 .

Note that through this estimate, we have taken into account those possible subgraphs which
do not have any common edges but do have possibly one or more common vertices.

We set N

n2−k/l
=: ω, according to our assumption ω → +∞.
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4.2 Threshold Functions

Our next goal is to find an approximation for

Var

(

∑

S∈B(n)
k,l

1(S)

)

= E

(

∑

S∈B(n)
k,l

1(S)

)2

−
(

E

(

∑

S∈B(n)
k,l

1(S)

))2

We know that
(

E

(

∑

S∈B(n)
k,l

1(S)

))2

∼ O

(

(

R

k!

)2 (2N)2l

n2(2l−k)

)

= O

(

R2l

k!

)2

ω2l

Also,with (4.1)

E

(

∑

S∈B(n)
k,l

1(S)

)2

=

= O

(

(

N

n2− k
l

)l
)

+ R2 O







(n

k

)2

(

(n
2 )−l

N−l

)2

(

( n
2 )
N

)2






+ O

(

(

N

n2− k
l

)2l l
∑

r=1

(

n2− k
l

N

)r)

≃

≃ R2

k!2
n2kn−2l2lN l + O(ωl) + O

(

(ω)2l−1
)

.

Thus,

Var

(

∑

S∈B(n)
k,l

1(S)

)

= O

(

1

ω
E







∑

S∈B(n)
k,l

1(S)







2
)

With Theorem 3.1, it follows

Pn,N

(∣

∣

∣

∣

∣

(

∑

S∈B(n)
k,l

1(S)

)

−
(

∑

S∈B(n)
k,l

E1(S)

)∣

∣

∣

∣

∣

≥ 1

2

(

∑

S∈B(n)
k,l

E1(S)

))

= O

(

1

ω

)

so

Pn,N

((

∑

S∈B(n)
k,l

1(S)

)

≤ 1

2

(

∑

S∈B(n)
k,l

E1(S)

))

= O

(

1

ω

)

.

From ω → ∞,
∑

S∈B(n)
k,l

E1(S) → ∞, it follows more than that Gn,N contains at least one

subgraph isomorphic to an element Bi
k,l ∈ B(n)

k,l with probability tending to 1: There will

be O(ωl) many of these isomorphic subgraphs, their number tending to ∞.

This result has been proved for non-balanced subgraphs as well [7, page 85].
Note that this theorem yields the following interesting results:

• The threshold function for the appearance trees of order k is n
k−2
k−1 .

• For N ≫ n, a random graph will have a cycle of order k, k ∈ N asymptotically almost
sure.

• Complete subgraphs of order k ≥ 3 will start appearing for N ≫ n2(1− 1
k−1).
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4 The “classical” Random Graph Model by Erdős and Rényi

4.3 The Giant Component

An intriguing question is the forming of the so-called giant component. That is, as n → ∞,
how strongly must N → ∞ so that a proportion of the vertices of Gn,N is in the largest con-
nected component of the graph, i.e. the size of the largest component is Θ(n). Equivalently,
one can investigate how large p(n) must be so that Gn,p forms a giant component.

In 1959, Erdős and Rényi [21] showed that, for N = N(c) = n log n + cn, the probability
that a graph consists of one large connected component (that contains n− k vertices) and
k isolated vertices tends to one, where k = k(n, c). Using this result, they showed that the
probability of of Gn,N(c) being completely connected tends to e−e−2c

for n → ∞:

Theorem 4.2. Considering Gn,N , where it holds that

N = Nc =
1

2
n log n + cn,

let Pc(n,N) of Gn,N be the probability of Gn,N being completely connected. It then holds
that

lim
n→∞

Pc(n,N) = e−e−2c
.

Equivalently, this means that for p ≫ log n
n + 2c

n , Gn,p will be connected with the same
probability.

A year later, they published a groundbreaking paper [22], that investigated threshold
functions for various properties of random graphs. The results included connectivity char-
acteristics when N(n) ∼ cn which were surprising.

We shall prove that the threshold function for a giant component is at N(n) = n
2 , which

is equivalent to np = 1 for Gn,p. A curious aspect here is not only the threshold function,
but also the phase transition from one state into the next. Erdős and Rényi suggested a
“double jump” in the size of the largest component, stating it would change from O(log n)

to Θ(n
2
3 ) and then to Θ(n). In [28, page 111] some evidence can be found against this

statement. For a more detailed description of the phase transition, see [27].

Prior to proving the above statement, we shall need following theorem (Chernoff’s in-
equality) [28, page 26]. We will also need some implications of Chebysheff’s inequality.
Primarily, we want to show when a random variable will be reasonably close to its mean
with high probability. Needing something stronger than Chebysheff’s inequality, we shall
use this basic idea which follows from Markov’s inequality (theorem 3.2). For u ≥ 0, t ≥ 0,

P(X ≥ EX + t) = P(euX ≥ eu(EX+t)) ≤ e−u(EX+t)EeuX , (4.2)

and vice versa, for u ≤ 0

P(X ≤ EX − t) = P(euX ≤ eu(EX−t)) ≥ e−u(EX−t)EeuX . (4.3)

Assuming X is a sum of independent random variables, X =
∑n

i=1 Xi, with (4.2) we get,
for u ≥ 0

P(X ≥ EX + t) ≤ e−u(EX+t)
n
∏

i=1

EeuXi . (4.4)
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4.3 The Giant Component

We are especially interested in the case where the Xis are indicator functions, thus
Xi ∼ Be(pi), with pi = P(Xi = 1) = E(Xi). We will denote λ := E(X). (4.4) now
simplifies to

P(X ≥ EX + t) ≤ e−u(λ+t)(1 − p − peu)u where λ = np. (4.5)

Differentiating and setting to zero, we see that the minimum of (4.5) is reached for

eu = (λ+t)(1−p)
p(n−λ−t) for n > λ + t. For (4.4), we get

P(X ≥ EX + t) ≤
(

λ

λ + t

)λ+t( n − λ

n − λ − t

)n−λ−t

for 0 ≤ t ≤ n − λ. (4.6)

Theorem 4.3 (Chernoff’s inequality). Let X ∼ Bi(n, p) and λ = np. We define ϕ(x) :=
(1 + x) log(1 + x) − x, x ≥ −1, (ϕ(x) = ∞ for x < −1)

P(X ≥ EX + t) ≤ exp

(

−λϕ

(

t

λ

))

≤ exp

(

− t2

2(λ + t
3 )

)

, t ≥ 0, (4.7)

P(X ≤ EX − t) ≤ exp

(

−λϕ

(−t

λ

))

≤ exp

(

− t2

2λ

)

, t ≥ 0 (4.8)

Proof. (4.6) can be written as

P(X ≥ EX + t) ≤ exp

(

−λϕ

(

t

λ

)

− (n − λ)ϕ

( −t

n − λ

))

, 0 ≤ t ≤ n − λ.

Similarly, by using exactly the same arguments as above for (4.3),

P(X ≤ EX − t) ≤ exp

(

−λϕ

(

t

λ

)

− (n − λ)ϕ

(

t

n − λ

))

, 0 ≤ t ≤ λ.

For all x, it holds that ϕ(x) ≥ 0, so (4.7) and (4.8) follow directly. Note that we are only
interested in the non-trivial cases where 0 ≤ t ≤ n − λ or 0 ≤ t ≤ λ.

As ϕ(0) = 0 and ϕ′(x) = log(1 + x) ≤ x, it follows ϕ(x) ≥ x2/2 for −1 ≤ x ≤ 0, so (4.8)
is shown.

(4.7) can be seen similarly: ϕ(0) = ϕ′(0) = 0,

ϕ′′(x) =
1

x
≥ 1

(1 + x
3 )3

=

(

x2

2(1 + x
3 )

)′′

so ϕ(x) ≥ x2/(2(1 + x/3)). The inequality then follows.

Lemma 4.2. Let Xn be a random variable, EXn → ∞ and (EXn)2 ∼ E(X2
n). It follows

that Xn > 0 a.a.s. and that Xn
EXn

→ 1. This is equal to P( Xn
EXn

6∈ (1− ε, 1+ ε)) → 0, ∀ε > 0.

Proof. With (3.1), we have ∀ε > 0:

P(|X − EX| ≥ εEXn) ≤ VXn

ε2(EXn)2
= o(1).
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4 The “classical” Random Graph Model by Erdős and Rényi

To continue, we shall need a basic understanding of branching processes [26].

We define the following process: At time t = 0 Z0 has Y0 children, where Y0 = Z1 is a
non-negative random variable in N0.

At t = 1, each of the Y0 children has Yi ≥ 0, i = 1, . . . , Z1, children, where all the Yis
are random variables with the same distribution. Then, Z2 =

∑Z1
i=1 Yi, and more generally

Zk+1 =
∑Zk

i=1 Yi. This process is called a Galton-Watson process. As soon as there is no
more offspring, the entire process dies out, i.e. Zn = 0 implies Zn+l = 0, l > 0. This is called
extinction. Note that Z0, Z1, . . . form a Markov chain. We assume that the distribution of
Yi does not vary over time.

Let P(Z1 = k) = P(Yi = k) = pk denote the probability that Z1 equals k, which is the
probability that an object existing at time t has k children at time t + 1 for k = 0, 1, 2, . . . ,
∑

pk = 1. We shall need the probability generating function of Yi, f(x) =
∑∞

k=0 pkx
k for

|x| ≤ 1, and denote its iterates by

f0(x) = x, f1(x) = f(x), and fn+1(x) = f (fn(x)) , n = 1, 2, . . . (4.9)

Note that it follows immediately that fn+1(x) = fn (f(x)). Also, EZ1 = f ′(x)|x=1 =
∑

kpk.
We shall assume two things:

• ∀k : pk 6= 1 and p0 + p1 < 1. This means that f(x) is strictly convex on the unit
interval.

• EZ1 =
∑∞

k=0 kpk is finite (and so f ′(x) is finite as well).

According to [26], this basic result was already discovered by Watson in 1874:

Theorem 4.4. The generating function of Zn is the nth interate fn(x).

Proof. Let f(n)(x) be the generating function of Zn, n = 0, 1, 2, . . . . The conditioned

distribution of ( Zn+1 | Zn = k ) is (f(x))k, k = 0, 1, 2, . . . . Thus, the generating function
of Zn+1 is

f(n+1)(x) =

∞
∑

k=0

P(Zn = k) (f(x))k = f(n) (f(x)) , n = 0, 1, . . .

Obviously, f(0) and f0 are equal, so by induction and the fact that fn+1(x) = fn (f(x))
it follows that f(n)(x) = fn(x), n = 1, 2, . . . .

The original problem concerning branching processes was the question of the probability
of extinction.

Definition 4.5 (Extinction). The event that for the above defined sequence (Zn)n∈N and
a jN > 0 it holds Zn = 0, ∀n ≥ jN , i.e. Zn = 0 for all but a finite number of n. We denote
the probability of extinction with ρ.

Recall that P(Zn+1 = 0 | Zn = 0) = 1, thus the event (Zn = 0) implies (Zn+1 = 0).
Thus,

ρ = lim
n→∞

P(Yn = 0) = lim
n→∞

fn(0).
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4.3 The Giant Component

Theorem 4.5. If µ = EZ1 ≤ 1, the extinction probability ρ = 1. If µ > 1, then ρ is the
unique non-negative solution, ρ < 1, of the equation

x = f(x). (4.10)

Proof. By induction, we see that fn(0) < 1, n = 0, 1, . . . .

Also, combining the fact that (Zn = 0) implies (Zn+1 = 0) and Theorem 4.4, we see that
0 = f0(0) ≤ f1(0) ≤ f2(0) ≤ · · · ≤ ρ = lim fn(0). With (4.9) we know fn+1(0) = f (fn(0)),
and lim fn(0) = lim fn+1(0) = ρ, it follows ρ = f(ρ), and thus also 0 ≤ ρ ≤ 1.

If µ ≤ 1, then 1 ≥ f ′(1) ≥ f ′(x), 0 ≤ x ≤ 1. With help of the mean value theorem, we
get f ′(ζ)(1 − x) = f(1) − f(x), so c(1 − x) = 1 − f(x) for a constant c < 1 and 0 ≤ x < 1,
thus f(x) > x for 0 ≤ x < 1, so it follows that ρ = 1.

On the other hand, if µ > 1, then f(x) < x for x = 1 − ε, ε > 0 sufficiently small.
However, f(0) ≥ 0. It follows that there exists at least one solution for (4.10) in the
half-open interval [0, 1). With Rolle’s theorem, we know that if there were two solutions,
s0 and t0 with 0 ≤ s0 < t0 < 1, there would exist ξ and η, s0 < ξ < t0 < η < 1 with
f ′(ξ) = f ′(η) = 1, which is impossible because f(x) is strictly convex.

Also, lim fn(0) cannot be 1: (fn(0))n≥0 is a nondecreasing sequence, while it holds
fn+1(0) = f (fn(0)) < fn(0) if fn(0) is close to (but less than) 1. It follows that ρ is
the the only solution of (4.10).

Before applying this theorem to find the structure of the giant component, let us see
these two examples (from [28]).

Example 4.1. Let X ∼ Po(c). Then the probability generating function is

fX(x) =
∞
∑

i=0

cixi

i!
e−c = exp(c(x − 1)).

Now, if c > 1, with (4.10) and setting y = 1 − x we obtain the probability of extinction
ρ = 1 − β(c), where β = β(c) ∈ (0, 1) is the determined by the equation

β + e−βc = 1 (4.11)

Example 4.2. Let Yn ∼ Bi(n, p), np → c > 1 as n → ∞. The probability generating
function of Yn is

fYn(x) =

n
∑

i=0

(n

i

)

xipi(1 − p)n−i = (1 − p + xp)n,

and for every real number x we have

lim
n→∞

fYn(x) = exp(c(x − 1)) = fX(x), (4.12)

The probability generating function of Yn tends pointwise to the probability generating
function of X ∼ Po(c). This means that for n → ∞, the probability of extinction ρ(n, c)
of a branching process defined by Yn converges to 1 − β(c) where β is defined by (4.11).
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With these preliminaries, we now define the “almost-” branching process we need [28].
We approach the structure of Gn,p in the following way: In the first step of this process, we
pick any vertex v in Gn,p, find all its neighbors v1, . . . , vr and then we mark v as saturated.

In the second step, we choose v1 and mark it as saturated after finding all its neigh-
bors v11, . . . , v1s in V (Gn,p)\ {v, v1, . . . , vr}. We continue this process until there are no
unsaturated vertices left in this component.

If we follow a breadth-first approach during this process — i.e. the vertices closer to v are
saturated first — then this process resembles very strongly the branching process. Note that
the difference here is that, while we had defined Zi =

∑Zi−1

j=1 Yj, i.e. as a sum of a random
number of random variables, here at each step we only add one more random variable
(namely, the number of new neighbors). This new random variable Xi = Xi(n,m, p)
has binomial distribution Bi(n − m, p), where m denotes the number of elements of the
component already found. This differs from the classical branching process, where the
distribution of the offspring does not change as the process advances. However, for n large
and m small, Bi(n −m, p) ∼ Bi(n, p). The vertex v being contained in a small component
can be seen as equivalent to the process dying out. Likewise, the probability that the v is
contained in a very large component is equivalent to the process going on for a very long
time.

Theorem 4.6. For np = c, c > 0 constant:

i) If c < 1, then a.a.s. the largest component of Gn,p has at most 3
(1−c)2

log n vertices.

ii) Let c > 1 and let β = β(c) ∈ (0, 1) be defined as (4.11). Then Gn,p contains a
giant component of (1 − o(1))βn vertices. Also, a.a.s. the size of the second largest
component of Gn,p is at most 16c

(c−1)2
log n.

Proof. We first prove the case c < 1. The probability that a given vertex v belongs to a
component of size equal or greater than k = k(n) is surely less than the probability that
the sum of k = k(n) random variables Xi (as defined above) is at least k−1, because, with
the process defined above, this probability is exactly the same as the process “surviving”
at least k − 1 steps (not counting the vertice we start from).

We can define independent random variables X+
i such that X+

i ∼ Bi(n, p). Observe that

Xi is bounded from above by X+
i . Also note that

∑k
i=1 X+

i ∼ Bi(kn, p). For large n, the
probability that Gn,p contains a component of size at least k ≥ 3 log n/(1 − c)2 is bounded
from above by

nP

(

k
∑

i=1

X+
i ≥ k − 1

)

= nP

(

k
∑

i=1

X+
i ≥ ck + (1 − c)k − 1

)

≤

≤ n exp

(

− ((1 − c)k − 1)2

2(ck + (1 − c)k/3)

)

≤ n exp

(

−(1 − c)2

2
k

)

= o(1).

The first inequality follows through (4.7), the last through some basic transformations and
the fact that k ≥ 3log/n/(1 − c)2.

For the case c > 1, we set k− = 16c
(c−1)2

log n and k+ = n2/3. We will start by showing that

for every k, k− ≤ k ≤ k+, and all vertices v in Gn,p, a.a.s., our adapted branching process
either dies out after fewer than k− steps, or there are still at least (c−1)k/2 vertices which
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4.3 The Giant Component

have been found but not yet saturated. From this, it follows that there is no component in
Gn,p with k vertices for k− ≤ k ≤ k+.

Note that to check if the process starting at v produces at least (c − 1)k/2 unsaturated
vertices after k steps, we need to identify at most k + (c − 1)k/2 = (c + 1)k/2 vertices of
the component wherein v lies, namely, the k saturated vertices (one for each step), and the
other unsaturated ones.

As in the previous case, we can bound Xi, 1 ≤ i ≤ k, this time from below by independent
variables X−

i ∼ Bi(n− c+1
2 k+, p). Also, the probability that the process generates less than

(c − 1)k/2 unsaturated vertices after k steps or even dies out after k steps is smaller than
the probability that

k
∑

i=1

X−
i ≤ k − 1 +

(c − 1)k

2
.

Thus the probability that the above described situation happens for any vertex v in Gn,p

and some k, k− ≤ k ≤ k+ is, for n large, bounded:

n

k+
∑

k=k−

P

(

k
∑

i=1

X−
i ≤ k − 1 +

(c − 1)k

2

)

≤ n

k+
∑

k=k−

exp

(

−(c − 1)2k2

9ck

)

≤

≤ nk+ exp

(

−(c − 1)2

9c
k−

)

= o(1).

The first inequality follows with (4.8) and some basic transformations. Also, E
∑k

1 Xi =
kEXi for Xi is distributed binomially with the same parameters.

Let us define

K(v) := {v} ∪
{

u ∈ V (G) : ∃v1, . . . , vk ∈ V : {v, v1}, {v1, v2}, . . . , {vk, u} ∈ E(G)
}

,

i.e. the component of v. We now consider two vertices, v1 and v2 such that |K(vi)| ≥ k+

for i = 1, 2. We are looking for the probability of these two vertices not being in the same
component, i.e. P

(

K(v1) 6= K(v2)
)

.
To find this probability, we again use the process as defined above for k+ steps, starting

at v1. From above, we now know that there exist still at least (c − 1)k+/2 unsaturated
vertices, all belonging to K(v1). We then run a similar process starting from v2. Either
we join v2 to some already found vertice of K(v1) during the first k+ steps, or we again
have (c− 1)k+/2 vertices that still need to be saturated. The probability of there being no
edges between the two sets of unsaturated edges is bounded from above by

(1 − p)[(c−1)k+/2]2 ≤ exp(−(c − 1)2n1/3c/4) = o(
1

n2
)

so the probability that v1 and v2 lie in the same component tends to one, for any two
vertices v1, v2 whose component size is greater than k+. This means that there are two
“classes” of vertices, those who belong to components of size smaller than k− and those
who belong to the “giant component” of size greater than k+.

To complete the proof, we need to know how many of the vertices are in the giant
component, or, equivalently, how many are not? Let us estimate the latter number, which
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4 The “classical” Random Graph Model by Erdős and Rényi

we shall denote by Y . These vertices will henceforth be called “small” vertices. We already
know that our process, for small vertices, is bounded from below by the process distributed
with Bi(n − k−, p). Thus, the probability ρ(n, p) that a vertex v is small (which equals
the probability of extinction of the process) is bounded from above by the probability of
extinction ρ+ = ρ+(n, p) of the process distributed with Bi(n − k−, p).

Following the same line of argumentation, ρ(n, p) is bounded from below by ρ− + o(1),
where ρ− = ρ−(n, p) is the probability of extinction for the branching process with dis-
tribution Bi(n, p), the term o(1) bounding the probability that the branching process dies
later than k− steps. From example 4.2 we know that for np → c for n → ∞, both ρ− and
ρ+ converge to 1 − β as defined in (4.11). Thus, the expectation of the number of small
vertices EY = (1 − β + o(1))n. We now only need to show that Y ∼ EY .

To do this, we consider EY (Y − 1), that is, what is the expectation of picking two small
vertices. Clearly, the expectation of picking the first vertice is nρ(n, p). For the second
vertex, we then have two possibilities: either both vertices are in the same component,
thus there are less than k− possibilities of picking one of these vertices, or it is in one of
the remaining small components. We pick one of these vertices with expectation nρ(n −
O(k−), p).

Now, P
(

ρ(n − O(k−), p
)

is the same as the probability of picking a small vertex in
Gn−O(k−),p; this implies

ρ(n − O(k−), p) =

∣

∣

∣

{

v ∈ Gn−O(k−),p : v small
}

∣

∣

∣

n − O(k−)
≤

∣

∣

∣

{

v ∈ Gn,p : v small
}

∣

∣

∣

n − O(k−)
=

=

∣

∣

∣

{

v ∈ Gn,p : v small
}

∣

∣

∣

n
(1 + o(1)) = ρ(n, p)(1 + o(1)).

We gather

E(Y (Y − 1)) ≤ nρ(n, p)(k− + nρ(n − O(k−), p)) ≤
≤ nρ(n, p)(k− + nρ(n, p))(1 + o(1)) =

= (nρ(n, p))2(1 + o(1)) = (1 + o(1))(EY )2.

Thus, EY 2 ≤ (1 + o(1))(EY )2 + EY = (1 + o(1))(EY )2. From Chebysheff’s inequality
(Theorem 3.1) and Lemma 4.2 it follows that Gn,p contains (1 − β + o(1))n small vertices,
thus the theorem is proved.

Speaking of the largest component of a network, remember that one often refers to the
“giant component.” The other components of networks are mostly much smaller than the
largest one. Theorem 4.6 is important concerning complex networks because it states one
of the few properties of random graphs that complex networks typically possess as well.
It remains the basis of many models for “real” networks. The phase transition also stays
important in many other models [38, page 199].

4.4 The Clustering Coefficient of Classical Random Graphs

As described in subsection 1.3.3, an index for transitivity is the so-called clustering coeffi-
cient, designated by
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4.4 The Clustering Coefficient of Classical Random Graphs

C =
3 × number of triangles

number connected pairs of vertices
.

We will proceed with the clustering coefficient of a classical random graph, or rather its
expected value. Note that for these calculations, we assume that p is small enough, i.e.
p = p(n) ≪ 1/n.

Now we can proceed with calculating the expected number of triangles in a graph
G(V,E) ∈ Gn,p. Let τ denote the set of all subgraphs of G isomorphic to K3, τ = {H ⊂
G,H ∼= K3}, and by XT we denote the the number of these subgraphs, XT = |τ |. Thus,

XT =
∑

1≤i<j<k≤n

1
(

(i, j, k) ∈ τ
)

and EXT =
∑

1≤i<j<k≤n

P
(

(i, j, k) ∈ τ
)

=
(n

3

)

p3.

To show that XT is in fact very close to EXT , we will apply Lemma 4.2:

EX2
T = E





∑

1≤i1≤i2≤i3≤n

∑

1≤j1≤j2≤j3≤n

1
(

(i1, i2, i3) ∈ τ
)

1
(

(j1, j2, j3) ∈ τ
)



 =

= E





∑

1≤i1≤i2≤i3≤n

∑

1≤j1≤j2≤j3≤n

1
(

(i1, i2, i3) ∈ τ, (j1, j2, j3) ∈ τ
)



 =

=





∑

1≤i1≤i2≤i3≤n

∑

1≤j1≤j2≤j3≤n

P
(

(i1, i2, i3) ∈ τ, (j1, j2, j3) ∈ τ
)



 .

To evaluate this sum, let us define M := {i1, i2, i3} ∩ {j1, j2, j3}. We also define pi,j :=
P
(

(i1, i2, i3) ∈ τ ∧ (j1, j2, j3) ∈ τ
)

. We consider three different cases:

i) |M | = 3: There are
(n

3

)

different possibilities of picking these three vertices, the
probability of there being a triangle is pi,j = p3.

ii) |M | = 2: There are 12
(n

4

)

different possibilities of picking these vertices and then
arranging the vertices as triangles, the probability of there being edges for these
triangles pi,j = p4.

iii) |M | ≤ 1: pi,j = p6, and we pick the remaining possiblilites of building couples, i.e.
(

n
3

)2 −
(

n
3

)

− 12
(

n
4

)

.

Thus,

EX2
T =

(n

3

)

p3 + 12
(n

4

)

p5 +

(

(n

3

)2
−
(n

3

)

− 12
(n

4

)

)

p6 =

= (EXT )2 +
(n

3

)

p3(1 − p3) + 12
(n

4

)

p5(1 − p) =

= (EXT )2 + O(n4p5).

Note that from the proof of Theorem 4.1, we know that as soon as N (or, equivalently,
p) is greater than the threshold function, there are infinitely many subgraphs of a certain
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4 The “classical” Random Graph Model by Erdős and Rényi

type (in this case, triangles) that will appear in Gn,p. In this case, it has to hold p ≫ 2
n .

For p large enough, it holds EXT → ∞ ⇔ np → ∞.
With the previous estimates, it follows that E(X2

T ) ∼ (EXT )2 and with Lemma 4.2,
XT

EXT
→ 1, thus EXT =

(n
3

)

p3.
The expected number of connected pairs of edges is calculated in a similar manner. Let

ρ denote the set of all subgraphs of G isomorphic to H̃(V,E) where V = {v1, v2, v3} and
E = {(v1, v2), (v1, v3)}, and thus ρ = {H ⊂ G,H ∼= H̃}. By XR let us denote the the
number of these subgraphs, XR = |ρ|.

For a set of three vertices, i1 < i2 < i3, we define a random variable Zi1i2i3 as follows:

Zi1i2i3 := 1(i1) + 1(i2) + 1(i3)

where 1(ik) = 1, k = 1, 2, 3, if there is a pair of edges centered at ik, with the edges
connecting vertices from {i1, i2, i3}. Thus,

XR =
∑

1≤i1<i2<i3≤n

Zi1i2i3 and

EXR =
∑

1≤i1<i2<i3≤n

EZi1i2i3 =
(n

3

)

3p2.

Arguing as with triangles,

EX2
R = E





∑

1≤i1<i2<i3≤n

∑

1≤j1<j2<j3≤n

Zi1i2i3Zj1j2j3



 =

=
∑

1≤i1<i2<i3≤n

∑

1≤j1<j2<j3≤n

E
(

(1(i1) + 1(i2) + 1(i3))(1(j1) + 1(j2) + 1(j3))
)

.

Similar to the above case, we define M := {i1, i2, i3}∩{j1, j2, j3} and we also define L as
those edges present connecting both vertice of i1, i2, i3 and vertices of j1, j2, j3. We define
pi,j := E (Zi1i2i3Zj1j2j3). We proceed as with triangles:

i) |M | = 3: To start with, there are
(

n
3

)

ways of picking these three vertices, and
pi,j = 9p4.

ii) |M | = 2: We can choose the vertices in 12
(

n
4

)

different ways. There are two cases:

a) |L| = 1: We distinguish how many edges there are in this construction in total;
for three this gives us pi,j = 4p3(1 − p)2, when there are four edges we have
12p4(1 − p) and five egdes present renders 9p5.

b) |L| = 0: Here, pi,j = p4(1 − p)

In sum, for |M | = 2, we then have 12
(

n
4

)

p3(4 + 5p).

iii) |M | ≤ 1: As with triangles above, we shall subtract; pi,j = 9p4, and there are
(n

3

)2 −
(n

3

)

− 12
(n

4

)

ways left of picking the vertices.

Thus,

EX2
R =

(

(n

3

)2
−
(n

3

)

− 12
(n

4

)

)

9p4 +
(n

3

)

9p2 + 12
(n

4

)

p4(1 − p) = O
(

(EXR)2
)

.
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4.5 The Degree Sequence of Random Graphs

Like above, for n large enough, it then follows that EX2
R ∼ (EXR)2 and with Lemma 4.2,

it follows XR
EXR

→ 1
We can then proceed to evaluate the clustering coefficient C(Gn,p) in expectation,

EC(Gn,p) =
3EXT

EXR
=

3
(n

3

)

p3

(n
3

)

p2
= 3p.

p(n) normally tends to 0 as n → ∞. Depending on p = p(n), this can and usually will be
quite small. In regard to real networks, far too small. Most “real” networks have clustering
coefficients above 0.01. The network of company directors even has a clustering coefficient
of 0.59 [38, page 182]. In fact, when Watts and Strogatz presented their “small-world”
model [45], one of its key features was to combine a high clustering coefficient with a small
degree of seperation. The low clustering coeffiecient is one of the reasons why random
graphs are a poor model for complex networks.

4.5 The Degree Sequence of Random Graphs

What else makes the classical Erdős-Rényi model a rather unsatisfactory abstraction for
real world networks? As we shall see now, if we denote by Xk the number of vertices with
degree k, Xk has asymptotically Poisson distribution with mean λk = nBi(k; n − 1, p), i.e.
n
(

n−1
k

)

pk(1 − p)n−1−k [7].

It will be enough to consider the case where p ≥ εn−3/2 because of the following consid-
erations. Let Yk =

∑

i≥k Xi, that is, Yk is the number of vertices of degree at least k. If

p = o(n−3/2), then

EY2 =

n−1
∑

j=2

EXj ≤ n

n−1
∑

j=2

(

n − 1

j

)

pj ≤
∞
∑

j=2

(pn)j

j!
= o(1).

This means that a.a.e. Gn,p consists of independent edges. In this case, if pn2 → ∞, then
there will be 2M vertices of degree 1, where M = |E(Gn,p)| ∼ pn2/2, and all other vertices
will have degree 0. As this case is not very interesting, we set p fairly enough in following
theorem.

Theorem 4.7. Let ε > 0 be fixed, εn−3/2 ≤ p = p(n) ≤ 1 − εn−3/2, let k = k(n) ∈ N and
set λk = λk(n) = nBi(k; n − 1, p) = n

(n−1
k

)

pk(1 − p)n−1−k. Then the following assertions
hold:

i) If lim λk(n) = 0, then P(Xk = 0) = 1.

ii) If lim λk(n) = ∞, then lim P(Xk ≥ t) = 1 for every fixed t.

iii) If 0 < limλk(n) ≤ limλk(n) ≤ ∞, then Xk has asymptotically Poisson distribution
with mean λk:

P(Xk = r) ∼ e−λk
λr

k

r!

for every fixed r.

Prior to proving this theorem, we shall need some preliminary results.
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4 The “classical” Random Graph Model by Erdős and Rényi

Lemma 4.3. Let X ∈ N, be a random variable. It follows that P (X > 0) ≤ EX.

Proof. EX =
∑

k≥0 kP(X = k) ≥∑k≥1 P(X = k) = P(X > 0)

Theorem 4.8. Let Sn,p be a random variable, Sn,p ∼ Bi(n, p). Let u > 1 and 1 ≤ m =
⌈upn⌉ ≤ n − 1. Then

P(Sn,p ≥ upn) = P(Sn,p ≥ m) <
u

u − 1

(

n

k

)

pk(1 − p)n−k ≤

≤ 1√
2π

u

u − 1

(

n

m(n − m)

)1/2

u−upm

(

1 − p

1 − up

)(1−up)n

.

For a proof of this theorem, see for example [7].

Theorem 4.9 (See [7]). Let λ = λ(n) be a non-negative bounded function on N. With Er

we denote the rth factorial moment of a function. Suppose the non-negative integer valued
random variables X1,X2, . . . are such that

lim
n→∞

(ErXn − λr) = 0, r = 0, 1, . . .

Then
d(Xn,Po(λ)) → 0.

Proof of Theorem 4.7. Without loss of generality, we assume p ≤ 1/2. Note that EXk =
λk(n), which, with Lemma 4.3, yields

P(Xk ≥ 1) ≤ EXk = λk(n).

The first assertion then follows.
We now only consider lim λk(n) > 0. We will conclude the remaining proof by showing

that for every fixed r ≥ 1, the rth factorial moment ErXk of Xk is asymptotic to λk(n)r.
ErXk is the expected number of ordered r-tuples of vertices x1, x2, . . . , xr such that each

vertex xi has degree k. Let us commence by considering the probability that r given vertices
x1, x2, . . . , xr all have degree k. Let there be l edges joining the xis, and let vertex xi be
joined to d̃i ≤ k vertices xj, 1 ≤ j ≤ r. Obviously,

∑r
i=1 d̃i = 2l and xi has to be joined to

k − d̃i vertices outside the set {x1, x2, . . . , xr}. The probability of this event is

r
∏

i=1

Bi(k − d̃i; n − r, p). (4.13)

Let us first consider the case where p(n) ≤ 1/2 is bounded away from 0. With Lemma 4.8,
lim λk(n) > 0 implies that k(n) is about pn, namely, we have k = pnαn where α = 1+o(n).
It follows

Bi(k − d; n − r; p)

Bi(k; n − 1; p)
=

(n − r)k−d(k)d

(n − 1)kpd(1 − p)r−d−1
=

=
(n − r)k−r+1(k)dp

−d(n − k − 1)r−d−1(1 − p)−r+d+1

(n − 1)k
∼

∼ (n − r)k−r+1n
dnr−d−1

(n − 1)k
=

(n − r)!nr−1

(n − 1)!
∼ 1.
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Thus, with (4.13), it follows that

EXk ∼ (n)rBi(k; n − 1, p)r ∼ λr
k (4.14)

Now, let us consider the case where p = o(1). With (4.13) we can bound ErXk the following
way:

ErXk ≤ (n)r

R
∑

l=0

(

R

l

)

plqR−l max
P

i= 1rd∗i =2l

r
∏

i=1

Bi(k − d∗i ; n − r, p),

where R =
(

r
2

)

and the maximum is over all sequences d∗1, d
∗
2, . . . , d

∗
r with

∑

i= 1rd∗i = 2l
and 0 ≤ d∗i ≤ min{r − 1, k}. Note that k(n) = o(n). Thus, for 0 ≤ d ≤ min{r − 1, k} and
n sufficiently large,

Bi(k − d; n − r, p)

Bi(k; n − r, p)
≤ (k)d

(n − r − k)d
p−d ≤ 2

(

k

pn

)d

,

because (n − r − k)d > (n − r − k − d + 1)d = nd(1 − o(1))d > nd

2 . We then obtain

EXk ≤ nrBi(k; n − r, p)r

(

1 +

R
∑

l=1

(

R

l

)

pl2r

(

k

pn

)2l
)

≤

≤ nrBi(k; n − r, p)r

(

1 + 2r2
R
∑

l=1

(

k2

pn2

)l
)

. (4.15)

By assumption, lim λk(n) > 0, which implies that k2 = o(pn2): If this were not the case,
there would be some η > 0 such that k ≥ np1/2 for n arbitrarily large. This would imply

lim λk(n) ≤ lim n
(n

k

)

pk ≤ lim n
(en

k

)k
pk =

= lim n
(epn

k

)k
≤ lim n

(

ep1/2

η

)ηp
1/2n

≤

≤ lim n





(

en−3/4

η

)n
−3/4




nη

= lim n
en3/4ηn

1/4

η
= 0,

which is contrary to our assumptions. The last inequalities follow from the fact that for
p close to zero, (ap)bp, a, b > 0 is strictly decreasing, thus for our purpose reaches it’s
maximum at p = n−3/4. As k2 = o(pn2), (4.15) implies that

ErXk ≤ nrBi(k; n − r, p)r (1 + o(1)) = λr
k (1 + o(1)) .

Vice versa, it holds for independent r-tuples of vertices of degree k:

ErXk ≥ (1 − p)R(n)rBi(k; n − r, p)r = λr
k (1 + o(1)) .

Note that q → 1, so

ErXk ∼ λr
k, (4.16)
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4 The “classical” Random Graph Model by Erdős and Rényi

so the rth factorial moment of Xk is asymptotic to the rth factorial moment of Po(λk).
For lim λk(n) = ∞, then E2Xk ∼ λ2

k implies that EX2
k = λ2

k (1 + o(1)) = (EXk)2, so with
Lemma 4.2 we have

lim
n→∞

P(Xk ≥ t) = 1

for every fixed t.

On the other hand, if lim λk < ∞, then with Theorem 4.9, (4.14) and (4.16) we get that
asymptotically Xk has Poisson distribution with mean λk.

4.6 The Diameter

The last property we shall investigate concerning random graphs is their diameter. Seeing
that the small-world effect is defined by having diameter that is of the size of the diameter
of a random graph, we must show how big this diameter actually is, namely O(log n).

However, before we prove anything, we will need some preliminary thoughts and four
lemmas [7, page 229 ff].

Let us denote by Γk(x) the set of vertices at distance k from a vertex x of G ∈ Gn,p, and
by Nk(x) the set of vertices within distance k from x, i.e.

Γk(x) = {y ∈ G : d(x, y) = k} and Nk(x) =
k
⋃

i=0

Γi(x).

This means that diam G ≤ d iff Nd(x) = V (G) for every vertice x and diam G ≥ d iff there
is a vertice y such that Nd−1(y) 6= V (G).

Intuitively, Gn,p should have small diameter: A vertice x will have about pn neighbors;
each of these neighbors will have around another pn neighbors, so Γ2(x) would be presumed
to be around (pn)2, and so on. Generally speaking, a subset W ⊆ V would be expected
to have only slightly less than |W | · pn neighbors. Thus, we would anticipate that Γk(x)
would be be only slightly less than (pn)k.

If we set d = d(n) = 2k, and we assume that k is large so that both |Γk(x)| and |Γk(y)|
are large enough, with very high probability, either Γk(x) ∩ Γk(y) 6= ∅ or else there exists
an edge (vi, vj) ∈ Gn,p connecting some vertice vi in Γk(x) with some vertice vj ∈ Γk(y).
It thus follows that with large probability, diam Gn,p ≤ 2k + 1 = d + 1.

Numerous assumptions are necessary to prove this, as well as the use of concrete con-
stants. As we will work with dependent events, we will need many conditional probabilities.
We will also need following theorem [7, page 13]:

Theorem 4.10. Let Sn,p ∼ Bi(n, p), q = 1 − p. Suppose 0 < p ≤ 1/2, εpqn ≥ 12 and
0 < ε ≤ 1/12. Then

P(|Sn,p − pn| ≥ εpn) ≤ (ε2pn)
−1/2e−ε2pn/3.

In the following lemmas, we shall suppose certain things:

• 0 < p = p(n) < 1,

• d = d(n) ∈ N, d ≥ 2,

• pdnd−1 = log(n2/c), c > 0 and pn
log n → ∞ as n → ∞.
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4.6 The Diameter

What we are going to show is that, for the above restrictions, Gn,p has diameter d or d+1.
Note that limn→∞ P (Gn,p is connected) = limn→∞ P (diam Gn,p < ∞). It can be shown

that this probability is greater 0 if p ≥ log n+c0
n for some constant c0. See Theorem 4.2.

It can also be shown (see [7, page 41]) that if p or even pn1/2−ε is bounded away from 0,
then diam Gn,p ≤ 2 for almost every Gn,p. We thus assume that

• p = o(n−1/2+ε) for every ε > 0.

With the above assumptions, it follows that

p = n1/d−1
(

log n2/c
)1/d

and

d =

(

log n + log log n + log 2 + O

(

1

log n

))

1

log(pn)
.

Because pn ≫ log n, d = O(log n/ log log n). It also follows that (pn)d−1 = log(n2

c )1
p =

o(n), and thus p(pn)d−2 = o(1). As we typically let n → ∞, we may assume n ≥ 100,
pn > 100 log n, (pn)d−2 < n/10 and so p(pn)d−2 < 1/10.

We will now prove two lemmas that show that Γk(x) is quite likely to be very close to
(pn)k.

Lemma 4.4. Let x be a fixed vertex, let 1 ≤ k = k(n) ≤ d − 1 and let K = K(n) satisfy

6 ≤ K <
1

12

(

pn

log n

)1/2

.

Let Ωk ⊂ Gn,p be the set of graphs for which a = |Γk−1(x)| and b = |Nk−1(x)| satisfy

1

2
(pn)k−1 ≤ a ≤ 3

2
(pn)k−1

and

b ≤ 2(pn)k−1.

Set

αk := K

(

log n

(pn)k

)1/2

, βk := p(pn)k−1 and γk :=
2

n
(pn)k−1 =

2

pn
βk.

Then

P (||Γk(x)| − apn| ≥ (αk + βk + γk) apn | Ωk) ≤ n−K2/9.

Proof. First of all, note that αk, βk and γk are all very small, and also that K can become
very large. We will show that with high probability, |Γk(x)| is very close to pn

∣

∣Γk−1(x)
∣

∣.
The idea of this proof reminds of proving Theorem 4.6.

To begin with, it is necessary to find Γk−1(x) and Nk−1(x). We will do this by first
testing which vertices are adjacent to x, i.e. finding Γ1(x), then identifying the vertices
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4 The “classical” Random Graph Model by Erdős and Rényi

adjacent to Γ1(x), Γ2(x), and so on, until we arrive at Γk−2. Obviously, in the jth step, we
are only interested in “new” vertices, i.e. those not already contained in Nj−1.

The probability that a vertex y 6∈ Nk−1(x) is joined to vertices in Γk−1(x), conditional
on Ωk, is pa = 1 − (1 − p)a. Because ap → 0, expanding with the binomial theorem, it
follows easily that

ap(1 − ap

2
) ≤ pa ≤ ap.

We can easily see that, conditional on Ωk, the random variable |Γk(x)| has binomial
distribution with parameters nk = n− b and pa. Since (pn)k−1 ≤ (pn)d−2 ≤ n/10, we have
b ≤ 2(pn)k−1 < n/5, and so 4n/5 < nk ≤ n. Also, ap(n−nk) ≤ γkapn and (ap−pa) ≤ βkap.
Thus, by Theorem 4.10 we get

P (||Γk(x)| − apn| ≥ (αk + βk + γk) apn | Ωk) ≤
≤ P (||Γk(x)| − apnk| ≥ (αk + βk) apnk | Ωk) ≤

≤ P (||Γk(x)| − pank| ≥ αkapn | Ωk) ≤
≤ (α2

kpank)−1/2 exp(−α2
kpank/3) ≤

≤ exp(−α2
kpank/3) ≤ exp(−α2

k(pn)k/9) = n−K2/9.

We could apply Theorem 4.10 because

0 < pa ≤ pa ≤ 3

2
p(pn)k−1 ≤ 3

2
p(pn)d−2 ≤ 1

2
,

0 < αk = K

(

log n

(pn)k

)1/2

≤ K

(

log n

(pn)

)1/2

<
1

12

and

αkpa(1 − pa)nk ≥ K

2

(

log n

(pn)k

)1/2

· 3

10
(pn)k ≥ 2K > 12.

Lemma 4.5. Let K > 12 be a constant and define Ωk, αk, βk, γk, k = 1, 2, . . . , d − 1, as
in Lemma 4.4. Set

δk = exp

(

2

k
∑

l=1

(αl + βl + γl)

)

− 1.

If n is sufficiently large, then with probability at least 1 − n−K−2 for every vertex x and
every natural number k, 1 ≤ k ≤ d − 1, we have

∣

∣

∣|Γk(x)| − (pn)k
∣

∣

∣ ≤ δk(pn)k.

Proof. As already noted in Lemma 4.4, for n → ∞, αk, βk, γk tend to zero, and so δd−1 → 0.
We thus can assume that δd−1 < 1/4.

Let x be a fixed vertice and denote by Ω∗
k the set of graphs for which

∣

∣

∣
|Γl(x)| − (pn)l

∣

∣

∣
≤ δl(pn)l, 0 ≤ l ≤ k.
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4.6 The Diameter

Because we are assuming that δd−1 < 1/4, it follows that also δk−1 < 1/4 for k =
1, 2, . . . , d − 1. With the definition of Ωk and the fact that Ω∗

k can be seen as a type
of decreasing “neighborhood” property, it follows that

Ω∗
k ⊂ Ω∗

k−1 ⊂ Ωk.

We shall prove by induction that

1 − P(Ω∗
k) ≤ 2kn−K2/9 (4.17)

for every k, 0 ≤ k ≤ d−1. For k = 0, there is nothing to prove. Assume that 1 ≤ k < d−1
and (4.17) holds for smaller values of k. Obviously,

1 − P(Ω∗
k) = 1 − P(Ω∗

k−1) + P(Ω∗
k−1)P

(∣

∣

∣
|Γk(x)| − (pn)k

∣

∣

∣
≥ δk(pn)k | Ω∗

k−1

)

.

For any graph in Ω∗
k−1, a = |Γk−1(x)| satisfies |(pn)k−1 − a| ≤ δk−1(pn)k−1, which holds

true after multiplying with pn. Thus,

P
(∣

∣

∣|Γk(x)| − (pn)k
∣

∣

∣ ≥ δk(pn)k | Ω∗
k−1

)

≤

≤ P(Ω∗
k−1)−1P

(∣

∣

∣|Γk(x)| − apn
∣

∣

∣ ≥ (δk − δk−1)(pn)k | Ωk

)

≤

≤ (1 − 2(k − 1)n−K2/9)−1P
(∣

∣

∣
|Γk(x)| − apn

∣

∣

∣
≥ 2(αk + βk + γk)(pn)k | Ωk

)

≤

≤ P
(∣

∣

∣
|Γk(x)| − apn

∣

∣

∣
≥ 2(αk + βk + γk)apn | Ωk

)

≤

≤ 2n−K2/9.

The first inequality follows with conditional probabilities, the second because dnK2/9 < 1
and the last because of Lemma 4.4. We now have

1 − P(Ω∗
k) ≤ 2(k − 1)n−K2/9 + 2n−K2/9 = 2kn−K2/9,

so (4.17) is shown. The statement of Lemma 4.5 now follows quickly.

The next two lemmas, which we shall state without proof, show that with high proba-
bility, two vertices are far from each other.

For two distinct vertices x and y, and k ∈ N, let us define

Γ∗
k(x, y) :=

{

z ∈ Γk(x) ∩ Γk(y) :

Γ(z) ∩ {Γk−1(x) \ γk−1(y)} 6= ∅ ∧ Γ(z) ∩ {Γk−1(y) \ γk−1(x)} 6= ∅
}

.

This effectively means that |Γ∗
k(x, y)| is the number of paths from x to y that have exactly

2k − 1 edges.
Denote by Πk ⊂ G(n, p) the set of graphs of which |Γk−1(x)| ≤ 2(pn)k−1 and

|Γk−1(y)| ≤ 2(pn)k−1. Assume K > e7 constant, and for 1 ≤ k ≤ d/2 define ck = ck(n, p,K)
by

ck4p2kn2k−1 = (K + 4) log n,

and set

mk = mk(n, p,K) :=
2(K + 4) log n

log ck
.

Finally, for d/2 < k ≤ d, set mk := mk(n, p) = 2p2kn2k−1.
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4 The “classical” Random Graph Model by Erdős and Rényi

Lemma 4.6. If n is sufficiently large, then for every k, 1 ≤ k ≤ d − 1, we have

P (|Γ∗
k(x, y)| ≥ mk | Πk) ≤ n−K−4.

Lemma 4.7. If n is sufficiently large, then, with probability at least 1−n−K, the following
assertions hold:

i) For every vertice x,

|Nd−2(x)| < 2(pn)d−2 and
∣

∣

∣Γd−1(x) − (pn)d−1
∣

∣

∣ ≤ δd−1(pn)d−1,

where δd−1 is the number defined in Lemma 4.5.

ii) For distinct vertices x and y,

|Nd−1(x) ∩ Nd−1(y)| ≤ 8p2d−2n2d−3

and

|Γ
(

Nd−1(x) ∩ Nd−1(y)
)∣

∣ ≤ 16p2d−1n2d−2.

Finally, we can present the main theorem of the section [7, page 233].

Theorem 4.11. Let c be a positive constant, d = d(n) ≥ 2 a natural number, and define
p = p(n, c, d), 0 < p < 1, by

pdnd−1 = log(n2/c).

Suppose that pn/(log n)3 → ∞. Then in G(n, p) we have

lim
n→∞

P(diam G = d) = e
−c/2 and lim

n→∞
P(diam G = d + 1) = 1 − e

−c/2

Proof. Theorem 4.11 states that almost surely, Gn,p has diameter either d or d + 1. We
will prove this by considering the number of pairs of vertices “far” from each other.

When do we call two vertices “far” apart? We say y is remote from x if y 6∈ Nd(x) (and,
equivalently, x 6∈ Nd(y)). We then call (x, y) a remote pair.

Let X = X(G) be the number of remote pairs of vertices in G. We shall show that
the distribution of X tends to the Poisson distribution with parameter c/2. Assuming
P(diam Gn,p ≤ d − 1) + P(diam Gn,p ≥ d + 2) = o(1), this is enough to imply the assertion
of this theorem.

Let us start by proving that almost no Gn,p contains two remote pairs sharing a vertice.
Let x, y and z be fixed distinct vertices. By Lemma 4.5, we know that with probability 1−
n−K−2, |Γk(x)| = (pn)k(1 + o(1)), so, by summing up over these different “neighborhoods”
(each disjoint) and estimating somewhat crudely, we get

P

(

|Nd−1(x)| <
5

6
(pn)d−1

)

< n−4
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provided n is sufficiently large: n ≥ n(p, d).
The probability that y is joined to no vertice in a set W ⊂ V (G) \ {y}, |W | ≥ 5

6(pn)d−1,
is

(1 − p)|W | ≤ exp

(

−5

6
p(pn)d−1

)

= exp

(

−5

6
log(n2/c)

)

= c
5/6n

−5/3.

It now follows that

P
(

x is remote from both y and z
)

≤

≤ P

(

|Nd−1(x)| <
5

6
(pn)d−1

)

+ P

(

{y, z} ∩ Nd(x) = ∅ | |Nd−1(x)| >
5

6
(pn)d−1

)

≤

≤ n−4 + c
5/3n

−10/3 < n−3−1/4.

Therefore, the probability that Gn,p contains two remote pairs sharing a vertice is at most

n

(

n − 1

2

)

n−3−1/4 < n−1/4.

With similar arguments, one can show that the probability that Gn,p contains three, four,
. . . remote pairs sharing a vertice is o(1). Thus, the rth factorial moment of X is within
o(1) of the expected number of ordered r-tuples of disjoint remote pairs. This implies that

Er(X) = (n)r2−rFr(1 + o(1)) + o(1), (4.18)

where Fr is the probability that a fixed r-tuple τ := (x1, . . . , xr) of vertices consists of
vertices remote from other vertices, i.e. for every xi ∈ τ there exists yi so that (xi, yi) is a
remote pair. The factor 2−r is there as not to double count pairs of remote vertices.

We will now define some sets which we shall need in consequence for conditional proba-
bilities. For 1 ≤ i ≤ r write

Ai = Γd−1(xi) −
⋃

j 6=i

Nd−1(xj),

T =
⋂

i6=j

(Nd−1(xi) ∩ Nd−1(xj)) =
⋂

i

Nd−1(xi),

S = V (G) −
r
⋃

j=1

Nd−1(xj),

S′ = S − Γ(T ),

ai = |Ai|, s = |S|, s′ = |S′| and t = |T |.

Let K = max{r+2, e7}. Then, using Lemma 4.7, for sufficiently large n, with probability
at least 1 − n−K , we have

|ai − (pn)d−1| ≤ δd−a(pn)d−1 + 8rp2d−2n2d−3 =

= (pn)d−1
(

δd−a + 8r
(

log(n2/c)
)

/(pn)
)

=: δ(pn)d−1 (4.19)

and

n ≥ s ≥ s′ ≥ n − 8r2p2d−1n2d−2 =: (1 − ε)n. (4.20)
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4 The “classical” Random Graph Model by Erdős and Rényi

To understand the inequalities in (4.20), observe that |V (G) − ⋃r
j=1 Nd−1(xj)| ∼ n −

r(pn)d−1. Because (pn)d−1 ∼ 2 log n
p ≪ n, |S| ∼ n. The remaining subtraction then follows

with Lemma 4.7 2.
Note that the defined functions δ and ε satisfy

δ log n → 0 and ε → 0.

To show this for (4.19), note that pn/(log n)3 → ∞, so log n log(n2/c)/(pn) → 0; the second
part of the estimate is similar. For n large,

δd−1 ≤ 3
d−1
∑

l=1

(αl + βl + γl) ≤ 4(α1 + βd−1 + γd−1) =

= 4

[

K

(

log n

pn

)1/2

+ pd−1nd−2 + 2pd−2nd−3

]

≤

≤ 4

[

K

(

log n

pn

)1/2

+
3 log n

pn
+

6 log n

(pn)2

]

.

Likewise, ε → 0, because

p2d−1n2d−3 =
(pdnd−1)2

pn
<

(3 log n)2

pn
→ 0.

Let us assume that Ai, S, and S′ are fixed (satisfying (4.19) and (4.20)), and let us
denote the probability conditional on this particular choice of these sets by P̃(.). In order
to estimate Fr, we shall estimate the conditional probability

Qr := P̃(∀xi ∈ τ : ∃yi so that (xi, yi) is a remote pair.).

Set

Rr = P̃(∀i, 1 ≤ i ≤ r : ∃yi ∈ S not joined to Ai) (4.21)

and

R′
r = P̃(∀i, 1 ≤ i ≤ r : ∃yi ∈ S′ not joined to Ai). (4.22)

R′
r ≤ Qr ≤ Rr. Why? Clearly, the property described in (4.22) implies that τ consists of

remote vertices. Conversely, xi being a remote vertice means that there is a y not in Nd(xi);
this means there is a vertex in V (G) \ Nd−1(xi) not joined to Γd−1(xi). Note that |S|, |S′|
and Nd(xi) are basically the same size — namely, about n. Because the probability that
xi and xj, i 6= j, share a remote vertex tends to zero, it follows that P(y ∈ ∩j 6=iNd(xj) |
y 6∈ Nd(xi)) → 1. However, P(y ∈ ∩j 6=iNd−1(xj) | y 6∈ Nd(xi)) ≤ P(y 6∈ S′) → 0. It follows
that P(y ∈ ∩j 6=iΓd(xj) | y 6∈ Nd(xi)) → 1. As P(y ∈ ∩j 6=iΓd(xj) | y 6∈ Nd(xi)) ≤ P(y ∈ S |
y 6∈ Nd(xi)), so the second part of the inequality follows.

It holds

Rr =
r
∏

i=1

[1 − (1 − (1 − p)ai)s] ,
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and R′
r is given in a similar way. Let us estimate Rr from above:

(1 − p)ai ≤ e−pai ≤ e−pdnd−1(1−δ) =
( c

n2

)

(1 + o(1)).

Thus, Rr ≤ (c/n)r(1 + o(1)). Similarly, let us estimate R′
r from below:

(1 − p)ai ≥ e−pai(1+p) ≥ epdnd−1(1−p)(1+δ) =
( c

n2

)

(1 + o(1)),

(1 − (1 − p)ai)s′ ≤ 1 − (
s′c
n2

)(1 + o(1)) = 1 − (
c

n
) + o

(

1

n

)

.

It follows that Qr = (c/n)r(1 + o(1)).
Remember that Qr is the probability of τ consisting of remote vertices under the condition

that Ai, S and S′ are given. These sets satisfy (4.19) and (4.20) with probability 1−n−K .
Note that for conditional probabilities P(A|B) , these two simple relations hold:

P(B)P(A | B) ≤ P(A) = P(B)P(A | B) + P(Bc)P(A | Bc) ≤ P(B)P(A | B) + P(Bc),

which, in our case, transfers to

(1 − n−K)Qr ≤ Fr ≤ (1 − n−K)Qr + n−K ,

so Fr = (c/n)r(1 + o(1)), which, with (4.18), implies that

Er(X) = nr2−r
( c

n

)r
(1 + o(1)) + o(1) =

( c

2

)r
+ o(1). (4.23)

Again, we use Theorem 4.9 and conclude that X
d→ Poc/2. In particular, we have

P(diam Gn,p ≤ d) = P(X = 0) → e
−c/2. (4.24)

Now our proof is not hard to complete: If d = 2, then it follows that

P(diam Gn,p ≤ 1) = P(Gn,p = Kn) = p(n
2 ) → 0.

Note that the property of having diameter at least k is monotone, so by Lemma 4.1 if
0 < p1 < p2 < 1, then P(diam Gn,p1 ≤ k) ≤ P(diam Gn,p2 ≤ k). Define c1 = c1(n) by

pd−1nd−2 = log(n2/c1),

which is equivalent to 1
pn log n2

c = log n2

c1
. As this tends to 0, c1 ∼ n2 → ∞, so (4.24)

implies that

P(diam Gn,p ≤ d − 1) → 0. (4.25)

Equivalently, define c2 = c2(n) by

pd+1nd = log(n2/c2),

by similar thoughts we obtain c2 → 0, so (4.24) yields

P(diam Gn,p ≤ d + 1) → 1. (4.26)

Combining (4.24), (4.25) and (4.26), the theorem is proved.
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5 Small-World Networks

5.1 The Basic Idea

More than ten years have passed since Steven Strogatz and Duncan Watts introduced their
model of the small-world effect in their ground-breaking paper [45]. This paper is especially
important to the theory of complex networks because it was one of the first that modelled
a large-scale network by a random graph defined by simple rules [10]. They were looking
for a network that would have the following two attributes:

i) It should have a high clustering coefficient, just as graphs on a regular lattice expose
where each vertice is connected to it’s k nearest neighbors.

ii) It should also have a small diameter, or at least a small mean distance — small in
this sense being comparable to the corresponding random graph.

In principal, what they wanted was a network they could fine-tune between a regular
lattice and a random graph. They claimed that many “real-world” networks from biology,
technology and the social sciences were exactly this: Neither completely organized, nor
completely random, they were “somewhere in between”.

The original small-world network was defined as follows: n nodes are arranged on a
one-dimensional, periodic lattice (ring lattice). There are k (undirected) edges per vertice.
Initially, each vertice is thus connected to it’s k left and it’s k right neighbors. We start
from a 2k regular graph, so there are nk edges.

With probability p each edge is then rewired, meaning that each edge is deleted with
probability p, and then afterwards the number of deleted edges is again added to the graph
at random [10]. See Figure 5.1(a) for a visual explanation.

(a) The small-world model (b) Numerical Results for C and l̄

Figure 5.1: Figures explaining the small-world model [45]
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For p = 0, the model is completely regular. The clustering coefficient is C = 3(k−1)
2(2k−1) , and

the mean distance between two vertices is l̄ = n
2k . For p = 1, the model is a random graph

Gn,kn with approximate mean distance l̃ = O(ln(n)) and C ∼ 0. We set n ≫ k ≫ ln(n) ≫
1, so that the random graph will be connected. (Compare with theorem 4.2.)

It was surprising in the numerical results that followed that for very low values of p, the
clustering coefficient did not change much while the average distance between randomly
chosen pairs of vertices (also called the average path length in the theory of complex net-
works) decreased dramatically. This means that only few short-cuts are needed to make a
regular lattice “small-world.” See figure 5.1(b).

Watts and Strogatz tested the model on several “real” networks (the graph of film actors,
the graph of the power grid, and the neural network of Caenorhabditis Elegans, a very much
studied worm) to find that the fit was quite good.

5.2 First Analytical Results

5.2.1 A Toy Small-World Network

Shortly after the initial paper [45], scientists tried to find analytical solutions to the pro-
posed model. This proved more difficult than one might think; it was necessary to simplify
the model.

One of the first who found analytical solutions to simplified models were Dorogovtsev
and Mendes [16]. They consider a so-called toy small-world network which is described as
follows:

In the first version of this model, n nodes are arranged on a circle, and a node is connected
to its right neighbor by a (directed) arc of unit length:

(vi, vi+1 mod n) ∈ E ∀i = 0 . . . n − 1.

In the center of the circle, there is another vertex, the hub of the graph. Each vertex is
connected to this hub with probability p, with undirected connections of length 1/2. This
means that there exist paths of length 1 between all vertices that have a link with the hub.
See figure 5.2(a). Note that a path from vi to vj will never include more than one short-cut,
and that, for p = 1, l̄ = 1. This differs considerably from the initial model. To simplify
notation, we will now only consider cases that do not pass from node n − 1 to node 0.

To obtain l̄, we first consider

P(l, k) := P{the distance between vi and vj is l if |i − j| = k},

which we can derive as follows: For l < k, there need to be two “half” short-cuts separating
vertices us, ut that lie k − l apart, |s − t| = k − l. There are l possibilities of picking these
two vertices, and the probability of these two vertices both having a shortcut is p2. us and
ut must also be the vertices that give the smallest path length, so they are the vertices
whose connections to the hub “save” the most space. This means that for all other vertices
“outside” of the shortcut, it holds that they are not connected to the hub, which holds

54



5.2 First Analytical Results

with probability (1 − p)l−1. Remember that
∑k

l=1 P(k, l) = 1. Thus,

P(l < k, k) = lp2(1 − p)l−1, (5.1)

P(l = k, k) = 1 − p2
k−1
∑

i=1

i(1 − p)i−1. (5.2)

Note that P(l < k, k) does not depend on k.
Looking for the distribution of shortest path lengths, we define P(l) to be the probability

that a path between any given pair of vertices has lenght l. Note that

P(l) =
1

n − 1

n−1
∑

k=1

P(l, k) =
1

n − 1

n−1
∑

k=l

P(l, k),

which, with (5.1) and (5.2) gives

P(l) =
1

n − 1

(

1 − (l − 1)p − l(n − 1 − l)p2
)

(1 − p)l−1. (5.3)

Note that for p → 0, P(l) → 1
n−1 for any l ≤ n − 1, and if p → 1 then P(l) → δl,1, just as

we would expect.
Next, we want to calculate the average shortest distance l̄, defined by

l̄ :=

n−1
∑

l=1

l P(l).

With (5.3), this gives

l̄ =
1

n − 1

(

2 − p

p
n − 3

p2
+

2

p
+

(1 − p)n

p

(

n − 2 +
3

p

))

.

Again, for this term, it holds l̄(p → 0) → n/2 and l̄(p → 1) → 1.
Setting ρ := pn and z := l/n, we define

nP(l) := Q(z, ρ) =
(

1 + ρz + ρ2z(1 − z)
)

e−ρz

for 0 ≤ z ≤ 1. This is the scaling function; it’s average value is

l̄

n
:= z̄ =

1

ρ2

(

2ρ − 3 + (ρ + 3)e−ρ
)

.

For ρ → 0 as n → ∞, z̄ → 1/2 − ρ2/24, and for ρ ≫ 1, z̄ → 2/ρ. The plots of these
functions shows that the results are close to previous simulations. For example, the plot of
l̄/n resembles results from [45].

The expressions for P(l) and the like are more tedious in second version of the model,
the undirected case. Their derivation is also more complicated because the possibilities of
initially going in what would intuitively be the “wrong” direction have to be considered.
It is worth noting, however, that the scaling function of the undirected model Q̃(z, ρ) =
2Q(2z, ρ). Thus both models qualitatively give the same results. Also consider that l̄(p =
0) = 1/2, while in the directed model, for the mean distance it holds l̄undir(p = 0) = 1/4.
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(a) The toy small-world on n nodes.

r

(b) Mean Field approach to the small world model.

Figure 5.2: Figures of the two small world models presented in this section.

5.2.2 The Mean-Field Solution

Newman, Moore and Watts published a paper that followed shortly after the toy small-
world which treated the mean-field solution of the small-world network model [35]. (Com-
pare to section 3.1.1.) They slightly modify the original model by Watts and Strogatz,
but much less than in the toy small-world. In this version of the model, we again have
a circle lattice and each vertex is connected to its k nearest neighbors on both sides with
undirected edges. We have nk edges. For each edge of the lattice a random edge is added
with probability p.

In this mean-field approximation, the distribution of path lengths is calculated. Quanti-
ties over realizations of the model are given by their averages. Newman et al. first consider
the continuum version of the model, seeing the underlying lattice of the system as con-
tinuous. In this version, shortcuts have length zero. The assumption here is that, if the
density of shortcuts is low, the discrete and continuous models are equivalent, and thus
the solution of this system will be a solution of the small-world model with general k. See
figure 5.2(b).

We now consider a neighborhood ρ of radius r centered around a randomly chosen vertice
vi:

ρ(r) := {vj : There exists a path of length r or less between vi and vj}
We let m(r) be the number (on average!) of nodes not belonging to ρ, and s(r) be the

number of gaps around the lattice among which those m(r) nodes are divided. This is
the same as the number of clusters of sites in ρ(r). Note that, for the continuum model,
m(r) ∈ R, s(r) ∈ R. We define the rescaled variables

µ(r) =
m(r)

n
, ν(r) =

s(r)

n
,

and begin looking for differential equations that our system will satisfy. This is possible
because we are assuming the system to be continuous.
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When r increases, m(r) decreases by the number of borders of growing clusters (of which
there are 2s) times the number of connections on the lattice of each vertex k. So

dm

dr
= −2kr or

dµ

dr
= −2kν,

which holds true for all n and p.
The number of gaps changes for two reasons:

i) For every shortcut found that leads outside of ρ, there is a new gap. We define
ξ = 1/(kp), so n/ξ is the average number of shortcuts in the graph, and the density
of the ends of shortcuts is 2/ξ. For growing r, shortcuts are found at a rate 4ks/ξ.
The probability that a new found shortcut falls into a gap around the ring is m/n.
This means that clusters are created at a rate of 4kms/ξn.

ii) The number of clusters grows smaller when two clusters merge. This happens if,
when r changes to r + ∆r, there are gaps smaller than 2kδr. Distributing m sites on
s gaps, we see that the size of the gaps has the same probability distribution as the
distribution of the smallest of s−1 uniformly distributed random numbers x between
0 and m, namely

p(x) =
s − 1

m

(

1 − x

m

)s−2
.

It follows that the probability of one particular gap being smaller than 2k∆r is
1 − (1 − 2k∆r/m)s−1; for small ∆r, this tends to 2k(s − 1)∆r/m. This is valid
for s gaps.

Finally, we get differential equations for s and ν:

ds

dr
=

4kms

ξn
− 2ks(s − 1)

m

and

dν

dr
=

4kµν

ξ
− 2kν(ν − 1

n)

µ
.

Newman et al. state that these equations will only be exact when the average values µ(r)
and ν(r) are quite accurate, meaning that the real distribution is very close to the center,
which will be the case when there are either almost no shortcuts, i.e. n ≪ ξ or when the
density of shortcuts is very high, n ≫ ξ.

By some transformations, the solutions to µ and ν can be found, where µ = µ(r, ξ, n).
From this, the average vertex separation l̄ can be derived, We find that

l̄ =
n

k
h(

n

ξ
),

where h(x) is a universal scaling function which is given by

h(x) =
1

2
√

x2 + 2x
tanh−1 1√

x2 + 2x
. (5.4)

Numerical simulations (with k = 1) show a good fit for the average path length for large
and small values of n/ξ, but there are some problems when ξ ∼ n. Note that, apart from
the factor of 1/4, h(x) is the fraction by which the average path length on a small-world
graph is reduced if the graph has x short cuts.
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5.3 Some Rigorous Approaches

As the interest in complex networks increased, several models — among them the small-
world model — have been “discovered” and adapted by mathematicians. In this section, I
will describe two of these models, and give quick résumés of their proofs.

5.3.1 A Markov Chain Small-World Model

Catral, Neumann and Xu published a paper describing the matrix analysis of a Markov
chain small-world model [14]. The principle idea behind this model is lovely, finding average
(and maximum) mean pathlength by considering mean first passage times. However, the
proof is very technical, and the argumentation of the results might be a little disappointing.

The model starts from n nodes placed on a ring lattice where every node is connected to
its nearest neighbors by a directed edge. Starting from any vertice vj on the lattice at time
t, the initial random walk is as one would expect: with probability p = 1/2, the position
at t + 1 is vj+1 and, with equal probability, it is vj−1. This process is called completely
local, because there are no direct transitions between non-neighboring vertices. It can be
represented by an ergodic Markov chain with transition matrix P0:

P0 =

























0 1/2 0 . . . 0 1/2

1/2 0 1/2
. . . 0

0 1/2
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1/2 0

0
. . . 1/2 0 1/2

1/2 0 . . . 0 1/2 0

























∈ Rn×n.

This initial process is now modified; from vertex vj , we introduce the transition probabil-
ity ε. With probability 0 ≤ ε ≤ 1/(n−2), the next step away from vj is vi, ∀i 6= j±1. These
random jumps are the shortcuts in this model. With probability δ = [1 − (n − 1)ε] /2, the
random walk proceeds to one of vj ’s neighbors. Thus, the transition matrix Pε is

Pε =

























ε δ ε . . . ε δ

δ ε δ
. . . ε

ε δ
. . .

. . .
. . .

...
...

. . .
. . .

. . . δ ε

ε
. . . δ ε δ

δ ε . . . ε δ ε

























∈ Rn×n. (5.5)

Note that for ε = 1
n , the network is completely random, each node is an equal likely target.

This is also called the completely global case. For ε = 0, the network is again completely
local.

The properties we are interested in, in connection with ε, are the maximum and average
mean first passage time of Pε. Catral et al. consider what they define as the reduction
ratio, i.e. by which factor does the mean (or maximum) passage time change when with
probability ε short-cuts are introduced to the system?

58



5.3 Some Rigorous Approaches

It is sufficient to consider the mean first passage times from nodes 2, . . . , n to node 1.
We redefine our process to be able to use Theorem 3.3: We consider the modified matrix
P̃ε, where p1j = δ1j , where δ1j is the Kronecker delta: A reducible Markov chain is formed,
where the only absorbing state is 1. Counting the mean passage to to vertice 1 is now equal
to counting the time until absorption, and these times are given by the vector

zε = (I − P̂ε)−1 e ∈ Rn−1, (5.6)

where P̂ε is the submatrix obtained from Pε (or P̃) by deleting it’s first row and column.
e denotes a column vector of ones. The average mean first passage time is then defined as

z̄ε =
1

n − 1

n−1
∑

i=1

(zε)i.

For both the “extreme” cases, ε = 0 and ε = 1/n, we have

(z0)i = i(n − i) and (z1/n)i = n,

for i = 1, . . . , n − 1. Thus, the maximum and average mean first passage times are given
by

max
1≤i≤n−1

(z0)i = k(n − k) and max
1≤i≤n−1

(z1/n)i = n, (5.7)

where k = ⌊(n + 1)/2⌋ and

z̄0 =
n(n + 1)

6
and z̄1/n = n.

The reduction ratios of the maximum mean first passage time f and the average mean
first passage time g are defined as follows:

f := f(ε) :=
max1≤i≤n−1(zε)i

max1≤i≤n−1(z0)i
and g := g(ε) :=

z̄ε

z̄0
. (5.8)

This means f and g quantify the changes on the average and maximum mean first passage
in comparison to the completely local variant — Catral et al. say f and g measure the
degree of separation. Note that f |ε=1/n = n/⌊k(n− k)⌋ and g|ε=1/n = 6/(n + 1); thus, the
degree of separation is reduced from 1 to O(1/n).

Let us define

r :=
1 − nε

1 +
√

1 − (1 − nε)2
. (5.9)

Note that −1 ≤ r ≤ 1 and for 0 ≤ ε ≤ 1/(n − 2), r is well defined. Using r, we can now
state some of the theorems of this paper.

Theorem 5.1. Consider the ergodic Markov chain of the ring network on n vertices whose
transition matrix Pε is given by (5.5). zε ∈ Rn−1 is the vector of mean first passage times
given in (5.6) and let r be as given in (5.9). Suppose that 0 ≤ ε ≤ 1/(n − 2). Then

(zε)i =
n(1 + r2)(1 − ri)(1 − rn−1)

(1 − r2)(1 − rn)
, i = 1, . . . , n − 1.
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Theorem 5.1 is then used to obtain the following two theorems:

Theorem 5.2. Under the assumptions of Theorem 5.1, if we further assume that 0 < ε ≤
1/n, then

max
1≤i≤n−1

(zε)i =
n(1 + r2)(1 − rk)(1 − rn−k)

(1 − r2)(1 − rn)
,

where k = ⌊(n + 1)/2⌋. If we further assume that 1/n ≤ ε ≤ 1/(n − 2), then

max
1≤i≤n−1

(zε)i =
n(1 + r2)(1 − rn−1)

(1 − r)(1 − rn)
.

Theorem 5.3. Under the assumptions of Theorem 5.1, the average mean first passage
time as defined in (5.7) is given by

z̄ε =
n(1 + r2)(n(1 − r)(1 + rn) − (1 + r)(1 − rn))

(n − 1)(1 − r)(1 − r2)(1 − rn)
.

From these theorems, it then follows:

Theorem 5.4. Under the assumptions of Theorem 5.1, the ratios f as in (5.8) is given by

f =

{

n(1+r2)(1−rk)(1−rn−k)
k(n−k)(1−r2)(1−rn)

, if 0 < ε ≤ 1/n;
n(1+r2)(1−rn−1)

k(n−k)(1+r)(1−rn) , if 1/n ≤ ε ≤ 1/(n − 2).
(5.10)

where k = ⌊(n + 1)/2⌋.

Theorem 5.5. Under the assumptions of Theorem 5.1, the ratio g as in (5.8) is given by

g =
6

n2 − 1

(

n(1 + r)2(1 + rn)

(1 − r2)(1 − rn)
− 1 + r2

(1 − r)2

)

. (5.11)

Let us denote by εc the smallest value of ε where such that f |ε=εc ≤ 1/2. The last
theorem we shall state is the following:

Theorem 5.6. Under the assumptions of Theorem 5.1, let f be the reduction ratio in the
maximum mean first passage time, which is given in (5.10). Then

εc =
32

n3
+ O(n−4).

Interestingly, Catral et al. compared the reduction ratio g to h(W ) as defined in (5.4).
Remember that h(W ) was defined as a function of the expected number of shortcuts (W )
used in the model defined in subsection 5.2.2. Here, the expected number of shortcuts in
the random walk is ε(n− 2)z̄ε. Plotting h(x) against f and g, it can be seen that the fit is
quite good. Considering this, and that Catral et al. [35] stated that l̄ ≈ (n/4)h(np) when
k = 1, and the fact that max1≤i≤n−1(z0)i ≈ n2/4 for large n, it follows that

n

4
h(W ) ≈ n

4
f ≈ 1

n
max

1≤i≤n−1
(zε)i,

so we can observe that both f and g seem to scale like h(W ) as described in [35]. This, and
some numerical simulations on the clustering coefficient, appear to be the main results of
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this paper. Though the idea of modelling the small-world with a Markov chain random walk
is very appealing, the main result is not very relevant to the theory of complex networks.

The stated theorems can be proved in order of their appearance via matrix analysis. In
fact, the proofs are all quite technical: I− P̂ε is calculated, which renders proof of Theorem
5.1. After some technical calculations (considering monotonicity and min r and the like)
the other theorems follow easily in the same order that they have been stated.

5.3.2 Spatial Random Graphs

Another paper on the subject considering so-called spatial or geometric random graphs was
published by Ganesh and Xue [24]. It holds only two theorems, both on connectivity of the
described graph process, one also bounds the diameter. Here, I will describe both possible
variants of their model and state both theorems. I will then give accounts of the proof of
the first theorem. The proof of Theorem 5.8 follows with the Stein-Chen Method, see for
example [6].

In both models we consider a sequence of undirected random graphs Gn on n ∈ N vertices.
The concept of geometric random graphs is to associate the nodes with coordinates in a
Euclidean space, the probability of an edge between two nodes in this random graph is then
some function of the distance between these nodes. The node locations are also the result
of some random process. In our case, node positions are modelled by a stochastic point
process, e.g. independent and identically distributed uniformly on a square. We connect
nearest neighbors up to a certain number to be defined, where a nearest neighbor is defined
to have the smallest distance in the Euclidean space. Also, two vertices can be joined by
randomly added shortcuts.

In Model A, each of the n nodes is connected to its mn nearest neighbors. Note that
this relation need not be symmetric. A shortcut is present between each pair of nodes with
probability pn, independently of all other edges. Multiple edges are replaced by simple
ones.

Note that the spatial proximity in this model is of no importance for the proof. Nodes
could be connected to any other number mn of nodes, and the proof would still hold.

In Model B, n nodes are located u.a.r. on the torus obtained by identifying the oppo-
site sides of the square of area n centred at the origin with each other, i.e. the interval
[−√

n/2,
√

n/2] is “folded.” Each node is connected to all nodes within a circle of radius
rn centered at the node itself. Additional shortcuts are present between each pair of nodes
with probability pn, independent of all other edges.

The main difference between Model A and Model B is that in Model A, the degree of a
vertice is bounded from below by mn, while in Model B, there exists no such bound. This
improves connectivity of Model A a great deal.

Let us denote by Cn the event that Gn is connected, and by Dn the diameter of Gn. If
Gn is not connected, then Dn = ∞.

Theorem 5.7. Suppose that the sequences mn and pn are such that

mn

n
→ 0 as n → ∞, and

(mn + 1)npn ≥ 2(1 + δ) log
n

mn + 1
(5.12)
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for some δ > 0 and all sufficiently large n. Then, for the random graph described in Model
A, with parameters mn and pn, we have

lim
n→∞

P(Cn) = 1, lim
n→∞

P

(

Dn ≤ 7

(

log
n

mn + 1
+ 1

))

= 1. (5.13)

Conversely, if

mn

n
→ 0 as n → ∞, and

(mn + 1)npn < (1 − δ)

(

mn + 1

mn + 2

)2

log
n

mn + 1
(5.14)

for some δ > 0 and infinitely many n, then there is a sequence of node locations such that
limn→∞ P(Cn) = 0.

Note that a node will have mn nearest neighbors, and on average pn(n − 1) other con-
necting edges via shortcuts. This means that the conditions of Theorem 5.7 state that, to
have a connected graph, the product of these quantities should be about log n.

Theorem 5.8. Supppose that the sequences rn and pn are such that

πr2
n + npn = log n + cn and lim

n→∞
cn = c. (5.15)

Then, the number of isolated vertices in the random graph generated by Model B with
parameters rn and pn converges in distribution to a Poisson random variable with mean
e−c. Moreover, if limn→∞ cn = −∞, then the random graph generated by Model B is
disconnected whp.

Note that a vertice has mean degree πr2
n + npn. Theorem 5.8 states that if the mean

degree is much smaller than log n, the graph will be disconnected, as is also the case for
“classical” random graphs (see Theorem 4.2).

Outline of proof of Theorem 5.7: Because of the way Model A is constructed, note that
every vertex belongs to a component of size at least mn + 1. If the graph is disconnected,
there must thus be an isolated component of at least this size. The idea of the proof is
to see these components — here, we shall call them clusters — as new entities that must
be connected for the graph as a whole to be connected. On these entities, we can use the
theory of the Erdős-Rényi random graph models.

Let G be a graph fulfilling the assumptions in (5.12). We group the vertices of the graph
G into disjoint “discs” Ak, k = 1,2, . . . ,Kn; each Ak has between mn + 1 and 2mn + 1
vertices, and for all Ak, it holds that the diameter is at most 6. The latter property of
these groups is possible because they are formed by taking a cluster and possibly adding
vertices from other clusters that intersect. In order to show that G is connected, it suffices
to show that these clusters are connected via shortcuts.

We first replace clusters Ak larger than mn + 1 with clusters Ãk of size mn + 1, and
then we replace these clusters Ãk with one node k. An edge is put between nodes k1 and
k2 if there is at least one shortcut between Ak1 and Ak2 . We call this graph G̃. If G̃ is
connected, then G is connected as well. G̃, however, turns out to be a classical Erdős-Rényi
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graph with edge probability p̃n = 1− (1− pn)(mn+1)2 . With a few transformations, it then
follows that

p̃n ≥ (1 + δ′)
log Kn

Kn

for any 0 < δ′ < δ and n sufficiently large. Note that Kn = O(n). By the results of Erdős
and Rényi (Theorem 4.2), G̃ is connected, so G is connected as well. The second claim
follows from [7][Theorem 10.17].

Vice versa, for the other part of the theorem, we consider a sequence nk k ∈ N, that
satisfies (5.14) along the sequence nk, mnk

, pnk
for some δ > 0. First, it is shown that it

is possible to partition the nodes into sets of size either m̃nk
+ 1 or m̃nk

+ 2 where m̃nk

satisfies (m̃nk
+ 1)(mnk

+ 1) → 1 as k → ∞.
Let us now consider a deterministic sequence of node configurations consisting of clusters

A1, . . . , Aqk
. The sizes of the clusters are either m̃nk

+ 1 or m̃nk
+ 2, where m̃nk

is defined
as above. Within the clusters, the nodes are within Euclidean distance εnk

, and any
two vertices in distinct clusters are more than εnk

apart, εnk
> 0. Obviously, the edges

connecting different clusters can only come from shortcuts.
The idea is, again, to replace clusters by single nodes, and leave the shortcuts as only

edges of the modified graph. As the clusters are of different size, the probability of shortcuts
between clusters is neither identical nor independent. This problem is solved by adding a
pseudo-node to clusters of only mnk

+ 1 vertices that again has shortcut probability pnk
.

We can then consider the graph G̃ where each (modified or not) cluster Ai is substituted
by a single node i; there is an edge between two nodes i and j only if there was a shortcut
between (modified) Ai and Aj . The initial graph G is connected only if G̃ is connected as
well. Again, G̃ is a classical random graph. After some calculations, (and bounding pnk

by
p̃nk

) it can be seen that
qkp̃nk

≤ (1 − δ′) log qk

for any 0 < δ′ < δ and all k sufficiently large. Note that qk → ∞ as k → ∞ because
mn/n → 0. It thus follows (again with Theorem 4.2) that G̃ is disconnected whp, so G is
disconnected as well.
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6 Models with Preferential Attachment

6.1 The Preferential Attachment Model of Barabási and Albert

Another ground-breaking paper in network theory was published in 1999, when what would
later be coined the “Barabási-Albert Model” was introduced [1]. It was one of the first
models that took into account both network growth as well as preferential attachment. On
the one hand, this means dealing with a network where the number of vertices, n, is not
taken as given, but it is changing with time: We are considering a random graph process,
differing from the “classical” random graph process because not only does the number of
edges, but also the number of vertices changes with time.

On the other hand, preferential attachment means that the probability with which ver-
tices coming into the system connect to old vertices is not uniform. If a vertex has many
incident edges already (i.e. high degree), then the probability is higher of a new vertex
connecting to this node than to a node with less incident edges. There are many catchy
slogans that explain this phenomena, such as “popularity is attractive” or “the rich get
richer.”

Intuitively, one of the reasons seems to be that highly connected vertices are simply
more visible than vertices that are not as connected, which implies that new vertices in the
system tend to “find” them easier and thus rather attach to them. This seems like a valid
explanation of how new sites link to older sites when thinking of web pages, for example.
Redner noted in his paper on citation networks that important papers get cited again
and again (and are thus found easier in bibliographies, which are often used as guidelines
for further reading — this might make the paper in question be cited even more), while
papers that are not very relevant are quickly forgotten [42]. The concept of preferential
attachment also gives an explanation why there are (mostly few) vertices in every system
that are highly connected, while most do not have very many connections.

In the paper that introduced the first preferential attachment model [1], the random
graph process was defined as follows: Starting with an initial number m0 of vertices, at
each time step t another vertex is added to the model. This vertex sends m edges to m
already existing vertices, the probability that a vertex i is chosen is proportional to the
degree of i, i.e.

Π(i) =
d(i)

∑

j d(j)
. (6.1)

Thus, after t time steps, there are m0 + t vertices in the system, and mt edges. Numerical
simulations published in this paper already showed the stationary scale-free property of the
degree distribution in this system, i.e. P (k) ∝ k−γmodel , which seemed to have an exponent
γmodel = 2.9±0.1. With numerical simulations, [1] also compaired how the degrees of given
vertices changes over time, only to show what one would have expected: The “rich-get-
richer” phenomenon holds in a system with preferential attachment, meaning that older
vertices acquire new edges at the expense of younger ones.
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6 Models with Preferential Attachment

Barabási and Albert state that the scale-free distribution occurring in this system is a
result of both the growing nature of the model and of preferential attachment. In simula-
tions, they showed that alternative models where either the growing nature of the model or
the mechanism of preferential attachment was omitted did not tend to a scale-free degree
distribution. The growing model which omitted preferential attachment — the probability
of attaching to vertex i was identical, Π(i) = 1/(m0 + t − 1), for all i — lead to a de-
gree distribution P (k) ∝ exp(−βk). Conversely, starting a model with n vertices without
edges and adding edges by picking a random vertex and connecting it to m of the remain-
ing vertices with probability proportional to their degrees leads to a distribution that was
scale-free at the beginning of the process, but turned out not to be stationary. Not having
allowed double edges or loops, after about n2/2 steps, the graph was complete.

6.2 First Calculations, Explanations, and Criticism

6.2.1 A Mean-Field Approach

Shortly after the appearance of [1], the first heuristic explanations why the Barabási-
Albert model results in a scale-free degree distribution were published. Barabási and Albert
themselves, together with Jeong, published a paper giving a mean field approach to the
problem [3], as well as mean-field explanations as to why the preferential attachment and
growing properties of the model are important. Again, the basic line of argument is to say
that the change in vertex degree is continuous, so with (6.1), this change can be written as

∂ d(i)

∂t
= AΠ(i) = A

d(i)
∑m0+t−1

j=1 d(j)
,

where it is shown that the constant A = m, so ∂ d(i)
∂t = d(i)

2t . With only few calculations it
then follows that for the probability density it holds

P (k) =
2m2t

m0 + t

1

k3
,

i.e. P (k) ∼ Ak−γ where γ = 3, and the probability does not depend on t. The result for
the growing model without preferential attachment is shown in a similar manner. Chapter
two of [17] gives a very intuitive explanation of this approach on the stated models: vertices
are visualized as buckets and edges as units of water raining into them.

6.2.2 Linear and Non-linear Preferential Attachment

Krapivsky et al. examined the degree distribution of variations of the Barabási-Albert
model [30] heuristically. In fact, they looked into different functions of preferential attach-
ment: At each time step t, a new vertex is added to their model which attaches to exactly
one older vertice. The probability of a vertex of degree k being chosen is proportional to
kβ , β ≥ 0. Because only one new edge attaches at each time step, some of the problems
mentioned in section 6.2.3 are avoided. However, it is unclear from which graph the process
starts from. The line of argumentation is as follows:

Let Nk(t) be the average number of sites with degree k at time t. Nk changes with time
as follows:

dNk

dt
=

1

Mβ

(

(k − 1)βNk−1 − kβNk

)

+ δk1,
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where Mβ(t) =
∑

j jβNj(t): With probability (k − 1)β/Mβ, a new link comes in from one
of the nodes with k − 1 edges. Equivalently, it is necessary to subtract the possibility of a
node with k links becoming connected to the new vertex. The last term δk1, the Kronecker
delta, is caused by the new node with only one edge.

With help of the low-order moments of the degree distribution, Krapivsky et al. infer
that for β = 1, (what they call a linear connection kernel), Nk(t) = tnk, where

nk =
4

k(k + 1)(k + 2)
.

For the sublinear connection kernel, a similar relation is derived,

nk =
µ

kβ

k
∏

j=1

(

1 +
µ

jβ

)−1

,

where µ =
∑∞

k=2

∏k
j=2

(

1 + µ
jβ

)−1
. Asymptotically, this gives a stretched exponential. It

is important to note that for 0.8 ≤ β ≤ 1, the dependence of nk on β for 1 ≤ k ≤ 1000
is not very strong, so that it is difficult to discriminate between different βs, and even
between a stretched exponential and a power law, something that Redner [42] had already
noted when analyzing citation networks.

For the superlinear case (β > 1), it is shown that a single dominant site links to almost
every other site. In fact, for β > 2, there is a nonzero probability that the initial site is
connected to every other site on the graph, i.e. that this process forms a star. For general
β > 1, it is shown to hold that

Nk = Jkt
k−(k−1)β

with Jk =
∏k−1

j=1 jβ/ (1 + j(1 − β)) as long as k − (k − 1)β > 0, or k < β/(β − 1). For
k > β/(β − 1), all but a negligible number of sites are associated with N1. Note that in
this case the distribution depends on t and thus also on the number of sites in the network,
so it is not scale-free.

6.2.3 Some Problems with the Barabási-Albert Model

A topic as interesting as complex networks was bound to attract the attention of mathemati-
cians sooner or later. Bollobás and Riordan gave an overview of which mathematical results
were to be encountered in the theory of scale-free random graphs [10]. As the Barabási-
Albert model was the first of its kind, and as it initiated so much following thought, it is
surprising that it took some time until a criticism of this model was published, noting some
important inconsistencies.

The problems begin when we start the graph process (see section 6.1): At time t = 1,
how should it be chosen to which vertices the m edges attach to when all have degree
zero? An idea to avoid this problem would be to start with a small graph G0 instead
of m0 disconnected vertices; however, Bollobás et al. state that in this case the choice
of G0 is relevant in a non-trivial manner. For example, the maximum degree can change
considerably depending on the choice of G0.
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6 Models with Preferential Attachment

Another problem arises for m ≥ 2 with the rule of preferential attachment itself: At time
t + 1, we add the t + 1th vertex to the system. This vertex must now connect to a set Nt+1

of m earlier vertices. Thus, because we pick m edges, each vertex is chosen with probability

P(i ∈ Nt+1) = m
d(i)

∑

j d(j)
. (6.2)

The description of the model does not include multiple edges, however, so picking one edge
after the other independently is not possible. A full description of the model would give
a precise specification of the distribution of Nt+1, meaning the probability that Nt+1 = S
for the

( t
m

)

possible choices of sets S of earlier vertices.

Note that the distribution is not uniquely specified by only giving the probabilities at
i ∈ Nt+1 for each vertex i: This gives only t marginal probabilities, while the distribution
of Nt+1 has

( t
m

)

− 1 degrees of freedom. Bollobás and Riordan continue by proving a
statement to emphasize that there are several models fitting the description by the original
model from section 6.1. Briefly, it states that for any integer valued function f(n) that
obeys certain properties there is a random graph process T (n) that satisfies (6.2) with m = 2
such that with probability 1, T (n) has exactly f(n) triangles for all sufficiently large n.

6.3 An Extension of the Barabási-Albert Model

Shortly after its appearance, Dorogovtsev, Mendes and Samukhin extended the Barabási
and Albert Model [18]. In their version of the model, at each time-step t, one new vertex
and simultaneously m new directed edges are introduced to the graph. For the directed
edges, it is of no importance where they come from; it might be from the new vertex, from
existing vertices or even from outside the system, we now only consider the incoming degree
of a vertice. Let us denote the vertex added to the system at time s by s. We denote its
in-degree by kin

s . The probability that one of the m new links points to s is proportional to

As = A + kin
s

which is called the attractiveness of a vertice. Upon their appearance, sites have an initial
attractiveness A ≥ 0; the total attractiveness increases as the site obtains new edges. Note
that for the case A = m, the model is equivalent to the initial Barabási-Albert model,
where the outgoing edges count towards the attractiveness of a site as well. However, in
contrast to the former model note that it is possible that a vertex receives more than one
new edge at the same time, which is simply not defined in the Barabási-Albert model. Even
though the line of argumentation may not be perfectly rigorous, the criticisms from section
6.2.3 do not apply to this model.

Dorogovtsev et al. proceed to derive the master equation: Let p(d, s, t) be the distribu-
tion of the in-degree d of vertex s at time t, i.e. kin

s . Starting the network with one vertex
and m incoming links, at time t, there are t sites in the network, and m(t − 1) incoming
links. Let AΣ denote the total attractiveness of the network, i.e. AΣ = (m + A)t =
(1 + a)mt, where a = A/m. The probability of one of the new edges connecting to
site s is As/AΣ. The probability that site s receives l new links of the incoming m is

P(ml)
s :=

(n
l

)

(As/AΣ)l (1 − As/AΣ)m−l. Thus, for the master equation with initial condi-
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tion p(k, s, s) = δsk, where δsk is again the Kronecker delta, it follows

p(d, s, t + 1) =

m
∑

l=0

P(ml)
s p(d − 1, s, t) =

=

m
∑

l=0

(m

l

)

(

d − 1 + am

(1 + a)mt

)l (

1 − d − 1 + am

(1 + a)mt

)m−l

p(d − 1, s, t).

(6.3)

The degree distribution of the entire network is given by P (d, t) =
∑t

u=1 p(d, u, t)/t, for
which an equation can be found by summing up over equation (6.3). Assuming that
P (d) := limt→∞ P (d, t) exists, a stationary connectivity distribution can be found; after
some calculations it follows

P (d) = (1 + a)
Γ ((m + 1)a + 1)

Γ(ma)

Γ(d + ma)

(d + 2 + (m + 1)a)
∼= (6.4)

∼= (1 + a)
Γ ((m + 1)a + 1)

Γ(ma)
(d + ma)−(2+a) ,

where the latter relation holds for ma + q ≫ 1. Thus, the scaling exponent γ of the
distribution is

γ = 2 + a = 2 +
A

m
.

Note that the scaling exponent of the distribution can now be tuned via A.

6.4 Some Rigorous Results on Exact Models

6.4.1 The Diameter and Clustering Coefficient of the LCD Model

The model

After their criticism of the Barabási-Albert Model (see section 6.1), Bollobás and Riordan
published a mathematically correct version of a model that builds on the same principle of
linear preferential attachment [9], and proved properties of both diameter as well as degree
distribution.

As in section 6.1, a random graph process (Gn
m)n≥0 is described where at each time step

n a new vertex vn := n is introduced to the model. n then connects to m already existing
vertices (itself included - loops are allowed) one at a time. This means that double edges
are possible. For simplicity, we will start with the description of the process for m = 1.

Let us write dG(v) for the degree of vertex v in a graph G. The description of the graph
process (Gn

1 )n≥0 is as follows: Starting from the empty graph G0
1, at each time step n one

vertex vn is added to the graph Gn−1
1 that connects to one other vertex vi, 1 ≤ i ≤ n where

i is chosen at random with

P(i = s) =

{

dGn−1
1

(vs)/(2t − 1) 1 ≤ s ≤ n − 1,

1/(2t − 1) s = n.
(6.5)

Note that, in this definition, the edge going away from vertex n already contributes to the
sum of edge degrees, i.e. the “beginning” of the new edge is counted already.
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L L R L L R R R RL

1 2 3 4 5

LCD

(n=5)

1G5

Figure 6.1: A visual explanation of the LCD Model: An n-pairing for n = 5, then G5
1 is

formed.

For general m, the process (Gn
m)t≥0 is defined by running the process (Gn

1 ) on a sequence
v′1, v

′
2, . . . of vertices. (Gn

m)t≥0 is then formed from (Gmn
1 )t≥0 by associating the vertices

v′1, v
′
2, . . . , v

′
m with vertex v1, then the vertices v′m+1, v′m+2, . . . , v

′
2m with vertex v2, and so

on, and then adding the edges accordingly. Thus, from (Gn
1 ), we can identify a process

(Gn
m), and thus deduce important properties; for the moment we will consider (Gn

1 ). Let us
denote the probability space of all (Gn

1 ) as Gn
1 . Equivalently, let Gn

m denote the probability
space of all (Gn

m).
An n-pairing is defined as a partition of the set {1, 2, . . . , 2n} into pairs. An n-pairing

can be visualized as connecting pairs of 2n distinct points on the x-axis with each other via
semi-circular chords in the upper half plane, which gives it the name of a linearized chord
diagram (LCD). This is the origin of the name of this model. Identifying a pairing with an
LCD, we can speak of chords and their left and right endpoints.

From an LCD L, a graph Φ(L) can be formed in the following way: Starting from left to
right, all left end points of chords up to and including the first right endpoint are identified
with vertice 1. The next left endpoints up to and including the next right endpoint are
identified with vertice 2, and so on. Chords joining left and right endpoints are now replaced
with edges connecting the corresponding vertices. Bollobás et al. claim that, if L is chosen
uniformly at random from all (2n)!/(n!2n) existing n-pairings, then Φ(L) has the same
distribution as a random (Gn

1 ) ∈ Gn
1 . An explanation for this is that, by taking an LCD L′

with n−1 chords, an LCD L can be formed by placing a new right endpoint to the right of
the last point in L′ and placing the left end point uniformly at random in one of the 2n− 1
possible places between already existing points. The formation of Φ(L) then corresponds
to adding a vertex to Φ(L′) and adding an edge with probability as defined by (6.5). See
figure 6.1 for a visual explanation.

The Diameter

Theorem 6.1. For a fixed m ≥ 2 and a positive real number ε, a.e. Gn
m ∈ Gn

m is connected
and has diameter diam(Gn

m) satisfying

(1 − ε) log n/ log log n ≤ diam(Gn
m) ≤ (1 + ε) log n/ log log n. (6.6)

Outline of proof: The proof of the lower bound is quite quick. A graph GN
1 is considered,
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with N = mn. Remember that the set of vertices is {1, 2, . . . N}. After some technical
lemmas, it is proved that the distance between n and n − 1 in Gn

m is greater than L =
log n/ log(3Cm2 log n), where C is a constant: We consider the sum of all possible paths of
length l ≤ L from n to n − 1, and find that this number tends to zero in expectation.

The upper bound is much more complicated, the main probabilistic tool used is Theo-
rem 4.3. Remember, N = nm. First, a 2N -pairing is generated in the following way: Take
2N independent samples from the uniform distribution on [0, 1), x1, x2, . . . , x2N . Under
the assumption that these pairs are distinct, we form an LCD as follows: Let x2i−1 and
x2i form pairs, for all i, then re-label the vertices from left to right in ascending order.
This will give a pairing with the correct distribution. However, it is also possible to gen-
erate a pairing starting with the right end-points r1, r2, . . . , rN ; these are not uniformly
distributed, but have density function 2x. They are so-called M2(0, 1) random variables.
Given r1, r2, . . . , rN , the left endpoints l1, l2, . . . , lN are independent with li uniformly dis-
tributed on [0, ri].

Taking N = mn independent M2(0, 1) random variables r1, r2, . . . , rN , and sorting them
into ascending order, R1, R2, . . . , RN , we are only interested in every mth endpoint, which
we shall denounce by Wi := Rmi. Let wi := Wi − Wi−1, where W0 = 0. Bollobás et
al. proceed to prove that, for i large enough, whp Wi is close to

√

i/n, while for certain
intervals whp for at least half the vertices i it holds that wi ≥ 1

10
√

in
.

The right endpoints R1, R2, . . . , Rmn are now taken as given, then independent random
variables Li, 1 ≤ i ≤ mn are inserted into the model where each Li is uniformly distributed
on [0, Ri]. We thus obtain an LCD on the chords {Li, Ri}. Gn

m is obtained by taking
m edges from each vertex i (corresponding to Wi, 1 ≤ i ≤ n) to li,j, where li,j = k if
Wk−1 < Lm(i−1)+j < Wk.

It is easier to consider only the Wis, “ignoring” the Ris. This is possible because, if we
consider Lm(i−1)+j to be random variables on [0,Wi] instead of on

[

0, Rm(i−1)+j

]

, this will
only increase the diameter by increasing the probability of loops at i. We will also only
consider the case m = 2, again because removing edges will only increase the diameter;
thus, vertex i only attaches to two edges, li,1 and li,2. The li,js are independent with P(li,j =
k) = wk/Wi. With this simplified process, we then form our graph G = G(W1, . . . Wn) with
which it shall be proved that

P

(

diam(G) ≤ (1 + ε) log n/ log log n

)

= 1 − o(1).

The next step is to define a vertex i as useful if i ≤ n/(log n)5 and wi ≥ (log n)/n, i.e.
if it is early enough in the sequence of vertices, and if its probability of being chosen as a
neighbor for a new vertex is big enough.

First, a lemma is stated proving that with probability 1 − o(1) every vertex v of G is
joined by a path of length at most 8 log log n to a useful vertex. The idea behind this is
first to show that the number of vertices reached after k steps is not much smaller than two
times the number of vertices reached after k − 1 steps— much as in the proof of Theorem
4.10 — as long as no useful vertices are used. Then, it is shown that for a non-useful vertex
i, the probability that li,1 is useful is at least (log n)−3, meaning that the probability of a
non-useful vertex attaching to a useful one is fair. Combining these statements, the lemma
then follows.

The next step is to show that for a useful vertex v, 1 ≤ v ≤ n, with probability 1−o(n−1)
it holds that there is a path in G between v and 1 of length at most (1/2+ε) log n/ log log n.
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To prove this, we first define a vertex to be good if wi ≥ 1
10

√
in

. Then, a weighting function

is introduced, fk =
∑

i∈Γk

1√
in

. Let Γ0 := {v} and let Γk be the set of those j that are good

and in a certain interval of [n] /{Γ0 ∪Γ1 ∪ . . . Γk−1} and reachable from Γk−1 by edges that
are chosen in a way that maintains independence of edges. Let Nk = Γ0 ∪ Γ1 ∪ . . . Γk.

Considering an interval It =
[

2t + 1, 2t+1
]

for a fixed t in a certain range, it is shown
that for

µ1 :=
∑

i∈Γk, i>2t+1

√
2t

80
√

i
,

µ1/2 vertices of It are likely to be hit by edges coming out of Γk ∩
[

2t+1 + 1, n
]

. A similar
relationship is proved for edges coming from It into Γk ∩

[

s + 1, 2t
]

, where s is defined
earlier in the proof. With help of the predefined function and some calculations, the proof
is complete.

Bollobás et al. mention that for the case m = 1, it has been proved that the diameter is
Θ(log n). (See [40].)

The Clustering Coefficient

As for the clustering coefficient of Gn
m, we shall see that it is actually relatively low, tending

to zero as n → ∞. This is one of the aspects of complex networks that the Barabási-Albert
Model did not take into account. The following theorem is from [9].

Theorem 6.2. For fixed m ≥ 1, the expected value of the clustering coefficient C(Gn
m)

satisfies

E(C(Gn
m)) ∼ m − 1

8

(log n)2

n
as n → ∞.

The proof makes use of another theorem stated in [9]. A fixed graph S is defined on [n]
such that each edge ij in S is oriented from j to i if j ≥ i. V +(S) is defined as the set of
vertices in S from which edges leave, while V −(S) is defined as the set of vertices in S that
have incoming edges. We define din

S (i) and dout
S (i) as the in- and out-degrees of vertex i,

respectively. Let CS(t) be the number of edges of S “crossing” t, i. e. , the number of edges
ij with i ≤ t and j ≥ t. As described in chapter 3, we say S is a subgraph of Gn

1 writing
S ⊆ Gn

1 if for the edge ij ∈ E(S) it holds that ij ∈ E(Gn
1 ), i.e. we are not dealing with

isomorphic subgraphs. Let dout
S ≤ 1; it is possible that S ⊂ Gn

1 . The following theorem is
almost verbatim from [9].

Theorem 6.3. Let S be a possible subgraph of Gn
1 . With the notation above, the probability

ps that S ⊆ Gn
1 satisfies

ps =
∏

i∈V −(S)

din

S (i)!
∏

i∈V +(S)

1

2i − 1

∏

t6∈V +(S)

(

1 +
CS(t)

2t − 1

)

.

Furthermore,

ps =
∏

i∈V −(S)

din

S (i)!
∏

ij∈E(S)

1

2
√

ij
exp



O





∑

i∈V (S)

CS(i)2

i







 .
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Outline of proof of Theorem 6.2: As in section 4.4, first the expected number of triangles
TGn

m
is counted, then the expected number of pairs of connected vertices PGn

m
. Remember

that Gn
m can be formed from Gmn

1 by joining groups of m vertices to one new vertex. Thus,
for given a, b, c with 1 ≤ a < b < c ≤ n it holds that abc is a triangle in Gn

m if and only if
there are integers

m(a − 1) < i,

i′ ≤ ma,

m(b − 1) < j,

j′ ≤ mb,

m(c − 1) < k,

k′ ≤ mc,

so that {ij′, jk′, i′k} ∈ E(S) and S ⊆ Gmn
1 . Assuming dout

S (v) ≤ 1 for all v, from Theo-
rem 6.3 we get

pS = η1

∏

x∈V −(S)

din
S (x)!

∏

xy∈E(S)

1

2
√

xy
= η2

∏

x∈V −(S)

din
S (x)!

1

8m3abc
,

with η1 and η2 bounded and tending to 1 for a → ∞. Considering the number of possible
choices for i, i′, j, j′, k, k′, the expected number of triangles with vertices a, b, c in Gn

m follows
quickly, namely

η3
m(m − 1)(m + 1)

8abc
,

again with η3 bounded and tending to 1 as a → ∞. Summing up over a, b, and c with
1 ≤ a < b < c ≤ n, the expected number of triangles TGn

m
in Gn

m follows:

TGn
m

= (1 + o(1))
∑

1≤a<b<c≤n

m(m − 1)(m + 1)

8abc
∼ m(m − 1)(m + 1)

48
(log n)3. (6.7)

In the next step, the number of pairs of adjacent edges ab, ac must be considered. For
the proof, it is necessary to compare the different cases b, c ≤ a, b ≤ a < c (equivalent to
c ≤ a < b) and a < b, c. With similar methods as before, it then follows that in expectation,
we have

PGn
m
∼ m(m + 1)

2
n log n. (6.8)

Thus, the for clustering coefficient C(Gn
m), with (6.7) and (6.8) it holds E(C(Gn

m)) ∼
m−1

8
(log n)2

n which completes the proof.

6.4.2 The Buckley-Osthus Model and the Degree Distribution

In principle, the Buckley-Osthus model is to the model described in section 6.3 what the
LCD model is to the Barabási-Albert model: The idea of the model is the same, however,
the definition of the model is put into a mathematically correct state, which is based on the
LCD model [13]. Remember, at each timestep t a new vertex t is introduced to the model,
and m new edges attach to random vertices, with preference given to higher in-degree.
The Buckley-Osthus model differs from the model by Dorogovtsev et al. because the edges
come from the new vertex t. Let us start with the case m = 1:

In the beginning, as in subsection 6.4.1 we have G0
1, the empty graph, or G1

1, the graph
with one vertex and one loop. Gn

1 is formed from Gn−1
1 by adding the vertex n and one
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directed edge from n to a vertex i ∈ V (Gn−1
1 ) ∪ {n} where i is chosen with probability

P(i = j) =







din
n−1(j)+a

(a+1)n−1 if 1 ≤ j ≤ n − 1
a

(a+1)n−1 if j = n.
(6.9)

In the same way as in the previous section, we can form Gn
m from Gmn

1 . Note that for the
case a = 1, the model described here is equivalent to the model described in section 6.3.
Thus, the results we shall state are valid for the LCD model as well. By abuse of notation,
we shall denote both processes by Gn

m.
Let Nm

n (d) be the number of vertices with in-degree d in Gn
m. The first result states that

for a ∈ N, the degree sequence is scale-free.

Theorem 6.4. Let r ≥ 1 and a ≥ 1 be fixed natural numbers, and let (Gn
m)n≥0 be the graph

process defined above. Let ε > 0 and define

Pin(d) := (a + 1)
(am + a)!

(am − 1)!

(d + am − 1)!

(d + am + a + 1)!

Then with probability tending to 1 as n → ∞, we have

(1 − ε)Pin(d) ≤ N r
n(d)

n
≤ (1 + ε)Pin(d)

for all d so that 0 ≤ d ≤ n1/100(a+1). In particular, for any d in this range with d → ∞,
with probability tending to 1 we have

N r
n(d)

n
= (a + 1)

(am + a)!

(am − 1)!
d−2−a(1 + o(1)) = Θ(d−2−a).

Note that, because Γ(x) = (x − 1)! for x ∈ N, this result confirms the heuristic result of
Dorogovtsev et al. stated in section 6.3. (Compare to (6.4).)

The proof of Theorem 6.4 follows by summation after proving following theorem:

Theorem 6.5. For any a, r ∈ N and any k with n1−1/20(a+1) ≤ k ≤ n − n1−1/20(a+1) and
0 < d ≤ n1/20(a+1), the in-degree din

n (k) of the kth vertex satisfies

P(din

n (k) = d) =

(

d + ar − 1

ar − a

)

pra(1 − p)d(1 + o(1)) + o(n−1),

where p := (k/n)1/(a+1).

The idea behind this model is to expand the LCD model. Gm
n is formed via an (a, 1)–

matching Ma
n instead of just a pairing, which is defined as the partition of the set [(a + 1)n]

into n sets with a + 1 elements each. One element within each set is singled out as the
head of the set, and all the other a vertices (tails) are attached to a chord pointing to
the head. We can again visualize this matching on the positive x-axis. Taking Ma

1 to be
the first a + 1 natural numbers on the x-axis where uniformly at random one of them is
defined as the head, the Ma

n follows inductively by adding a new points at the right end of
the existing model, and then uniformly at random choosing one of the (a + 1)n− 1 “gaps”
between two of the already existing points to put the tail of this set. We can then label
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every point with H or T , depending on if the point is a head or a tail. This will be referred
to as an (H,T )-pattern. For a given (H,T )-pattern P and i = 1, 2, . . . , n, let h(0, i; P ) be
the number of heads which could be connected to the ith block of a tails in P . A given P
corresponds to exactly

∏n
i=1(h(0, i; P ) − i + 1) (a, 1)-matchings.

To construct a directed graph Φ(Ma
n) on n vertices from Ma

n , we proceed as in subsection
6.4.1. Advancing from left to right, all points up to and including the ath T are joined
together to form vertice v1, from here until up to and including the 2ath T all points are
joined together to form vertice v2, and so on. The a chords originating at the the a T s
forming each vertex form one edge in Φ(Ma

n). The in-degree din(vi) of each vertex is equal
to the number of heads encountered in forming it, while it always holds that its out-degree
dout(vi) = 1. With similar arguments as with the LCD model, it follows that Φ(Ma

n) has
the same distribution as a random Gn

1 ∈ Gn
1 . See figure 6.2.

Outline of the proof of Theorem 6.4. Martingales play an important role in this proof. The
proof starts by calculating the expected value of Dk,n, the sum of the degrees of the first k
vertices in G1

n. The probability that Dk,n = Dk,n−1 + 1 is

p :=
Dk,n−1 + k(a − 1)

(a + 1)n − 1
.

It follows quickly that

E (Dk,n | Dk,n−1) =
k(a − 1)

(a + 1)n − 1
+ Dk,n−1

(a + 1)n

(a + 1)n − 1
,

so

E (Dk,n) =
k(a − 1)

(a + 1)n − 1
+ E (Dk,n−1)

(a + 1)n

(a + 1)n − 1

from which, with the boundary condition E (Dk,k) = 2k, an expression for E (Dk,n) can be
obtained. With these thoughts in mind, an estimate of E (Dk,n) for a certain range of k is
given. With help of Lemma 3.4, it follows that Dk is quite close to its mean, namely the
event Ak′ := {|Dl − E(Dl)| ≤ 3

√
n log n : l = k, k′} holds with probability tending to 1.

Let us define h(k, k′) :=
∑k′

j=k+1 din
n (j), the sum of in-degrees (or heads) over a certain

interval (k, k′]. The expected value of h(k, k′) follows easily, as does the proof that h(k, k′)
should be close to its mean.

We proceed to define intervals in a pattern or matching: For 0 ≤ k < k̃ ≤ n, let
(k, k̃] denote the set of points after the (ak)th tail up to and including the (ak̃)th tail.
t(k, k̃) = a(k̃ − k) denotes the number of tails in the interval, whereas as above, h(k, k̃)

TH H T H T T H T T T T T H T

1 2 3 4 55G1

5M 2

Figure 6.2: A visual explanation of the Buckley-Osthus model for n = 5 and a = 2.
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6 Models with Preferential Attachment

denotes the number of heads. h(k, k̃; P ) is written when a particular (H,T )-pattern P
is being considered. Let Dk(P ) = h(0, k; P ) + k denote the partial degree sum (in- and
out-degrees) given a particular (H,T )-pattern P .

Let R ≤ k ≤ n − R with R = n1−1/20(a+1), and define

k∗ = k + n
1/2−1/5(a+1) = (1 + ε∗)k and k′ = k + n

1/2+1/5(a+1) = (1 + ε′)k.

Given an (H,T )-pattern P ∈ Ak′, let M := h(k, k′; P ), and denote the set of all (H,T )-
patterns that agree with P outside (k, k′] by ΓM . Let (ΓM , PΓM

) be the probability space
where the elements of ΓM are chosen uniformly at random.

A second probability space is defined on P and M as follows:
Let N := t(k, k′) + h(k, k′; P ), i.e. the number of all points in the interval (k, k′] and let
Γp = ΓM/N be the space of all (H,T )-patterns generated by N independent random trials,
the probability for a head being p = M/N and the probability for a tail being 1 − p. Let
PΓp denote the probability measure over this set.

Let Ak∗,p := {hp(k, k∗) ∈ [(1 ± δ)(p((1 − p))t(k, k∗)]}, where δ = n−1/90(a+1) and the
number of heads which occur in Γp before t(k, k∗) = a(k∗ − k) tails have appeared is
denoted by hp(k, k∗), and [(1±δ)x] is the set of natural numbers i ∈ N such that (1−δ)x ≤
i ≤ (1 + δ)x.

After bounding p
1−p , using the Chernoff inequality (Theorem 4.3 it is shown that Ak∗,p

holds with probability tending to 1 in (Γp, PΓp), from which it follows that hp(k, k∗) is close
to E(h(k, k∗)).

Similarly, for Ak∗,M := {hM (k, k∗) ∈ [(1 ± δ)(p((1 − p))t(k, k∗)]} it is shown that
PΓM

(Ak∗,M) → 1.
From here, the next step is to extend the probability space ΓM from (H,T )-patterns on

(k, k′] to include the corresponding (a, 1)-matchings. Let M′(P ) denote the set of (a, 1)-
matchings in Ma

n whose (H,T )-patterns agree with P outside (k, k′], and define PM′(P )

to be the probability on M′(P ) when the elements are chosen uniformly at random. For
Ak∗ := {h(k, k∗) ∈ [(1±δ)(p((1−p))t(k, k∗)]}, it can be shown that PM′(P ) (Ak∗)C = o(n−1)
a.a.s.

Let M∗(P ) denote the set of all (a, 1)-matchings in Ma
n whose (H,T ) patterns agree

with P outside (k, k∗]. As a last step before beginning to actually count vertex degrees, it
is shown that one is able to consider patterns instead of the corresponding matchings with
only a negligible error.

Finally, from here on, it is possible to calculate PM∗(P )(dk+1 = d + 1) as the number
of (H,T )-patterns in (k, k∗] with d Hs in in (k, k + 1] and h(k, k∗) − d Hs in (k + 1, k∗]
divided by the number of (H,T )-patterns in (k, k∗] times an error factor 1 + o(1). After
some combinatorial thoughts, it is necessary to go back to the probability space (Ma

n, P) of
all (a, 1)-matchings. After a few estimates and calculations, the statement of Theorem 6.4
follows in expectation. With Lemma 3.4 it is shown that the the number of vertices with
in-degree k will indeed be close to their mean.

This shows that the Buckley-Osthus model is indeed scale-free. As the introduction of
an initial attractiveness a just adds to the “randomness” of the model, we would expect the
diameter of the Buckley-Osthus Model to be somewhere between the diameter of an Erdős-
Rényi random graph and the diameter of the LCD model, so fairly low. Unfortunately, no
such intuition is possible for the clustering coefficient.
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In this finalizing chapter, some other networks that did not quite fit into any of the previous
chapters will be presented. The first two are important in the development of the theory of
complex networks, they will presumeably also become classics when talking of this subject
in few years time. The latter two are very recent papers that I found interesting and thus
worth mentioning.

7.1 The Copying Model

Quite an early model on the web graph that imposes a technique similar to preferential
attachment is the so-called copying model by Kumar et al. [32].

Here, the intuition is the following: Some new nodes that come to the web are very
innovative in their topic and find out where to link to all by themselves — i.e. the first
person to make a page for foreign students coming to study in Vienna will think of all the
sites of interest “from scratch”.

However, most people making a web-site are interested in some topic where there already
exists a wide variety of ressources. They will then “copy” some of these links, and, as they
might have a different approach to the same topic, will add a few which they find important
under a different aspect. Coming back to our example, a person making a web page for
international students coming to Vienna University of Technology will copy many (but
probably not all) links from the initial site for foreign students, and might add a few that
are specific for studying at this particular university.

Kumar et al. give two models, the linear growth model and the exponential growth model.
In the latter, at each time step t a fraction of the number of vertices existing at t − 1 is
added to the model; the argumentation behind being that new sites won’t be “discovered”
for quite a while. We will only explain the linear model and give results for it here, as the
comparison with other models given is easier.

The description of the model is then as follows: The shape of this model at t = 0 is not
defined, so at t = 0 the model consists of an arbitrary graph G0.

Then, at time t > 0, a new vertex v is added to the graph Gt−1. This vertex connects
via directed, labeled edges to a fixed number of edges d in the following way: First, with
uniform probability, a node u is chosen from Gt−1 to be the “prototype” vertex. We now
can define the copy factor 0 < α < 1: For every edge i, i = 1, 2, . . . , d, with probability
α, the edge connects v to a vertex chosen uniformly at random in Gt−1. With probability
1−α, edge i “copies” the destination of the ith edge of vertex u, meaning that it connects
to the same vertex.

Note that the larger the topic, the larger the probability that a node from this topic
will be chosen as the prototype vertex. Results are then given for d = 1. Let Nt,k be the
number of vertices with in-degree k. In [32], Kumar et al. show following
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Theorem 7.1. For r > 0, the limit Pr = limt→∞
Nt,r

t exits, and satisfies

Pr = P0

r
∏

i=1

1 + α
i(1−α)

1 + 2
i(1−α)

and

Pr = Θ
(

r−
2−α
1−α

)

.

We thus see that the copying model also results in a scale-free degree distribution. What
is also shown in [32] is that the number of cliques Ki,j — bipartite subgraphs where all
the possible edges are present — will be very high, in Gt there will be Ω(t exp(−i)) cliques
Ki,i. This was one of the aims when constructing this model, and is also not surprising
when thinking of the intuition behind it.

7.2 The Cooper-Frieze Model

Cooper and Frieze published an extremely general model of the web graph, that takes into
account several concepts of other models we have seen already, i.e. preferential attach-
ment, network growth, as well as the concept of uniform randomness of the Erdős-Rényi
Model [15]. They tried to maximize the choice given at each step.

The Cooper-Frieze model is based on the web graph, however, it is undirected. Interest-
ingly, a justification is given for the undirectedness of the model: not only is it easier to
analyze, but also, through the way the large search engine Google works, it is possible to
find the internet addresses of all sites that have links to a certain webpage. (To do this,
simply enter link:node-url in Google.)

Cooper and Frieze refer to their model as a web graph, as opposed to a scale-free graph,
because they take a so-called configuration model. This means that they do not select
vertices directly with a probability proportional to degree, but rather represent each vertex
by points and from these select one uniformly, i.e. each vertex j is represented by the
d(j) half-edges attached to it, and from all half edges present in the system, one is picked
uniformly at random. Here, this means that preferential attachment is to pick a vertex w
with following probability:

P (w is the terminal vertex of a half-edge that has been chosen u.a.r.) =
d(w)

2|E| .

This model takes into account many aspects that make other models somewhat unreal-
istic. We still consider discrete time steps t. There are two possibilities at time t: Either
a new vertex is added to the model (and connects to nodes already in the model), or an
existing vertex sends out new edges within the model. The number of new edges varies from
time to time. There is a certain chance that the nodes a new edge connects to are chosen
uniformly at random, and a counter-probability for choosing these nodes with preferential
attachment.

To be precise, at time t = 0 the graph consists of one vertex v0 and no edges. At time
t > 0

• with probability 1 − α we add a new vertex to the system (procedure new), and
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7.2 The Cooper-Frieze Model

• with probability α we add generate edges from an existing, old vertex (procedure
old).

In procedure new, we have

• a vector p = (pi, i ≥ 1) where pi is the probability that a new node generates i new
edges,

• the probability β that the choices of terminal nodes are made uniformly, and

• the probability 1−β that the choices of terminal nodes are made according to degree.

Conversely, in procedure old, we have

• a vector q = (qi, i ≥ 1) where wi is the probability that the old node generates i new
edges,

• the probability δ that the old node is selected uniformly,

• the probability 1 − δ that the old node is selected according to degree,

• the probability γ that the choices of terminal nodes are made uniformly, and

• the probability 1−γ that the choices of terminal nodes are made according to degree.

A finiteness condition is imposed, meaning that there exist j0, j1 such that pj = 0 for
j > j0 and qj = 0 for j > j1.

Not surprisingly, to state the results of Cooper and Frieze, it is necessary to introduce a
large number of parameters.

Notation 7.1. Let Dk(t) be the number of vertices of degree k at time t. Let µp =
∑j0

j=1 jpj,

µq =
∑j1

j=1 jqj , and θ = 2((1 − α)µp + αµq). The parameters of the model are transformed
as follows:

a = 1 + βµp +
αγµq

1 − α
+

αδ

1 − α
,

b =
(1 − α)(1 − β)µp

θ
+

α(1 − γ)µq

θ
+

α(1 − δ)

θ
,

c = βµp +
αγµq

1 − α
,

d =
(1 − α)(1 − β)µp

θ
+

α(1 − γ)µq

θ
,

e =
αδ

1 − α
,

f =
α(1 − δ)

θ
.

Then, recursively, define d0 := 0 and for k ≥ 1

dk(a + bk) := (1 − α)pk + (c + d(k − 1))dk−1 +
k−1
∑

j=1

(e + f(k − j))qjdk−j.

This system of equations has a unique solution.
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Theorem 7.2. There exists a constant M > 0 such that almost surely for all t, k ≥ 1

|D̄k(t) − tdk| ≤ Mt
1/2 log t.

The number of vertices at step t is whp asymptotic to (1 − α)t. This means that the
proportion of vertices of degree k is whp asymptotic to

d̄k =
dk

1 − α
.

Theorem 7.3. There exist some constants C1, C2, C3, C4 > 0 such that

i) C1k
−ζ ≤ dk ≤ C2 min{k−1, k−ζ/j1}, where ζ = (1 + d + fµq)/(d + f).

ii) If j1 = 1, then dk ∼ C3k
−(1+1/(d+f)).

iii) If f = 0, then dk ∼ C4k
−(1+1/d).

iv) If the solution conditions given below hold, then

dk = C

(

1 + O

(

1

k

))

k−x,

where C is constant and

x = 1 +
1

d + fµq
.

We say that {qj ; j = 1, 2, . . . , j1} is periodic if there exists m > 1 such that qj = 0 unless
j ∈ {m, 2m, 3m, . . . }.

Let

φ1(y) = yj1 −
(

d + q1f

b
yj1−1 +

q2f

b
yj1−2 + · · · +

qj1−af

b
y +

qj1f

b

)

.

The solution conditions are:

i) f > 0 and either (a) d + q1f > 0 or (b) q is not periodic.

ii) The polynomial φ1(y) has no repeated roots.

Theorems 7.2 and 7.3 are taken almost ad verbatim from [15]. In words, this means that
the expected value of the number of vertices of degree k will be about t times the value
dk defined in the recursion, tdk, and under certain conditions (that are not necessary) the
degree sequence will indeed be power law with exponent x.

7.3 Thickened Trees

Another model was ideated by Drmota, Gittenberger and Panholzer only recently [20].
They start with a random graph process called the PORT-model: At time step t = 1,
the graph consists only of one vertex, 1, that will be the root of the tree. Then, at each
timestep t = 2, 3, . . . a new vertex labeled t is added to the model. As in the Barabási-
Albert Model, it attaches to one “older” vertex i < t, where the vertice it attaches to is
chosen randomly. Higher preference is once again given to vertices with higher degree, the
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7.3 Thickened Trees

probability of attaching to a vertex with degree d = k + 1 (where k is the in-degree) is
proportional to d.

In fact, what is being constructed here is a tree with an obvious orientation: Because
of the vertex labels, we know which nodes have appeared when (this is the history of the
process); the younger nodes have edges that are directed to older nodes.

The model can also be interpreted as a planar version of recursive trees: For a vertex
with in-degree k, note that there are d = k + 1 possibilities of attaching a new vertex to
it. This is why the model is called plane oriented recursive tree model. It is proved in [31]
that the PORT-model is scale-free with degree distribution

lim
n→∞

pn(d) =
4

d(d + 1)(d + 2)
,

where pn(d) is the probability of a random vertex of a PORT of size n having degree d.
The idea behind thickened trees is to modify the PORT-model so that the global tree-

like structure is maintained, while at a local level the graph is highly clustered: For all
k ≥ 0, denote by Tk a set of labeled graphs, a so-called substitution set. For now, the only
specification for the graphs in Tk is that for a graph G ∈ Tk, k + 1 ordered and labeled
half-edges come out of some vertices.

Let T be a tree generated by the PORT-model, it is modified as follows: Let v be a
vertex of in-degree k. v is cut from the tree in such a way that v is removed, and so are the
halves of the edges connecting to v. Thus, all vertices that had been adjacent to v now are
incident to a half-edge. Then a random graph from Tk is inserted to where v was, and the
half-edges are glued together respecting a certain order, meaning that the predecessor of v
is attached to half-edge 0, then in ascending order the remaining successors are attached to
the 1st, 2nd, . . . , kth half-edge. This procedure is followed for every vertex v in T . Finally,
the nodes in the new graph G = G(T ) are relabeled in a way that is consistent with the
labeling of T and the labellings in the Tks. See figure 7.1 for a visual explanation.
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Figure 7.1: The principle of the PORT-Model. Intuitively, the vertices of this model are
blown-up — thickened — and then replaced with random vertices from given
sets. Then, the vertices are relabeled in an order-preserving way.

Remember that the clustering coefficient of the LCD model (see subsection 6.4.1) was
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fairly low. In this model, it can be tuned to be fairly high, depending on how clustered
(and how big) the graphs in the Tks are. It is also possible to treat this model analytically,
and the influence of local changes on global structure can be shown. Note that the clusters
are not formed by an evolution process, but are taken as given.

Drmota et al. use a generating function approach to prove that the degree distribution
of thickened trees tends to a scale-free form as follows:

Let Tk be defined as described above. Let

tk(z) =
∑

G∈Tk

z|G|

|G|!

be the exponential generating function of these graphs. Let Nd(G) denote the number of
nodes in G of degree d (half-edges included), then let

t
(d)
k (z, u) =

∑

G∈Tk

z|G|

|G|!u
Nd(G).

Finally, let

Td(z, y, u) =
1

z

∑

k≥0

t
(d)
k (z, u)yk.

Theorem 7.4. Let Tk be substitution sets (as described above) so that the equation

ρ =

∫ 1

0

dt

Td(ρ, t, 1)

has a unique positive solution in the region of convergence of Td(z, y, u) and that the
Td(z, y, u) can be represented as

Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′yd+α(u − 1) + O

(

(1 − y)r′(u − 1)2
)

(1 − y)r
, (7.1)

where r′ and r ∈ R with 0 < r′ ≤ r, α ∈ N, C0(z, y) and C1(z, y) are power series that
contain z = ρ and y = 1 in their regions of convergence and that satisfy Ci(ρ, 1) 6= 0 for
i = 0, 1, and the O(·)-term is uniform in a neighborhood of z = ρ and y = 1.

Let pn(d) denote the probability that a random node in a thickend PORT of size n has
degree d. Then the limits

lim
n→∞

pn(d) =: p(d)

exist and we have, as d → ∞,

p(d) ∼ C

dr+r′+1
.

This theorem is taken almost ad verbatim from [20]. In [19], it is proved that (7.1) is
satisfied in quite general conditions.
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7.4 Protean Graphs

 Luczak and Pra lat introduced a model for protean1 graphs in [33]. Basically, the idea of
this graph process is as follows: In a graph of n vertices, at each step t a random vertex
j dies, its adjacent edges are removed from the graph. However, simultaneously, another
vertex is born (which can be interpreted as the same vertex — the number of vertices in
the system does not change). This “new” vertex attaches at random to d other vertices in
the graph, where higher priority is given to “older” vertices. The new vertex is now the
youngest vertex in the system. This aging process can be seen as a permutation of the n
vertices, where at step t for the dying vertex j it then holds πt(j) = n . For the other
vertices i so that πt−1(i) > π(j) it now holds πt(i) = πt−1(i) − 1.

Though this model is theoretically very interesting and leads to a power law degree
distribution, it could be criticized as a bad model for the web graph because the number n
of vertices is fixed, while the web is currently growing very quickly. Thus not surprisingly,
this model has a sequel: Growing protean graphs. In [41], Pra lat and Wormald expand the
model from [33] to a growing model.

This graph process (Gt)t≥0 is dependent on the parameters 1/2 < p ≤ 1, d ∈ N, and
0 < η < 1. The process starts with G0 consisting of one vertex, v1, and no edges. At time
t, Gt is formed from Gt−1 in the following way:

• With probability p a new vertex v|Vt−1|+1 is added to Gt−1. From this vertex, d
edges are then added one after the other with vi being chosen with probability
i−η/

∑Nt−1+2
j=1 j−η . Loops and multiple edges are allowed.

• Contrarely, with probability 1 − p, if there is only one vertex left in the graph do
nothing; if |Vt−1| > 1, choose a random vertex vi, i ∈ {1, 2, . . . , |Vt−1|}, delete it and
all the edges incident to it. Then relabel the remaining vertices: vj+1 is now called
vj for i ≤ j ≤ |Vt−1| − 1.

The protean graph Gt is now called Pt(p, d, η).

Note that this graph is not necessarily connected: Intuitively, when several “old,” well-
connected vertices are removed one after the other, it is possible that graph will be discon-
nected. After a few thoughts, similar arguments as in [33] can be used to show that the
degree distribution follows a power law. A statement on connectivity is also given.

Let n = n(t) = (2p− 1)t. It is shown in [41] that |Vt| − 1 will be concentrated around n,
i.e. there will be about n vertices in Gt. Let Zk = Zk(n, p, d, η) be the number of vertices
of degree k in Pt(p, d, η), and Z≥k =

∑

l≥k Zl. Following theorem is verbatim from [41]:

Theorem 7.5. Let 1/2 < p ≤ 1, d = o(t(1−η)/3) and 0 < η < 1, k = k(n) ≥ log2 n, and
d = o(k). Then a.a.s.

Z≥k = n

(

1 − η

(1 − p)/p + η

d

k

)1/η

(1 + o(1)) + O(log3 n).

1
protean: 1. of or resembling Proteus in having a varied nature or ability to assume different forms,
2. displaying a great diversity or variety: versatile (source: www.merriam-webster.com)
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7.5 Summary and Outlook

In this diploma thesis, I hope to have given an introduction to what the modelling of
complex networks is about. After an introduction where the basic notions of a complex
network were defined as well as some basic ideas — the clustering coefficient, power laws,
the diameter, etc. — I gave some motivating examples of complex networks in chapter 2.
Then, before we could “get to the point,” in chapter 3, the basic tools used in this diploma
thesis were presented.

Finally, in chapter 4, we started with the models. This chapter was rather lengthy, and
held several rigorous proofs about the “classical” random graph model of Erdős and Rényi,
such as on threshold functions for balanced subgraphs, the giant component, the clustering
coefficient, and the degree sequence of Erdős-Rényi random graphs.

Then, in chapter 5, one of the first models to analyze real world networks was presented,
the small-world model. It put its focus on high clustering coefficient and small diameter.
A simplified version of this model, including some analytical results, was included, as was
a mean-field solution. This chapter also included first rigorous results by mathematicians,
the technical Markov chain small world, and an intriguing model of spacial random graphs.

The following chapter 6 dealt with preferential attachment: The Barabási-Albert Model
was introduced, and first results via a mean field solution given, as well as reasons why the
preference function must be linear and a short criticism of this model. Then, the model
was amplified by the model of Dorogovtsev and Mendes, followed by some rigorous results
about the diameter on the mathematical extension of the Barabási-Albert model, the LCD
model, and further results on the degree sequence of the Buckley-Osthus Model.

We now end with this chapter 7, where we quickly introduced the almost classical copying
and Cooper-Frieze models, as well as pointing out two recent models: thickened trees and
protean graphs.

This diploma thesis gives only a very short introduction to the the rapidly expanding
theory of complex networks; many more models are available. Looking at each chapter,
examples of papers that have not been cited here are easy to find, be it small world models
built to examine the spread of diseases, or preferential attachment models taking the aging
of sites into account. The theory of complex networks is an active area of research where
many new models are yet to be born — more models that will surely be as intriguing as
the ones I have come across researching for this thesis.
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