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Abstract

This diploma thesis deals with four big groups of random trees, namely Polya
trees, simple generated trees, increasing trees and scale-free trees. Di�erent
characteristics, similarities and di�erences of these varieties are discussed,
e.g. the limiting distribution of node-degrees. Most results are obtained us-
ing generating functions and methods of singulary analysis and stochastics.
In the �rst chapter the necessary background of stochastics and graph the-
ory is given, which will become necessary throughout the work, knowledge
of probability theory and analysis is favorable for the comprehension of the
work. In the second chapter we discuss results tracing back to George Pólya
and the year 1937. Based upon that we show that the limiting degree-
distribution of Pólya trees is a normal distribution.
The third chapter adresses simply generated trees, a group whose generating
function ful�lls a(z) = ϕ(a(z)), for a power series ϕ with nonnegative coe�-
cients. This group is equivalent to the group of Galton-Watson trees, which
correspond to a Galton-Watson branching process. We can obtain interesting
results on the structure of those trees in context of Brownian excursions.
In the fourth chapter we equip the trees with an additional parameter, namely
the labelling of their nodes, and eye on those trees whose labellings along any
path away from the root is increasing. For certain families of those increasing
trees we can also �nd limiting degree distributions.
In the �fth and last chapter we de�ne graphs and trees, which are similar
no networks occuring in the real world, but were discovered only recently,
the Scale free graphs and trees. The marcant property of these trees is the
development through growth, the limiting degree distribution is exponential
and independent of the beginning structure of the graph.
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Zusammenfassung

Diese Diplomarbeit befasst sich mit vier groÿen Gruppen von Zufallsbäu-
men, den Pólya trees, simply generated trees, increasing trees, und der rel-
ativ neuen Struktur der Scale-free trees. Verschiedenste Charakteristiken,
Gemeinsamkeiten und Unterschiede dieser Gruppen werden besprochen, wie
zum Beispiel die Grenzverteilung der Knotengrade. Die Ergebnisse werden
meist ausgehend von der erzeugenden Funktion der fraglichen Struktur unter
Zuhilfenahme von Methoden aus der Stochastik und der
Singularitätsanalyse gefunden.
Im ersten Kapitel werden diverse Begri�e aus Stochastik und Graphentheorie
bereitgestellt, die im Verlauf der Arbeit benötigt werden. Zum Verständnis
der folgenden Kapitel sind grundlegende Kenntnisse aus Wahrscheinlichkeits-
theorie und Analysis von Vorteil.
Im zweiten Kapitel werden Ergebnisse besprochen, die auf George Pólya
aus dem Jahre 1937 zurückgehen. Basierend auf diesen Ergebnissen wird
gezeigt, dass die Grenzverteilung der Knotengrade eines Pólya-trees einer
Normalverteilung entspricht.
Das dritte Kapitel befasst sich mit simply generated trees, einer Gruppe,
deren erzeugende Funktion die Bedingung a(z) = ϕ(a(z)) erfüllt, für eine
Potenzreihe ϕ mit nichtnegativen Koe�zienten. Diese Gruppe ist gleichzu-
setzen mit der Gruppe der Galton-Watson-Bäume, jene Bäume die einem
Galton-Watson-Verzweigungsprozeÿ zugehörig sind. Wir können hier inter-
essante Erkenntnisse über die Struktur der Bäume in Zusammenhang mit
Brownschen Exkursionen gewinnen.
Im vierten Kapitel statten wir Bäume mit einem zusätzlichen Merkmal, näm-
lich der Markierung ihrer Knoten, aus und betrachten jene Bäume, deren
Markierungen entlang jedes Pfades von der Wurzel weg aufsteigend verläuft.
Für gewisse Gruppen dieser increasing trees können wir ebenfalls die Grenz-
verteilung der Knotengrade bestimmen.
Im fünften und letzten Kapitel schlieÿlich de�nieren wir Graphen und Bäume,
die den in der reellen Welt vorkommenden Netzwerken ähneln, jedoch erst
kürzlich entwickelt worden sind, die Scale free trees und -Graphs. Das
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markante Merkmal dieser Gruppe ist es, das der Graph durch Wachstum
ensteht. Die Grenz-
verteilung der Knotengrade verläuft exponentiell und ist unabhängig von der
Anfangsstruktur des Graphen.
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I decided to write this thesis in English as I am always searching to increase
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Chapter 1

Methods and de�nitions

This thesis deals with random rooted trees. There are several families of
random trees, provided with di�erent restrictions and properties. This work
explores the structure of those trees. Results are obtained using methods
of probability theory and stochastics, just as the analysis of the asymptotic
behaviour of generating functions. In this chapter the necessary background
for the following is given.

We start with the de�nition of the structure we will describe, the following
terms will be well-known to most readers:

1.1 Graph theory

De�nition 1.1.1 (undirected graph). We call an ordered pair G = (V,E)
with

• V being a set, whose elements are called vertices or nodes,

• E being a set of unordered pairs of distinct vertices, called edges or
lines.

an undirected graph G.

De�nition 1.1.2 (tree). We call the graph G = (V,E) a tree B if it is
connected (i.e. there exists a path between any pair of edges v, w ∈ V ) and it
is free of cycles (i.e. there exist no path without repeating edges starting and
ending at the same node v ∈ V ).

This de�nition is equivalent to:

• Any pair of nodes v, w ∈ V is connected by a unique simple path.

1



CHAPTER 1. METHODS AND DEFINITIONS 2

• G has no cycles, and a simple cycle is formed if any edge is added to
G.

• G is connected, and it is not connected anymore if any edge is removed
from G.

• if |V | <∞ and G is connected, then |E| = |V | − 1.

• if |V | <∞ and G has no cycles, then |E| = |V | − 1.

REMARK: An unconnected graph without cycles is called a forest. Each
of it's components is a tree.

In this work, we will not work on a concrete tree, but on families of trees
with a common characteristic:

De�nition 1.1.3 (random tree). Let T be the set of all trees with a certain
characteristic(e.g. all trees with n vertices). We choose any tree B ∈ T
at random (every tree in T is chosen by a certain probability given by the
de�nition of the tree family), and call B a random tree of the family T .

We will describe families of trees by ordinary or exponential generating
functions:

T (z) =
∑
n≥0

Tnz
n

T (z) =
∑
n≥0

Tn
zn

n!

where the coe�cient Tn denotes the number of trees Bn of size n in the
family T . We need ordinary generating functions in the case of plane trees
and exponential functions in the case of non-plane trees.
To examine the behaviour of a certain parameter of the family of trees T de-
scribed by its generating function T (z), we will construct bivariate or multi-
variate generating functions, containing information about these parameters
in the variables uj, j = 1, . . . , i:

T (z, u1 . . . , ui) =
∑

n,m1,...,mi≥0

Tn,m1,...,mi
znum1

1 · · ·umi
i ,

e.g., in the bivariate generating function T (z, u) the coe�cient Tn,m could
denote the number of trees of size n with m leaves.
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1.2 singularity analysis

Given a power series T (z) with its expansion around a dominant singularity,
Flajolet and Odlyzko [13] described a tool to examine the asymptotic order
of growth of it's coe�cients, in [15] this method is expanded. We will use
this singularity analysis on the generating functions of families of trees, and
will thereby obtain asymptotic results. The method of Flajolet and Odlyzko
applies to functions f with a unique dominant singularity at z = 1 (through
normalization, this assumption can be obtained for any function f with a
unique dominant singularity) which, for some arbitrary α ∈ R satisfy

f(z) ≈ (1− z)α z → 1,

The results are obtained using Cauchys integral formula

fn = [zn]f(z) =
1

2πi

∫
C

f(z)

zn+1
dz

and Hankel-like contours C.

Figure 1.1: The Hankel-like contour to proof Theorem 1.2.1

Integrating along C = γ1 ∪ γ2 ∪ γ3 ∪ γ4 with

γ1 = {z = 1− t

n
|t = eiφ, φ ∈ [−π

2
,
π

2
]}

γ2 = {z = 1 +
t+ 1

n
|t ∈ [0, n]}

γ3 = {z||z| =
√

(4 +
1

n2
),<z ≤ 2}

γ4 = {z = 1 +
t− 1

n
|t ∈ [0, n]}

as shown in Figure 1.1, leads to the following results on the asymptotic
values of a power series

∑
fnz

n:
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Theorem 1.2.1. Let α and β be complex numbers α, β ∈ C\Z≤0. �The
Taylor coe�cients fn = [zn]f(z) in

f(z) = (1− z)−α
(1
z

log(
1

1− z
))−β

satisfy

fn ∼
nα−1

Γ(α)
(log n)−β(1 +

∑
k≥1

e
(α,β)
k

logk n
),

with

e
(α,β)
k = (−1)k

(
−β
k

)
Γ(α)

∂k

∂sk
(

1

Γ(s)
)
∣∣
s=α

Figure 1.2: The domain and Hankel-like contour to proof Theorem 1.2.2

For functions f that ful�ll f(z) = O(f(z) = (1 − z)−α
(
log( 1

1−z
))β) or

f(z) = o(f(z) = (1 − z)−α
(
log( 1

1−z
))β) a similar statement can be made.

Therefore we de�ne the domain ∆ = ∆(Φ, R) by

∆(Φ, R) = {z
∣∣|z| < R, z 6= 1, |arg(z− 1)| > Φ}

and use the contour C = γ1 ∪ γ2 ∪ γ3 ∪ γ4 (cp Figure 1.2)

γ1 = {z||z − 1| = 1

n
, |arg(z− 1)| ≥ Φ}

γ2 = {z| 1
n
≤ |z − 1|, |z| ≤ R, arg(z− 1) = Φ}

γ3 = {z||z − 1| = R, |arg(z− 1)| ≥ Φ}

γ4 = {z| 1
n
≤ |z − 1|, |z| ≤ R, arg(z− 1) = −Φ}

Then, the following theorem holds for f :
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Theorem 1.2.2. Let α, β ∈ R be arbitrary real numbers and let f(z) be a
function that is analytic in ∆ with the exception of the singulatity at z = 1.

(i) Assume further that as z tends to 1 in ∆,

f(z) = O((1− z)−α(log
1

1− z
)β)

Then the Taylor coe�cients of f(z) satisfy

fn = [zn]f(z) = O(nα−1(log n)β)

(ii) Assume that as z tends to 1 in ∆,

f(z) = o((1− z)−α(log
1

1− z
)β)

Then the Taylor coe�cients of f(z) satisfy

fn = [zn]f(z) = o(nα−1(log n)β)

We will use these results and their conlusions throughout the work to
determine the limiting behaviour of diverse generating functions, e.g. in
Chapter/Section, and also use similar methods of proof, e.g. in Chapter

1.3 Probability theory and stochastics

Another �eld of mathematics we will use to obtain our results is the �eld of
stochastic processes. The following can for instance be found in [2] and [19].

De�nition 1.3.1 (Stochastic process). Let T be a subset of R. A family of
random variables {X(t)|t ∈ T} with values in the state space Z is called a
stochastic process. T can be a discrete time set or an interval, We thus speak
of a discrete or continuous stochastic process.

REMARK Observing the process {X(t)|t ∈ T} through the whole time
T and recording the values X(t) for all t ∈ T , we obtain a real function
x = x(t), t ∈ T , which we call the trajectory or sample path of the stochastic
process.

A stochastic process can satisfy the following properties:
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De�nition 1.3.2 (independent increments). A stochastic process {X(t)|t ∈
T} has independent increments, if for any sequence t1 < t2 < . . . < tn, ti ∈ T
the increments X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1) are inde-
pendent, i.e., the increment the process takes in an interval does not in�uence
it's increments in disjoint intervals.

De�nition 1.3.3 (stationary increments). A stochastic process {X(t)|t ∈ T}
has stationary increments, if the increments X(t2 + τ)−X(t1 + τ) have the
same probability distribution for any τ with t1 + τ ∈ T and t2 + τ ∈ T , for
arbitrary but �xed t1, t2.

De�nition 1.3.4 (Markov chain). A discrete stochastic process {X0, X1, . . .}
with state space Z is called a Markov chain, if for any t = 1, 2, . . . and for
any sequence x0, x1, . . . , xt+1, xk ∈ Z the following is true

P(Xt+1 = xt+1|Xt = xt, . . . , X1 = x1, X0 = x0) = P(Xt+1 = xt+1|Xt = xt)

i.e., given the present state, future states are independent of the past
states, or, in other words, the present state captures all information that can
in�uence the future of the process.

An example for a discrete Markov chain process are so called branching
processes, which we will use in Chapter 3. In a branching process T = N0,
the process models a population in which each individual in generation n
produces some random number of individuals in generation n+ 1, according
to a �xed probability distribution ξ that does not vary from individual to
individual. We can create a tree according to a branching process by describ-
ing each individual by a node, the �rst individual n = 0 being the root and
the o�spring of every node being the adjacent nodes on the next level.

REMARK There exist also continuous-time Markov processes with the
same de�nition as a Markov chain, but with a continuous index.

De�nition 1.3.5 (Martingal). A stochastic process {X(t)|t ∈ T} with state
space Z is called a martingale, if E(X(t)) <∞ for every t ∈ T and for any
time sequence t1 < t2 < . . . < tn < s < t the following is true

E(Xt|Xs = xs, . . . , Xt1 = xt1 , Xt0 = xt0) = xs

REMARK We can de�ne super- and submartingales with

E(Xt|Xs = xs, . . . , Xt1 = xt1 , Xt0 = xt0) ≤ xs and

E(Xt|Xs = xs, . . . , Xt1 = xt1 , Xt0 = xt0) ≥ xs ,respectively.
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In this work, we will use only discrete martingales, and even more precise,
only martingales on T = N. The information given by the past events can
be processed in a �ltration, that is:

De�nition 1.3.6 (Filtration). A family (Ft|t ∈ T ) of sigma-algebras is called
a Filtration, if Fs ⊆ Ft for all s < t. For a stochastic process (X(t), t ∈ T )
let Fn be the sigma algebra induced by the random variables xs with s ≤ n,
(Fn, n ∈ T ) is then called the natural �ltration of X(s).

With this notation, a martingal is given by the constraint

E(X(t)|Fn) = xn

Fn can be any �ltration, but throughout this work, Fn will denote the
natural �ltration of the given stochastic process.

An example for a continuous stochastic process is Brownian motion and
Brownian excursion, which we will use in chapter 3.

De�nition 1.3.7 (Brownian Motion). A continuous stochastic process with
state space Z = R and time T = R+

0 is called a Brownian motion process
(especially in German literature often called Wiener process) if it ful�lls

(i) W (0) = 0

(ii) {X(t)|t ∈ T} has stationary and independent increments.

(iii) W (t) ∼ N (0, t) for all t ∈ T , i.e. for any t ∈ T the random variable
X(t) is normally distributed with mean value 0 and variance t.

REMARK

• As the process has stationary increments, the di�erenceWt−Ws is also
normally distributed, i.e. Wt −Ws ∼ N (0, t− s).

• As the process has independent increments, it is a Markov process.

De�nition 1.3.8 (Brownian excursion). Let B(t), t ∈ R+
0 be a Brownian

motion process, and let its leftmost positive zero be at time t∗, w.l.o.g. B(t) ≥
0 for t ≤ t∗. We de�ne the associated Brownian excursion as the stochastic
process Bex(t), t ∈ [0, 1] with

(i) B(0) = Bex(0) = Bex(1) = B(t∗) = 0

(ii) Bex(t) = B( t
t∗

),



CHAPTER 1. METHODS AND DEFINITIONS 8

Figure 1.3: Brownian excursion local time

i.e. we rescale the part up to the �rst positive zero of B(t) on the interval
[0, 1].

We want to know "How much time does the excursion spend on level a?
Of course, the answer to this question would be 0, so we adapt the question
and are interested in the time the excursion spends in the interval [a, a + e]
, which is

L(a, a+ e) =

∫ 1

0

χ[a,a+e](Bex(s))ds

De�nition 1.3.9 (Brownian excursion local time). (cr. Figure 1.3)
Let {Bex(t)|t ∈ [0, 1]} be a brownian excursion, and L(a, a + e) given by the
above.
Then, we call the function

l(a) :=
∂

∂e
L(a, a+ e)

the total local time at level a of the brownian excursion Bex(t).

REMARK Equivalently, we de�ne the local time at level a at time t of
Bex(t) using

L(t)(a, a+ e) =

∫ t

0

χ[a,a+e](Bex(s))ds

Then, the function
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l(a, t) :=
∂

∂e
L(t)(a, a+ e)

is called the local time at level a at time t of Bex(t).



Chapter 2

Pólya trees

I will start this work presenting results on Pólya trees. Those trees were �rst
given attention by George Pólya in 1937 in his classical work [35]. Pólya
trees are random trees with no restrictions on node degree, every tree Bn of
size n is equally likely.

2.1 Introduction

In the following, we will denote by tn the number of unrooted unlabeled
nonplane trees and by Tn the number of rooted unlabeled nonplane trees
of size n. Furthermore we de�ne a planted tree to be a tree rooted at an
endpoint and denote by Pn the number of planted trees, not counting the
root. Obviously, Pn = Tn, and the degree of the root is increased by 1.

Further we introduce the generating functions

t(z) =
∑
n≥1

tnz
n (2.1)

T (z) =
∑
n≥1

Tnz
n (2.2)

P (z) =
∑
n≥1

Pnz
n (2.3)

Rooted trees can be interpreted as a recursive structure, that is, T is a
root followed by a set of rooted trees.Thus a tree of arbitrary size n∗ can be
constructed by choosing a set of trees Bni

of sizes ni < n∗, and connecting
them by a new root. This arbitrary choice of trees of sizes ni thus provide
contributions (1 + z + z2 + · · · )Tni to the generating function, the new root
provides a factor z, and thus

10
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T (z) = T1z + T2z
2 + T3z

3 + · · ·+ Tnz
n + · · ·

= z(1 + z + z2 + · · · )T1(1 + z + z2 + · · · )T2 · · · (1 + z + z2 + · · · )Tn · · ·

= z
1

(1− z)T1

1

(1− z2)T2

1

(1− z3)T3
· · · 1

(1− zn)Tn
· · · .

Pólya showed in [35] that, interpreting the equation above as a functional
equation for T (z),

T (z) = ze
T (z)

1
+

T (z2)
2

+
T (z3)

3
+··· (2.4)

from where tn and Tn can be derived as n → ∞, which Pólya did in his
work for trees where only node degrees 1 and 4 are allowed.

Further, Pólya showed that the radius of convergence ρ satis�es 0 < ρ < 1,
and that z = ρ is the only singularity on the circle of convergence |z| = ρ,
and stated the lemma

Lemma 2.1.1. Let the power series

f(x) = a0 + a1x+ a2x
2 + · · ·

have the �nite radius of convergence α > 0, with x = α the only singular-
ity on its circle of convergence. Suppose also that f(x) can be expanded near
x = α in the form

f(x) =
1

(1− x
α
)s
g(x) +

1

(1− x
α
)t
h(x)

where g(x) and h(x) are analytic at x = α, g(α) 6= 0, s and t are real
numbers, s 6= 0,−1,−2, . . ., and either t < s or t = 0. Then

an ∼
g(α)

Γ(s)

ns−1

αn
(2.5)

This lemma, in fact, is a special case of the results obtained in 1990 by
Flajolet and Odlyzko [13]. Later, in 1948, Richard Otter expanded Pólyas
work ([32]) and found that T (ρ) = 1, and T (z) has the expansion

T (z) = 1− b
√

(ρ− z) + c(ρ− z) + d
√

(ρ− z)3 + · · · (2.6)

By using the derivative of (2.4) he found the following recursion for the
number of rooted trees
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Tn =
1

n− 1

n−1∑
j=1

Tn−j

∑
m|k

mTm (2.7)

for n > 1 and determined the exact values via the above expansion and
Polyas lemma 2.1.1:

Tn ∼
b
√
ρ

2
√
π

1√
n3ρn

(2.8)

.
Further, he constructed the relation

t(z) = T (z)− 1

2
T (z)2 +

1

2
T (z2), (2.9)

by using a �nite bound m for the maximum degree of nodes on tn and
obtaining:

t(z) = T (m)(z)− 1

2
zT (m−1)(z)2 +

1

2
zT (m−1)(z2) (2.10)

This equation is also valid for m = ∞, from where Otter derived the
above result and set up a similar expansion as above for unrooted trees, from
which he then derived the coe�cients tn. These are

tn ∼
b3
√
ρ3

4
√
π

1√
n5

1

ρn

In 2004, equation (2.9), was reproved by Drmota [8], using a bijection:

Proof. Let T denote the set of rooted trees, t the set of unrooted trees and
further let T (p) be the set of unordered pairs (B1, B2) of rooted trees of T
with B1 6= B2. We consider a pair (B1, B2) as a tree that is rooted by an
edge connecting the roots of B1 and B2. Polyas theory indicates that the
generating function of T (p) is given by

T (p)(z) =
1

2
T (z)2 − 1

2
T (z2)

By partitioning the three sets named above, we can show that there is
a bijection between T and t ∪ T (p). If that bijection exists, then the result
follows from

T (z) = t(z) +
1

2
T (z)2 − 1

2
T (z2)
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2.2 The degree distribution of Polya trees

In this section, I will present results obtained by Robinson and Schwenk [36]
in 1975 and by Drmota and Gittenberger [11] in 1999. It was shown that the
mean value of the number of nodes of given degree k is almost proportional
to the size of the tree, i.e. as n→∞ EX(k)n ∼ µkn for �xed k and for some
µk > 0 and that Dk,n is asymptotically normally distributed.

To the generating functions introduced above we add the number of nodes
of degree k as a second parameter. Thus, we have

t(k)(z, u) =
∑

n,m≥1

t(k)
n,mz

num

T (k)(z, u) =
∑

n,m≥1

T (k)
n,mz

num

P (k)(z, u) =
∑

n,m≥1

P (k)
n,mz

num,

where the coe�cient t
(k)
n,m/T

(k)
n,m/P

(k)
n,m is the number of unrooted/rooted/planted

trees with n nodes (in the case of P (k)(z, u), n nodes others than the root),
of which m have degree k.

If we set u = 1 in these series we ignore the special status of nodes of
degree k and obtain the original series, i.e.

t(k)(z, 1) = t(z)

T (k)(z, 1) = T (z)

P (k)(z, 1) = P (z) = T (z)

Let Z(Sk;x1, . . . , xk) denote the cycle index of the symmetric group Sk

of k elements, which has the form

Z(Sk;x1, . . . , xk) =
1

k!

∑ k∏
i=1

xsi
i ,

where the sum is over all permutations s ∈ S, and si is the number of
cycles of length i in s, thus

∑k
i=1 isi = k for every term.

Lemma 2.2.1. The generating functions ful�ll the following functional equa-
tions:
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P (k)(z, u) = ze

(∑
i≥1

P (k)(zi, ui)

i

)
+ z(u− 1)

×Z(Sk−1;P
(k)(z, u), P (k)(z2, u2), . . . , P (k)(zk−1, uk−1))

T (k)(z, u) = ze

(∑
i≥1

P (k)(zi, ui)

i

)
+ z(u− 1)

×Z(Sk;P
(k)(z, u), P (k)(z2, u2), . . . , P (k)(zk, uk))

t(k)(z, u) = T (k)(z, u)− 1

2
P (k)(z, u)2 +

1

2
P (k)(z2, u2)

Proof. The proof of the �rst 2 equations is based on equation (2.4), with some
modi�cations, one of them is of course adding the variables necessary to treat
the number of points of degree k. The second change, the addition of the
term (zu − z)Z(Sk−1;P

(k)(z, u), P (k)(z2, u2), . . . , P (k)(zk−1, uk−1) in planted
trees and the term (zu − z)Z(Sk;P

(k)(z, u), P (k)(z2, u2), . . . , P (k)(zk, uk) in
rooted trees, respectively, arises from the case where the node adjacent to
the root resp. the root have degree k. The additional term needed for this
modi�cation is the named cycle index, because with Polyas equation (2.4)
we see that

Z(Sk;P
(k)(z, u), . . . , P (k)(zk, uk)) = [vk]e

(∑
i≥0

viP
(k)(zi, ui)

i

)
(2.11)

i.e. it is the generating function of a forest consisting of exactly k planted
trees.

Equation 3 is based on Otters result 2.9. Expressing this result in 2
variables, we have to involve P (z, u) instead of T (z, u), to be able to use the
bijection we showed in the proof for (2.9). In order not to increase the degree
of the root we have to use planted trees instead of rooted trees for the set
T (p), to avoid the additional root-edge to in�uence the degree.

We now introduce two more generating functions

D(k)(z) =
∑
n≥1

D(k)
n zn

d(k)(z) =
∑
n≥1

d(k)
n zn
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where D
(k)
n and d

(k)
n ,respectively are the number of points of degree k

occurring in all planted or unrooted trees, with n nodes.
From the de�nition ofD

(k)
n and d

(k)
n it is obvious thatD

(k)
1 = 0, . . . , D

(k)
k−1 =

0 and D
(k)
k = 1, as there is only one planted tree with k + 1 nodes which

contains a node with degree k. Similarily, d
(k)
0 = 0, . . . , d

(k)
k = 0, d

(k)
k+1 = 1, as

a tree of n nodes has only n− 1 edges and thus a maximum degree of n− 1.
Further, the de�nition of the coe�cients implies that:

D(k)(z) = Pu(z, 1) and

d(k)(z) = tu(z, 1),

and D(k)(z) ful�lls:

Lemma 2.2.2.

D(k)(z) = T (z)
∑
i≥1

D(zi) + zZ(Sk−1;T (z), T (z2), . . . , T (zk−1)) (2.12)

Proof. Di�erentiating the �rst equation of lemma 2.2.1 with respect to u
leads to:

Pu(z, u) = ze

(∑
i≥1

P (k)(zi, ui)

i

)[∑
i≥1

P (k)(zi, ui)

i

]
u

+zZ(Sk−1;T (z, u), T (z2, u2), . . . , T (zk−1, uk−1))

+(zu− z)[Z(Sk−1;T (z, u), T (z2, u2), . . . , T (zk−1, uk−1)]u

Now we set u = 1 and apply the identities D(z) = Pu(z, 1) and T (z, 1) =
T (z) and thus obtain the required result.

REMARK We can �nd a similar equation for d(k)(z), using the third
equation of lemma 2.2.1, and conducting similar computations:

d(k)(z) = D(k)(z)−D(k)(z)T (z) +D(k)(z2) +

zZ(Sk;T (z), T (z2), . . . , T (zk))− zZ(Sk−1;T (z), T (z2), . . . , T (zk−1))

and, using the description of D(k)(z) of lemma 2.2.2, this results in
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d(k)(z) = T (z)
∑
i≥2

D(zi)+zZ(Sk;T (z)+D(z2), T (z2)+D(z4), . . . , T (zk)+D(z2k))

(2.13)

The mean value

Also from lemma 2.2.2, we can derive

D(k)
n =

n−1∑
k=1

Tn−l

∑
m|l

Dm + [zn−1]Z(Sk−1;T (z), T (z2), . . . , T (zk−1)) (2.14)

for n > k, for n = k the coe�cient is 1 and for n < k it is 0, as discussed
above.

Similarly,

d(k)
n = D(k)

n +D
(k)
n
2
−

n−1∑
l=1

TlD
(k)
n−l +

[zn−1] (z(Sk;T (z), T (z2), . . . , T (zk))− Z(Sk−1;T (z), T (z2), . . . , T (zk−1))).

Using the description of D(k)(z) from lemma 2.2.2 it is obvious that
D(k)(z) has the same radius of convergence as T (z), which is ρ, as except
for T (z) only higher powers occur. Thus T (z) also has the only singularity
at z = ρ on the circle of convergence. The same argumentation holds for
d(k)(z) with the description of 2.13.

We now alter the equation of lemma 2.2.2 to

D(k)(z)−D(k)(z)T (z) = T (z)
∑
i≥2

D(zi) + zZ(Sk−1;T (z), T (z2), . . . , T (zk−1))

and thus can display D(k)(z) as

D(k)(z) =
T (z)

∑
i≥2D(zi) + zZ(Sk−1;T (z), T (z2), . . . , T (zk−1))

1− T (z)

As T (ρ) = 1, at z = ρ the numerator is
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∑
i≥2

D(k)(ρi) + ρZ(Sk−1;T (ρ), T (ρ2), . . . , T (ρk−1)),

while the denominator has the expansion

1

1− T (z)
=

1

1− (1− b
√

(ρ− z) + c(ρ− z) + . . .)

=
1

b(ρ− z)
1
2

+ . . . (2.15)

near z = ρ by (2.6), the remaining terms being of higher order in (ρ− z).
Thus the preliminaries for lemma 2.1.1 are ful�lled and we get

D(k)
n ∼

∑
i≥2D

(k)(ρi) + ρZ(Sk−1;T (ρ), T (ρ2), . . . , T (ρk−1))

b
√
ρΓ(1

2
)

1√
nρn

∼
∑

i≥2D
(k)(ρi) + ρZ(Sk−1;T (ρ), T (ρ2), . . . , T (ρk−1))

b
√
ρπ

1√
nρn

(Note that Γ(1
2
) =

√
π).

With (2.8) we obtain for the ratio X
(k)
n := D

(k)
n

Tn
, which stands for the mean

value of nodes of degree k in trees of size n

X(k)
n ∼ n

2

b2ρ

(∑
i≥2

D(k)(ρi) + ρZ(Sk−1;T (ρ), T (ρ2), . . . , T (ρk−1))
)

=: µkn

(2.16)
REMARKS

1. For the ratio X
′(k)
n := d

(k)
n

tn
the analogous limit can be obtained with the

following considerations:

(2.6) raised to the power m results in

Tm(z) = 1−mb
√
ρ− x+ (

(
m

2

)
b2 +mc)(ρ− x) + . . .

and thus

[zn](Tm) ∼ mTn
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With the help of Otter's result, T (ρ) = 1, we can write

[zn](Tm) ∼ Tn
∂

∂T
(Tm(z))

∣∣∣∣
z=ρ

and, since the factors of T (zi) are analytic at z = ρ for i > 1, we can de-
termine the asymptotic behaviour of the cycle index Z(Sk;T (z), T (z2), . . . , T (zk))
by

Z(Sk;T (z), T (z2), . . . , T (zk)) ∼ T (z)
∂

∂x1

Z(Sk;T (ρ), T (ρ2), . . . , T (ρk))

∼
∑∏

s1T (z)T (ρ)s1−1T (ρ2)s2 · · ·T (ρk)sk ,

where x1 is the variable of Z(Sk) which is replaced by T (z). The partial
derivative above is equal to Z(Sk−1), and thus, near z = ρ,

Z(Sk;T (z), T (z2), . . . , T (zk)) ∼ T (z)Z(Sk−1;T (z), T (z2), . . . , T (zk−1))

Applying this result to (2.13), we obtain the same asymptotic value for

X
′(k)
n as for X

(k)
n .

2. In his paper [37] Schwenk examined the behaviour of Z(Sk;T (z), T (z2), . . . , T (zk))
evaluated at z = ρ. He found that Z(Sk;T (ρ), T (ρ2), . . . , T (ρk)) = Cρk,
where C is given by

C = e

(∑
i≥1

1

i

(T (ρi)

ρi
− 1
))

(2.17)

and that
∑

i≥2D
(k)(ρi) decreases more rapidly than ρk. Therefore, by

(2.16)

µk ∼
2C

b2ρ
ρk (2.18)

He further evaluated C:

C ≈ 7.7581604 · · ·
.
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The limiting distribution

Knowing the mean value EX
(k)
n = µkn, we will now determine the limiting

distribution of X
(k)
n .

Therefore, we will �rst provide a set of propositions, which will give the
required analytic background to determine the limiting distributions.

Theorem 2.2.3. Suppose F (z, u, y) is an analytic function around (z0, u0, y0)
such that

F (z0, u0, y0) = y0

Fy(z0, u0, y0) = 1

Fyy(z0, u0, y0) 6= 0

Fz(z0, u0, y0) 6= 0

Then there exists a neighbourhood U of (z0, u0), a neighbourhood V of y0,
and analytic functions g(z, u),h(z, u) and f(u), which are de�ned on U such
that the only solutions y ∈ V with y = F (z, u, y)((z, u) ∈ U) are given by

y = g(z, u)± h(z, u)

√
1− z

f(u)

Furthermore, g(z0, u0) = y0 and h(z0, u0) =
√

2f(u0)Fx(z0,u0,y0)
Fyy(z0,u0,y0)

Proof. see [9, Proposition 1]

With the help of this theorem, the following lemmas can be derived.
Proofs for lemma 2.2.4 and 2.2.5 can be found in [11].

Lemma 2.2.4. Let k be a positive integer. Then there exist η > 0 and func-
tions g1(z, u), g2(z, u), h1(z, u), h2(z, u), f(u) with the following properties:

(i) g1(z, u), g2(z, u), h1(z, u), h2(z, u), f(u) are analytic for |u− 1| < η and
|z − f(u)| < η.

(ii) gi(ρ, 1) = 1, hi(ρ, 1) = b
√
ρ, i = 1, 2, where b is given by (2.6) and

f(1) = ρ.

(iii) P (k)(z, u) and T (k)(z, u) can be analytically continued to the region

R =

{
(z, u) ∈ C2 : |u| ≤ 1 +

η

2
, |z| ≤ ρ+

η

2
, arg(z − f(u)) 6= 0

}
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such that

P (k)(z, u) = g1(z, u)− h1(z, u)

√
1− z

f(u)
(2.19)

and

T (k)(z, u) = g2(z, u)− h2(z, u)

√
1− z

f(u)
(2.20)

for (z, u) ∈ R and |u− 1| < η, |z − f(u)| < η.

For t(k)(t, u) a similar proposition can be made:

Lemma 2.2.5. Let k be a positive integer. Then there exist η > 0 and
functions g3(z, u), h3(z, u) with the following properties:

(i) g3(z, u), h3(z, u) are analytic for |u − 1| < η and |z − f(u)| < η, with
f(u) from lemma 2.2.4.

(ii) g3(ρ, 1) > 0, h3(ρ, 1) = b3/3 6= 0, where b is given by (2.6).

(iii) t(k)(z, u) can be analytically continued to the region R de�ned by lemma
2.2.4, such that

t(k)(z, u) = g3(z, u)− h3(z, u)

√(
1− z

f(u)

)3
(2.21)

for (z, u) ∈ R and |u− 1| < η, |z − f(u)| < η.

The following lemma is an application of Taylor's theorem and some re-
sults obtained by Flajolet and Odlyzko [13], and is also proven in [11].

Lemma 2.2.6. Suppose that y(z, u) =
∑
ynmz

num is an analytic function
with ynm ≥ 0 for all n,m ∈ N and that there exists η > 0 and functions
g(z, u), h(z, u), f(u), which are analytic for |u−1| < η and |x−ρ| < η, where
ρ is the radius of convergence of y(z, 1) such that y(z, u) can be analytically
continued to R and that

y(z, u) = g(z, u)− h(z, u)

√
1− z

f(u)

for (z, u) ∈ R,|u−1| < η and |z−f(u)| < η. Then yn(u) =
∑

m ynmu
m =

[zn]y(z, u) is asymptotically given by
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yn(u) =
h(f(u), u)

2
√
πn3

f(u)−n+1 +O
(
f(u)−n

√
n5

)
(2.22)

uniformly for |u− 1| < η.
Similarly, if

y(z, u) = g(z, u)− h(z, u)

√(
1− z

f(u)

)3

for (z, u) ∈ R|u− 1| < η and |z− f(u)| < η. Then yn(u) =
∑

m ynmu
m =

[zn]y(z, u) is asymptotically given by

yn(u) =
2h(f(u), u)

4
√
πn5

f(u)−n+1 +O
(
f(u)−n

√
n7

)
(2.23)

uniformly for |u− 1| < η.

We will now study the random variable X
′(k)
n with

P(X ′(n) = m) =
t
(k)
nm

tn

and determine its limiting distribution with the help of the lemmas stated
so far.

Theorem 2.2.7. X
′(k)
n is asymptotically normally distributed with mean value

∼ ckn and covariance ∼ σn, where

µk =
fu

ρ

σ =
f 2

u

ρ2
− fuu

ρ
− fu

ρ

with

fu = −Fu

Fz

(ρ, 1, 1)

fuu =
[ 1

FttFz

(FuFtz

Fz

− Ftu

)2 − 1

Fz

(F 2
uFzz

F 2
z

− 2FuFzu

Fz

+ Fuu

)]
(ρ, 1, 1)

and
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F (z, u, t) = zete

(∑
i≥2

t(k)(zi, ui)

i

)
+z(u− 1)Z(Sk−1; t, t

(k)(z2, u2), . . . , t(k)(zk−1, uk−1))

Furthermore, for large k

µk ∼ 2C

b2ρ
ρk (2.24)

σ ∼ 2C

b2ρ
ρk (2.25)

with C given by 2.17.

Proof. cp [11] First, we present a result based on [3, Theorem 1], which will
be the base for the proof:

Proposition 2.2.8. Suppose that yn,m ≥ 0 and that there exist functions
H(u), f(u) de�ned for u = eit, |t| < ε, t real, such that H(1) 6= 0 and H(u) is
uniformly continuous and that f(1) = ρ > 0 and f(eit) has continuous third
derivates with

yn(u) =
∑
m≥0

yn,mu
m ∼ anH(u)f(u)−n

uniformly for |t| < ε, for some sequence an > 0.Furthermore set

µ = i
∂

∂t
logf(eit)

∣∣
t=0

σ = − ∂2

(∂t)2
logf(eit)

∣∣
t=0

Then
Xn − nµ√

n
→ N (0, σ),

i.e., Xn is asymptotically normal with mean value ∼ nµ and covariance
∼ nσ.

The parameters of interest, µ and σ, can be written as
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µ = i2
fu(e

it)

f(eit)
eit
∣∣
t=0

=
fu(1)

f(1)

σ =
fu(1)

2 − fuu(1)f(1)

f(1)2
− fu(1)

f(1)
.

Altering u0 in Theorem 2.2.3 implies that y = y(f(u), u), z = f(u) are
the solutions of the system of functional equations

y = F (z, u, y) (2.26)

1 = Fy(z, u, y) (2.27)

The partial derivative of (2.26) with respect to u is

yu = Fzfu + Fu + Fyyu

yu (1− Fy)︸ ︷︷ ︸
=0

= Fzfu + Fu

by (2.27), therefore Fzfu + Fu ≡ 0, and thus fu = −Fu

Fz
. Hence

µ =
Fu(z0, 1, y0)

z0Fz(z0, 1, y0)

where z0 = f(1) and y0 = y(z0, 1). Another implicit di�erentiation of this
equation leads to

fuu =
1

FyyFz

(
FuFyz

Fz

− Fyu

)2

−

1

Fz

(
F 2

uFzz

F 2
z

− 2FuFzu

Fz

+ Fuu
)

Now we will determine the partial derivatives of our function F (z, u, t)
in Theorem 2.2.7 and through this, examine the behaviour of σ for large k,
while for µ we already know from above that it decreases geometrically in k.
We use (2.26) and (2.27) and evaluate at (ρ, 1, 1):
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Fz = Ftz =

=1︷ ︸︸ ︷
F (z, u, t)

z
+ z(

F

z
)z(z, u, t)

=
1

ρ

(
1 +

∑
l≥2

tz(ρ
l, 1)ρl

)
Ft = Ftt = 1

Fu =
∑
l≥2

tu(ρ
l, 1) + ρZ(Sk−1; 1, t(ρ

2, 1), . . . , t(ρk−1, 1))

Ftu =
∑
l≥2

tu(ρ
l, 1) + ρZ(Sk−2; 1, t(ρ

2, 1), . . . , t(ρk−2, 1))

Fuu =

(∑
l≥2

tu(ρ
l, 1)

)2

+
∑
l≥2

ltuu(ρ
l, 1) +

∑
l≥2

l(l − 1)tu(ρ
l, 1)

+2ρ
∂

∂u
Z(Sk−1; 1, t(ρ

2, 1), . . . , t(ρk−1, 1))

Fzu =
1

ρ

(
1 +

∑
l≥2

tz(ρ
l, 1)ρl

)(∑
l≥2

tu(ρ
l, 1)
)

+
∑
l≥2

ltzu(ρ
l, 1)ρl−1

+Z(Sk−1; 1, t(ρ
2, 1), . . . , t(ρk−1, 1)) + ρ

∂

∂z
Z(Sk−1; 1, t(ρ

2, 1), . . . , t(ρk−1, 1))

Fzz = 2
∑
l≥2

tz(ρ
l, 1)ρl−1 +

∑
l≥2

(l − 2)tz(ρ
l, 1)ρl−2

∑
l≥2

ltzz(ρ
l, 1)ρ2l−2

As discussed previously, Z(Sk; 1, t(ρ
2, 1), . . . , t(ρk−1, 1)) ∼ Cρk and∑

l≥2

tu(ρ
l, 1) = o(ρk)

as shown by Schwenk [37]. Using the same methods of proof,

∑
l≥2

ltzu(ρ
l, 1)ρl−1 = o(ρk)∑

l≥2

ltuu(ρ
l, 1) = o(ρ2k)

can be obtained. Now, the terms left to examine are the ones containing
derivatives of the cycle index. Therefore we �rst have to analyze the deriva-
tives of the cycle index Z(Sn;x1, . . . , xn), for which we will use relation 2.11.
From there, we see
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∑
k≥0

Z(Sk;x1, . . . , xk)v
k = e

(∑
l≥1

xl

l
vl

)

and thus

∑
k≥0

∂

∂xi

Z(Sk;x1, . . . , xk)v
k = e

(∑
l≥1

xl

l
vl

)
vi

i

=
∑
k≥0

Z(Sk;x1, . . . , xk)
vk+i

i
.

Hence, we obtain

∂

∂ai

Z(Sk; a1, . . . , an) =
1

i
Z(Sk−i; a1, . . . , ak−i) (2.28)

For the terms occurring in the derivatives of F , this results in

∂

∂u
Z(Sk; t(ρ, 1), t(ρ2, 1), . . . , t(ρk, 1))

=
∑
l≥2

∂

∂tl
Z(Sk; t1, . . . , tk)

∣∣∣∣
tm=t(ρm,1),m=1,...,k

ltu(ρ
l, 1)

=
∑
l≥2

Z(Sk−l; t(ρ, 1), t(ρ2, 1), . . . , t(ρk−l, 1))tu(ρ
l, 1).

Applying Schwenk's results on the cycle index, we obtain Z(Sk−l; t(ρ, 1), t(ρ2, 1), . . . , t(ρk−l, 1)) ∼
Cρk−l and tu(ρ

l) = o(ρl+k), the latter arising from tu(ρ
l) ≤ (2ρl)k,which im-

plies tu(ρ
l) < (2ρ2)kρ(l−2)k = o(ρ(l−1)k) as 2ρ2 < ρ, and k(l − 1) ≥ k + l − 2

as k ≥ 1, l ≥ 2.
Hence,

∂

∂u
Z(Sk; t(ρ, 1), t(ρ2, 1), . . . , t(ρk, 1)) = o(ρ2k)

For the second term of that kind we have

∂

∂z
Z(Sk; t(ρ, 1), t(ρ2, 1), . . . , t(ρk, 1))

=
∑
l≥2

Z(Sk−l; t(ρ, 1), t(ρ2, 1), . . . , t(ρk−l, 1))tz(ρ
l, 1)ρl−1 (2.29)
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Z(Sk−l; t(ρ, 1), t(ρ2, 1), . . . , t(ρk−l, 1)) = Cρk−l + o(ρk−l, and tz(y, 1) is an-
alytic at y = 0 and, thus, tz(y, 1) = 1 + o(y). This implies

∂

∂z
Z(Sk; t(ρ, 1), t(ρ2, 1), . . . , t(ρk, 1)) =

C

ρ
kρk + o(ρk)

Applying these results, we get

fuu ∼ 1

Fz

(Fu

=1︷︸︸︷
Ftz

Fz

−Ftu︸ ︷︷ ︸
=0

− 1

Fz

(=C2ρ2k︷︸︸︷
F 2

u Fzz

F 2
z

−

=(C2/ρ)ρ2k(2k)︷ ︸︸ ︷
2FuFzu

F 2
z

+

=o(ρ2k)︷︸︸︷
Fuu

)
(2.30)

and for Fz

Fz =
1

ρ

(
1 +

∑
l≥2

tz(ρ
l, 1)ρl

)
=

1

ρ

(
lim
z→ρ

ztz(z, 1)(1− t(z, 1))

t(z, 1)
=

1

ρ

b2ρ

2
,

because t(z, 1) = zet(z,1)e
P

i≥2
t(zi,1)

i and t(z, 1) = T (z), through di�erenti-
ation and 2.6.

Therefore the dominating term in σk is fu

ρ
, and thus we get the required

result

µk ∼ σk ∼
2C

b2ρ
ρk

Applying the given theorems and lemmas, the proof of Theorem 2.2.7is
complete.

REMARKS

1. A similar conclusion as Theorem 2.2.7 holds for t(z, u), T (z, u) and
P (z, u), and even for forests of n nodes.

2. The theorem can also be proven for multivariate distributions Xnk =
(X

(1)
nk1
, . . . , X

(M)
nkM

).
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3. If k grows to in�nity as well, the distribution is either normal, Poisson
or degenerated, depending on the behaviour of E(Xn,k), as shown in
[17].



Chapter 3

Simply generated trees

We will now discuss another group of trees, the so-called simple generated
families of trees or Galton-Watson trees. These trees already provide some
restrictions on their shape.

3.1 Introduction and node degree

De�nition 3.1.1 (Simple generated tree). Let A denote a family of rooted
trees, and a(x) =

∑
anx

n be its generating function. A is called a simply
generated family of trees, if its generating function satis�es

a(x) = xϕ(a(x)), ϕ(t) =
∑
i≥0

cit
i, ϕi ≥ 0, ϕ0 > 0 (3.1)

De�nition 3.1.2 (Galton-Watson branching process). A Galton-Watson
process is a stochastic process Xt, more precisely a branching process (see
for example [20]), with:

1. X0 = 1 (We start with a single individual)

2. At time t + s, every particle that existed at time t will have a number
of successors distributed like Xs, the number of successors of di�erent
particles will be independent of each other and independent of the time
before t.

That is, in simple words, the number of o�spring of an individual in the
process is a copy of ξ, where ξ is a random variable.

We call a Galton-Watson process critical, if E(ξ) = 1, that is, if every
individual is expected to have exactly one son.

28
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De�nition 3.1.3 (conditioned Galton-Watson Tree). Let Tn be a random
rooted tree of size n. We call Tn a conditioned Galton-Watson tree if it has
the same degree distribution as the family tree of a Galton-Watson branching
process with some o�spring distribution ξ, conditioned to have total progeny
n.

To start this chapter, we will demonstrate that the families of trees de�ned
by De�nition 3.1.1 are the same families than those de�ned by De�nition
3.1.3:

We assign a weight to every tree T of a simply generated family of trees
T by

w(t) =
∏

v∈VT

ϕd(v)

VT being the set of nodes of T , d(v) the out-degree of node v and ϕk the
k-th coe�cient of the power series ϕ(t) in the de�nition of simply generated
trees. This function induces a probability distribution, the likelihood of a
tree of size n being B is proportional to w(T ).

Now we consider a Galton-Watson branching process X, without loss of
generality we may assume that the o�spring distribution ξ is given by

P(ξ = k) =
τ kϕk

ϕτ

for some sequence ϕk, k ≥ 0 of non-negative integers such that the power
series

∑
k≥0 ϕkt

k has a positive or in�nite radius of convergence R, and for
some positive number τ within R. Then, the distribution of X conditioned
on the total progeny |X| is determined by P(X = T ||X| = n) and that is the
same as the probability distribution induced by the weight function above.

Thus, the families of trees created through 3.1.1 are the same as those
created by 3.1.3. Thus, the degree distribution of a simplygenerated tree or
Galton-Watson tree is implicitly given by its o�spring distribution ξ.

REMARK Many interesting random trees are Galton Watson trees, for
example:

• labelled trees, with an Poisson o�spring distribution ξ ∼ Po(1), σ2 = 1,
and with generating function

a(x) = xea(x) =
∑
n≥1

nn−1x
n

n!
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• plane trees, with P(ξ = k) = 2−(k+1), σ2 = 2 and

a(x) =
x

1− a(x)
=
∑
n≥1

(
2n− 2

n− 1

)
xn

n

• binary trees, with ξ ∼ Bi(2, 1
2
), σ2 = 1

2
and

a(x) = x(1 + a(x))2

• strict binary trees, with P(ξ = 0) = P(ξ = 2) = 1
2
, σ2 = 1 and

a(x) = x(1 + a2(x))

3.2 The Generating function of simplygener-

ated trees

The structure of simply generated families of trees is probably the best ex-
plored under all families of random trees.

We will now explore some properties of its generating function.

Theorem 3.2.1. Suppose ϕ(t) = 1 + c1t+ c2t
2 + · · · is a regular function of

t when |t| < R ≤ ∞ and let

a = a(x) = x+ a2x
2 + a3x

3 + · · ·

denote the solution of a(x) = xϕ(a(x)) in the neighbourhood of x = 0. If

(i) c1 > 0 and cj > 0 for some j ≥ 2,

(ii) ci ≥ 0 for i ≥ 2, (a precondition already mentioned in the de�nition of
simplygenerated trees), and

(iii) τϕ′(τ) = ϕ(τ) for some τ , where 0 < τ < R.

Then τ is unique, and a(x) is regular in the disk |x| ≤ ρ = τ
ϕ(τ)

except

at x = ρ, i.e. ρ is the only singularity of a(x). Furthermore a(x) has an
expansion in the neighbourhood of ρ of the form

a(x) = τ − b(ρ− x)
1
2 − b2(ρ− x) · · · (3.2)

where b = ρ−1( 2τ
ϕ′′(τ)

)
1
2
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Proof. (cp [29])
We de�ne

f(t) = tϕ′(t)− ϕ(t) (3.3)

f(t) is a strictly increasing function for 0 ≤ t ≤ R, because

f(0) = −1.

f ′(t) = tϕ′′(t) > 0 for 0 < t < R because of (i) and (ii),

and thus, τ is unique.
From (iii) it follows that tϕ′(t)− ϕ(t) < 0 for 0 ≤ t ≤ τ .

We now consider the functional relation F (x, a) ≡ a− xϕ(a) = 0.
Then Fa = 1 − xϕ′(a), and the observations above imply that Fa 6= 0 when
|x| < ρ = τ

ϕ(τ)
and |a| < τ .

Since Fa(ρ, τ) = 0, it follows from the implicit function theorem (see for
example [21]) that a = a(x) is regular for |x| < ρ, that a(ρ) = τ and that
x = ρ is a singularity of a(x).

We consider the case |x| = ρ but x 6= ρ: From a1 = 1, a2 = c1 > 0 ((ii))
it follows that |a(x)| < a(ρ) = τ ; and so |ϕ′(a(x))| < ϕ′(τ) = 1/ρ, by (i) and
(ii).
Hence |xϕ′(a(x))| < 1 if |x| = ρ but x 6= ρ.

We now have

Fa(x, a(x)) 6= 0 except when x = ρ

Since Fx 6= 0, Fa = 0 and Faa 6= 0 at (ρ, τ), if follows that a(x) is regular
for |x| ≤ ρ except at x = ρ. Using the Taylor series near (ρ, τ)

F (x, a) = F (ρ, τ)︸ ︷︷ ︸
=0

+Fx(x− ρ) + Fa(a− τ)︸ ︷︷ ︸
=0

+

+Fxx
(x− ρ)2

2
+ Fxa(x− ρ)(a− τ) + Faa

(a− τ)2

2
+ · · · ,

for x → ρ and a(x) → τ the terms of lowest order of magnitude have to
be asymptotically equal, that is

(a− τ)2 ∼ 2Fx

Faa

(x− ρ)

and thus
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a ∼ τ ±
√

2Fx

Faa

(x− ρ)

Hence, using a so called Puiseux-series
∑

n bnx
n
k , a has the expansion

(3.2) around x = ρ.

3.3 The pro�le and contour processes
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Figure 3.1: A sample tree
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In the following, we will deal with two processes describing the shape of
the tree, the contour process and the pro�le.

Let T be a tree of size n, with its leaves ordered (in the plane case, we
can order the leaves from left to right, in the non-plane case the o�spring
distribution ξ induces an order).

The height hT (x) of a node x in T is de�ned by the number of edges on
the unique path from the root to x. As the trees T are equipped with a
probability distribution within the set of trees of size n, the heights of the
leaves are also randomly distributed and are denoted by Ĥn(m). By linear
interpolation, we get a continuous stochastic process:

Ĥn(t) = (btc+ 1− t)Ĥn(btc) + (t− btc)Ĥn(btc+ 1)

De�nition 3.3.1 (contour process). The scaled process

Ĉn(t) =
1√
n
Ĥn(tn), 0 ≤ t ≤ 1

is called the contour process of the family of trees T .

REMARK : With supx≥0Ĥn(x) =: Hn we denote the height of the tree.
By LT (k) we denote the number of nodes at height k. Also LT (k) is a

random variable as T is a random tree, and so we again create a continuous
stochastic process by linear interpolation:

Ln(t) = (btc+ 1− t)Ln(btc) + (t− btc)Ln(btc+ 1), t ≥ 0

De�nition 3.3.2 (Pro�le). We call the scaled process

ln(t) =
1√
n
Ln(t

√
n) t ≥ 0

the pro�le of the simplygenerated family of trees T .

REMARK The maximum of LT (k) is called the width of the tree T , and
is denoted by W .

In the following, we will see that these two processes stand in close con-
nection with Brownian excursions.

Theorem 3.3.3. Let W+(t) denote Brownian excursion of duration 1 (for
de�nitions see 1). Further assume that ϕ(t) has a positive or in�nite radius
of convergence R and d = gcd(k|ϕk > 0) = 1, and suppose that the equation

tϕ′(t) = ϕ(t) (3.4)
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has a minimal positive solution τ < R. De�ne the o�spring distribution ξ of

the corresponding Galton-Watson tree by P(ξ = k) = τkϕk

ϕ(τ)
as mentioned in

the introduction of this chapter, and let σ2 be its variance, given by

σ2 =
τ 2ϕ′′(τ)

ϕ(τ)
(3.5)

Then the contour process Ĉn(t) converges weakly to Brownian excursion,
i.e.,

Ĉn

( ϕ0

ϕ(τ)
t
) w→ 2

σ
W+(t) (3.6)

in C[0, 1].

REMARK If Theorem 3.3.3 is true, then the distribution of the height
hn(t) = maxt≥0 Ĥn(t) =

√
nĈn(t) also converges against 2

σ

√
n sup0≤t≤1W (t),

and the moments E(hp
n) converge against the moments of Bronwian excursion

local time, as stated in [14].

Theorem 3.3.4. Again, let W+(t) be Brownian excursion of duration 1, and
let l(t) be its (total) local time at level t, i.e.,

l(t) = lim
ε→0

1

ε

∫ 1

0

I[t,t+ε](W (s))ds (3.7)

Under the same premises as in Theorem 3.3.3, the process ln(t) converges
weakly to Brownian excursion local time, i.e.,

ln(t)
w→ σ

2
l(
σ

2
t)

in C[0,∞), as n→∞.

REMARK If Theorem 3.3.4 is true, then the width of Galton-Watson
trees wn = maxt≥0 Ln(t) =

√
n supt≥0 ln also converges against σ

2

√
nsupt≥0,

and even convergence of moments is given, as stated in [12].

PROOFS
Proofs for Theorem 3.3.3 and Theorem 3.3.4 work along the same plan,

and can be found in [18] and in [10], respectively. In this work, we will show
the general idea and draw an outline for the proof of Theorem 3.3.4, diverse
calculation steps are omitted in favor of clarity, the reader is asked to consult
the according paper for details. The proof is accomplished in two parts:
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1. Weak convergence of the �nite-dimensional distributions is shown with
the help of Cauchy's integral formula.

2. Tightness of the sequences are to be shown.

Together this is su�cient to show weak convergence of distributions.
The main idea of the �rst part is the following:
Let T be a family of simplygenerated trees, and let (◦) denote a node. T

ful�lls the symbolic recursion:

T = ϕ0 · (◦) ∪ ϕ1 · (◦)× T ∪ ϕ2 · (◦)× T × T ∪ · · · =: Φ(T )

.
Translating the operators ∪ and × into sum and product in the corre-

sponding GFs, we obtain the characteristic functional equation of simplygen-
erated trees

a(x) = xϕ(a(x))

Now we mark all substructures of a tree T which ful�ll a characteristic
φ(T ) in which we are interested (in the case of the pro�le this will be all
nodes on level d, for the contour it would be all leaves), and denote a marked
node by •. This is equivalent to introducing a new variable in the generating
function and thus creating a bivariate GF:

a(x, u) =
∑

m,n≥0

amnx
num

The distribution of the characteristic we are interested in is then given
by:

P{φ(T ) = m||T | = n} =
amn

an

where amn is the coe�cient of xnum in a(x, u).
With the help of the above recursion and the correspondence

◦ ↔ x

• ↔ ux

we can determine the exact shape of the GF.
In terms of the pro�le and the number of nodes on level d, this is:
Let ad(x, u) =

∑
m,n≥0 admnx

num be the GF of nodes on level d, and let

T̂ be the family of trees with marked nodes on level d. Then:
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T̂ = Φd((•)× T )

and

ad(x, u) = yd(x, ua(x)) (3.8)

where

y0(x, u) = u

yi+1(x, u) = xϕ(yi(x, u)), i ≥ 0 (3.9)

Further, the distribution of Ln(d) is given by

P{Ln(d) = m||T | = n} =
admn

an

In order to show weak convergence of the fdds of ln(k), it is enough to show
pointwise convergence in (−ε, ε), with arbitrary ε > 0, of the characteristic
functions χX(t) = E(eitX), as convergence in characteristic functions implies
convergence in distributions if the limit is continuous in t = 0, which for
Brownian excursion local time is true (cp [27][p. 189�]).

The characteristic function of 1√
n
Ln(k) is

χkn(t) =
1

an

[xn]yk(x, e
it√
na(x))

and that of the �nite-dimensional distributions
(

1√
n
Ln(k1), . . . ,

1√
n
Ln(kp)

)
is given by

χk1,...,kpn(t1, . . . , tp) =
1

an

[xn]yk1

(
x, e

it1√
nyk2−k1(x, . . . , ykp−kp−1(x, e

itp√
na(x)) · · · )

)
Now, recursion 3.9 will be analyzed in detail to �nd a suitable contour for

using Cauchy's integral formula, with the help of the new recursive series:

wi = wi(x, u) = yi(x, u)− a(x)

As we have seen earlier in this chapter, a(x) has one singularity at x0 =
τ

ϕ(τ)
and around it a local expansion of the form:

a(x) = τ −
√

2τ

σ

√
1− x

x0

+O
(∣∣∣∣1− x

x0

∣∣∣∣)
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The assumption d = 1 implies that |xϕ′(a(x))| < 1 for |x| = x0, x 6= x0,
and hence, by the implicit function theorem, a(x) has an analytic continua-
tion to the region |x| < x0+δ, arg(x−x0) 6= 0 for some δ > 0, and the function
α = xϕ′(a(x)) has similar analytic properties and the local expansion

α = 1− σ
√

2

√
1− x

x0

+O
(∣∣∣∣1− x

x0

∣∣∣∣) (3.10)

With this information, we can state the following lemma:

Lemma 3.3.5. Set α = xϕ′(a(x)) and suppose that w0 = u − a(x) = O(1)
and 1

2
≤ |α| ≤ 1 +O(w0|). If i = O(|w0|−1), then

wi = O(w0α
i)

Proof. This lemma can be shown using an induction on i on the local Taylor
expansion

yi+1(x, u) = xϕ(yi(x, u))

= xϕ(a(x) + wi)

= a(x) + xϕ′(a(x))wi + xϕ′′(a(x) + θi)
w2

i

2

= a(x) + αwi + xϕ′′(a(x) + θi)
w2

i

2
.

We now set x = x0(1 + z
n
), and assume that |w0| = |u − a(x)| = O( 1√

n
)

and z
n
→ 0 in such a way that |arg(−z)| < π and

∣∣1−√−z
n

∣∣ ≤ 1 +
C√
n

are satis�ed. We further have α = 1+O( 1√
n
) and can apply Lemma 3.3.5

for i = O(
√
n).

The asymptotic relation

wi+1 = αwi + βw2
i +O(|wi|3),

where β = xϕ′′(a(x))/2,
leads to
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Lemma 3.3.6. Under the given premises, yk(x, u) from recursion 3.9 admits
the local representation

yk(x, u) = a(x) +
(u− a(x))αk√

−z
n

+ σ(τ−u)

τ
√

2

2
√

−z
n

+

√
−z
n
− σ(τ−u)

τ
√

2

2
√

−z
n

αk +O
(√

|z|
n

)

uniformly for k = O(
√
n).

because rewriting the relation and setting qi = αi

wi
leads to

qi =
1

w0

− β

α

1− αi

1− α
+O

(
|w0|

∣∣∣∣1− α2i

1− α2

∣∣∣∣)
and, with x = x0(1 + z

n
)

w0 = u− a(x) = u− τ +
τ
√

2

σ

√
− z
n

+O
( |z|
n

)
β =

x0ϕ
′′(τ)

2

(
1 +O

(√
|z|
n

))
=
σ2

2τ

(
1 +O

(√
|z|
n

))
.

Combining these results leads to the above statement.
The results obtained so far can be used to show the following theorem:

Theorem 3.3.7. Let ki = κi

√
n, i = 1, . . . , p where 0 < κ1 < · · · < κp. Then

the characteristic function χκ1···κp(t1, . . . , tp) = limn→∞χk1···kpn(t1, . . . , tp) of
the limiting distribution of ( 1√

n
Ln(k1), . . . ,

1√
n
Ln(kp)) satis�es

χκ1···κp(t1, . . . , tp) = 1 +
σ

i
√

2π

∫
γ

fκ1,··· ,κp,σ(x, t1, . . . , tp)e
−xdx (3.11)

where

f κ1,··· ,κp,σ(x, t1, . . . , tp) =

= Φκ1,σ

(
x, it1 + Φκ2−κ1,σ

(
· · ·Φκp−1−κp−2,σ(x, itp−1 + Φκp−κp−1,σ(x, itp)

)
· · ·
)

(3.12)

with
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Φκσ(x, t) =
t
√
−xe−κσ

√
−x
2

√
−xeκσ

√
−x
2 − t σ√

2
sinh

(
κσ
√
−x

2

)
and γ is the Hankel-like contour γ1 ∪ γ2 ∪ γ3 de�ned by

γ1 = {s||s| = 1 and <s ≤ 0}
γ2 = {s|=s = 1 and <s ≥ 0}
γ3 = γ2

Proof. The proof of this theorem is made stepwise. Let k and h be non-
negative integers, and let χk,k+h,n(s, t) be the characteristic function of the
joint distribution of 1√

n
Ln(k) and 1√

n
Ln(k + h). Denote by χκ,κ+η(s, t) =

limn→∞ χk,k+h,n(s, t) the characteristic function of the limiting distribution
of ( 1√

n
Ln(k), 1√

n
Ln(k+h)). Then it can be shown that χκ,κ+η(s, t) ful�lls the

proposition of Theorem 3.3.7, using Cauchy's integral formula and a trun-
cated Hankel contour γ′ = Γ1 ∪ Γ2 ∪ Γ3 around the singularity x0 closed by
a circular arcΓ4:

Γ1 =

{
x = x0

(
1 +

z

n

)∣∣<z ≤ 0and |z| = 1

}
Γ2 =

{
x = x0

(
1 +

z

n

)∣∣=z = 1 and 0 ≤ <z ≤ log2n

}
Γ3 = Γ2

Γ4 =

{
x
∣∣|x| = x0

∣∣∣∣1 +
log2n+ i

n

∣∣∣∣ and arg(1 +
log2n+ i

n

)
≤ |arg(z)| ≤ π

}
where it will be found that the contribution of Γ4 is negligibly small and

that the substitution of γ′ by γ is justi�ed by the dominated convergence
theorem.

Then the steps of the proof for dimension 2 can be iterated and thus the
theorem can be proofed.

Now the next step is taken from the other side, determining the fdds of
Brownian excursion local time. Those can be shown to be:

Theorem 3.3.8. Let χκ1···κp
(t1, . . . , tp) denote the characteristic function of

the joint distribution of (l(κ1), . . . , l(κp)). Then we have



CHAPTER 3. SIMPLY GENERATED TREES 40

χκ1···κp
(t1, . . . , tp) = 1 +

√
2

i
√
π

∫
γ

fκ1,··· ,κp,2(x, t1, . . . , tp)e
−xdx (3.13)

where fκ1,··· ,κp,2(x, t1, . . . , tp) is given by the same de�nitions as in 3.3.7.

The last missing tile in the proof of Theorem 3.3.4 is the proof of tightness
of the sequence of random variables ln(t) = 1√

n
Ln(t

√
n), t ≥ 0 in C[0,∞).

As a sequence of stochastic processes Xn(t), t ≥ 0 is tight in C[0,∞) if and
only if Xn(t), 0 ≤ t ≤ T is tight in C[0, T ] for all T > 0, it is enough to
show tightness on a �nite intervall, i.e. it is enough to show tightness of
Ln(t), 0 ≤ t ≤ A

√
n for some real constant A > 0.

According to [5], and estimate of the form

P{|Ln(ρ
√
n)− Ln((ρ+ θ)

√
n| ≥ ε

√
n} ≤ C

θα

εβ
(3.14)

for some α > 1, β ≥ 0, C > 0 uniformly for 0 ≤ ρ ≤ ρ + θ ≤ A, together
with tightness of Ln(0), which is obviously satis�ed, imply tightness of the
demanded sequence.

So the proposition to obtain is 3.14, which can be derived from

Lemma 3.3.9. There exists a constant C > 0 such that

E(Ln(r)− Ln(r + h))4 ≤ Ch2n

holds for all nonnegative integers n, r, h,

which can be shown through calculation of the expected value and singu-
larity analysis.

Putting all pieces together, �nally the weak convergence

ln(t)
w→ σ

2
l(
σ

2
t)

of Theorem 3.3.4 is shown.

The joint distribution of height and width

For the distributions of the height hn and the width wn of any Galton
Watson tree of total progeny n, even the following theorem is true
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Theorem 3.3.10. For any conditioned Galton Watson tree Tn

1√
n

(hn, wn)
w→ (

H

σ
, σW )

as n→∞, where

H =

∫ 1

0

1

B(t)
dt

W = max
t∈[0,1]

B(t)

and B(t) is a normalized Brownian excursion.

REMARK The joint distribution (H,W ) given above is equal in distri-
bution to (2 maxtB(t), 1

2
maxx≥0 l(x)), where l(x) is the local time of B(t),

thus H
w→ 2W .

The above theorem is proved for binary trees in [7], in [23] joint moments
are calculated.

3.4 Conditioned Galton-Watson trees do not

grow

We will show through an counter example, that the families of trees discussed
in this chapter can in general not be obtained by adding vertices one by one,
i.e. there exist simply generated families of trees and at least one n ∈ N,
for which the tree resulting from adding a new leaf to Bn by some random
procedure does not have the distribution of Bn+1, which is a major di�erence
to the graphs discussed in chapter 5, which are created by adding leaves one
by one.

Now what does the property mentioned above mean?

Property 3.4.1. It is possible to de�ne Bn and Bn+1 on a common proba-
bility space such that Bn ⊂ Bn+1. Or equivalently:
It is possible to construct B1, B2, B3, . . . as a Markov chain where at each
step a new leaf is added.

Let Wk(B) denote the number of vertices of distance k from the root. If
Property 3.4.1 holds, then also:

Property 3.4.2. For every k ≥ 0 and n ≥ 1,

EWk(Bn) ≤ EWk(Bn+1).
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Theorem 3.4.3. Conditioned Galton-Watson trees do not (necessarily) ful�ll
Property 3.4.2, and hence do not (necessarily) ful�ll Property 3.4.1.

Proof. The follwing example was found in [22]. Consider the following Galton
Watson process:

Let ε > 0 be a small number and let the o�spring distribution be given
by:

P(ξ = 0) =
1− ε

2
P(ξ = 1) = ε P(ξ = 2) =

1− ε

2

We have Eξ = 1 and σ2 := V arξ = 1− ε.

qqq qq q
@�

t1 t2

Figure 3.4: The trees with three vertices

qqq
q

qqq q
@� qq qq

@� qq qq
@�

t3 t4 t5 t6

Figure 3.5: The trees with four vertices

Let B be the Galton-Watson tree according to ξ. For n = 3 we have two
possible trees, see Figure 3.4, with corresponding probabilities:

P(B = t1) = p2
1p0 = ε2

1− ε

2
=

1

2
ε2 +O(ε3)

P(B = t2) = p2p
2
0 =

(1− ε

2

)3
=

1

8
+O(ε),

where pj := P(ξ = j). Thus, conditioning on |B| = 3, we have:

P(B3 = t1) =
P(B = t1)

P(B = t1) + P(B = t2)
= 4ε2 +O(ε3)

P(B3 = t2) =
P(B = t2)

P(B = t1) + P(B = t2)
= 1− 4ε2 +O(ε3),

For n = 4 we have the four possibilities in Figure 3.5 and the probabilities:
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P(B = t3) = p3
1p0 = ε3

1− ε

2
=

1

2
ε3 +O(ε4)

P(B = t4) = p1p2p
2
0 = ε

(1− ε

2

)3
=

1

8
ε+O(ε2)

P(B = t5) = P(B = t6) = p2p1p
2
0 = P(B = t4),

and thus, conditioned on |B| = 4, that is

P(B4 = t3) =
P(B = t3)

P(B = t3) + 3 ∗P(B = t4)
= O(ε2)

P(B4 = t4) = P(B4 = t5) = P(B4 = t6) =
1

3
+O(ε2).

Now we consider W1(Bn) and get:

EW1(B3) = 1 ∗P(B3 = t1) + 2 ∗P(B3 = t2) = 2 +O(ε2)

EW1(B4) = 1 ∗P(B4 = t3) + 1 ∗P(B4 = t4) + 4 ∗P(B4 = t5) =
5

3
+O(ε2),

and hence, if ε is small enough,

EW1(B3) > EW1(B4).

So for the conditioned Galton-Watson tree with o�spring distribution ξ
Property 3.4.2 fails and hence Theorem 3.4.3 is true.

REMARK
Not every family of simply generated trees fails Property 3.4.2 (for exam-

ple, random d-ary trees hold it, as investigated in [28]. Those families which
hold the Property, are called very simply generated trees.



Chapter 4

Increasing trees

In this chapter we introduce trees with an additional characteristic, which
is their labeling. We will establish a connection to the families discussed
in the previous chapter and �nd some interesting results on these very well
examined families.

4.1 Introduction

De�nition 4.1.1 (labelled tree). Let B be a tree with n nodes, and I be the
set of integers {1, . . . , n}.
B is called a labelled tree if each node of VB is given a unique label i ∈ I.

De�nition 4.1.2 (increasing tree). Let Bn be a labelled tree of size n.
Bn is called an increasing tree if the sequence of labels along any branch of
Bn, starting at the root, is increasing.
(Obviously, the root is always labelled with 1).

De�nition 4.1.3 (degree-weight function). Let ϕk≥0 be a sequence of non-
negative integers with ϕ0 > 0 and assume there exists at least one k ≥ 2
with ϕk > 0. This sequence assigns a weight to every node of degree k. The
sequence ϕ(k) is called degree-weight sequence. Its generating function ϕ(t) =∑

k≥0 ϕkt
k is the degree-weight function of the family of trees considered.

REMARK In the plane case ϕk can be interpreted as the sorts of nodes
of outdegree k, in the non-plane case the division by n! eliminates the factor
of ordering subtrees.

De�nition 4.1.4 (Family of increasing trees). A family of increasing trees
is the collection of all plane/non-plane increasing trees with ϕk sorts of nodes
of outdegree k.

44



CHAPTER 4. INCREASING TREES 45

Simple families of increasing trees

Note that we can generate an increasing tree by taking any unlabelled
rooted tree and provide it with a valid increasing labeling. We consider
increasing trees derived from simple generated trees (as described in chapter
3). We call these families of trees simple families of increasing trees. Simple
families of increasing trees can be described via their degree-weight function
ϕ(t)(cp De�nition 4.1.3): We then de�ne the weight w(T ) of any tree T by
w(T ) =

∏
v ϕd(v), v ∈ VT , d(v) being the outdegree of node v. L(T ) denotes

the set of possible increasing labellings for T , and L(T ) = |L| its cardinality.
We can then de�ne the EGF of the family by

T (z) =
∑
n≥1

Tn
zn

n!
Tn :=

∑
|T |=n

w(T )L(T )

Alternatively, simple families of increasing trees can also be describes via
the formal recursive equation:

T = 1×
(
ϕ0 · {ε}

.
∪ϕ1 · T

.
∪ϕ2 · T ∗T

.
∪ϕ3 · T ∗T ∗T

.
∪· · ·

)
= 1×ϕ(T ) (4.1)

where 1 denotes the node labelled with 1, × the cartesian product,∗ the
partition product for labelled objects ans ϕ(T ) the substituted structure.

The three most interesting increasing families are the following:

1. Recursive trees are the family of non-plane increasing trees such that
all node degrees are allowed. Hence, the degree weight function is:

ϕ(t) =
∑
k≥0

1

k!
tk = et (4.2)

Solving 4.8 we obtain the EGF

T (z) = log

(
1

1− z

)
and Tn = (n− 1)! for n ≥ 1 (4.3)

2. Plane-oriented recursive trees or Heap ordered treesare the
same as recursive trees, but in the plane case. Thus, the degree weight
function is

ϕ(t) =
∑
k≥0

tk =
1

1− t
(4.4)
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In this case, 4.8 leads to

T (z) = 1−
√

1− 2z and Tn =
(n− 1)!

2n−1

(
2n− 2

n− 1

)
(4.5)

= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!! for n ≥ 1

3. Binary increasing trees are plane trees where each node has 0, 1 or
2 sons, and thus, as we have to di�er between left and right sons if
k = 1, the degree weight function is

ϕ(t) = (1 + t)2 (4.6)

(in the case of strict binary trees, where only outdegrees 0 and 2 are
allowed, the degree-weight function would be ϕ(t) = 1 + t2)

Applying 4.8 we get

T (z) =
z

1− z
and Tn = n! for n ≥ 1 (4.7)

Some simple increasing families hold the following property:

Property 4.1.5 (Insertion process). We consider a family of trees T .
For every tree T ′ ∈ T of size n − 1 with vertices v1, . . . , vn−1 there exist
probabilities pT ′(v1), . . . , pT ′(vn−1). By choosing a vertex vi in a random tree
T ′ of size n − 1, according to the probabilities pT ′(vi) , and attaching a new
node with label n to it, we obtain a random tree T ∈ T of size n. We say, the
family T can be constructed via an insertion process or a probabilistic rule.

We call those families grown simple families of increasing trees. A rule
for these families will be found in 4.1.6, and we will see that the families
named above are examples of such grown simple families of increasing trees.
The following theorem was stated and proved in [33] and in [34], the proof is
omitted here.

Theorem 4.1.6 (Grown simple families of increasing trees). The following
three properties of a simple family of increasing trees T are equivalent:

(i) The total weights Tn of trees of size n of T satisfy the equation

Tn+1

Tn

= c1n+ c2

with �xed constants c1, c2, for all n ∈ N.
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(ii) Starting with a random increasing tree T of size n ≥ j of T and remov-
ing all nodes with labels larger than j we obtain a random increasing
tree T ′ of size j of T .

(iii) The family T can be constructed via an insertion process (resp. a prob-
abilistic growth rule), as discussed in 4.1.5.

The family T satis�es these (equivalent) properties and is thus a very
simple family of increasing trees if and only if the degree-weight generating
function ϕ(t) =

∑
k≥0 ϕkt

k is given by one of the following formulas, where
c1, c2 are the constants appearing in property (i).

Case A : ϕ(t) = ϕ0e
c1t
ϕ0 , for ϕ0 > 0, c1 > 0(⇒ c2 = 0)

Case B : ϕ(t) = ϕ0(1 +
c2t

ϕ0

)d, for ϕ0 > 0, c2 > 0, d :=
c1
c2

+ 1 ∈ {2, 3, 4, . . .}

Case C : ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)
− c1

c2
−1
, for ϕ0 > 0, 0 < −c2 < c1

REMARK Referring to the families of trees we introduced above, Recur-
sive trees are Case A for ϕ0 = 1 and c1 = 1; binary increasing trees are Case
B for ϕ0 = 1, c1 = 1, c2 = 2 and thus d = 2; and heap ordered trees are Case
C for ϕ0 = 1, c1 = 2 and c2 = −1.
Case B -trees are, more generally said, d-ary increasing trees.

Let T be a family of increasing trees with the degree-weight function ϕ(t),
and let Tn be the total number of trees of size n in the variety. Then we can
state the following lemma for the family's exponential generating function:

Lemma 4.1.7. The EGF of the family of increasing trees de�ned by ϕ(t)

T (z) =
∞∑

n=0

Tn
zn

n!

ful�lls the autonomous �rst order di�erential equation

T ′(z) = ϕ(T (z)), T (0) = 0 (4.8)

Proof. The following proof is based on a proof found in [4]

Forming a forest of l trees corresponds to the EGF T l(z) (or T l(z)/l! re-
spectively, if the forest is unordered, illustrating the non-plane case). Adding
a node with a minimal label (the root), connecting the trees of a forest with
l components, enumerated by W (z), corresponds to the EGF

∫ z

0
W (u)du.
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Thus we obtain:

T (z) =

∫ z

0

( ∞∑
k=0

ϕkT
k(u)

)
du

and from there we can derive the desired result.

.

De�nition 4.1.8 (Polynomial families). Let T be a family of increasing
trees. IF ϕ(t) is a function of tp for some p ≥ 2, so that ϕ(t) = ψ(tp) for
some power series ψ, we call ϕ(t) periodic, the maximum possible p its period
and the according family of increasing trees a polynomial family of increasing
trees. Otherwise ϕ(t) is aperiodic and we take t = 1.

For increasing trees, we can also make a statement about the singularities
of its generating function:

Theorem 4.1.9. (cp [4]) Given a degree function ϕ(t) that is polynomial or
entire, the dominant real positive singularity of the function T (z), solution
to T ′(z) = ϕ(T (z)) and T (0) = 0, is

ρ =

∫ ∞

0

1

ϕ(u)
du

Further, if ϕ(t) is nonperiodic, then ρ is the only dominant singularity of
T (z).

Proof. First we have to reformulate the di�erential equation of Lemma 4.1.7
and obtain the equivalent equation

z =

∫ T (z)

0

1

ϕ(t)
dt

For t on the positive real axis, ϕ(t) does not vanish and increases with t2

as t → ∞, as ϕi ≥ 0, ϕ0 6= 0 and ϕi 6= 0 for some i ≥ 2, thus the integral
is clearly de�ned. For any real 0 < y < ∞, the integral

∫ y

0
1

ϕ(t)
dt is analytic

and it's derivative is not equal to 0, therefore it is invertible. Therefore,
due to the identity above, T (z) is analytic for all real z with 0 < z < ρ,
but obviously, for z → ρ−, T (z) → ∞, and therefore ρ is a singularity. Let
z0 = r0e

is with r0 < ρ. As T (z) has only positive Taylor coe�cients, we can
use the triangular inequality and get |T (z0)| ≤ T (r0). Now we can use the
following lemma:
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Lemma 4.1.10. With the premises given above, for s 6= 0 equality |T (z0)| =
T (r0) is only possible if T (z) = zaT ∗(zp) for some integers a and p ≥ 2, in
which case s = 2mπ

p
.

This implies that equality is only possible if ϕ(t) is periodic. Thus, in
the non-periodic case, |T (z0)| < T (r0). We choose a positive real r1 with
|T (z0)| = T (r1). As T (z) is increasing on the positive real axis, r1 < r0. We
de�ne a function ψ which ful�lls ψ′(z) = ϕ(ψ(z)) and ψ(r0) = T (r1). The
system of di�erential equations is autonomous (i.e. it is independent on the
independent variable, in our case z), and thus ψ(z) and T (z) are related by
ψ(z) = T (z − r0 + r1). Since ϕ(t) has only non-negative coe�cients and
r1 < r0, we have |T (z)| ≤ ψ(|z|), and hence |T (z)| ≤ T (|z| − r0 + r1. This
induced that T (z) exists along any ray with angle s 6= 0, for |z| < ρ− r0 + r1,
and is analytic there.

For periodic ϕ(t) the argument has to be slightly altered but still applies,
and the other singularities are to be found at angles s = mπ

p
.

For polynomial ϕ, we can further determine the following exact formula
for T (z), using the expansion of 1

ϕ(t)
as t→∞, and integration:

Lemma 4.1.11. (cp [4]) Let ϕ(t) = ϕ0 + · · ·+ ϕpt
p be a polynompial degree

weight function with degree p ≥ 2. Then, in a complex neighborhood of ρ, the
solution T (z) of 4.1.7 is of the form

T (z) =
1

∆(z)
H(∆(z)) where ∆(z) = η(

1− z

ρ
)δ

where

δ =
1

p− 1
η =

(ϕpρ

δ

)δ
and H(t) =

∑
m≥0 hmt

m is analytic at t = 0,

h0 = 1, h1 = −ϕp−1

pϕp

, h2 = −
2pϕpϕp−2 − (p− 1)ϕ2

p−1

2p(p+ 1)ϕ2
p

4.2 The Pro�le

As in the previous chapter, let L
(n)
l be the expected number of nodes at level

l of all trees Bn of size n in a family T . (The depth of the root is de�ned to

be 0). For �xed n the sequence (L
(n)
l )n

l=0 describes the mean pro�le of trees
in the family. We de�ne the bivariate generating function
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L(z, u) =
∑
n≥0

∑
l≥0

L
(n)
l

zn

n!
ul

For L(z, u) we can show the following theorem:

Theorem 4.2.1. (cp [4, Theorem 8] The bivariate generating function L(z, u)
satis�es

L(z, u) = (T ′(z))u

∫ z

0

(T ′(t))1−udt (4.9)

Further, let Dn be the height of a random node in a random tree of T
with size n, i.e.,

P(Dn = l) =
L

(n)
l∑

k≥0 L
(n)
l

For a polynomial variety of degree d, the mean value µn and the variance
σ2

n of Dn satisfy

µn = (δ + 1) log n+O(1)

σ2
n = (δ + 1) log n+O(1)

and the distribution is asymptotically normal,

Dn − µn

σn

w→ N (0, 1)

REMARK We will �nd limiting distributions for Dn for other families of
increasing trees in section 4.4

Proof. We de�ne the level polynomial of the tree by s(T ) :=
∑

v∈V (T ) u
h(v),

h(v) being the height of node v in the tree T . Let us denote by T ′ / T that
T ′ is a subtree of T , that is, one of the trees that remain if we eliminate the
root of T . Then s(T ) is inductively de�ned by

s(T ) =

{
1 if |T | = 1
1 + u

∑
T ′/T s(T

′) otherwise

Thus, the generating polynomial L(n)(u) =
∑

l≥0 L
(n)
l ul behaves like the

expectation of s(T ). We can use the same line of reasoning as in the proof
of Lemma 4.1.7 and thus obtain the equation
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L(z, u) = T (z) + u

∫ z

0

L(t, u)ϕ′(T (t))dt

which gives the di�erential equation

∂

∂z
L(z, u) = T ′(z) + uL(z, u)

ϕ′(T (z))T ′(z)

ϕ(T (z))
, L(0, u) = 1

When integrating the homogeneous equation �rst, we get the solution

eu log T ′(z) = (T ′(z))u.

The integral form of L(z, u) is then obtained by the variation-of-parameter
method (see, for example, [38, p.28f].

To show Gaussian distribution in case of polynomial ϕ, we need the iden-
tity of T (z) from Lemma 4.1.11, and obtain

log(T ′(z)) = (δ + 1) log
1

1− z
ρ

+ C +O((1− z

ρ
)2δ)

We can now use the following theorem by Flajolet and Soria (cp [16,
Theorem 1]):

Theorem 4.2.2. Let P and C be two classes of combinatorial structures,
such that

P (z, u) = euC(z).

Let Ωn be the number of components in a random P-structure of size n,
with probability distribution

P(Ωn = k) =
Pn,k∑
l Pn,l

with Pn,k = n![ukzn]euC(z).

If C(z) is a logarithmic function, then Ωn, once normalized, converges
weakly to a limiting Gaussian distribution:

P(a <
Ωn − µn

σn

< b) → 1

2π

∫ b

a

e−
t2

2 dt.

The theorem applies here to (T ′(z))u, for L(z, u) we have to prove that
the integral

∫ z

0
(T ′(z))1−u does not alter the result. The integral is convergent

for u in a complex neighborhood of 1 and |z| ≤ ρ so that it is an unessential
perturbation, and thus the theorem can be applied.
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4.3 Node degree

In this section, limiting distributions of the out-degree of nodes in simple
families of increasing trees will be given. Important results and proofs are
carried out in this thesis. Some calculations are omitted, in these cases exact
references are given.

We start by introducing a random variable Xn,j, 1 ≤ j ≤ n, which counts
the out-degree of the node with label j in a random increasing tree of size n.
We will develop a trivariate function N(z, u, v), which is the generating func-
tion of the probabilities P{Xn,j = m} in a simple family of increasing trees
with degree-weight generating function ϕ(t).

For grown simple families we will compute explicit formulas for the prob-
ability P{Xn,j = m} and for the moments E(Xs

n,j) (x
s meaning the falling

factorials x(x− 1) · · · (x− l + 1)).
The following part of this work largely follows [26].

We start at the root j = 1 and introduce a bivariate generating function
for its root-degree:

M(z, v) :=
∑
n≥1

∑
m≥0

P{Xn,1 = m}Tn
zn

n!
vm (4.10)

For this function, we can easily show the following lemma:

Lemma 4.3.1. The bivariate generating function of the root-degree is given
by

M(z, v) =

∫ z

0

ϕ(vT (t))dt (4.11)

Proof. The exponential generating function of trees with root degree m is

ϕm

∫ z

0

Tm(t)dt

according to [4]; and so, clearly, equation 4.11 is true.

Now we consider all other nodes with 2 ≤ j ≤ n. Suppose the increasing
tree of size n has root degree r and its r subtrees have sizes k1, . . . , kr and are
enumerated. Further suppose our considered node j lies in the �rst subtree
and is the i-th smallest node there, then we can reduce the computation of
P{Xn,j = m} to P{Xk1,i = m}, and get as a factor the total weight of the
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r subtrees and the root node ϕrTk1 · · ·Tkr divided by the total weight Tn of
trees of size n, multiplied by the number of relabellings, which preserve the
order of the r subtrees. We can choose: The i − 1 labels smaller than j
in the leftmost subtree from 2, 3, . . . , j − 1, the k1 − i labels larger than j
in the same subtree from j + 1, . . . , n and then we distribute the remaining
n− 1− k1 labels to the other subtrees. This results in:(

j − 2

i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
We now have to sum up over all choices for the rank i of label j in its

subtree, over the subtree sizes k1, . . . , kr and over the root degrees r and
before that, we have to consider symmetry and include a factor r, if the node
j is not in the leftmost, but in the second, third,. . . subtree.

Finally, we get

P{Xn,j = m} =
∑
r≥1

rϕr

∑
k1+···+kr=n−1,

k1,...,kr≥1

Tk1 · · ·Tkr

Tn

× (4.12)

×
min{k1,j−1}∑

i=1

P{Xk1,i = m}
(
j − 2

i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
This recurrence can be expressed via the trivariate generating function

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Xk+j,j = m}Tk+j
zj−1

(j − 1)!

uk

k!
vm (4.13)

when setting n := k + j, k ≥ 0. This interpretation is admissible as
(4.12) leads to the following di�erential equation when multiplying with

Tk+j
zj−2

(j−2)!
uk

k!
vm and summing up over k ≥ 0, j ≥ 2 and m ≥ 0, just as

4.13 does,

∂

∂z
N(z, u, v) = ϕ′(t(z + u))N(z, u, v) (4.14)

and they ful�ll the initial condition:

N(0, u, v) =
∑
k≥0

∑
m≥0

P{Xk+1,1 = m}Tk+1
uk

k!
vm =

∂

∂u
M(u, v) = ϕ(vT (u))

(4.15)
For the trivariate function N(z, u, v) we can show the following theorem:
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Theorem 4.3.2. The function N(z, u, v), that gives the probability that the
node with label j in a randomly chosen tree of size n of a simple family of
increasing trees has exactly m sons, is given by the formula:

N(z, u, v) =
ϕ(vT (u))ϕ(T (z + u))

ϕ(T (u))
(4.16)

Proof. A general solution of (4.14) has the following form:

N(z, u, v) = C(u, v)e(
R z
0 ϕ′(T (t+u))dt)

with some function C(u, v). We now make use of the initial condition
(4.15) and get:

N(z, u, v) = ϕ′(v(T (u))e(
R z
0 ϕ′(T (t+u))dt) (4.17)

.
which leads to the result of the theorem, considering the simpli�cations of

the integral which can be made on the basis of the equation T ′(z) = ϕ(T (z)):

∫ z

0

ϕ′(T (t+ u))udt =

∫ z

0

ϕ′(T (t+ u))T ′(t+ u)

ϕ(T (t+ u))
dt

=

∫ T (z+u)

T (u)

(logϕ(w))′dw = log

(
ϕ(T (z + u))

ϕ(T (u))

)

We now have a general formula for P{Xn,j = m}, from this formula
we will derive exact results for grown simple increasing families. For these
families we obtained exact formulas for ϕ(t) and T (t) at the beginning of this
chapter. They are:

ϕ(t) = ϕ0e
c1t
ϕ0 T (z) =

ϕ0

c1
log(

1

1− c1z
) in Case A

ϕ(t) = ϕ0(1 +
c2t

ϕ0

)d T (z) =
ϕ0

c2
(

1

(1− (1− d)c2z)
1

1−d

− 1) Case B

ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)
− c1

c2
−1

T (z) =
ϕ0

c2
(

1

(1− c1z)
c2
c1

− 1) Case C

Inserting these results in the formula named in theorem 4.3.2 in case A
results in:
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N(z, u, v) =
ϕ0e

c1
ϕ0

ϕ0
c1

v log( 1
1−c1u

)
ϕ0e

c1
ϕ0

ϕ0
c1

log( 1
1−c1(z+u)

)

ϕ0e
c1
ϕ0

ϕ0
c1

log( 1
1−c1z

)

=
ϕ0

(1− c1u)v(1− c1z
1−c1u

)

By extracting coe�cients following probabilities are obtained:

P{Xn,j = m} =
1

cn−1
1

(
n−1
j−1

) [un−jvm]
cj−1
1

(1− c1u)v+j−1

=
1(

n−1
j−1

) n−j∑
k=0

[un−j−k]
1

(1− c1u)j−1
[ukvm]

cj−1
1

(1− c1u)v

This, together with the generating function identity for the Stirling num-
bers of �rst kind

∑
n≥0

m∑
m=0

sn,k
zn

n!
vm =

1

(1− z)v

results in

P{Xn,j = m} =
1(

n−1
j−1

) n−j∑
k=m

(
n− k − 2

j − 2

)
sk,m

k!
(4.18)

for m ≥ 1.
Carrying out similar computations with the explicit formulas for Case B

and Case C, following results can be obtained:

Theorem 4.3.3.

P{Xn,j = m} =


1

(n−1
j−1)

∑n−j
k=m

(
n−k−2

j−2

) sk,m

k!
Case A(

d
m

)∑m
k=0

(
m
k

)
(−1)m−k Γ(n−1+ k

d−1
)Γ(j+ 1

d−1
)

Γ(j−1+ k
d−1

)Γ(n+ 1
d−1

)
Case B(

m−2− c1
c2

m

)∑m
k=0

(
m
k

)
(−1)k

Γ(n−1+k
c2
c1

)Γ(j+
c2
c1

)

Γ(j−1+k
c2
c1

)Γ(n+
c2
c1

)
Case C

Theorem 4.3.4. The s-th factorial moments of the probability distribution
discussed are:
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E((Xn,j)
s) =



s!

(n−1
j−1)

∑n−j
l=0

(
n−l−1
j−1

) sl,s

l!
Case A

ds(
1

d−1
+j−1

j−1
)(n+ s

d−1
−2)n−j

(n−1
j−1)(

n−1+ 1
d−1

n−1
)(n−j)!

Case B

Γ(s−1− c1
c2

)

Γ(−1− c1
c2

)

∑s
k=0

(
s
k

)
(−1)k

Γ(n− c2
c1

(s−1−k))Γ(j+
c2
c1

)

Γ(j− c2
c1

(s−1−k))Γ(n+
c2
c1

)
Case C

Proofs of 4.3.4 and Case B and Case C of 4.3.3 work through straightfor-
ward calculations and are omitted here. They can be found in [26].

From Theorems 4.3.3 and 4.3.4, a full characterization of the distribu-
tional behaviour of Xn,j as n → ∞ can be derived, for all cases of grown
simple families of increasing trees. The distribution changes depending on
the growth of j = j(n) compared to n.

I will state the according theorem and carry out the proof for d-ary in-
creasing trees, i.e. for Case B, as results are very interesting in that case.
The distributions for the remaining cases can be found in table 4.1. For the
interested reader, the according theorems and proofs can be found in [26],
just as the following.

Theorem 4.3.5 (The distribution of node-degrees in d-ary increasing trees).
The limiting distribution of the random variable Xn,j in a randomly chosen
tree of a grown simple family of increasing trees of Case B of size n, as given
by 4.1.6, is, for n→∞ and depending on the growth of j, given as follows:

(i) The region for j small: j = o(n):

P{Xn,j} = d→ 1,

e.g. the node-degree converges almost surely, that is, with probability 1,
to the maximal degree d.

(ii) The central region for j : j →∞ such that j = ρn,with 0 < ρ < 1. The
random variable Xn,j is asymptotically binomially distributed B(n, p)

with parameters n = d and p = 1− ρ
1

d−1 .

Xn,j
(d)→ Xρ with P{Xρ = m} =

(
d

m

)(
1− ρ

1
d−1

)m(
ρ

1
d−1

)d−m

(iii) The region for j large: l := n− j = o(n):

P{Xn,j} = 0 → 1,
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with rate of convergence O( l
n
), e.g. the node-degree converges almost

surely towards 0.

Proof. (i) We start with the region for j small, j = o(n), and, with Γ(x) =
(x− 1)!, obtain

P{Xn,j = d} =

(
d

d

) d−1∑
k=0

(
d

k

)
(−1)d−k

Γ(n− 1 + k
d−1

)Γ(j + 1
d−1

)

Γ(n+ 1
d−1

)Γ(j − 1 + k
d−1

)
+(

d

d

)(
d

d

)
(−1)d−d

Γ(n+ 1
d−1

)Γ(j + 1
d−1

)

Γ(n+ 1
d−1

)Γ(j + 1
d−1

)

= 1 +
d−1∑
k=0

(
d

k

)
(−1)d−k

(j−1+ 1
d−1

j−2 k
d−1

)
(n−1+ 1

d−1

n−2 k
d−1

) (4.19)

For 0 ≤ k ≤ d− 1 we can form the following inequation:

(j−1+ 1
d−1

j−2 k
d−1

)
(n−1+ 1

d−1

n−2 k
d−1

) =
(n− 2 + k

d−1
)n−j

(n− 1 + 1
d−1

)n−j (4.20)

≤ (n− 1)n−j

(n− 1 + 1
d−1

)n−j =
(n− 1)!(j − 1 + 1

d−1
)!

(n− 1 + 1
d−1

)!(j − 1)!

Splitting the region j = o(n) into two cases j ≤ log(n) and j > log(n)
we obtain following results from (4.20):

• For j ≤ log(n), for j ≥ 2 (the �rst bound also holds for j = 1)

(j − 1 + 1
d−1

)!

(j − 1)!
=

(j − 1 + 1
d−1

)!j

j!
≤ j ≤ log(n) = O(log(n))

and

(n− 1 + 1
d−1

)!

(n− 1)!
= n

1
d−1

(
1 +O(

1

n
)
)
,

and thus, together,



CHAPTER 4. INCREASING TREES 58

(n− 1)!(j − 1 + 1
d−1

)!

(n− 1 + 1
d−1

)!(j − 1)!
= O

( log(n)

n
1

d−1

)
.

For the probabilities P{Xn,j = d} we obtain

d−1∑
k=0

(
d

k

)
(−1)d−k

(j−1+ 1
d−1

j−2 k
d−1

)
(n−1+ 1

d−1

n−2 k
d−1

) = O
( log(n)

n
1

d−1

)
. (4.21)

• Forj > log(n) we use

(j − 1 + 1
d−1

)!

(j − 1)!
= j

1
d−1

(
1 +O(

1

j
)
)
.

With this, we obtain

(n− 1)!(j − 1 + 1
d−1

)!

(n− 1 + 1
d−1

)!(j − 1)!
= (

j

n
)

1
d−1

(
1 +O(

1

j
) +O(

1

n
)
)
.

Thus, for the probabilities P{Xn,j = d} we

d−1∑
k=0

(
d

k

)
(−1)d−k

(j−1+ 1
d−1

j−2 k
d−1

)
(n−1+ 1

d−1

n−2 k
d−1

) = O
(
(
j

n
)

1
d−1

)
. (4.22)

The combination of the two cases with equations (4.21) and (4.22) leads
from (4.19) to

P{Xn,j} = 1 +O
(
(
j

n
)

1
d−1

)
+O

( log(n)

n
1

d−1

)
→ 1 (4.23)

So we obtained the desired result and showed that for n → ∞ the
outdegree of nodes with small label j converges towards d in a d-ary
increasing tree.

(ii) For the region j →∞ with j = ρn and 0 < ρ < 1 we need the help of
Stirling's formula for the Gamma-function:

Γ(x) =

√
2π

x
(
x

e
)x
(
1 +O(

1

x
)
)

(4.24)
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and get:

P{Xn,j = m} =

(
d

m

) m∑
k=0

(
m

k

)
(−1)m−k

Γ(n− 1 + k
d−1

)Γ(ρn+ 1
d−1

)

Γ(ρn− 1 + k
d−1

)Γ(n+ 1
d−1

)

=

(
d

m

) m∑
k=0

(
m

k

)
(−1)m−kρ1− k−1

d−1

(
1 +O(

1

n
)
)

=

(
d

m

)
ρ1+ 1

d−1

m∑
k=0

(
m

k

)
(−1)m−kρ−

k
d−1 ) +O(

1

n
)

=

(
d

m

)
ρ1+ 1

d−1 (ρ−
1

d−1 − 1)m +O(
1

n
)

=

(
d

m

)(
1− ρ

1
d−1

)m
(ρ

1
d−1 )d−m +O(

1

n
) (4.25)

which, for n→∞, obviously is a binomial distribution with parameters

d and 1− ρ
1

d−1 .

(iii) For the region l := n − j = o(n) we use Stirling's formula 4.24 again
and obtain:

P{Xn,j = 0} =
Γ(n− 1)Γ(j + 1

d−1
)

Γ(j − 1)Γ(n+ 1
d−1

)

=
Γ(n− 1)Γ(n+ 1

d−1
− l)

Γ(n− 1− l)Γ(n+ 1
d−1

)
= 1 +O(

l

n
) (4.26)

So, we also showed that for very large j, the node degree will be 0
with probability 1 for n→∞, and thus, we completed the proof of the
theorem.

The following table contains a full characterization of the limiting distri-
bution of the random variable Xn,j for all families of grown simple families of
increasing trees, which are: recursive trees (Case A), d-ary increasing trees
(Case B) and generalized plane-oriented trees (Case C). We examine all se-
quences (n, j) and di�er on the growth of j = j(n) compared to n.

REMARK The degenerated distribution in the region for j large, l :=
n−j = o(n) are the same for all three cases, namely this is: P{Xn,j = 0} → 1
with rate of convergence O( l

n
).
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(Case A) (Case B) (Case C)
j �xed characterized via moments

j →∞, j = o(n)
Gaussian degenerate

Gamma
j ∼ ρn, 0 < ρ < 1 Poisson binomial negative binomial
l := n− j = o(n) degenerate degenerate degenerate

Table 4.1: limiting distribution behavior

4.4 The expected level of nodes

Using similar methods as in the previous section, we will derive results for
the expected height of node j. For the known families of simple increasing
trees, we will evaluate exact limiting distributions.

Therefore, let Dn denote a random variable that counts the level of the
node labelled with n, and Dn,j denotes the random variable counting the
level of node j ≤ n.

To set up a generating function for Dn,j, we create special tricolored
increasing trees, colored as the following: Exactly one node is colored white,
which is the node labelled j and thus the node the height of which we are
interested in. All nodes having smaller labels than that of j are then colored
black and all remaining nodes with labels j + 1, . . . , n are colored blue. We
assume that the white node is not the root, and that the considered tricolored
tree has outdegree r ≥ 1. Further, we assume that the white node is located
in the �rst subtree of the root. Then, the r−1 remaining subtrees B2, . . . , Br

are only bicolored with ji blue nodes and ki black nodes, while the �rst
subtree B1 is still tricolored with j1 blue and k1 black nodes, 2 ≤ i ≤ r,
0 ≤ ji ≤ |Bi|, ki = |Bi| − ji. The subtrees can be relabelled, preserving the
order of the nodes, and are thus increasing trees by themselves. There are(

j1+···+jr

j1,...,jr

)(
k1+···+kr

k1,...,kr

)
di�erent labellings as the j1+· · ·+jr resp k1+· · ·+kr labels

of the black resp. blue nodes are distributed over the black and blue nodes in
B1, . . . , Br in an order-preserving way. To describe the above via generating
functions we have to use exponential generating functions, i.e., f(z, u) =∑

j≥0

∑
k≥0 fj,k

zj

j!
uk

k!
and f(z, u, v) =

∑
j≥0

∑
k≥0

∑
m≥0 fj,k,m

zj

j!
uk

k!
vm, where v

marks the height of the white node, for sequences fj,k, fj,k,m.
Then the total weight of all suitable trees of the above shape, with j

black and k blue nodes, where the white node is located on level m is given
by P(Dk+j+1,j+1 = m)Tk+j+1 and thus its generating function is∑

j≥0

∑
k≥0

∑
m≥0

P(Dk+j+1,j+1 = m)Tk+j+1
zj

j!

uk

k!
vm =: N(z, u, v)



CHAPTER 4. INCREASING TREES 61

and the generating function of all suitable bicolored trees with j black
and k blue nodes is ∑

j≥0

∑
k≥0

Tk+j
zj

j!

uk

k!
= T (z + u)

We now want to put the r subtrees together again and obtain T (z +
u)r−1N(z, u, v) and a factor v, as the white node is one level higher in the
complete tree than it is in its subtree. Furthermore, the possibility that the
white node can also be in the second, third, . . . , r-th subtree leads to a
factor r, and, according to 4.1, the fact that the root has degree r includes
the factor ϕr. Summing up over all possible root-degrees r leads to∑

r≥0

rϕrvT (z + u)r−1N(z, u, v) = vϕ′(T (z + u))N(z, u, v)

and, as the node labelled 1 is de�nitely colored black, equation (4.1)
further leads to the following di�erential equation:

∂

∂z
N(z, u, v) = vϕ′(T (z + u))N(z, u, v) (4.27)

REMARK Equation (4.27) can also be derived using exactly the same
arguments as in the derivation of equation (4.12) in the previous section,
that is, we suppose the tree has root degree r and its r subtrees have sizes
k1, . . . , kr, and node j lies in the leftmost subtree, then the computation
of P(Dn,j = m) reduces to the computation of P(Dk1,i = m − 1), as the
additional level of the root has to be considered. With the same arguments as
in Section 4.3, we obtain the same factors and thus obtain for the probability
of node j being located at level m

P(Dn,j = m) =
∑
r≥1

rϕr

∑
k1+···+kr=n−1,

k1,...,kr≥1

Tk1 · · ·Tkr

Tn

× (4.28)

×
min{k1,j−1}∑

i=1

P(Dk1,i = m− 1)

(
j − 2

i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
Setting n = k + j with k ≥ 0 and setting up the trivariate generating

function

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P(Dk+j,j = m)Tk+j
zj−1

(j − 1)!

uk

k!
vm



CHAPTER 4. INCREASING TREES 62

also leads to (4.27), when multiplying (4.28) with Tk+j
zj−2

(j−2)!
uk

k!
vm and

summing up over k ≥ 0, j ≥ 2 and m ≥ 0.
The general solution of (4.27) is given by

N(z, u, v) = C(u, v)ev
R z
0 ϕ′(T (t+u))dt

with an unknown function C(u, v). But since P(Dn,1 = 1) = 1

N(0, u, v) =
∑
k≥0

∑
m ≥ 0P(Dk+1,1 = m)Tk+1

uk

k!
vm

=
∑
k≥0

Tk+1
uk

k!
= T ′(u) = ϕ(T (u))

and thus, we obtain

N(z, u, v) = ϕ(T (u))ev
R z
0 ϕ′(T (t+u))dt.

Again using T ′(z) = ϕ(T (z)) we get

N(z, u, v) = ϕ(T (u))ev
R z
0

ϕ′(T (t+u))T ′(t+u)
ϕ(T (t+u))

dt

= ϕ(T (u))ev
R z
0 log(ϕ(T (t+u)))′dt

= ϕ(T (u))ev(log(ϕ(T (z+u)))−log(ϕ(T (u))))

(4.29)

and thus obtain the following exact formula for the trivariate generating
function N(z, u, v)

N(z, u, v) = ϕ(T (u))
(ϕ(T (z + u))

ϕ(T (u))

)v
= T ′(u)

(T ′(z + u)

T ′(u)

)v
. (4.30)

Along the same line of reasoning, a bivariate generating function N(z, v)
can be derived for the height of the node labelled n, where only black and
white nodes are necessary. N(z, v) is then

N(z, v) = ϕ0

(ϕ(T (z))

ϕ0

)v
(4.31)

We will need that generating function to derive exact distributions in the
following.
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Results for simple families of increasing trees

Applying the general result obtained above to the generating function of
the tree families known earlier in this chapter, we can determine the exact
probabilities P(Dn,j = m) for the special cases of recursive, heap ordered
and binary trees:

• recursive trees: We have ϕ(t) = et, T (z) = log( 1
1−z

), Tn = (n − 1)!,
and thus

N(z, u, v) =
1

1− u
(

1− u

1− (u+ z)
)v =

1

(1− u)(1− z
1−u

)v

Extracting coe�cients, using [xn] 1
(1−x)α =

(
α+n−1

n

)
leads to the proba-

bility generating function

∑
m≥0

P(Dk+j,j = m)vm =
(j − 1)!k!

Tk+j

[zj−1uk]N(z, u, v)

=
(j − 1)!k!

(k + j − 1)!

(
v + j − 2

j − 1

)
[uk]

1

(1− u)j

=
(j − 1)!k!

(k + j − 1)!

(
v + j − 2

j − 1

)(
k + j − 1

k

)
︸ ︷︷ ︸

=
(j−1)!k!
(k+j−1)!

=

(
v + j − 2

j − 1

)
Thus the probability distribution of Dk+j,j is independent of k and is
thus equal to Dn. With (4.31)

N(z, v) =
1

(1− z)v

and thus, with the Stirling number identity [xkzn](1 + x)u = s(n,k)
n!

,

P(Dn = m) =
(n− 1)!

Tn

[zn−1vm]
1

(1− z)v
=

1

(n− 1)!
s(n− 1,m)

With singularity analysis the distribution of Dn can be shown to be
asymptotically Gaussian with
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E(Dn) = Hn−1 and V(Dn) = Hn−1 −H
(2)
n−1,

H
(m)
n being the harmonic number H

(m)
n =

∑n
k=1

1
km .

• heap ordered trees: We have ϕ(t) = 1
1−t

, T (z) = 1 −
√

1− 2z and

Tn = (n−1)!
2n−1

(
2n−2
n−1

)
, and thus

N(z, u, v) =

√
(1− 2u)v

√
1− 2u

√
(1− 2(z + u))v

=
1√

1− 2u(1− 2z
1−2u

)
v
2

and

∑
m≥0

P(Dk+j,j = m)vm =
(j − 1)!k!

Tj+k

2k+j−1

(
v
2

+ j − 2

j − 1

)(
k + j − 3

2

k

)

=
(j − 1)!k!

( v
2
+j−2
j−1

)(
k+j− 3

2
k

)
(k + j − 1)!

(
k+j− 3

2
k+j−1

)
=

( v
2
+j−2
j−1

)(
j− 3

2
j−1

) =

j−1∏
i=1

2i− 2 + v

2i− 1

Again we �nd the distribution of Dk+j,j independent of k and thus we
can evaluate Dn, which is by (4.31)

N(z, v) =
1

(1− 2z)
v
2

and

P(Dn = m) =
(n− 1)!

Tn

[zn−1vm]
1

(1− 2z)
v
2

=
2n−1−m

(2n− 3)!!
s(n− 1,m)

which, again via singularity analysis, can be shown to be Gaussian
distributed with

E(Dn) = H2n−2 −
1

2
Hn−1

V(Dn) = H2n−2 −
1

2
Hn−1 −H

(2)
2n−2 −

1

4
H

(2)
n−1 (4.32)
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• binary increasing trees: We have ϕ(t) = (1 + t)2, T (z) = z
1−z

and
Tn = n!. Thus

N(z, u, v) =
1

(1− z)2

(1− u)2v

(1− (u+ z))2v
=

1

(1− u)2(1− z
1−u

)2v

and

∑
m≥0

P(Dk+j,j = m)vm =
(j − 1)!k!

(k + j)!

(
2v + j − 2

j − 1

)(
k + j

k

)
=

1

j

(
2v + j − 2

j − 1

)
Thus, the distribution of Dk+j,j is independent of k also in binary in-
creasing trees, the distribution of Dn is

N(z, v) =
1

(1− z)2v

P(Dn = m) =
2m

n!
s(n− 1,m)

which can be shown to be Gaussian as well with

E(Dn) = 2Hn − 2

V(Dn) = 2Hn + 2− 4H(2)
n

Recapitulatory, we �nd that the depth of node j for �xed j in recursive,
heap ordered and binary increasing trees is independent of the size n of
the tree and is asymptotically Gaussian distributed. The question arises,
whether there are more increasing trees for which the property Dn,j = Dj

holds. In [33] the answer to this question is given. The solution are all
those trees which ful�ll a randomness preserving property, which means that,
starting with a random tree of size n and removing all nodes larger than
j, we obtain a random tree of size j. In Theorem 4.1.6 we saw that this
property is equivalent to property 4.1.5, and grown simple families are the
families which hold the properties.



Chapter 5

Scale Free Graphs and Trees

5.1 The Scale Free Model

The Scale Free model for graphs was considered �rst by Albert andBarabasi
[1]in 1999. It evolved from the fact that most of today's large real world
networks could not be adequately described by the present graph model.
The Scale Free Model is based on two simple but novel ideas:

1. Growth: Instead of starting with a �xed number of nodes N which
are then randomly connected or rewired, we start with a small number
(m0) of vertices. At every step we add a new vertex and connect it
with m(≤ m0) di�erent vertices already present in the system by m
new edges.

2. Preferential attachment : The likelihood of connecting to an existing
node depends on the node's degree. We assume that the probability Pi

that a new vertex is connected to vertex i is proportional to the degree
ki of vertex i.

The sense of the considerations named above can easily be illuminated
by means of the probably most present real world network: the world wide
web: The WWW grows by the addition of new web pages, and a webpage
will more likely include hyperlinks to popular documents with already high
degree than to those with a small number of links.

Numerical simulations indicated that the Scale Free network evolves into
a scale-invariant state with the probability that a node has k edges following
a power-law distribution, a property which we will show in 5.3.1 for Scale
Free Trees. For a general scale free graph G, assume that the probability
that a new node is connected to a present node in step n+1 is λ1k+λ0

Sn
, where

66
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λ1, λ0 are nonnegative parameters and Sn is the sum of degrees after n steps.
The following theorem holds for G, which is shown in [31].

Theorem 5.1.1. The asymptotic degree distribution of a Scale Free graph
with probability of the new node being connected to a present node of degree
k given by the above, is a power law distribution with exponent λ

λ = 2 +

√
1 +

2λ0

λ2
1

The question arises, whether both growth and preferential attachment are
necessary for power law scaling or is just one of the properties enough? The
answer to this question is yes, both are necessary. To achieve this answer,
we consider two di�erent models, containing only one of the two properties
each:

Model A . We eliminate the factor of preferential attachment, while the charac-
teristic of growth is held up. That is, we start with a small number of
nodes, m0, and add a new node with m ≤ m0 edges at each timestep
n, with equal probability of the new node connecting to a present node
i being P(i) = 1

m0+n+1
, independent of i. It can then be shown that

for n→∞, the degree distribution decays exponentially, i.e. the prob-
ability that a node has degree k is

P(k) =
e

m
e(−

k
m

)

Thus, without preferential attachment, a non-scale-free degree distri-
bution can occur.

Model B . We keep the factor of preferential attachment, but eliminate growth.
That is, we start with a �xed number of nodes N and no edges. At
each time step a node is selected randomly and connected to a node
i in the system with probability P(i) = kiP

j kj
, where ki denotes the

degree of node i. As N is constant, after T ' N2 timesteps all nodes
in the system are connected. It can be shown that at the beginning of
the system, there is power-law scaling, but P(k) is not stationary, that
is, it can be shown that, at time n, the degrees have reached

ki(n) ' 2

N
n

for large n, thus P(k) becomes Gaussian distributed.



CHAPTER 5. SCALE FREE GRAPHS AND TREES 68

We have now seen that the power law scaling observed in real-world net-
works can only be guaranteed with the two characteristics growth and pref-
erential attachment used simultaneously.

5.2 The diameter of a Scale Free Graph

Let G(m)
n be the family of trees constructed along the model described above

with m ≥ 1 after n steps.

De�nition 5.2.1 (Diameter). Let G be an undirected graph and u, v ∈
Vn(G). We call max(u,v)∈V 2(d(u, v)) the diameter of the graph G, where
d(u, v) is the distance between u and v, i.e. the diameter of a graph is the
'longest shortest path' between two of its nodes. We denote the diameter of
graph G by diam(G).

In their work, [6], Bollobás and Riordan showed the following property
for a Scale free Graph:

Theorem 5.2.2. For �xed m ≥ 2 and a positive real number ε, almost every
graph G

(m)
n ∈ G(m)

n is connected and has diameter diam(G
(m)
n ) satisfying

(1− ε) log n

log log n
≤ diam(G(m)

n ) ≤ (1 + ε) log n

log log n

REMARK
For m = 1 the resulting graph is free of cycles, and thus is called a Scale

free tree (see section 5.3), it can be shown that its diameter is asymptotically
log n.

5.3 Scale Free Trees

To build a scale free tree, we start with a single edge. At every further step we
start one new edge from one of the vertices created so far, the other endpoint
of that edge is a new vertex. Adjusted to the scale free model described at
the beginning of this chapter, we create a scale free graph with m0 = 2 and
m = 1.

We can generalize the model by creating a non-decreasing sequence of
positive numbers {ϕ(k), k ≥ 1}, the probability of a vertex with degree k
being chosen in the n-th step is proportional to ϕ(k), that is, with probability
ϕ(k)/Sn, where Sn is the sum of ϕ(k) over all vertices of the tree with n edges.

In this thesis we will concentrate on the case where ϕ(k) = k+β, because
then we have Sn non-random: Sn = 2n+ β(n+ 1), with β > −1.
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5.3.1 Scale free trees have a power law degree distribu-

tion

By using martingales (for de�nition see Chapter 1) we will show the following
theorem:

Theorem 5.3.1. In a scale free tree, the proportion of vertices of degree k
converges almost surely to a limit ck, which, as a function of k, decreases at
the rate k−(3+β).

Proof. We will divide the proof into two parts: First we will determine the
value of ck, assuming its existence, and then we will show the convergence.
The following proof is based on T.F.Móri's proof in [30].

NOTATION: After the n-th step, we denote Vn and En as the sets of
vertices and edges ordered by their time of construction, and dn,i as the
degree of vertex i at that time (obviously d0,n + · · · + dn,n = 2n). Now, as
mentioned above, we assign the weight ϕ(k) = k+ β to every vertex and get
the sum of all weights Sn = ϕ(dn,0) + · · · + ϕ(dn,n). Let Fn = σ(e1, . . . , en)
be the natural �ltration, then P(en+1 = (i, n+ 1) | F) = ϕ(dn,i)/Sn.

Let an,k be the number of nodes of degree k after the n-th step, and
an = (an,1, an,2, . . .), f0 = (1, 0, 0, . . .), and fi = (0, . . . , 0,−1, 1, 0, . . .), i ≥ 1,
where −1 stands on position i. Finally, let Xn be the degree of the starting
point of en+1. With this notations, we have:∑

k≥1

an,k = n+ 1
∑
k≥1

kan,k = 2n

P(Xn = i | Fn) =
ϕ(i)an,i

Sn

=: πn,i

and the recursion

a1 = 2f0, an+1 = an + f0 + fXn (5.1)

Inserting πn,i in 5.1, we obtain for the coordinates of an+1:

E(an+1,1 | Fn) = an,1 + 1− πn,1 =
(
1− ϕ(1)

Sn

)
an,1 + 1

E(an+1,i | Fn) = an,i + πn,i−1 − πn,i

=
(
1− ϕ(i)

Sn

)
an,i +

ϕ(i− 1)

Sn

an,i−1 (5.2)
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Now we suppose that, as n→∞,
an,k

n
, which is the proportion of vertices

with degree k converges to a limit ck for k = 1, 2 . . .. Then

lim
n→∞

πn,k =
ϕ(k)ck
S

, S = lim
n→∞

Sn

n
=

∞∑
i=1

ϕ(i)ci

We can now apply the law of large numbers (see for example [27]) known
in probability theory, and get:

c1 =
S

S + ϕ(1)
, ci = ci−1

ϕ(i− 1)

S + ϕ(i)
.

and further

ci =
i−1∏
j=1

ϕ(j)

S + ϕ(j)
· S

S + ϕ(i)
=

i−1∏
j=1

ϕ(j)

S + ϕ(j)
−

i∏
j=1

ϕ(j)

S + ϕ(j)
· (5.3)

Using this result in our formula for S, together with the fact that
∑∞

i=1 ci =
1 whenever

∑∞
i=1 ϕ(i)−1 = ∞ we get:

S =
∞∑
i=1

ϕ(i)ci = S
∞∑
i=1

i∏
j=1

ϕ(j)

S + ϕ(j)

which allows us to derive S from the following equation:

∞∑
i=1

i∏
j=1

ϕ(j)

S + ϕ(j)
= 1 (5.4)

The i-th term of this series is ci+1 + ci+2 + . . .. Therefore (5.4) is equal to∑∞
i=1 ici = 2. That means, in our considerations, where ϕ(i) = i + β, that

S =
∑∞

i=1 ici + β
∑∞

i=1 ci = 2 + β. Further, using B- and Γ-functions, for ci
we get:

ci =
2 + β

i+ β

i∏
j=1

j + β

j + 2 + 2β
=

2 + β

i+ β

(
i+ β

i

)
(
i+ 2 + 2β

i

) ∼

∼ (2 + β)e−β Γ(2β + 3)

Γ(β + 1)

1

iβ+3
(i→∞). (5.5)
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The �rst part of the proof is now �nished, it is shown that if the proportion
of vertices with degree k converge to a limit ck, then this value decreases at
the rate k−(3+β). We will now use martingales to show that, in fact, ck always
exists.

We will start introducing the centered variables bn,i = an,i− Sn

2+β
ci, where

Sn = 2n+ β(n+ 1), and de�ne

qn,i :=
n−1∏
k=i

(
1− i+ β

Sk

)
=

n−1∏
k=i

k − i

2 + β

k +
β

2 + β

=

=

Γ

(
n− i

2 + β

)
Γ

(
i+

β

2 + β

)
Γ

(
n+

β

2 + β

)
Γ

(
1 + β

2 + β
i

) ∼
Γ

(
i+

β

2 + β

)
Γ

(
1 + β

2 + β
i

) · n−
i+β
2+β (5.6)

Now we substitute an+1,i for bn+1,i in 5.2 and get

E(bn+1,1 | Fn) =
(
1− 1 + β

Sn

)(
bn,1 +

Sn

3 + 2β

)
+ 1− S − n+ 1

3 + 2β

=
(
1− 1 + β

Sn

)
bn,1 (5.7)

and, for i > 1

E(bn+1,i | Fn) =
(
1− i+ β

Sn

)(
bn,i +

Sn

2 + β
ci
)

+

+
i− 1 + β

Sn

(
bn,i−1 +

Sn

2 + β
ci−1

)
− Sn+1

2 + β
ci

=
(
1− i+ β

Sn

)
bn,i +

i− 1 + β

Sn

bn,i−1 (5.8)

By qn+1,i = qn,i · (1− i+β
Sn

) and (5.7) it is obvious that ( bn,1

qn,1
,Fn) is a mar-

tingale, through straightforward calculations we can also verify the general
statement:

Lemma 5.3.2. For every i = 1, 2, . . . the sequence
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Z(i)
n :=

1

qn,i

i−1∑
j=0

(−1)j

(
i− 1 + β

j

)
bn,i−j, n ≥ i

is a martingale with respect to the �ltration Fn.

Proof. Let bn,0 = 0 (which makes (5.7) a special case of (5.8)), and let us
apply (5.8):

E

(
i−1∑
j=0

(−1)j

(
i− 1 + β

j

)
bn+1,i−j | Fn

)
=

=
i−1∑
j=0

(−1)j

(
i− 1 + β

j

)[(
1− i− j + β

Sn

)
bn,i−j +

i− j − 1 + β

Sn

bn,i−j−1

]

=
i−1∑
j=0

(−1)jbn,i−j

[(
1− i− j + β

Sn

)(i− 1 + β

j

)
− i− j + β

Sn

(
i− 1 + β

j − 1

)]
︸ ︷︷ ︸(

i− 1 + β

j

)(
1− i+ β

Sn

)
=

qn+1,i

qn,i

i−1∑
j=0

(−1)j

(
i− 1 + β

j

)
bn,i−j

We can also express Z
(i)
n directly in terms of an,i in the following way:

Z(i)
n =

1

qn,i

(
i−1∑
j=0

(−1)j

(
i− 1 + β

j

)
an,i−j + (−1)i

(
i− 1 + β

i− 1

)
Sn

i+ 2 + 2β

)
(5.9)

because



CHAPTER 5. SCALE FREE GRAPHS AND TREES 73

i−1∑
j=0

(−1)j−1

(
i− 1 + β

j

)
Sn

2 + β
ci−j =

= Sn
(1 + β)(2 + β) · · · (i− 1 + β)

(3 + 2β)(4 + 2β) · · · (i+ 2 + 2β)

i−1∑
j=0

(−1)j

(
i+ 2 + 2β

j

)
= Sn

(1 + β)(2 + β) · · · (i− 1 + β)

(3 + 2β)(4 + 2β) · · · (i+ 2 + 2β)
(−1)i−1

(
i+ 1 + 2β

i− 1

)
= (−1)i−1

(
i− 1 + β

i− 1

)
Sn

i+ 2 + 2β

Lemma 5.3.3. The variables bn,i can be expressed in terms of the martingales

Z
(i)
n :

bn,i =
i∑

j=1

(
i− 1 + β

i− j

)
qn,iZ

(
ni). (5.10)

Proof. With the help of the following identity:

qn,iZ
i
n =

i∑
j=1

(
−j − β

i− j

)
bn,j

we can apply the Vandermonde convolution formula to the right-hand-
side of (5.10) as follows:

i∑
j=1

(
i− 1 + β

i− j

)
qn,jZ

(j)
n =

i∑
j=1

(
i− 1 + β

i− j

) j∑
k=1

(
−k − β

j − k

)
bn,k

=
i∑

k=1

bn,k

i∑
j=k

(
i− 1 + β

i− j

)(
−k − β

j − k

)

=
i∑

k=1

bn,k

(
i− 1− k

i− k

)
= bn,i

We arrive at the �nal step of our proof and will show by means of the
present knowledge, that, with probability 1,

lim
n→∞

an,i

n
= ci i = 1, 2, . . .
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Let I(P ) be the indicator function of the event P . Recursion (5.1) and
equation (5.9) imply

i∑
j=1

(−1)j

(
i− 1 + β

i− j

)
an+1,j =

i∑
j=1

(−1)j

(
i− 1 + β

i− j

)
an,j −

(
i− 1 + β

i− 1

)
−

−(−1)Xn
[(i− 1 + β

i−Xn

)
I(Xn ≤ i) +

(
i− 1 + β

i−Xn − 1

)
I(Xn < i)

]
=

i∑
j=1

(−1)j

(
i− 1 + β

i− j

)
an,j −

(
i− 1 + β

i− 1

)
− (−1)Xn

(
i+ β

i−Xn

)
I(Xn ≤ i)

Therefore

var(qn+1,iZ
(i)
n+1 | Fn) = var

( i∑
j=1

(−1)j

(
i− 1 + β

i− j

)
an+1,j | Fn

)
= var

(
(−1)Xn

(
i+ β

i−Xn

)
I(Xn ≤ i) | Fn

)
=

i∑
j=1

(
i+ β

i− j

)2

πn,j −
( i∑

j=1

(−1)j

(
i+ β

i− j

)
πn,j

)2

The sum of the probabilities πn,j does not exceed 1, so

var(qn+1,iZ
(i)
n+1 | Fn) ≤ max

1≤j≤i

(
i+ β

i− j

)2

and with this result, we obtain the estimate

var(Z(i)
n ) = E

( n∑
m=1

var(Z(i)
m | Fm−1)

)
= O

( n∑
m=1

q−2
m,i

)
= O

(
n1+2 i+β

2+β
)

(5.11)

Hence, using the estimate for qn,i in (5.6), var(qn,iZ
(i)
n ) = O(n) as n→∞.

Through (5.10) this implies that Eb2n,i = O(n). This further means that the
series

∞∑
n=1

E(n−2bn2,i)
2
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is convergent. Thus with probability 1

lim
n→∞

an2,i

n2
= ci.

For n2 ≤ m < (n + 1)2, we can write |am,i − an2,i| ≤ |m − n2| ≤ 2n and
am,i ≤ 2m, therefore

∣∣an2,i

n2
− am,i

m

∣∣ ≤ am,i

m

(m
n2
− 1
)

+
|am,i − an2,i|

n2
≤ 6

n

Finally, we achieved our goal and showed the property in Theorem 5.3.1.

Móri further posed the question whether the degree distribution is the
same on all levels. The answer to this question is yes on su�ciently high
levels, as we will see in the following theorem stated and proved in [25], while
on lower levels the degree distribution is still power law, but with exponent
−2, independent of the parameter β and the level l. Su�ciently high levels
are those which contain most of the vertices, as we will see in the following
section those are located around l = 1+β

2+β
log n.

Theorem 5.3.4. With any constants 0 < l1 < l2, for l1
√

log n < l −
1+β
2+β

log n < l2
√

log n the ratio of vertices with degree k converges almost
surely to a limit ck on level l and ck is equal to the limit of the ratio of
k-degree vertices in the whole tree.

Proof. The proof of the theorem runs along similar lines as the derivation
of the width of the tree, which will be conducted in 5.3.2, thus we will only
present the general idea of this proof.

The generating function used is

G
(n)
≥k(z) =

∑
l≥0

X≥k[n, l + 1]zl (5.12)

where X≥k[n, l + 1] is the number of nodes of degree at least k after n
steps on level l + 1. It can then be shown that

E(G(n+1)(z)|Fn) =
2n+ 1 + z

2n
G(n)(z) for k=1

E(G
(n+1)
≥k+1(z)|Fn) =

2n− k

2n
G

(n)
≥k+1(z) +

k

2n
G

(n)
≥k(z)

and that
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G(n)(z)

E(G(n)(z))

and

W
(n)
k (z)

n∏
i=1

2i

2i+ 1− k

for k ≥ 2 are martingales with respect to the �ltration Fn for any �xed
z ∈ C, where W (n)

k (z) is a linear combination of functions U
(n)
k (z), which are

given by

U
(n)
k (z) = G

(n)
≥k(z)− ck(z)G

(n)(z)

With similar arguments as in Theorem 5.3.2, uniform convergence of the
martingales can be shown and via integration the theorem can be proved, cp
[25].

5.3.2 The width of a Scale Free tree

In this section we will determine the width of a scale free tree, as n→∞, a
parameter we already got to know in chapter 3, along with the level where
it occurs, again using the theory of martingales. Therefore, let us denote
by L

(n)
l the number of nodes at the l-th level after the n-th step, and by

Wn := max(L
(n)
l |l ≥ 1) the width of the tree in question. As mentioned

in the beginning of this chapter, we consider only weight functions ϕ(k) =
k + β, b > −1, where k is the degree of a node, and set

α =
1 + β

2 + β
.

We start by de�ning a new sequence to count the weight on level l. That
is:

Y
(n)
0 = L

(n)
1 + β

Y
(n)
l = L

(n)
l+1 + (1 + β)L

(n)
l

as the sum over all degrees on level l is L
(n)
l+1 + L

(n)
l .

We now introduce a series of generating functions

G(n)(z) =
∑
k≥0

Y
(n)
l zl (5.13)
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For this function, we can show that:

Lemma 5.3.5. For any �xed z ∈ C, and for

E(n)(z) =
n−1∏
j=1

sj + 1 + (1 + β)z

sj

the sequence

M (n)(z) :=
G(n)(z)

E(n)(z)

is a martingale with respect to the �ltration F (n), where F (n) denotes the
natural σ-�eld generated by the �rst n steps of G(n)(z).

Proof. Calculating the expectations of Y
(n)
l we get

E(Y
(n+1)
0 |F (n)) =

Y
(n)
0

sn

(Y
(n)
0 + 1) + (1− Y

(n)
0

sn

)Y
(n)
0

= Y
(n)
0

sn + 1

sn

and for k > 0

E(Y
(n+1)
l |F (n)) = (

Y
(n)
l

sn

+
Y

(n)
l−1 (1 + β)

sn

)(Y
(n)
l + 1)

+Y
(n)
l (1− Y

(n)
l

sn

−
Y

(n)
l−1 (1 + β)

sn

= Y
(n)
l

sn + 1

sn

+ Y
(n)
l−1

1 + β

sn

Thus, we have

E(G(n+1)(z)|F (n)) =
sn + 1

sn

G(n)(z) +
1 + β

sn

zG(n)(z)

=
sn + 1 + (1 + β)z

sn

G(n)(z)

and hence, since G(1)(z) = (1 + β)(1 + z), we obtain
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E(G(n))(z) = (1 + β)(1 + z)
n−1∏
j=1

sj + 1 + (1 + β)z

sj

= (1 + β)(1 + z)E(n)(z)

Hence, M (n)(z) is a martingale.

With the help of this result, we can state the following lemma on the
asymptotics of the expectation:

Lemma 5.3.6. For any compact set of complex numbers C ⊂ C

E(G(n)(z)) =
n1+α(z−1)(1 + β)(1 + z)Γ(2α)

Γ(1 + α(1 + z))
+O(nα<(z−1))

E(n) =
n1+α(z−1)Γ(2α)

Γ(1 + α(1 + z))
+O(nα<(z−1))

uniformly for z ∈ C as n→∞.

Proof. With sn = (2 + β)n + β) and with the information obtained above,
we have

E(G(n))(z) = (1 + β)(1 + z)
n−1∏
j=1

sj + 1 + (1 + β)z

sj

= (1 + β)(1 + z)
n−1∏
j=1

j + α(1 + z)

j + 2α− 1

= (1 + β)(1 + z)
Γ(n+ α(1 + z))

Γ(1 + α(1 + z))

Γ(2α)

Γ(n+ 2α− 1)

We now use the fact that, over any compact set,

Γ(n′ + z′)

Γ(n′)
= (n′)z′ +O(n′<(z′−1))

for n′ = n+ 2α− 1 and z′ = α(z − 1) + 1, and hence obtain the required
result as n→∞.

For the study of the convergence of M (n)(z), we �rst need to determine
the covariance function of G(n)(z):
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Lemma 5.3.7. For every pair z1, z2 ∈ C

C
(n+1)
G (z1, z2) := E(G(n+1)(z1)G

(n+1)(z2))

=
n∑

j=1

(
bj(z1, z2)

n∏
k=j+1

ak(z1, z2)
)

+(1 + β)2(1 + z1)(1 + z2)
n∏

j=1

aj(z1, z2)

with

ak(z1, z2) = 1 +
2 + (1 + β)(z1 + z2)

sk

bk(z1, z2) =
(1 + z1 + z1β)(1 + z2 + z2β)

sk

E(G(k)(z1, z2)) (5.14)

Proof. Inserting a node new node in step n + 1, the weight of the level
above this new node, denoted by ln is increased by one, while the weight
of the level of the new node itself (ln + 1) is increased by (1 + β). Thus,
G(n+1)(z)−G(n)(z) = zln(1 + z(1 + β)). Hence,

C
(n+1)
G (z1, z2)

= E
[
E
(
(G(n)(z1) + zln

1 (1 + z1 + βz1))(G
(n)
G (z2) + zln

2 (1 + z2 + βz2))|Fn

)]
= C

(n)
G (z1, z2) + E

[
E
(
G(n)(z1)z

ln
2 (1 + z2 + z2β) + zln

1 (1 + z1 + z1β)G(n)(z2)

+zln
1 z

ln
2 (1 + z1 + z1β)(1 + z2 + z2β)|Fn

)]
The conditional distribution of the level ln with respect to Fn is

P(ln = l|Fn) =

 Y
(n)
l

sn
if l > 0,

Y
(n)
0

sn
if l = 0.

Hence the conditional expectations are

E
(
G(n)(z1)z

ln
2 (1 + z2 + z2β)|Fn

)
=

1 + z2 + z2β

sn

G(n)(z1)G
(n)(z2)

E
(
G(n)(z2)z

ln
1 (1 + z1 + z1β)|Fn

)
=

1 + z1 + z1β

sn

G(n)(z1)G
(n)(z2)

E
(
zln
1 z

ln
2 (1 + z1 + z1β)(1 + z2 + z2β)|Fn

)
=

(1 + z1 + z1β)(1 + z2 + z2β)

sn

G(n)(z1z2)



CHAPTER 5. SCALE FREE GRAPHS AND TREES 80

And thus

C
(n+1)
G (z1, z2) =

(
1 +

2 + (1 + β)(z1 + z2)

sn

)
C

(n)
G (z1, z2)

+
(1 + z1 + z1β)(1 + z2 + z2β)

sn

E(G(n)(z1z2))

With C
(1)
G (z1, z2) = (1+β)2(1+z1)(1+z2) this implies the lemma through

induction.

With the information obtained so far, together with some known results,
convergence of M (n)(z) can be shown via approximations and some helpful
simpli�cations, such as

n∏
i=1

i+ v

i+ w
= n<(v−w)

(Γ(1 + w)

Γ(1 + v)
+O(

1

n
)
)

The according results are stated here, proofs and necessary references to
other literature can be found in [24].

Corollary 5.3.8. The set of martingales {M (n)(z) : n ∈ N} is bounded

in L2 for any �xed |z − 1| <
√

1
α
, where Lp is the space of p-power inte-

grable functions. Thus there exists a random variable M(z) ∈ L2 such that

M (n)(z) →M(z) a.s. in l2, as n→∞, for z ∈ H := {w ∈ C
∣∣|w−1| <

√
1
α
}.

Corollary 5.3.9. The martingale M (n)(z) and all its derivatives converge
uniformly on all compact subsets of H.

Secondly, we need some more information on the asymptotics of G(n)(z)

in order to calculate L
(n)
l .

Lemma 5.3.10. For every δ > 0 and z such that |z − 1| ≤
√

1
α
− δ,

E(|G(n)(z)|2) = O(n2(1+α(<z−1))).

For any z such that
√

1
α
− δ ≤ |z − 1| ≤

√
1
α
, we obtain

E(|G(n)(z)|2) = O(n2(1+α(<z−1)) log n),

with uniform error terms as n → ∞. Furthermore, for any compact
C ⊆ C−H, we obtain

E(|G(n)(z)|2) = O(n1+α(|z|2−1) log n)

uniformly for z ∈ C.
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Lemma 5.3.11. For every 0 < |z| < 2, we have

|G′(n)(z)| = O(
1

|z|
(log n)n(1−α)(1+|z|+|z|β)) a.s.

Lemma 5.3.12. We have to distinguish

Case A β 6= 0. For any K > 0, there exists a δ > 0 such that

sup
|z|=1,|z−1|≥

√
1
α
−δ

|G(n)(z)| = O
( n

(log n)K

)
a.s.,as n→∞.

Case B If β = 0, then the above holds for the function |G(n)(z)|
|1+z| on

γ(δ) := {z
∣∣|z| = 1, |z−1| ≥

√
2−δ,<z > −0.9}∪{z

∣∣<z = −0.9, |z| ≤ 1}

For any K > 0, there exists a δ > 0 such that

sup
γ(δ)

∣∣∣∣G(n)(z)

1 + z

∣∣∣∣ = =

(
n

(log n)K

)
a.s.,as n→∞.

Width of a Scale Free tree

Theorem 5.3.13 (Width of a Scale Free Tree). With probability 1, the size
of level l of a Scale free tree after the n-th step is

L
(n)
l =

n√
2απ log n

e

(
− (l − α log n)2

2α log n

)
+O

( n

log n

)
(5.15)

as n → ∞, where the error term is uniform for all l ≥ 0, and the width
of the tree is

W (n) =
n√

2απ log n

(
1 +O

( 1√
log n

))
(5.16)

almost surely as n→∞, and is reached approximately at a level of α log n
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Proof. By de�nition,

G(n)(z) =
∑
l≥0

Y
(n)
l zl = L

(n)
1 + β + ((1 + β)L

(n)
1 + L

(n)
2 )z

+ ((1 + β)L
(n)
2 + L

(n)
3 )z2 + · · ·

and therefore

G(n)(z)− β

1 + (1 + β)z
=
∑
l≥0

L
(n)
l+1z

l

if z 6= −1
1+β

. This exception does not matter if b 6= 0, because then

| 1
1+β

| < 1 and the function can be extended to this point regularly. We can

use Cauchy's formula to extract L
(n)
l :

• If β 6= 0 then

L
(n)
l+1 =

1

2πi

∫
|z|=1

G(n)(ξ)− β

(1 + (1 + β)ξ)ξl+1
dξ

=
1

2π

∫ π

−π

G(n)(eit)− β

1 + (1 + β)eit
e−litdt

and we split the integral into two parts. Let κ = min(π, arccos(1− 1
2α

))
and let

I1 :=
1

2π

∫
|t|≤κ−δ

G(n)(eit)− β

1 + (1 + β)eit
e−litdt (5.17)

I2 :=
1

2π

∫
π≥|t|≥κ−δ

G(n)(eit)− β

1 + (1 + β)eit
e−litdt (5.18)

• If β = 0, instead of |z| = 1 we integrate on

γ = {ξ
∣∣|ξ| = 1,<ξ > −0.9} ∪ {ξ

∣∣|ξ| ≤ 1,<ξ = −0.9}

Let I1 be the same as above and let

I2 :=
1

2πi

∫
γ(δ)

G(n)(ξ)

(1 + ξ)ξl+1
dξ (5.19)
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where δ is the same as in Lemma 5.3.12, �rst or second case, respectively.
In both cases, for any K > 0, we can approximate the second integral as

follows, as |elit| < 1, and by Lemma 5.3.12:

|I2| ≤
1

2π

∫ ∣∣ G(n)(ξ)− β

1 + (1 + β)ξ

∣∣dξ � n

(log n)K

where the integral is on

•

{ξ
∣∣|ξ| = 1, |ξ − 1| ≥

√
1

α
− δ}

for β 6= 0 and on

• γ(δ) for β = 0.

For |t| ≤ κ− δ, we can use Corollary 5.3.9 and Lemma 5.3.6 to derive the
following approximation:

|G(n)(eit)| = |M (n)(eit)E(n)(eit)| � n(1−α)(1+(1+β)<eit)

= n1+α((2+β) cos t−(1+β) cos t−1)

= nnα(cos t−1) = ne(log n)α(cos t−1) � ne−c′t2(log n)

for some constant c′ > 0. Through this, with a su�ciently small ϑ > 0,
we obtain

1

2π

∫
(log n)−

(1−ϑ)
2 ≤|t|≤κ−δ

|G(n)(eit)|dt � n

∫ ∞

(log n)−
1−ϑ

2

e−c′t2 log ndt

� ne−c′(log n)ϑ

and a remaining integral of

I0 :=
1

2π

∫
|t|≤(log n)−

1−ϑ
2

G(n)(eit)

1 + (1 + β)eit
e−litdt

.
For this, we again use Lemma 5.3.6 and get

G(n)(z) = E(n)(z)M (n)(z) = E(G(n)(z))
M (n)(z)

(1 + β)(1 + z)

E(G(n)(z)) = n(1−α)(1+z(1+β)) (1 + β)(1 + z)Γ(2α)

Γ(2α)
+O(n(<z−1)α)

= nnα((2+β)z−1−z−βz)︸ ︷︷ ︸
=nα(z−1)

((1 + β)(1 + z)Γ(2α)

Γ(1 + α(1 + z))
+O(

1

n
)
)
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uniformly. If t→ 0, such that |t| ≤ (log n)−
1−ϑ

2 , we can use Taylor series
and get, with Γ(z + 1) = zΓ(z) and other simpli�cations,

E(G(n)(eit))

1 + (1 + β)eit
= ne(log n)α(eit−1)

( (1 + β)(1 + eit)Γ(2α)

(1 + (1 + β)eit)Γ(1 + α(1 + eit))
+O(

1

n
)
)

= ne−α t2

2
log n+(itα) log n ·

×
(

1− it
(
α− 1

2
+ 2α2Γ′(1 + 2α)

)
− αt3

6
i log n+O(t2 + t4 log n)

)
.

On the other hand, M (n)(1) = 2(1 + β), and hence, with another taylor
series

M (n)(eit)

(1 + β)(1 + eit)
= 1 + it

M
′(n)(1)− (1 + β)

2(1 + β)
+O(t2)

So, combining these two series in the equation above,

G(n)(eit)e−lit

1 + (1 + β)eit
= ne−α t2

2
log n+it(α log n−l) ·

×
(

1− it
(
α− 1

2
+ 2α2Γ′(1 + 2α)− M

′(n)(1)− (1 + β)

2(1 + β)

)
− αt3

6
i log n+O(t2 + t4 log n)

)
,

uniformly with respect to l. For the same reason as in the �rst part of I1,
we have ∫

|t|≥(log n)−
1−ϑ

2

e−t2 log n(1 + t+ t3 log n) � e−(log n)ϑ

Thus,

I0
n

=
1

2π

∫ ∞

−∞
e−(α t2

2
) log n+it(α log n−l) ·

×
(

1− it
(
α− 1

2
+ 2α2Γ′(1 + 2α)− M

′(n)(1)− (1 + β)

2(1 + β)

)
− αt3

6
i log n

)
dt

+ O((log n)−
3
2 ).

Integration leads to
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I0
n

=
1√

2απ log n
e
−((log n)α− l)2

2α log n

×
(

1 +
((log n)α− l)

2α log n
− ((log n)α− l)3

6α2(log n)2

+
(log n)α− l

α log n

(
α− 1

2
+ 2α2Γ′(1 + 2α)− M

′(n)(1)− (1 + β)

2(1 + β)

))
+ O((log n)−

3
2 )

and from there, we obtain

L
(n)
l

n/
√

2απ log n
= e

−((log n)α− l)2

2α log n

×
(

1 +
((log n)α− l)

2α log n
− ((log n)α− l)3

6(α log n)2

+
(log n)α− l

α log n

(
α− 1

2
+ 2α2Γ′(1 + 2α)− M

′(n)(1)− (1 + β)

2(1 + β)

))
+ O(

1

log n
)

(5.20)

a.s., with an error term uniform in l. This completes he �rst part of the
proof.

It only remains to �nd the maximum of (5.15). The derivative is

n√
2απ log n

e

(
− (l − α log n)2

2α log n

)(2(l − α log n)

2α log n

)
and the maximum is reached where:

2(l − α log n)

2α log n
= 0

l = α log n

The width of the tree is thus given by (5.16).
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