
ISRAEL MATHEMATICAL CONFERENCE PROCEEDINGS Vol. 06, 1992

TOOLS FOR YOUR FORCING CONSTRUCTION

by MARTIN GOLDSTERN

Department of Mathematics, Bar Ilan University, 52900 Ramat Gan, Israel

Current address: 2. Mathematisches Institut, FU Berlin, Arnimallee 3, 10000 Berlin 33, Germany

E-mail address: goldstrn@bimacs.cs.biu.ac.il, goldstrn@math.fu-berlin.de

Abstract. A preservation theorem is a theorem of the form: “If 〈Pα, Qα : α < δ〉 is an

iteration of forcing notions, and every Qα satisfies ϕ in V Pα , then Pδ satisfies ϕ.”

We give a simplified version of a general preservation theorem for countable support iteration

due to Shelah. This version is particularly useful for problems dealing with sets of reals.

We give several examples of applications, among them “countable support iteration of

proper ωω-bounding forcing notions is ωω-bounding.” We also review the basic facts about

countable support iteration and proper forcing, as well as Souslin proper forcing notions.

0 Introduction

The main objective of this paper is to present a simplified version of Shelah’s

preservation theorems. We hope that the reader will find here powerful tool for

his/her forcing constructions, as well as good open problems in this abstract area

of mathematical research: The study of (iterated) forcing.

Iterated forcing is a powerful tool for proving independence results. In an iterated

forcing argument the “ground model” V0 is first extended to a model V1 using

some forcing notion Q0. Then V1 is extended to some universe V2, using some

forcing notion Q1 in V1, etc. After ω many steps, a model Vω containing
⋃

n Vn

is constructed, and the iteration can continue—usually up to ω1, ω2 or some large

cardinal.

In an iterated forcing argument there two main points we have to take care of:

(1) In each extension by a single forcing notion Qi we have to add

certain generic objects that we want to have present in the final

model.

(2) At no stage are we allowed to add certain objects that we do not

want to have in the final model.

The argument given to deal with (1) usually depends heavily on the special

properties of the forcing notions Qi. Similarly, dealing with (2) at a successor step

i+ 1 is done by arguments that are characteristic for the forcing notion Qi.

307

308 MARTIN GOLDSTERN IMCP

A “preservation theorem” is a theorem that deals with problem (2) at limit

stages, i.e. a theorem ensuring that no “unwanted” objects are introduced at limit

stages whenever all the forcing notions Qi that are used satisfy certain “niceness”

conditions.

For example, the problem of preserving certain cardinals and cofinalities is an

instance of (2). The earliest preservation theorem we are aware of is the following

([from 13])

The finite support limit of an iteration in which all iterands sat-

isfy the countable chain condition also satisfies the countable

chain condition (and thus preserves cofinalities and cardinals)

The corresponding theorem for countable support iteration is the following ([10]):

The countable support limit of an iteration in which all iterands

are proper is itself proper (and thus does not collapse ℵ1).

Also, starting from CH, if the length of the iteration is ≤ ℵ2

and all iterands have size ≤ ℵ1, then the limit satisfies the

ℵ2-cc, so all cardinals and cofinalities are preserved.

The following example shows that the question of what reals are introduced in

limit stages of an iteration is usually nontrivial:

Example 1 0.1: Assume that V0 satisfies CH, Q0 adds no new reals to V0, Q1

adds ℵV0

1 many new reals to V1, Q2 adds ℵV0

2 many new reals to V2, etc. Let

Pn := Q0 ∗Q1 ∗ · · · ∗Qn−1. So Vn is the generic extension of V0 by Pn.

Then in Vω we will have at least ℵω many new reals. But as the cofinality of the

continuum must be uncountable, this means that in Vω will have at least ℵV0

ω+1 many

new reals. Since only ℵω many of them appear in intermediate stages, “most” of

these reals appear only in the limit stage. This shows that it is not trivial to keep

control over which reals are added in a limit stages by controlling what reals are

added in intermediate stages.

Example 2 0.2: Consider an iteration 〈Pn, Qn : n < ω〉, where for all n, ‖−Pn
“Qn

is nontrivial, i.e., contains incompatible conditions.”

If we define Vω as V Pω , where Pω is the finite support limit of the iteration

sequence 〈Pn, Qn : n < ω〉, then (no matter what the forcing notions Qn are), Pω

will add Cohen reals over the ground model. (Let ‖−n“q
0
n ⊥Qn

q1n,” then the function

f : ω → 2, defined by f(n) = 0 ⇔ q0n ∈ G(n) will be a Cohen real, where G(n) is

the generic filter on Qn.)

This example shows an inherent limitation of the method of finite support

iteration: In limit stages of cofinality ω, Cohen reals are always added.

The general problem of whether Cohen reals can be added in a limit stage of a

countable support iteration is open:

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 309

Assume Pω is the countable support iteration of 〈Pn, Qn : n < ω〉,

where for all n we have:

‖−Pn
“There are no Cohen reals over V ”

Does this imply ‖−Pω
“There are no Cohen reals over V ”?

At this moment it seems impossible to apply the preservation theorem we prove

below to this problem directly. There are, however, stronger properties (of forcing

notions) than “not adding Cohen reals”, that can be shown to be preserved under

countable support iteration. The best known of them are “ωω-bounding” and “Laver

property.” (see 6.3 and 6.25, below)

Remark 0.3: The same proof that shows that finite support iteration always adds

Cohen reals in stage ω also shows an inherent limitation of countable support

iteration: In stage ω1 (or indeed at any stage of cofinality ω1) we add an “ω1-

Cohen set,” i.e., a generic filter for the forcing notion Fn(ω1, 2, ω1) of all countable

partial functions from ω1 to 2. At first generic filters for this forcing notion seem

innocent for problems concerning sets of reals, as Fn(ω1, 2, ω1) does not add any

reals. However, a simple density argument shows that the continuum of the ground

model is collapsed to ℵ1. This makes it impossible to have c > ℵ2 at any limit stage

of uncountable cofinality during a countable support iteration.

For a specific example of where a preservation theorem can be used, consider the

problem of proving

Con(Cov(N) + b = c + ¬Unif(N))

using iterated forcing.

Explanation:

Cov(N) means: the real line cannot be covered by less than c (=continuum)

many sets from N , the ideal of null (=measure zero) sets.

b = c means: Whenever F ⊆ ωω is a family of less than c many functions, there

exists a function g bounding every element of F , where “g bounds f” means

∃k ∀n ≥ k g(n) > f(n).

¬Unif(N) means that there is a set of reals of cardinality < c that does not

have measure zero.

There are two approaches to get a model satisfying the condition above:

(1) Start with a model where (some big fragment of) Martin’s

axiom holds and c is big. Then construct a short iteration of

length κ < c. In each iteration stage i < κ, add a real ri in such

a way that at the end the set {ri : i < κ} is nonmeasurable.

Preserve enough of Martin’s axiom to ensure that in the final

model, Cov(N) + b = c holds.

310 MARTIN GOLDSTERN IMCP

(2) Start with the constructible universe L (or some model satisfying

enough of GCH) and construct a long iteration of length κ > ℵ1.

In each stage i < κ, add a function fi and a real ri such that fi is

not bounded by any function constructed so far, and ri is not in

any measure zero set constructed so far. Assuming that no new

reals appear in stage κ, in the final model we will have c = κ, the

set {ri : i < κ} will be a set of reals that cannot be covered by

< κ many measure zero sets, and {fi : i < κ} will witness b = c.

We have to take care not to cover the set of constructible reals

by a measure zero set. This will ensure that there is a non-null

set of size ℵ1 < c.

At the end of section 6, we will consider approach (2). Since a Cohen real makes

the set of all old reals a measure zero set, we should not add Cohen reals during

the iteration. So we cannot use finite support iteration.

ri will be a random real. It is easy to see that any set that is not of measure

zero in V will also not be of measure zero after adding a random real.

fi will be a Laver real. [7] showed that Laver reals also do not make non null

sets into null sets.

This two observations show that if in stage i, the set of constructible reals was

not null, the also in stage i+ 1 this property will hold. So it remains to show that

in limit stages the constructible reals are not covered by a measure zero set. For

this purpose we will use the iteration theorem proved below (5.14), with parameters

given in application 2 (6.8, 6.12)

Notation for forcing 0.4: A forcing notion P = 〈P,≤P , 1P 〉 is a set P equipped

with a transitive reflexive relation ≤P and a greatest element 1P . ‖−P denotes the

forcing relation of P .

We interpret p ≥ q (or p ≥P q) as “q extends p,” “q is stronger than

p,” or “q has more information then p.” p is “incompatible” with q (p ⊥ q or

p ⊥P q) means ¬∃r ∈ P : p ≥ r& q ≥ r.

Note that p ⊥ q ⇔ p ‖−q /∈ GP .

A set D ⊆ P is called dense if ∀p ∈ P ∃q ∈ D : q ≤ p. D is open iff ∀q ∈

D ∀r ≤ q : r ∈ D. D is an antichain if ∀p, q ∈ D : p 6= q ⇒ p ⊥ q. D is predense if

∀p ∈ P ∃d ∈ D d 6⊥ p. D is predense below p iff ∀q ≤ p∃d ∈ D d 6⊥ p.

D is a “filter” if any two elements of D are compatible with a witness in D, i.e.

∀p, q ∈ D ∃t ∈ D p ≥ r& q ≥ r.

If V is a model of set theory, G ⊆ P is called generic (over V) (for P), if G∩D 6= 0

for all dense D ∈ V . We often omit mentioning P and/or V , if the context makes

it clear what P and V should be.

The class of P -names is defined by ∈-recursion: x∼ is a P -name iff every element

of x∼ is a pair of the form 〈y
∼
, p〉 where y

∼
is a P -name and p ∈ P .

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 311

To avoid having to work with a proper class, we introduce an equivalence relation

≡ on P -names by x∼ ≡ y
∼

iff 1P ‖−P x∼ = y
∼
, and choose a set of representatives from

each class, say, those of least possible rank.

So for example, the set of P -names for functions from ω to ω is the set of all

representatives x∼ such that 1‖−x∼ : ω → ω. (It can easily be seen that this is in

fact a set.)

Usually we write (variables for) P -names with a tilde, as in x∼. For a P -name x∼
and a generic G ⊆ P , we let x∼[G] be the evaluation of x∼ by G:

x∼[G] := {y
∼
[G] : 〈y

∼
, p〉 ∈ x∼, p ∈ G}

But if M is a model of a large fragment of ZFC, then we let M [G] := {x∼[G] :

M |= x∼ is a P -name}. Sometimes (if G is clear from the context) we use for the

evaluation of a name by G the same variable as the one used for the name, but

leaving out the tilde, i.e., if G is given, x abbreviates x∼[G], p abbreviates p
∼
[G], etc.

Similarly p1n is p
∼

1
n[G], etc.)

For an element x of V , x̂ or (x)̂ is the standard P -name for x, x̂ := {〈ŷ, 1P 〉 :

y ∈ x} but we usually write x for x̂.

For a forcing P , GP is (depending on the context) either = {〈p̂, p〉 : p ∈ P}, the

canonical name for the generic object (also called the generic filter) added by P , or

a variable ranging over all V -generic filters G ⊆ P .

We will freely use the following “existential completeness lemma”, sometimes

without explicitly mentioning it:

Lemma 0.5: For any forcing P , any formula ϕ(x) there is a name τ∼τ∼ such that

1‖−∃xϕ(x) ⇔ ϕ(τ∼τ∼)

(See [8] for a proof.)

We will also need the following well-known definitions and facts about forcing:

Definition 0.6: For p, q elements of a forcing notion P , we define p ≥∗ q iff for

all r ≤ q, r is compatible with p.

Fact 0.7: p ≥∗ q iff q‖−P p ∈ GP . In particular, p ≥ q implies p ≥∗ q.

Most properties of ≤ are also shared by ≤∗. E.g., p ⊥ q iff there is no condition

r satisfying p ≥∗ r and q ≥∗ r. Also, if p‖−ϕ, and p ≥∗ q, then q‖−ϕ.

Definition 0.8: If P,Q are forcing notions, we say that i : P → Q is a “dense*

embedding”, iff

(1) ∀p1, p2 ∈ P : p1 ≤∗
P p2 iff i(p1) ≤

∗
Q i(p2). (“i is an embedding

with respect to ≤∗”)

(2) ∀q ∈ Q ∃p ∈ P : q ≥∗ i(p). (“i is dense*”)

Note that i is not necessarily 1-1. If (1) and (2) hold with ≤ instead of ≤∗, then

we say that i is a dense embedding.

312 MARTIN GOLDSTERN IMCP

Definition 0.9: If there exists a dense* embedding i : P → Q, we say that P and

Q are equivalent, and we write P ≈ Q.

This is justified by the following fact:

Fact 0.10: Assume i : P → Q is a dense* embedding. Then whenever G ⊆ P is

generic, then the set H defined by

H := {q ∈ Q : ∃p ∈ G, i(p) ≤ q}

is generic for Q. Conversely, if a set H ⊆ Q is generic, then the set G, defined by

G := {p ∈ P : i(p) ∈ H}

is generic for P .

Moreover, in both cases V [G] = V [H], and there is a canonical translation func-

tion that maps P -names x∼ to corresponding Q-names x∼
′, and conversely. We will

often identify names with their image under this translation function.

We have that p‖−Pϕ(x∼) iff i(p)‖−Qϕ(x∼
′).

The proof is a routine computation.

Finally, we define the concept of an “interpretation”:

Definition 0.11: Assume Q is a forcing notion, f
∼
, is a Q-name of a functions in

ωω, f∗ is a function in ωω, 〈pn : n < ω〉 an increasing sequence of conditions.

We say that 〈pn : n < ω〉 interprets f
∼

as f∗, if for all n, pn‖−f
∼
↾n = f∗↾n.

We say that f∗ is an interpretation of f
∼

if there exists an increasing sequence

as above.

The main theorem (5.14) of this paper is a simplified version of a theorem of

Shelah ([11, XVIII]). See also [10, V, VI], [12] and [7] for precursors. The proof

presented here is a joint work of Judah and the author.

Theorem 8.4 has been proved for various instances by several people.

Souslin forcing and Souslin Proper forcing were introduced in [5].

Contents of this paper:

In section 1, we give a review of composition and iteration of forcing notions in

a general context.

In section 2 we introduce finite support iteration and show that the countable

chain condition is preserved in finite support limits.

In section 3 we explain the concept of properness, and give a simple proof of

Shelah’s theorem “properness is preserved under countable support iteration.” This

proof will serve as a basis for the proof of the preservation theorem in section 6.

In section 4 we continue the review of countable and finite support iteration, by

considering the relationship between an intermediate model and the final model.

In section 5 we formulate and prove a general preservation for countable support

iteration.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 313

In section 6 we show how to apply the preservation theorem for countable support

iteration by giving several examples of properties that can be preserved in this

framework.

In section 7 we review the concept of “Souslin Proper forcing”, and we prove the

corresponding preservation theorem.

In section 8 we formulate and prove a general preservation theorem for finite

support iteration, and we give examples.

Those readers who are interested only in finite support iteration can skip section

3 and all references to countable support iteration in section 4 without loss of

continuity. A dual remark applies to readers only interested in countable support

iteration.

We conclude this introduction by mentioning some open problems concerning

countable support iteration and proper forcing:

Problem (Judah) 0.12: Is “MA(Axiom A) + projective measurability” equicon-

sistent with the existence of 2 weakly compact cardinals?

From [1] it essentially follows that MA(Axiom A) is equiconsistent with one

weakly compact cardinal.

Problem (Judah) 0.13: Find a sequence 〈⊏n: n ∈ ω〉, such that “Q preserves ⊏”

iff Q does not add random reals.

The most outstanding problem concerning countable support iteration is the

following:

Problem (Judah-Shelah) 0.14: If 〈Pn, Qn : n < ω〉 is a countable support iter-

ation with countable support limit Pω. Does

∀n : Pn does not add Cohen reals over V

imply that Pω does not add Cohen reals over V ?

(For a partial solution see [6].)

I want to thank Saharon Shelah for fruitful discussions about iterated forcing.

314 MARTIN GOLDSTERN IMCP

1 Composition and iteration of forcing

We briefly review a few facts about composition of forcing and iterated forcing.

If P is a forcing notion, and Q
∼

is a P -name of a forcing notion, then we can force

in V P with Q
∼

to obtain a new extension (V P)Q. There is a single forcing notion

P ∗Q
∼

(the “composition” of P and Q
∼
) such that the extension V P∗Q

∼ is canonically

isomorphic to (V P)Q∼.

Definition 1.1: Assume that P is a forcing notion, and Q
∼

is a P -name for a

forcing notion. Then we let P ∗Q
∼

be the set of all pairs 〈p, q
∼
〉 such that p ∈ P and

p‖−Q“ q∼
∈ Q
∼
”.

We let 〈p, q〉 ≥P∗Q
∼
〈p′, q′〉 iff p ≥ p′ and p′‖−P “q ≥Q

∼
q′”.

Remark 1.2: As defined, P ∗ Q
∼

is a proper class. However, as in [4], we choose

for each class of equivalent P -names a representative. Then the official definition

of P ∗ Q
∼

is: The set of all pairs 〈p, q
∼
〉, where p ∈ P , q

∼
a representative P -name,

and p‖− q
∼

∈ Q
∼
. Then P ∗Q

∼
is a set.

A similar remark will apply to iteration of forcing.

([8] chooses a different way to avoid proper classes. However, this solutions

causes anomalies that we want to avoid. See [8, Exercise VIII E2–E4] and [9].)

Fact 1.3: Assume that P , Q
∼

are as above. Then (see [8])

(1) If G ⊆ P is generic over V , H ⊆ Q
∼
[G] generic over V [G], then

G ∗H := {〈p, q
∼
〉 ∈ P ∗Q

∼
: p ∈ G, q

∼
[G] ∈ H}

is generic for P ∗Q
∼

over V ,and V [G ∗H] = V [G][H].

(2) Conversely, if J ⊆ P ∗Q
∼

is generic over V , then G := {p : ∃ q
∼
〈p, q

∼
〉 ∈

J} is generic for P over V , H := { q
∼
[G] : ∃p ∈ G, 〈p, q

∼
〉 ∈ J} is

generic for Q
∼

over V [G], and J = G ∗H.

(3) Moreover, P ∗Q
∼
-names can be translated to P -names for Q-names,

i.e., for every P ∗Q
∼
-name x∼ there is x∼

′, a P -name for a Q
∼
-name

such that whenever G, H are as above, then

x∼[G ∗H] = (x∼
′[G])[H]

Conversely, if x∼
′ is P -name for a Q-name, we can find a

corresponding P ∗Q
∼
-name x∼.

We often identify x∼ and x∼
′.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 315

Definition 1.4: Let κ be ordinal, and let I be an ideal on κ containing all finite

sets. (I is not necessarily a proper ideal.) By induction on ε < κ we will define

what an I-supported iteration of length ε is, and what the I-supported limit of such

an iteration is.

“finite support” means that we let I be the ideal of finite subsets of κ, and “count-

able support” means that we let I be the (possibly improper) ideal of all countable

subsets of κ. In this context, “countable” is understood to include “finite”.

(1) Q̄ε := 〈Pα, Q
∼

α : α < ε〉 is an I-supported iteration iff for all α < ε,

Pα = limI 〈Pβ , Q
∼

β : β < α〉, and

‖−Pα
“Qα = 〈Q

∼
α,≤Q

∼
α
, 1Q

∼
α
〉 is a forcing notion”.

(2)

(a) The underlying set of limI Q̄
ε is the set of all partial

functions p with dom(p) ∈ I satisfying

∀β ∈ dom(p) : p↾β‖−βp(β) ∈ Q
∼

β

(b) For p, q ∈ limI 〈Pα, Q
∼

α : α < ε〉 we define p ≥limI Q̄ε q iff

∀β ∈ dom(p) ∪ dom(q) : q↾β‖−p(β) ≥Q
∼

β
q(β)

(where we agree to let p(β) = 1Q
∼

β
for β /∈ dom(p).)

(c) 1limI Q̄ε = ∅.

Whenever we consider a I-supported iteration 〈Pα, Q
∼

α : α < ε〉, we automatically

define Pε to be the I-supported limit of this iteration. This allows us to avoid the

more awkward notation 〈Pα, Q
∼

β : α ≤ ε, β < ε〉.

Example 1.5: P0 = {∅}. Q
∼

0 is a P0-name for a forcing notion. Since P0 is the

trivial forcing notion, G0 := P0 is a “generic filter”, and V = V [G0]. We identify

Q
∼

0 with Q0 := Q
∼

0[G0].

P1 is the set of all partial functions from {∅} to Q0, i.e., P1 is isomorphic

to Q0, similarly, P2 is isomorphic to Q0 ∗ Q
∼

1 by the map that sends p ∈ P2 to

〈p(0), p(1)〉 ∈ Q0 ∗Q
∼

1.

Remark 1.6: By expanding definitions it is easy to see that in general the forcing

notion Pα+1 := limI 〈Pβ , Q
∼

β : β < α+ 1〉 is isomorphic to Pα ∗ Q
∼

α, via the map

that sends p ∈ Pα+1 to 〈p↾α, p(α)〉.

The following two facts follow easily from the definitions.

Fact 1.7: If ε is a limit ordinal, then

(1) p ∈ Pε iff dom(p) ⊆ ε is in I, and ∀α < ε, p↾α ∈ Pα.

(2) For p, q ∈ Pε, p ≤ε q iff ∀α < ε, p↾α ≤α q↾α.

See also 1.19.

316 MARTIN GOLDSTERN IMCP

Fact 1.8: If ε = α+ 1, then

(1) p ∈ Pε iff p↾α ∈ Pα, and p↾α‖−αp(α) ∈ Qα. (Again, this

includes the case that α /∈ dom(p), where we declare p(α) = 1Qα
.)

(2) For p, q ∈ Pε, p ≥ε q iff p↾α ≥α q↾α and q↾α‖−αp(α) ≥Qα
q(α).

(3) For p, q ∈ Pε, p ≥∗
ε q iff p↾α ≥∗

α q↾α and q↾α‖−αp(α) ≥
∗
Qα

q(α).

Fact 1.9: For all α ≤ ε:

(1) Pα ⊆ Pε. In fact, Pα = {p ∈ Pε : dom(p) ⊆ α}.

(2) If p, q ∈ Pα, then p ≥α q iff p ≥ε q.

(3) If p ∈ Pα, q ∈ Pε, then p ≥ε q iff p ≥α q↾α.

Proof: (1) and (2) follow immediately from the definition. For (3), note that for

β ∈ dom(q)− α, p(β) = 1Q
∼

β
, so q↾β‖−p(β) ≥ q(β).

Fact and Notation 1.10: Let 〈Pα, Qα : α < ε〉 be an iteration. If Gα ⊆ Pα is

generic, and H ⊆ Q
∼

α[Gα] is any set, we let

Gα ∗H = {r ∈ Pα+1 : r↾α ∈ Gα, r(α)[Gα] ∈ H}

Then: Gα∗H is generic iff Gα is generic and H ⊆ Q
∼

α[Gα] is generic over V [Gα].

Conversely, writing G(α) for {q(α)[Gα] : q ∈ Gα+1}, we know that is a generic

filter on Q
∼

α[Gα] over the model V [Gα], and Gα+1 = Gα ∗G(α).

Proof: This is just a restatement of 1.3, using 1.6.

Remark 1.11: The recursion theorem tells us that if F is a function (possibly a

class) then for all ε there exists an I-supported iteration Q̄ = 〈Pα, Q
∼

α : α < ε〉 such

that:

If for all α < ε, F (Q̄↾α) is (defined and) a Pα-name for a forcing notion,

then for all α < ε ‖−αQ∼
α = F (Q̄↾α)

For the following, let 〈Pα, Q
∼

α : α < ε〉 be an I-supported iteration forcing iter-

ation, and let Pε be the I-supported limit of this iteration, and let α range over

ε ∪ {ε}.

Definition 1.12: Assume α ≤ ε. If p ∈ Pε, r ∈ Pα, and p↾α ≥ r, then we let

p ∧ r := r ∪ p↾[α, ε).

r
p

0 α ε

=⇒
p ∧ r

0 α ε

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 317

Fact 1.13: Assume p, r are as above. Then:

(1) p ∧ r ∈ Pε

(2) p ∧ r ≤ p.

(3) If p1 ≥ p2, then p1 ∧ r ≥ p2 ∧ r.

Proof: By induction on β we can show (simultaneously) (p ∧ r)↾β ∈ Pβ and

(p ∧ r)↾β ≤ p↾β:

If β ≤ α, we have (p ∧ r)↾β = r↾β ≤β p↾β.

If β > α, β limit, then by induction hypothesis for all γ < β we have (p∧r)↾(γ+

1) ∈ Pγ+1, so (p ∧ r)↾γ‖−(p ∧ r)(γ) ∈ Q
∼

γ . So by 1.7, (p ∧ r)↾β) ∈ Pβ . Also by

induction hypothesis for all γ < β we have (p∧ r)↾γ ≤γ p↾γ, so by 1.7, (p∧ r) ≤β p.

If β > α is a successor ordinal, say β = γ + 1, then (p ∧ r)↾γ ∈ Pγ by induction

hypothesis, and (p ∧ r)↾γ‖−(p ∧ r)(γ) = p(γ) ∈ Q
∼

γ , as (p ∧ r)↾γ ≤ p↾γ. So by 1.8,

(p ∧ r)↾β ∈ Pβ . Also by induction hypothesis have (p ∧ r)↾γ ≤γ p↾γ, so by 1.8,

(p ∧ r) ≤β p.

(3): By induction, (p1 ∧ r)↾β ≥ (p2 ∧ r)↾β.

Fact 1.14: If α ≤ ε, p ∈ Pα, q ∈ Pε, then p ⊥ε q iff p ⊥α q↾α.

Proof: By 1.9(3), if r ∈ Pε, r ≤ε p, q, then r↾α ≤α p, q↾α. Conversely, if r ∈ Pα,

r ≤α p, q↾α, then r ∧ q ≤ε p, q.

Fact 1.15:

(1) If A ⊆ Pα is a maximal antichain, α ≤ ε, then A is also a

maximal antichain in Pε.

(2) If Gε is generic for Pε, then Gα := Gε ∩ Pα is generic for Pα.

Proof of (1): A is an antichain in Pε, by 1.14. Assume that r ∈ Pε, r ⊥ε a for

all a ∈ A. Then again by 1.14, r↾α ⊥α a for all a ∈ A, so A is not maximal in Pα.

(2) follows immediately from (1).

Notation 1.16: We write ≤α for ≤Pα
, similarly ‖−α, etc. We may write Gα for

GPα
, and G(α) for GQα

.

When we talk about a I-supported iteration 〈Pα, Qα : α < ε〉, it is understood

that Pε is defined as the I-supported limit of this iteration.

If β ≤ α, and 〈Pα, Qα : α < ε〉 is an iteration, then Gβ always denotes Gα ∩Pβ.

When we fix a ground model V = V0, and consider an iteration 〈Pα, Qα : α < ε〉 ∈

V0, we write Vα for V [Gα]. Note that this conflicts with the notation that

some authors use for the sets of rank < α.

Fact 1.17: Assume that λ is a limit ordinal. Then for a generic Gλ ⊆ Pλ, for all

p ∈ Pλ,

p ∈ Gλ ⇔ ∀α < λ p↾α ∈ Gα

Proof: Assume not, then there exists a condition q forcing this.

318 MARTIN GOLDSTERN IMCP

So q‖−α∀β < λp↾β ∈ Gβ & p /∈ Gλ. For α ∈ dom(p) ∪ dom(q) we let q′(α) be a

name such that

‖−αq
′(α) ≤ q(α)& (q′(α) ≤ p(α) ∨ q′(α) ⊥ p(α))

(We can get such q′(α) using 0.5) Now we claim that for all α, q′↾α‖−q′(α) ≤

p(α). Assume not, then there exists a generic filter Gα containing q′↾α such that

p(α)[Gα] ⊥ q′(α)[Gα]. So we can extend Gα to a generic Gα+1 := Gα ∗ G(α)

containing q′↾α + 1 but not p↾α + 1. Now we can extend Gα+1 to Gε, containing

q′ (hence q) but not p↾α+ 1, a contradiction.

Corollary 1.18: For p ∈ Pλ, we have p ∈ Gλ iff for all β < λ, p(β)[Gβ] ∈ G(β).

Proof of the corollary: By induction on β < λ we can show p↾β ∈ Gβ . Limit

steps are handled by 1.17, and successor steps by 1.10.

Corollary 1.19: If ε is a limit ordinal, then

For p, q ∈ Pε, p ≥∗
ε q iff ∀α < ε, p↾α ≥∗

α q↾α.

Proof: If for all α < ε q↾α‖−αp↾α ∈ Gα, then q‖−εp ∈ Gε, by 1.17.

Conversely, if for some α < ε we have p↾α 6≥∗ q↾α, then there is r ∈ Pα, r ≤ q↾α,

r ⊥ p↾α. Letting q′ := q ∧ r we get q′‖−p /∈ Gε. Since q ≥ q′, we do NOT have

q‖−p ∈ Gε, so q 6≤∗ p.

The following fact shows that in finite support iteration of ccc forcing notions

and in countable support iteration of proper forcing notions no new reals are added

in limit steps of cofinality > ω.

Lemma 1.20: Assume 〈Pα, Qα : α < ε〉 is an iteration, and δ is a limit ordinal of

cofinality > ω, and all there are no conditions in Pδ whose domain is unbounded

in δ. (In particular, this will be true for finite or countable support iteration.) Then:

‖−δIf cf(δ) > ω, then ωω ∩ V [Gδ] =
⋃

α<δ
ωω ∩ V [Gα]

Proof: For any α < δ we define a Pα-name f
∼

α satisfying the following:

∀n ‖−α“If there is p ∈ Gα, j ∈ ω such that V |= p‖−δ f∼
(ň) = ̌,

then f
∼

α(n) = j

(Note that it is possible to define such a function, since any two p, p′ ∈ Gα must

be compatible (in Pδ) hence cannot force two different values for f
∼
(n).)

We will show that ‖−δ∃αf∼
= f

∼
α.

Work in V [Gδ]. For any n, let jn := f
∼
[Gδ](n), and find a condition pn ∈ Gδ

such that V |= pn‖−δ f∼
(n) = ̌n.

Since (in V [Gδ]) we have cf(δ) > ω, and the supports of the pn are bounded in

δ, we can find α < δ such that for all n, pn ∈ Pα, and hence also pn ∈ Gα. Clearly

f
∼
[Gδ] = f

∼
α[Gα].

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 319

2 Finite support iteration and ccc

A forcing notion P is said to satisfy the countable chain condition, if there is no

uncountable set of pairwise incompatible conditions.

Fact 2.1: “P has the ccc” is equivalent to the following statement:

Whenever α∼α∼ is a P -name, and ‖−“α∼α∼ is an ordinal”, then there

exists a countable set A of ordinals such that ‖−α∼α∼ ∈ A.

(Equivalently, if ‖−x∼ ∈ V for some P -name x∼, then there exists a countable set

A in V such that ‖−x∼ ∈ A.)

Proof: Assume that P has the ccc. Let C ⊆ P be a maximal set of conditions

satisfying

(1) p ∈ C ⇒ ∃β p‖−α∼α∼ = β̂.

(2) p1, p2 ∈ C ⇒ p1 ⊥P p2.

It is easy to see that C must be a maximal antichain in P (because the set of

conditions satisfying (1) is dense).

Let A := {β : ∃p ∈ C : p‖−α∼α∼ = β̂}. Then A is countable because C is countable,

and clearly ‖−α∼α∼ ∈ A. [Proof: Every condition p ∈ C forces α∼α∼ ∈ A. A condition

forcing α∼α∼ /∈ A cannot be compatible with any condition in C, which contradicts

the above observation that C is a maximal antichain.]

Conversely, assume that 〈pi : i < ω1〉 is an antichain. Let α∼α∼ be a name of an

ordinal such that

‖−∃i pi ∈ GP ⇒ pα
∼
∈ GP

Assume, towards a contradiction, that there is a countable set A of ordinals such

that ‖−α∼α∼ ∈ A. Let i ∈ ω1 − A. Then pi‖−pi ∈ GP , but for all j 6= i, pi‖−pj /∈ G.

So pi‖−α∼α∼ = i /∈ A, a contradiction.

The same proof also shows: P has the ccc, iff

Whenever x∼ is a P -name, and ‖−“x∼ ∈ V ”, then there exists a

countable set A such that ‖−x∼ ∈ A.

Corollary 2.2: If P has the ccc, and X∼ is a name of a countable set ⊆ V , then

there exists a countable set A in V such that ‖−X∼ ⊆ A.

The next theorem can be phrased “ccc is preserved under composition of forcing

notions.”

Corollary 2.3: Assume P has the ccc, and ‖−P “Q∼
has the ccc.” Then P ∗Q

∼
has

the ccc.

Proof: Let α∼α∼ be a P ∗ Q
∼
-name of an ordinal. We consider α∼α∼ as a P -name for

a Q
∼
-name of an ordinal. So since ‖−P “Q∼

has the ccc,” (and using the existential

completeness lemma) we can find a P -name A∼ such that

320 MARTIN GOLDSTERN IMCP

(1) ‖−P “A∼ is countable”

(2) ‖−P “‖−Qα∼α∼ ∈ A∼”.

By 2.2 we can find a countable set A′ in V such that

‖−PA ⊆ A′.

So ‖−P ‖−Q
∼

α∼α∼ ∈ A′, hence ‖−P∗Q
∼

α∼α∼ ∈ A′.

The next theorem shows that the property of satisfying the countable chain

condition is satisfied under finite support iteration.

Theorem 2.4: Assume that 〈Pα, Qα : α < ε〉 is a finite support iteration of forcing

notions, and

∀α < ε : ‖−α“Qα has the ccc”

Then Pε has the ccc.

The proof of this theorem proceeds by induction on ε. Successor steps are han-

dled by 2.3 and 1.6.

As for limit steps, from the induction hypothesis we can conclude that

(∗) ∀α < ε Pα |= ccc

We will show that (∗) implies that Pε has the ccc. We need to use the following

combinatorial fact (called the ∆-system lemma):

Lemma 2.5: Assume that 〈Fi : i < ω1〉 is a family of finite sets. Then there is a

set S ⊆ ω1 of size ℵ1 such that the family 〈Fi : i ∈ S〉 is a ∆-system, i.e.

∃F finite ∀i, j ∈ S : i 6= j ⇒ Fi ∩ Fj ⊆ F

F is called a “kernel”, “root” or “heart” of the ∆-system 〈Fi : i ∈ S〉.

See [8, II.1.5] for a proof.

Proof of 2.4, limit step:

Assume (toward a contradiction) that 〈pi : i < ω1〉 is an antichain of conditions

in Pε. Since 〈dom(pi) : i < ω1〉 is a family of finite sets, the ∆-lemma applies.

So we can find a set S ⊆ ω1 of size ℵ1 and a finite set F such that for all distinct

i and j in S, dom(pi) ∩ dom(pj) ⊆ F . Let F ⊆ α < ε.

The family 〈pi↾α : i ∈ S〉 is an uncountable familiy of conditions in Pα. By our

assumption (∗), it cannot be an antichain. So there are i 6= j in S and a condition

r ∈ Pα such that pi ≥ r and pj ≥ r.

Now define p ∈ Pε as follows:

p↾α = r.

∀γ ∈ dom(pi)− α: p(γ) = pi(γ).

∀γ ∈ dom(pj)− α: p(γ) = pj(γ).

Note that dom(pi) ∩ dom(pj) ⊆ F ⊆ α, so dom(pi) − α and dom(pj) − α are

disjoint.

We leave it as an exercise to check that p is indeed a condition in Pε, and pi ≥ p,

pj ≥ p.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 321

This is a contradiction, as 〈pi : i < ω1〉 was supposed to be an antichain.

3 Properness and countable support iteration

Definition 3.1: Assume that (N,∈) is a model of a fragment of ZFC (which should

be large enough to develop the general theory of forcing). Let P ∈ N be a forcing

notion, and assume that for all p1, p2 ∈ P ∩N : N |= p1 ⊥P p2 ⇒ V |= p1 ⊥P p2.

We say that G is N -generic for P iff:

For all A ∈ N , if N |= “A ⊆ P is a maximal antichain of P”,

then G ∩N ∩A 6= ∅.

(So G is N -generic iff G ∩N is N -generic.)

It is easy to see that we by replacing “maximal antichain” by “dense subset”,

“dense open subset” or “predense subset”, we get an equivalent definition.

In fact, the following holds:

Fact 3.2: Assume p ∈ P ∩ N , P ∈ N , p ≤ q ∈ P . Then the following are

equivalent:

(1) For all D1 ∈ N : If N |=“D1 is predense below p”, then D1 ∩N

is predense below q.

(2) For all D2 ∈ N : If N |=“D2 is predense ⊆ P ,” then

q‖−D2 ∩N ∩G 6= ∅.

(3) For all D3 ∈ N : If N |=“D3 is dense ⊆ P ,” then q‖−D3∩N∩G 6= ∅.

(4) For all D4 ∈ N : If N |=“D4 is a maximal antichain ⊆ P ,” then

q‖−D4 ∩N ∩G 6= ∅.

(5) For all D5 ∈ N : If N |=“D5 is open dense ⊆ P ,” then

q‖−D5 ∩N ∩G 6= ∅.

Proof: We will show

(3)
ր ց

(1) → (2) (5) → (1).
ց ր

(4)
(2) ⇒ (4), (2) ⇒ (3), (3) ⇒ (5) are trivial.

(1) ⇒ (2): Let D2 be predense. Then D2 is predense below p, so D2 ∩ N is

predense below q. Hence q‖−(D2 ∩N) ∩G 6= ∅.

(4) ⇒ (5): Work in N . Assume that D5 is open dense. Let D4 be a maximal

antichain ⊆ D5 (i.e., let D4 ⊆ D5 be an antichain such that there is proper superset

D′
4 ⊆ D5 that is also an antichain). It is enough to see that D4 is a maximal

antichain in P (in N): Assume not, and let r be incompatible with every element

of D4, let s ≤ r be in D5, then also s is incompatible with every element of D4,

contradicting the maximality of D4.

(5) ⇒ (1): Let D1 ∈ N , N |=“D1 is predense below p.” The following takes

place in N :

Let D5 := {r : either r ⊥ p, or ∃d ∈ D1 r ≤ d}. Then D5 is open. We claim that

D5 is dense. To prove this, let s be any condition in P . If s ⊥ p, then s ∈ D1.

322 MARTIN GOLDSTERN IMCP

Otherwise, there is a t ∈ P , s ≥ t, p ≥ t. t is compatible with some d ∈ D1, so

there is t′ extending d, t, s, p. So t ∈ D5.

Hence N |=“D5 is dense”, so V |= q‖−D5 ∩N ∩G 6= ∅.

Finally we will to show that (in V), D1 ∩N is predense below q. Let r ≤ q be

incompatible with all elements of D1∩N . Let r′ ≤ r, and r′‖−s ∈ D5∩N∩G. Then

s ∈ D5 ∩N . Either N |= s ⊥ p, then s ⊥ p, which implies s ⊥ r′, a contradiction

to r′‖−s ∈ G. Otherwise N |= ∃d ∈ D1 s ≤ d. As r′ and s are compatible, r′ and d

are compatible, so D1 ∩N is indeed predense below q.

Definition 3.3: We say that q ∈ P is N -generic (or (N,P)-generic) iff

V |= q‖−P “GP is N -generic”

(iff 3.2(2)–(5) hold).

Remark 3.4: If q is N -generic, and q′ ≤ q, then also q′ is N -generic.

Notation 3.5: For the following, we let χ be a “large enough” regular cardinal.

“large enough” means that for all forcing notions P we consider, we have P(P) ∈

H(χ), i.e., the power set of P is hereditarily of size < χ. Since all forcing notions

we consider will be hereditarily countable, or countable support iterations of length

≤ ℵ2 of hereditarily countable forcing notion, and all the universes we consider

satisfy GCH except for possibly 2ℵ0 = ℵ2, we could choose χ := ℵ3. To be on the

safe side, we let

χ := i
+
ω

(So also in every extension that we consider, χ = i+
ω).

We will consider countable elementary submodels of (H(χ),∈).

(The notions we will define below will depend on χ, but a careful examination

[which we will not carry out here] shows that this dependence is only apparent.)

Note that all essential properties of P are absolute between V and H(χ), for

example

V |= A is a maximal antichain of P ⇔ H(χ) |= A is a maximal antichain of P

We also have the following fact:

Fact 3.6: If ‖−x∼ ∈ H(χ), then there is a name x̄∼ ∈ H(χ) such that ‖−x∼ = x̄∼.

Proof: First note that for each element x of H(χ) there is λ < χ and a sequence

〈xi : i ≤ λ〉 of sets in H(χ) such that for all i ≤ λ xi ⊆ {xj : j < i}, and x = xλ.

Applying this fact in V [G] to x∼, we get a sequence 〈x∼i : i ≤ λ∼〉. We can find

an ordinal λ such that ‖−λ∼ ≤ λ, so wlog we may assume ‖−λ∼ = λ (since we can

define x∼i = ∅ for λ∼ < i < λ.

Now we define by induction x̄∼i := {〈 x̄∼j , p〉 : p‖−x∼j ∈ x∼i}, and prove by induc-

tion ‖− x̄∼i = x∼i.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 323

Definition 3.7: A forcing notion P is called proper, if for some x ∈ H(χ), for all

countable models (N,∈) ≺ (H(χ),∈) that contain x and P , and for all p ∈ P ∩N

there exists a q ≤ p which N -generic.

Remark 3.8: The clause “for some x . . . ” above is not essential, but it makes

some proofs slightly simpler. For example, when we consider an iterated forcing

notion Pε ∈ N , we could reconstruct the iteration 〈Pα, Q
∼

α : α < ε〉 from Pε (in N),

but the above definition makes it unnecessary, as we can include “〈Pα, Q
∼

α : α < ε〉 ∈

N” into our assumption.

We leave as an exercise to the reader to show the following fact. (We will not

use it in the rest of the paper). Note that this fact is independent of χ.

Fact 3.9: P is proper iff player II has a winning strategy in the following infinite

game (see also [2]):

In the first move, player I plays a condition p, and a maximal antichain A1.

Player II responds with a countable subset B1
1 ⊆ A1.

In the n-th move (n > 1), player I plays a maximal antichain An, and player II

plays countable sets Bn
1 ⊆ A1, . . . , B

n
n ⊆ An.

After ω many moves, player II wins iff there is a condition q ≤ p such that for

all n, the set Bn :=
⋃

k≥n B
k
n is predense below q.

[Sketch of proof: If player II has a winning strategy, and player I plays all

maximal antichains of the model N , then all responses of player II will be subsets

of N . Conversely, player II can, in each move generate a Skolem hull Nn (inside

H(χ)) of everything played so far. At the end any condition generic for N :=
⋃

n Nn

will work. This definition of the strategy does not take place in H(χ), since H(χ)

is needed as a parameter, but the resulting strategy itself IS in H(χ).]

Fact 3.10: For N as above, q ∈ P is N -generic iff for all α∼α∼ ∈ N :

If N |=“α∼α∼ is a P -name for an ordinal”, then q‖−α∼α∼ ∈ N

(Note that q‖−α∼α∼ ∈ N really means q‖−α∼α∼[GP] ∈ N̂ .)

Proof: Let A ∈ N , N |=“A is a maximal antichain.” Working in N , we can find

a cardinal κ, a function f from κ onto A, and a P -name α∼α∼ of an ordinal such that

‖−P f(α∼α∼) ∈ GP ∩A. Then if q‖−α∼α∼ ∈ N , also q‖−f(α∼α∼) ∈ N , so q‖−N ∩A ∩G 6= ∅.

Hence q satisfies 3.2(4).

Conversely, let α∼α∼ ∈ N be a P -name of an ordinal. Then the set D := {r ∈ P :

∃β r‖−α∼α∼ = β} is dense. Let f be a function with domain D such that for all r ∈ D,

r‖−α∼α∼ = f(r)̂ . Then f ∈ N , so if q‖−∃r ∈ D ∩ N ∩ G, then also q‖−α∼α∼ ∈ N , as

‖−“r ∈ N ⇒ f(r) ∈ N .”

Remark 3.11: A similar proof shows: q is N -generic iff

∀x∼ ∈ N : If x∼ is a P -name and ‖−x∼ ∈ V , then q‖−x∼ ∈ N

324 MARTIN GOLDSTERN IMCP

(or in other words, q‖−N [G] ∩ V = N).

Example 3.12: If P satisfies the countable chain condition, then every condition

(or equivalently, the condition 1Q) is N -generic, for any countable model N ≺ H(χ)

containing P . Thus, any ccc forcing notion is proper.

Proof: Note that if A ∈ N is countable, then A ⊆ N , because A must be the

range of a function f ∈ N that has domain ω. As f ∈ N , and for all n ∈ ω, n ∈ N ,

also f(n) ∈ N for all n, so A = rng(f) ⊆ N .

Let A ∈ N be a maximal antichain, then ‖−QA∩G 6= ∅. So also 1Q‖−QA∩N ∩

G = A ∩G 6= ∅. Hence 1Q satisfies condition 3.2(4).

(Alternatively, we could use 2.1 to show that ccc ⇒ proper.)

Fact 3.13: If Q is proper, and A ∈ V [GQ] a countable set of ordinals, then there

is a countable set B ∈ V of ordinals such that A ⊆ B.

Proof: Let A∼ be a name for A, and let 〈α∼α∼n : n ∈ ω〉 ∈ V be a sequence of names

for all ordinals in A∼. For each n, let An be a maximal antichain of conditions de-

ciding α∼α∼n. We will show that the set of conditions forcing “there exists a countable

B in V covering A” is dense.

So fix a condition p. Let N ≺ H(χ) be a countable elementary model containing

p, Q and 〈An : n ∈ ω〉 and let q ≤ p be N -generic.

Let B :=
⋃

n∈ω{β : ∃r ∈ An ∩ N : r‖−αn = β}. B is countable, and the

genericity of q easily implies that q‖−A∼ ⊆ B.

Corollary 3.14: If Q proper and cf(δ) > ω, then ‖−Qcf(δ) > ω. In particular,

ℵ1 is not collapsed.

Proof: Q cannot add a countable cofinal sequence in δ, by the previous fact.

(Note that this proof works only for δ < χ, but for δ ≥ χ or indeed δ > |P | a much

simpler argument shows that the cofinality of δ is preserved.)

Fact 3.15: If N ≺ H(χ), and Q ∈ N , then 1‖−N [G] ≺ H(χ)V [G].

Proof: (Remember that χ is quite large compared to Q.) We will use the Tarski-

Vaught criterion. So it is enough to see for all names a∼ in N :

(∗) 1Q‖−Q

(
∃xϕ(x, a

∼
)
)H(χ)

⇒ ∃x ∈ N [G]
(
ϕ(x, a

∼
)
)H(χ)

By 0.5, there is a name τ∼τ∼ such that

(∗∗) 1Q‖−Q τ∼τ∼ ∈ H(χ)&
(
(∃xϕ(x, a

∼
))H(χ) ⇒ ϕ(τ∼τ∼, a

∼
)
)H(χ)

.

As this last statement can be rewritten as a statement in H(χ) (thanks to 3.6), we

can find such τ∼τ∼ in N .

Thus 1Q‖−Q τ∼τ∼ ∈ N [G] &
(
(∃xϕ(x, a∼))H(χ) ⇒ ϕ(τ∼τ∼, a∼)H(χ)

)
, which implies (∗).

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 325

Note that the same proof actually shows we even have (N [G], N [G]∩H(χ),∈) ≺

(H(χ)V [G], H(χ)V ,∈). So if we work with a proper forcing notion, by 3.11 we also

get (N [G], N,∈) ≺ (H(χ)V [G], H(χ)V ,∈).

Lemma 3.16: Assume that Q0 ∗ Q
∼

1 is a composition of forcing notions. Then

(q0, q
∼

1) is N -generic, iff q0 is N -generic for Q0, and q0‖−“ q
∼

1 is N [G0]-generic

for Q
∼

1[G0].”

Similarly, if we have an iteration 〈Pα, Qα : α < ε〉, α ≤ ε, then q ∈ Pα+1 is

(Pα+1, N)-generic iff:

q↾α is (Pα, N)-generic, and q↾α ‖−
α
“q(α) is (Qα, N [Gα])-generic.”

Proof: (Recall that we identify Q0 ∗Q
∼

1-names with Q0-names for Q
∼

1-names)

We will use 3.10. For any name α∼α∼ ∈ N of an ordinal we have

(q0, q
∼

1)‖−Q0∗Q
∼

1
α∼α∼[GQ0∗Q

∼
1
] ∈ N iff q0‖−Q0

(
q
∼

1‖−Q
∼

1[G0]
α∼α∼[G0][G1] ∈ N

)

This shows that properness is preserved under composition of forcing notions.

The following two lemmata will show that properness is also preserved under count-

able support iteration. Note that the first one does not mention properness or

countable models—even the fact that the iteration has countable support plays no

role.

Preliminary Lemma 3.17:

Let 〈Pα, Q
∼

α : α < ε〉 be a countable support iteration.

Assume α1 ≤ α2 ≤ β ≤ ε, p
∼

1 is a Pα1
-name for a condition in Pε. Let D be a

dense open set of Pβ.

Then 1Pα2
‖−
α2

∃p2 ϕ(p2), where ϕ(p2) is the conjunction of the following clauses:

(1) p2 ∈ P̂β, p2 ≤β p
∼

1.

(2) p2 ∈ D̂.

(3) If p
∼

1↾α2 ∈ Gα2
, then p2↾α2 ∈ Gα2

.

Remark 1: By the existential completeness lemma there is an α2-name p
∼

2 for a

condition in Pβ such that ‖−
α2

ϕ(p
∼

2).

Remark 2: The Pα1
-name p

∼
1 corresponds naturally to a Pα2

-name, which we

also call p
∼

1. In other words, we may wlog assume that α1 = α2.

Proof of the lemma: Assume 1Pα2
6‖−α2

∃p2 ϕ(p2), then there exists a condi-

tion r2 ∈ Pα2
such that

r2‖−α2
there is no p2 satisfying (1)–(3).

We may assume that r2 decides what p
∼

1 is, (i.e. r2 ‖−
α2

“p
∼

1 = p̂1” for some

p1 ∈ V), and r2 also decides whether p1↾α2 ∈ Gα2
.

326 MARTIN GOLDSTERN IMCP

Case 1: r2 ‖−
α2

p1↾α2 /∈ Gα2
:

But then (3) is true for any p2, so

r2 ‖−
α2

there is no p2 satisfying (1)–(2).

which is a contradiction since D is dense open.

Case 2: r2 ‖−
α2

p1↾α2 ∈ Gα2
. We may assume r2 ≤α2

p1↾α2. Now let r := p1∧r2 =

r2 ∪ p1↾[α2, β) ≤ p1, and find p2 ∈ D, p2 ≤β r. Then

p2↾α2 ‖−
α2

p2 satisfies (1)–(3),

again a contradiction, because p2↾α2 ≤ r2.

Induction Lemma 3.18: Let Q̄ := 〈Pα, Q
∼

α : α < ε〉 be a countable support it-

eration, and assume that for all α < ε, ‖−α“Q∼
α is a proper forcing notion.” Let

N ≺ H(χ) be a countable model containing Q̄. Then:

For all β ∈ N ∩ ε:

For all α ∈ N ∩ β, all p
∼

∈ N :

Assume p
∼

is a Pα-name for a condition in Pβ, and

(a) q ∈ Pα

(b) q is (Pα, N)-generic.

(c) q ‖−
α

p
∼
↾α ∈ Gα ∩N

Then there is a condition q+:

(a)+ q+ ∈ Pβ, q
+↾α = q

(b)+ q+ is (Pβ , N)-generic

(c)+ q+‖−β p∼
↾β ∈ Gβ ∩N

The proof is by induction on β.

Successor step:

Let β = β′ + 1. Since we can first use the induction hypothesis on α, β′ to

extend q to a condition q′ ∈ Pβ′ satisfying the appropriate version of (a)–(c), we

may simplify the notation by assuming β = α+ 1.

Since q ‖−
α
N [Gα] ≺ H(χ)V [Gα], we also have

q ‖−
α
“there is a (Qα, N [Gα])-generic condition ≤ p

∼
(α)”

By “existential completeness”, there is a Pα-name q+(α) for it. By 3.16, we are

done.

Limit step:

Let β ∈ N be a limit ordinal, δ := sup(β ∩ N) =
⋃

n αn, α = α0 < α1 < · · · ,

αn ∈ N . Let 〈Dn : n ∈ ω〉 enumerate all dense subsets of Pβ that are in N .

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 327

First we will define a sequence 〈p
∼

n : n ∈ ω〉, p
∼

n ∈ N , p
∼

0 = p
∼

such that the

following will hold:

(0) p
∼

n is a Pαn
-name for a condition in Pβ

(1) ‖−
αn+1

p
∼

n+1 ≤ p
∼

n

(2) ‖−
αn+1

p
∼

n+1 ∈ Dn.

(3) ‖−
αn+1

“If p
∼

n↾αn+1 ∈ Gαn+1
then p

∼
n+1↾αn+1 ∈ Gαn+1

”.

For each n we thus get a name p
∼

n that is in N . For each n we can use the

“preliminary lemma” (and remark 1 before its proof) in N to obtain p
∼

n+1.

Now we define a sequence 〈qn : n ∈ ω〉, qn ∈ Pαn
, q = q0 ⊆ q1 ⊆ · · · , qn+1↾αn =

qn, and qn satisfies (a), (b), (c) (if we write qn for q, pn for p, αn for α.)

qn+1 = q+n can be obtained by the induction hypothesis, applied to αn, αn+1,

and p
∼

n↾αn+1. By (c)+ we know

q+n ‖−p
∼

n↾αn+1 ∈ Gαn+1
∩N

Hence by (3) we have

qn+1‖−p
∼

n+1↾αn+1 ∈ Gαn+1
∩N

Since qn+1↾αn = qn, q = lim qn exists and is ≤ qn for all n.

We have to show that q‖−p ∈ Gβ ∩N and that q is generic. Let Gβ be a generic

filter containing q. We will write pn for p
∼

n[Gαn
]. (Note that pn ∈ N , because qn

was N -generic and qn ∈ Gαn
.)

Since qn ≥ q ∈ Gβ , we have pn↾αn ∈ Gαn
∩N and N |= pn ≤ pn−1 ≤ · · · ≤ p0.

Hence p↾αn ∈ Gαn
∩ N for all n, and so by 1.17, p↾δ ∈ Gδ ∩ N . As dom(p) ⊆ δ,

p↾δ = p, so p ∈ Gβ . Similarly, pn ∈ Gβ for all n.

Consider a dense set Dn ⊆ Pβ . Since qn+1‖−“p
∼

n+1 ∈ Dn,” we have pn+1 ∈

Gβ ∩Dn ∩N .

Hence q is generic.

Corollary 3.19: Let 〈Pα, Q
∼

α : α < ε〉 be a countable support iteration of proper

forcing notions Qα (as in 3.18). Then Pε (the countable support limit of this iter-

ation) is proper.

Proof: Apply 3.18 with α = 0, β = ε.

328 MARTIN GOLDSTERN IMCP

4 Quotient forcing

Let 〈Pα, Qα : α < ε〉 be either a countable support iteration of proper forcing

notions, or a finite support iteration.

Definition 4.1: We define Pε/Gα to be a Pα-name for a forcing notion such that

‖−αPε/Gα = {p ∈ P̂ε : p↾α ∈ Gα}

For p, q ∈ Pε/Gα we let p ≥Pε/Gα
q iff p ≥Pε

q.

Notation 4.2: We write ≤αε, ‖−αε, . . . , for ≤Pε/Gα
, ‖−Pε/Gα

, etc.

Fact 4.3: 1Pα
forces the following:

(1) Pε/Gα ⊆ P̂ε.

(2) If p, q ∈ Pε/Gα, then p ≤αε q ⇔ p ≤ε q.

(3) If p, q ∈ Pε/Gα, then p ⊥ε q implies p ⊥αε q. (However, note

that p ⊥αε q does not necessarily imply p ⊥ε q!)

(4) If A ∈ V , A ⊆ Pε is a maximal antichain, then A ∩ Pε/Gα is a

maximal antichain in Pε/Gα.

(1) and (2) are true by definition.

For (3), note that any r ≤αε p, q would also satisfy r ≤ε p, q.

Proof of (4): By (3), ‖−α“A∩Pε/Gα is an antichain.” Assume that the conclusion

is not true, then we can find a condition r ∈ Pα and a condition p ∈ Pε such that

r‖−α“p ∈ Pε/Gα, but for all s ∈ A ∩ Pε/Gα there is no t ∈ Pε/Gα

extending both p and s.”

Since r‖−“p↾α ∈ Gα,” r and p↾α are compatible, so we may wlog assume r ≤ p↾α.

Let p̄ := p ∧ r, then p̄ ≤ p and p̄↾α ≤ r. So

p̄↾α‖−α“p̄ ∈ Pε/Gα, and for all s ∈ A ∩ Pε/Gα there is no t ∈

Pε/Gα extending p̄ and s.”

Let s ∈ A be compatible with p̄, and let t ≤ s, p̄. Then t↾α‖−t ∈ Pε/Gα & t ≤

s& t ≤ p̄, a contradiction, because t↾α ≤ p̄↾α.

Fact 4.4: Assume Gα ⊆ Pα is generic over V , and Gαε ⊆ Pε/Gα is generic

over V [Gα]. Then

(1) Gαε ⊆ Pε is a filter.

(2) Gαε is generic for Pε over V .

(3) Gαε ⊇ Gα.

(4) Gα = Gαε ∩ Pα.

Proof: (1) Gαε ⊆ Pε follows from Pε/Gα ⊆ Pε. Any two conditions p, q in Gαε

have a common extension in Gαε, i.e., there is a r ∈ Gαε, p ≥αε r, q ≥αε r. Hence

p ≥ε r, q ≥ε r.

(2): Let A ⊆ Pε be a maximal antichain in V . Then in Vα, A ∩ Pε/Gα is a

maximal antichain by 4.3(3). So Gαε ∩ (A ∩ Pε/Gα) and thus also Gαε ∩ A are

nonempty.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 329

Proof of (3): Assume p ∈ Gα but p /∈ Gαε. Then there is a condition q ∈ Gαε

such that q ⊥αε p. As p↾α, q↾α ∈ Gα, there is a condition r ∈ Gα such that

r ≤ p↾α, q↾α. Then (q ∧ r)↾α = r ≤α p, so q ∧ r ≤ε p. We also have q ∧ r ≤ q, and

q ∧ r ∈ Pε/Gα. This contradicts q ⊥αε p.

(4): “⊆” follows from (3), and if p ∈ Gαε∩Pα, then p ∈ Pε/Gα, so p = p↾α ∈ Gα.

(Conversely, if Gε ⊆ Pε is generic over V , and Gα := Gε∩Pα, then Gα is generic

for over V , and Gε ⊆ Pε/Gα is generic over V [Gα].)

So we can write Gε for Gαε.

Fact 4.5: The map i : Pε → Pα ∗ (Pε/Gα), defined by

i(p) = 〈p↾α, p̂〉

is a dense embedding. Hence, forcing with Pε amounts to the same as first forcing

with Pα, and then with the “quotient forcing” Pε/Gα.

Proof: Note that p↾α‖−α“p ∈ Pε/Gα”, so rng(i) ⊆ Pα ∗ Pε/Gα. i preserves the

ordering, as p ≥ q clearly implies q↾α‖−p̂ ≥ q̂.

To show that i is dense, let 〈r, s∼〉 ∈ Pα ∗ Pε/Gα. So r‖−α s∼↾α ∈ Gα. Since

r‖− s∼ ∈ Pε, we can find a stronger condition r0 ∈ Pα and a condition s0 ∈ Pε

such that r0‖− s∼ = s0. As r0‖−αs0↾α ∈ Gα, r0 and s0↾α are compatible, say

r1 ≤ r0, s0↾α.

Let p := s0 ∧ r1. Then p ∈ Pε, p ≤ s0, so 〈r, s∼〉 ≥ 〈r0, s∼〉 ≥ 〈r0, ŝ0〉 ≥ 〈r1, ŝ0〉 ≥

〈p↾α, p̂〉.

How can we describe the forcing notion Pε/Gα without explicitly mentioning

Pε? For example, comparing the forcing notions Pα and Pα+1, we have

Pα+1 ≈ Pα ∗Qα

and also

Pα+1 ≈ Pα ∗ (Pα+1/Gα)

Similarly,

Pα+2 ≈ Pα ∗Qα ∗Qα+1

and also

Pα+2 ≈ Pα ∗ (Pα+2/Gα)

This suggests that the forcing notions Pα+β/Gα are isomorphic to iterations of

length β. Theorem 4.6 below shows that this is indeed the case.

Theorem 4.6: Assume 〈Pα, Qα : α < ε〉 is a countable support iteration of proper

forcing notions, or a finite support iteration. Let α + β = ε. Then there exists a

Pα name 〈P̄γ , Q̄γ : γ < β〉 of a countable/finite support iteration of length β, such

that

‖−α∀γ ≤ β : P̄β ≈ Pε/Gα

Proof: We will fix α, and proceed by induction on β. We will work in V [Gα],

where Gα ⊆ Pα is generic over V .

330 MARTIN GOLDSTERN IMCP

By induction on β, we will

(1) define a countable/finite support iteration 〈P̄γ , Q̄γ : γ < β〉

(2) define a map iαβ from Pα+β/Gα into P̄β

(3) prove that iαβ is a dense* embedding.

Case 1: β = 0

(1) 〈P̄γ , Q̄γ : γ < β〉 is the empty sequence, and P̄β = P0 = {∅}

(2) iαβ is the constant map.

(3) Any two conditions in Pα+0/Gα are compatible, as are any two

conditions in P̄0. p1 ≤∗ p2 is true for all p1, p2 ∈ Pα/Gα.

Case 2: β = β′ + 1

(1) We have to define Q̄β′ .

In V , Q
∼

α+β′ is a Pα+β′-name for a forcing notion, which can be

translated into a Pα-name for a Pα+β′/Gα-name. So in V [Gα],

Q
∼

α+β′ is a Pα+β′/Gα-name, which by induction hypothesis can

be translated to a P̄β′-name Q̄
∼

β′ .

(2) For p ∈ Pα+β/Gα, we define iαβ(p) ∈ P̄β by defining iαβ(p)↾β
′

and iαβ(p)(β
′):

iαβ(p)↾β
′ = iαβ′(p↾(α+ β′))

If p(α+ β′) is undefined, we let iαβ(p)(β
′) be undefined. Otherwise,

p(α+ β′) is (in V [Gα]) a Pα+β′/Gα-name for an element of Qα+β′ ,

which can be translated to a P̄β′-name for an element of Q̄β′ .

This will be iαβ(p)(β
′). Or, more sloppily: iαβ(p)(β

′ = p(α+ β′).

Note that iαβ extends iαβ′ .

(3) To see that iαβ is an embedding, check that for p1, p2 ∈ Pα+β ,

p1 ≥∗ p2 iff p1↾α+β′ ≥∗ p2↾α+β′ &

& p2↾α+β′‖−p1(α+β′) ≥∗ p2(α+β′)

which by induction hypothesis and using translation functions is

equivalent to

p1 ≥∗ p2 iff iαβ(p1)↾β
′ ≥∗ iαβ(p2)↾β

′ &

& iαβ(p2)↾β
′‖−iαβ(p1)(β

′) ≥∗ iαβ(p2)(β
′)

i.e., iαβ(p1) ≥
∗ iαβ(p2).

It is also easy to see that iαβ is dense*.

Case 3: β is a limit ordinal.

(1) We define P̄β as the (countable/finite support) limit.

(2) We let iαβ(p) :=
⋃

γ<β iαγ .

(3) As before, we can show p ≥∗ q iff ∀γ < β, p↾α+ γ ≥∗ q↾α+ γ iff

∀γ < β iαβ(p)↾γ ≤∗ etc.

The crucial point is the density condition 0.8(2). So let p̄ ∈ P̄β .

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 331

First we will deal with the case of a finite support iteration. So p̄ ∈ P̄γ ,

for some γ < β. By induction hypothesis we can find p ∈ Pα+γ/Gα such that

iαγ(p) ≤
∗
P̄γ

p̄.

Then we also have p ∈ Pα+β/Gα, and iαβ(p) = iαγ(p) ≤P̄β
p̄.

Now assume that we are working with a countable support iteration of proper

forcing notions. (If β has cofinality > ω in V [Gα], we can repeat the previous proof

verbatim.)

In general, let p̄ ∈ P̄β . In V [Gα], dom(p) is a countable set of ordinals, whichis

not necessarily an element of V .

Here we can use the fact that Pα is proper: By 3.13, dom(p̄) is covered by a

countable set of ordinals that itself lies in V . So there is a countable set F ∈ V

such that dom(p̄) ⊆ {γ : α+ γ ∈ F}.

Find a name p̄
∼

∈ V for p̄. From p̄
∼

and F we can define a condition p ∈ Pα+β ,

p ∈ V as follows:

dom(p) = F .

If α+ γ ∈ F , then let p(α+ γ) be a name such that (in V)

‖−α+γ“If p̄
∼
(γ) ∈ Qα+γ , then p(α+ γ) = p̄

∼
(γ)

otherwise p(α+ γ) = 1Qα+γ
.

(We use the translation function here.)

Because of F we know that p is indeed a function with countable domain. So

p ∈ Pβ , and in fact ‖−αp ∈ Pβ/Gα.

Now we have to show that iαβ(p) ≤ p̄. We have to prove by induction on γ that

∀γ ≤ β iαβ(p)↾γ = iαβ(p↾α+ γ) ≤∗ p̄↾γ (∗)

We leave this as an exercise to the reader (use 1.7 and 1.8).

332 MARTIN GOLDSTERN IMCP

5 A general preservation theorem for countable support iteration

Context 5.1: We will consider functions f from ω to ω. In applications, these

functions may actually be from ω to HF (the hereditarily finite sets), or from ω<ω

to ω<ω, etc. Since we can trivially (in a primitive recursive, absolute, . . .) way

code such functions by functions in ωω, all results from this section apply also to

functions in ωHF , etc.

We fix a closed set C ⊆ ωω. There is a tree T ⊆ ω<ω such that

C = {f ∈ ωω : ∀n f↾n ∈ T}.

When we work in a universe V1, we write C for the set {f ∈ ωω ∩V1 : ∀n f↾n ∈ T},

i.e., we regard C not as a set per se, but as a formula defining a certain (closed)

set.

Typical examples are C = ωω, or C = {f ∈ ωω : ∀nf(n) < H(n)} for some H ∈
ωω.

〈⊏n: n ∈ ω〉 is an increasing sequence of two place relations on ωω. In general,

we do not assume that these relations are transitive.

⊏n will always be given by an arithmetical definition. Again, we consider ⊏n

not as a set in itself, but rather as a definition of a certain arithmetical set, so

if ⊏n is defined in a universe V0, f ⊏n g makes sense even for f, g /∈ V0. These

definitions will be absolute between any two ∈-models, as the formula defining ⊏

is arithmetical.

(We do not require that the ⊏n are uniformly arithmetical, i.e., each ⊏n may

be defined by a different formula. However, in all our applications there f ⊏n g is

expressed by a single formula ϕ(f, g, n).)

We let ⊏=
⋃

n ⊏n.

A typical example is given by f ⊏n g iff ∀k ≥ n f(n) < g(n). Then we have

f ⊏ g iff f ≤∗ g. (Actually, this example is not so “typical” since here the relations

⊏n are all transitive, which will not be true in general.)

Definition 5.2: We will only consider forcing notions that add a real, or at least

introduce a new ω-sequence of ordinals. If p‖−τ∼τ∼ : ω → Ord, we say that p decides

τ∼τ∼↾n, if for some t : n → Ord, p‖−τ∼τ∼↾n = t.

Note that if ‖−Q τ∼τ∼ : ω → Ord and ‖−Q τ∼τ∼ /∈ V , then letting

En = {p ∈ Q : p decides τ∼τ∼↾n},

En is a dense open subset of Q and
⋂

n En is empty.

Assumption 5.3: We assume that for all countable sets a ⊆ ωω there is a g such

that ∀f ∈ a ∩C f ⊏ g.

We also assume that for every g and every n the set {f : f ⊏n g} is closed.

Definition 5.4: We say that g (⊏, C)-covers) N if for all f ∈ N ∩ C we have

f ⊏ g. (Usually we think of N as a countable elementary submodel of some H(χ).)

When C and/or ⊏ are clear, we may just say “g covers N”.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 333

We let χ be a “large enough” regular cardinal as in 3.5. We will consider count-

able elementary submodels of 〈H(χ),∈〉.

(The notions we will define below will depend on χ, but a careful examination

(which we do will not carry out here) shows that this dependence is only apparent.)

Definition 5.5: We say that the forcing notion Q almost preserves ⊏, if

WHENEVER N ≺ (H(χ),∈) is a countable model containing Q, C and ⊏, g

covers N , p ∈ Q ∩N ,

THEN there exists an N -generic condition q stronger than p, such that q‖−“g

covers N [G].”

Fact 5.6: If Q almost preserves ⊏, then ‖−Q“∀f ∈ V [G] ∃g ∈ V f ⊏ g”.

Proof: Assume not, so there is a condition p and a name f
∼

such that

p‖−there is no g ∈ V such that f
∼

⊏ g.

Let N ≺ H(χ) be a countable model containing f
∼

and p, and let g (∈ V)

cover N . Then we can find a condition q ≤ p forcing f
∼

⊏ g, a contradiction.

Example 5.7: Let C = ωω, and let (for f, g ∈ ωω)

f ⊏n g ⇔ ∀k ≥ n f(k) < g(k)

and f ⊏ g iff for some n, f ⊏n g. All the ⊏n are closed and transitive, and clearly

for every countable set a ⊆ ωω there is a g such that ∀f ∈ a f ⊏ g.

A forcing notion Q is called ωω-bounding iff

‖−
Q

∀f ∈ ωω ∩ V [G] ∃g ∈ ωω ∩ V f ⊏ g

Fact: A proper forcing notion Q almost preserves ⊏ iff it is ωω-bounding. (We

will see later that we can omit the “almost” from this statement.)

Proof of the fact: If Q preserves ⊏, then Q is ωω-bounding by 5.6. Conversely,

assume that Q is ωω-bounding, let N ≺ H(χ), and assume that g covers N . Then

‖−∀f ∈ N [G] ∃f ′ ∈ V : f ⊏ f ′, so any N -generic condition q forces ∀f ∈ N [G]∃f ′ ∈

N : f ⊏ f ′. Since for all f ′ ∈ N , f ′ ⊏ g (and ⊏ is absolute and transitive), for any

N -generic q we have

q‖−∀f ∈ N [G] : f ⊏ g

So this definition 5.5 achieves exactly what we want. However, it is not clear

whether this condition by itself is preserved under iteration. Before we give the

definition we will actually use, we have recall the concept of “interpretation”:

Definition 5.8: Assume Q is a forcing notion, f
∼

0, . . . , f
∼

k−1 are Q-names of func-

tions in C, f∗
0 , . . . , f

∗
k−1 are functions in ωω, 〈pn : n < ω〉 an increasing sequence

of conditions. We will write f̄
∼

for 〈f
∼0, . . . , f∼k−1〉 and f̄∗ for 〈f∗

0 , . . . , f
∗
k−1〉. A

sequence 〈f
∼0, . . . , f∼k〉 will be written as 〈 f̄

∼
, f
∼

k〉.

334 MARTIN GOLDSTERN IMCP

We say that 〈pn : n < ω〉 interprets f̄
∼

as f̄∗, if for all i < k, for all n, pn‖−f
∼

i↾n =

f∗
i ↾n.

(So when we say that 〈pn : n < ω〉 interprets f̄
∼

as f̄∗, it is understood that the

sequence 〈pn : n < ω〉 is increasing, etc.)

Remark 5.9: If 〈pn : n < ω〉 interprets f
∼

as f∗, where f
∼

is a name for a function

in C, then f∗ is a function in C.

Proof: C = {f : ∀n f↾n ∈ T} for some tree T . If f∗ /∈ C, then for some n

f∗↾n /∈ T , so pn‖−f
∼
↾n /∈ T , a contradiction.

Definition 5.10: We say that the sequence 〈pn : n < ω〉 ∈ ωQ is inconsistent, if

there is no condition q such that ∀n q‖−pn ∈ G or equivalently, ‖−Q∃n : pn /∈ GQ.

Note that if 〈DQ,n : n ∈ ω〉 is a sequence of dense open sets with
⋂

n DQ,n = ∅ and

∀n pn ∈ DQ,n, then 〈pn : n < ω〉 is inconsistent.

(By our assumption in 5.2, for every forcing notion Qα that we consider there is

a sequence 〈DQ,n : n < ω〉 as above.)

Definition 5.11: We say that the forcing notion Q preserves (⊏,C), if for

some x:

WHENEVER N ≺ H(χ) is a countable model containing Q, x and ⊏, g covers

N , p0 ∈ Q ∩ N , and whenever 〈pn : n < ω〉 ∈ ωQ ∩ N (an increasing sequence of

conditions) interprets f̄
∼

∈ N as f̄∗, such that for all i < k f∗
i ⊏ni

g,

THEN there is a condition q ∈ Q such that

(a) q ≤ p.

(b) q is N -generic.

(c) q‖−∀f ∈ N [G] ∩C f ⊏ g, i.e., q‖−“g covers N [G].”

(d) ∀i < k: q‖−f
∼

i ⊏ni
g.

Note that (a)–(c) just say that Q almost preserves ⊏. Also note that (c) is

equivalent to

(c’) ∀f
∼

∈ N : If ‖−Qf
∼

∈ C, then q‖−f
∼

⊏ g.

When C is clear from the context (or irrelevant), we may say “Q preserves ⊏”

instead of “Q preserves (⊏,C)”.

We call x = xQ the “witness” for the statement “Q preserves ⊏.”

Lemma 5.12: If Q0 preserves ⊏, and ‖−Q0
“Q
∼

1 preserves ⊏”, then Q0 ∗ Q
∼

1 pre-

serves ⊏.

Idea of the proof: To use the assumptions on Q0 and Q1, we have to find a

Q0-name f̄
∼

′ that “interpolates” between f̄
∼

and f̄
∼

∗, i.e., f̄
∼

∗ is an interpretation of

f̄
∼

′ which itself (in V Q0) is an interpretation of f̄
∼
.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 335

Proof: Let x0 witness that Q0 preserves ⊏, and ‖−“x∼1 witnesses that Q1 pre-

serves ⊏”. x := 〈x0, x∼1〉 will witness that Q0 ∗Q1 preserves ⊏.

Assume N , 〈pn : n < ω〉, f̄
∼
, f̄∗, n0, . . . , nk−1 are as in 5.11, and g covers N .

Each pn is of the form 〈pn(0), pn(1)〉, where pn(0) ∈ Q0 and pn(0)‖−Q0
pn(1) ∈ Q

∼
1.

We let p−1 := 〈1Q0
, 1Q

∼
1
〉.

Let G(0) ⊆ Q0 be generic, then we can define functions f ′
i in V [G(0)] and

conditions p′n(1) in Q1 for i < k as follows:

If for all n ∈ ω pn(0) ∈ G(0), then f ′
i := f∗

i , n
∗ := ω, p′n(1) := pn(1).

Otherwise, let n∗ := max{n ≥ −1 : pn(0) ∈ G(0)}, and find a

sequence 〈p′n(1) : n ∈ ω〉 ∈ ωQ1 and functions f ′
i for i < k such

that p′0(1) ≥ pn∗(1) and

〈p′n(1) : n < ω〉 interprets f̄
∼

as f̄ ′ (∗1)

(Note that (∗1) will be true also if n∗ = ω.)

Then f ′
i↾n

∗ = f∗↾n∗: This is clear if n∗ = ω. Otherwise, p′0(1)‖−Q1
“f
∼

i↾n
∗ =

f∗
i ↾n

∗,” so we also have p′n∗(1)‖−Q1
“f
∼

i↾n
∗ = f∗

i ↾n
∗.”

Furthermore, p′n∗(1)‖− “f
∼

i↾n
∗ = f ′

i↾n
∗”, so p′n∗(1)‖− “f ′

i↾n
∗ = f∗

i ↾n
∗.”

Coming back to V , we can find Q0-names f
∼

′
i, p∼

′
n(1), n∼

∗ such that the above is

forced. In particular,

pn(0)‖−f ′
i↾n = f∗

i ↾n, (∗0)

as pn(0)‖−n∼
∗ ≥ n.

We can find these names f
∼

′
i and p

∼
′
n in N . Since Q0 preserves ⊏, by (∗0) there

is a generic q(0) ∈ Q0 such that

(a0) q(0) ≥ p0(0).

(b0) q(0) is N -generic

(c0) q(0)‖−∀f ∈ N [G(0)] f ⊏ g.

(d0) ∀i < k: q(0)‖−f
∼

′
i ⊏ni

g.

Working again in V [G(0)], where q(0) ∈ G(0), we note that N [G(0)] is covered

by g and n∗ ≥ 0, so since Q1 preserves ⊏ and by (∗1), we can find a condition

q(1) ∈ Q1 such that

(a1) q(1) ≤ p′0(1) ≤ p0(1).

(b1) q(1) is N [G(1)]-generic

(c1) q(1)‖−∀f ∈ N [G(0) ∗G(1)] f ⊏ g.

(d1) ∀i < k: q(1)‖−f
∼

i ⊏ni
g.

We can find a name q
∼
(1) such that the above is forced by q(0). Now we let

q = 〈q(0), q
∼
(1)〉. Then 5.11(a)–(d) holds.

336 MARTIN GOLDSTERN IMCP

Recall that Pβ/Gα = {p ∈ Pβ : p↾α ∈ Gα}, and that the map i : Pβ →

Pα ∗ Pβ/Gα, defined by i(p) = 〈p↾α, p〉 is a dense embedding. So to each Pβ name

f
∼

there is a naturally corresponding Pα-name for a Pβ/Gα-name, which we also

call f
∼
.

For the following, assume that 〈Pα, Qα : α < ε〉 is a countable support iteration

⊏-preserving forcing notions, i.e., for all α < ε,

Pα‖−“Qα preserves ⊏(witnessed by x∼α.”

Also assume that each Qα adds a new sequence of ordinals.

Our goal is to show that Pε preserves ⊏ (witnessed by x := 〈x∼α : α < ε〉. So we

fix a countable elementary model N containing all relevant information.

Induction Lemma 5.13: Let α ≤ β ≤ ε. Assume that 〈p
∼

n : n < ω〉 ∈ N is a

sequence of Pα-names for conditions in Pβ/Gα such that

(·) ‖−α〈p∼
n : n < ω〉 interprets f̄

∼
as f̄

∼
∗

(where f̄
∼

= 〈f
∼

0, . . . , f
∼

k−1〉, f̄
∼

∗ = 〈f
∼

∗
0, . . . , f∼

∗
k−1〉, the f

∼
i are Pβ-names in N ,

and the f
∼

∗
i are Pα-names). Furthermore, assume that q ∈ Pα, and n∼0, . . . , n∼k−1

are Pα-names for integers such that for some g:

(a) q‖−α p∼0

↾α ∈ Gα. (This really follows from our assumption that ‖−α p∼
0 ∈

Pβ/Gα.)

(b) q ∈ Pα is N -generic.

(c) q‖−∀f ∈ N [Gα] f ⊏ g.

(d) ∀i < k: q‖−f
∼

∗
i ⊏n

∼i
g.

Then there exists q+ ∈ Pβ, satisfying

(+) q+↾α = q

(a)
+

q+‖−β p∼0

↾β ∈ Gβ.

(b)
+

q+ ∈ Pβ is N -generic (i.e., q+‖−β “Gβ ∩N is generic over N”.)

(c)
+

q+‖−∀f ∈ N [Gβ] f ⊏ g.

(d)
+ ∀i < k: q+‖−f

∼
i ⊏n

∼i
g.

The reason for considering ⊏-preserving forcing notions is the following corollary:

Corollary 5.14: If ∀α ‖−Pα
“Qα preserves ⊏”, then Pε preserves ⊏.

Proof of the corollary: Use the induction lemma with with α = 0, β = ε, q = 1P0
.

We can find q+ ∈ Pε satisfying (a)
+
–(d)

+
. Since q+‖−p0 ∈ Gε, there is a condition

q++ ≤ q+, q++ ≤ p0. Then q++ will satisfy 5.11(a)–(d).

To prove the case “β limit” of the induction lemma, we will need the following

lemma. (Note that, as in the preliminary lemma for the proof of preservation of

properness, this lemma does not mention properness, ⊏-preservation, etc. — not

even countable models.)

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 337

Preliminary lemma 5.15: Assume α1 < α2 ≤ β, 〈p
∼

1
n : n < ω〉 is a sequence of

Pα1
-names for conditions in Pβ/Gα1

. Let D ⊆ Pβ be a dense open set, j ∈ ω.

Assume 〈 f̄
∼
, f
∼

k〉 = 〈f
∼0, . . . , f∼k〉 are Pβ-names, and f̄

∼
1 = 〈f

∼
1
0, . . . , f∼

1
k−1〉 are

Pα1
-names, and

(1) ‖−α1
〈p
∼

1
n : n < ω〉 interprets f̄

∼
as f̄

∼
1.

(2) ‖−α1
〈p
∼

1
n(α1) : n < ω〉 is inconsistent.

THEN there are: Pα2
-names 〈 f̄

∼
2, f
∼

2
k〉 = 〈f

∼
2
0, . . . , f∼

2
k〉 and a sequence 〈p

∼
2
n : n < ω〉

of Pα2
-names for conditions in Pβ/Gα2

such that

(1)
+ ‖−α2

“〈p
∼

2
n : n < ω〉 interprets 〈 f̄

∼
, f
∼

k〉 as 〈 f̄
∼

2, f
∼

2
k〉” and

‖−α2
“p
∼

2
0 decides f

∼
0↾j, . . . , f

∼
k↾j.”

(2)
+ ‖−α2

〈p
∼

2
n(α2) : n < ω〉 is inconsistent.

(3)
+ ‖−α1

〈p
∼

1
n↾α2 : n < ω〉 interprets f̄

∼
2 as f̄

∼
1.

(4)
+ ‖−α2

If p
∼

1
n↾α2 ∈ Gα2

, then p
∼

2
0 ≤ p

∼
1
n.

(5)
+ ‖−α2

p
∼

2
0 ∈ D.

f̄
∼

1
p1
n

f̄
∼

α1 α2 β

=⇒

f̄
∼

2, f
∼

2
k p2

n
f̄
∼
, f
∼

k

f̄
∼

1
p1
n↾α

f̄
∼

2

α1 α2 β

Proof of the preliminary lemma:

We will work in V [Gα2
]. We write p1n for p

∼
1
n[Gα1

]. Let p1−1 := 1Pβ
. Let n∗ be

defined by

(i) n∗ := max{n ≥ −1 : p
∼

1
n[Gα1

]↾α2 ∈ Gα2
}.

(By 5.15(2), not all p1n↾α2 can be in Gα2
.)

Let p2−1 = p1n∗ ∈ Pβ/Gα2
. By assumption onQα, there is a sequence 〈En : n < ω〉

of dense open subsets of Qα2
such that

⋂
n En is empty. Let Ēn := {r ∈ Pβ/Gα2

:

r(α2) ∈ En}. Then Ēn is a dense open subset of Pβ/Gα2
, and

⋂
n Ēn is empty.

338 MARTIN GOLDSTERN IMCP

For each n, let

Dn := D ∩ Ēn ∩ {r ∈ Pβ/Gα2
: r decides f

∼
0↾max{n, j}, . . . , f

∼
k↾max{n, j}}.

Then Dn is open dense in Pβ/Gα2
. By induction we can now find a sequence of

conditions p2n in Pβ/Gα2
such that for all n ∈ ω:

(ii) p2n in Pβ/Gα2

(iii) p2n−1 ≥ p2n. (So if p1n↾α2 ∈ Gα2
, then p1n ≥ p1n∗ = p2−1 ≥ p2n.)

(iv) p2n ∈ Dn.

Since Dn ⊆ En, (iv) implies that 〈p2n(α2) : n < ω〉 is inconsistent.

By (iii) and (iv), there are functions f2
i such that for all i ≤ k, all n:

(v) p2n‖−α2,β
f
∼

i↾max{n, j} = f2
i ↾max{n, j}.

Coming back to V , we can find Pα2
-names p

∼
2
n, f

∼
2
i , n∼

∗ such that (i)–(v) are

forced by the empty condition of Pα2
.

Note that (v) implies that 5.15(1)
+

will be satisfied, (iv) implies 5.15(2)
+

and

5.15(5)
+
, and (iii) implies 5.15(4)

+
.

To show 5.15(3)
+
, let Gα1

⊆ Pα1
be any generic filter, n ∈ ω, i < k. We will

write p1n for p
∼

1
n[Gα1

], f1
i for f

∼
1
i [Gα1

].

We claim that

V [Gα1
] |= p1n↾α2‖−α1,α2

f
∼

2
i ↾n = f1

i ↾n

Proof of the claim: Let H ⊆ Pα2
/Gα1

be a V [Gα1
]-generic filter containing

p1n↾α2. Then H ∩Pα1
= Gα1

, and H is generic for Pα2
over V , so we will write Gα2

for H. Let f2
i = f

∼
2
i [Gα2

].

We have to check V [Gα2
] |= f2

i ↾n = f1
i ↾n. It is enough to show that

V [Gα2
] |= p2n‖−Pβ/Gα2

f2
i ↾n = f

∼
i↾n = f1

i ↾n.

The first equality is clear by the definition of f
∼

2
i . To prove the second, let Gβ be

a V [Gα2
]-generic filter on Pβ/Gα2

containing p2n. Again, Gβ ⊇ Gα2
is also generic

for Pβ over V , and it contains p1n. (Remember that p1n↾α2 ∈ Gα2
, so by 5.15(4)

+
,

p2n ≥ p1n.) Hence V [Gβ] |= f
∼

i[Gβ]↾n = f1
i ↾n.

Proof of the induction lemma: We proceed by induction on β.

The successor step is similar to the proof of 5.12:

Assume 〈p
∼

n : n ∈ ω〉 is a sequence of Pα-names for conditions in Pβ+1/Gα, in-

terpreting f̄
∼

as f̄
∼

∗ in V [Gα]. (I.e., f̄
∼

∗ is a Pα-name, and f̄
∼

is a Pβ+1-name which

we identify with the corresponding Pα-name for a Pβ+1-name.)

Working in Vβ , we can define f̄ ′, n∗, 〈p′n : n ∈ ω〉 such that the following hold:

· n∗ = sup({n ∈ ω : pn↾β ∈ Gβ} ∪ {−1}) (also n∗ = ω is possible)

· 〈p′n : n ∈ ω〉 is an increasing sequence of conditions in Qβ ,

interpreting f̄
∼

as f̄ ′.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 339

· If n∗ ∈ ω, then p′0 ≤ pn∗(β).

· If n∗ = ω, then f̄ ′ = f̄
∼

∗.

Coming back to V , we can find Pβ-names n∼
∗, etc. Now 〈p

∼
n↾β : n ∈ ω〉 is a

sequence of names for conditions in Pβ/Gα forced to interpret ~f
∼

′ as f̄
∼

∗, and

〈p
∼

′
n : n ∈ ω〉 is a sequence of Pβ-names for conditions in Qβ forced to interpret

f̄
∼

as ~f
∼

′. So we can use the induction hypothesis on α, β and the assumption on

Qβ to obtain q+↾β and q+(β), respectively.

This ends the proof of the successor case.

Let β be a limit ordinal.

Let 〈Dn : n < ω〉 enumerate all dense open subsets of Pβ that are in N , where

D0 = Pβ . Let δ := sup(N ∩ β), δ =
⋃

j αj , α = α0 < α1 < · · · , 〈αj : j ∈ ω〉 ∈ N .

Fix Pβ-names f̄
∼

= 〈f
∼0, . . . , f∼k−1〉 of functions.

Assume that

(1)0 ‖−α〈pn : n < ω〉 ∈ ω(Pβ/Gα) interprets f̄
∼

as f̄
∼

∗

and let for i < k n∼i be names of integers such that ‖−αf∼
i ⊏n

∼i
g.

First claim: wlog we may assume that

(2)0 ‖−α“〈pn(α) : n < ω〉 ∈ ωQα is inconsistent”

[Proof of first claim: It is enough to find a sequence 〈p′n : n < ω〉 satisfying (1)0 and

(2)0 such that for all n, ‖−αp
′
n ≤∗ pn.

To find this sequence, we work in Vα. If 〈pn(α) : n < ω〉 is inconsistent, we

let p′n := pn. Otherwise, let r0 ∈ Qα be a condition such that for all n, r0 ≤∗ pn(α),

and let r0 ≤ r1 ≤ · · · be an increasing inconsistent sequence in Qα. Now let

p′n := pn ∧ rn, i.e.,

p′n(γ) =

{
rn if γ = α

pn(γ) if γ 6= α

Then 〈p′n : n < ω〉 satisfies the requirements. This proves the first claim.]

Let 〈f
∼

n : n < ω〉 enumerate all names f
∼

in N satisfying ‖−β f∼
∈ C.

We will construct sequences 〈〈p
∼

j
n : n < ω〉 : j < ω〉 and 〈〈f

∼
j
i : i < k + j〉 : j < ω〉

satisfying the following for all j ∈ ω:

(⋆) p
∼

j
n is a Pαj

-name for an element of Pβ/Gαj

(∗) f
∼

j
i a Pαj

-name for an element of ωω

(0) 〈p
∼

0
n : n < ω〉 = 〈p

∼
n : n < ω〉, 〈f

∼
0
i : i < k〉 = 〈f

∼
i : i < k〉.

(1)j+1 ‖−αj+1
“〈p
∼

j+1
n : n < ω〉 ∈ ω(Pβ/Gαj+1

) interprets 〈f
∼0, . . . , f∼k+j〉 as

〈f
∼

j+1
0 , . . . , f

∼
j+1
k+j〉, and p

∼
j
0 decides f

∼
0↾j, . . . , f

∼
k+j↾j”

340 MARTIN GOLDSTERN IMCP

(2)j+1 ‖−αj+1
〈pj+1

n (αj+1) : n < ω〉 is inconsistent.

(3)j+1 ‖−αj
〈p
∼

j
n↾αj+1 : n < ω〉 ∈ ω(Pαj+1

/Gαj
) interprets 〈f

∼
j+1
0 , . . . , f

∼
j+1
k+j−1〉

as 〈f
∼

j
0, . . . , f∼

j
k+j−1〉.

(4)j+1 ‖−αj+1
If p
∼

j
0↾αj+1 ∈ Gαj+1

, then p
∼

j+1
0 ≤ p

∼
j
0.

(5)j+1 ‖−αj+1
p
∼

j+1
0 ∈ Dj+1

Note that the statements (1)0 and (2)0 mentioned at the beginning of the proof

are exactly (1)j+1 and (2)j+1 for j = −1.

We can obtain the sequences 〈p
∼

j+1
n : n < ω〉 and 〈f

∼
j+1
i : i < k + j + 1〉 from the

given sequences 〈p
∼

j
n : n < ω〉, 〈f

∼
j
i : i < k + j + 1〉 and Dj by applying the prelim-

inary lemma in N , so each 〈p
∼

j
n : n ∈ ω〉 will be in N .

Now we construct sequences 〈qj : j < ω〉 (where each qj is an N -generic condition

in Pαj
) and 〈n∼j : j < ω〉 (n∼j a Pαj

-name for an integer) satisfying

(•) ‖−αj+1
: If ∃n f

∼
j
k+j ⊏n g, then f

∼
j
k+j ⊏n

∼k+j
g.

(+) qj+1↾αj = qj .

(A) qj+1‖−p
∼

j
0↾αj+1 ∈ Gαj+1

.

(B) qj+1 ∈ Pαj+1
is N -generic.

(C) qj+1‖−∀f ∈ N [Gαj+1
] f ⊏ g.

(D) qj+1‖−∀i < k + j + 1 : f
∼

i ⊏n
∼i

g.

We let q0 = q. n∼0, . . . , n∼k−1 are already defined. By assumption (a)–(d) of the

induction lemma, (A)–(D) are now satisfied for j = −1.

Given qj and n∼0, . . . , n∼k+j−1, we can easily find n∼j+k by requirement (•). Now

apply the induction assumption to the sequences 〈pjn : n < ω〉, 〈f
∼

i : i < k + j〉,

〈f
∼

j
i : i < k + j〉 to get qj+1. This will show that qj+1 satisfies (+), (A), (B), (C).

The induction assumption also implies that qj+1 will satisfy (D) for all i < k + j.

Finally, (•) and (C) imply that (D) is also satisfied for i = k + j.

Note that qj+1‖−p
∼

j
0↾αj+1 ∈ Gαj+1

, so by (4),

qj+1‖−p
∼

j+1
0 ≤ p

∼
j
0

To conclude the proof of the Induction Lemma, let q =
⋃

j qj . Then q ∈ Pδ ⊆ Pβ .

We have to check that this works.

Let Gβ be any generic filter containing q. We write pjn for p
∼

j
n[Gαj

], etc.

Clearly 〈pj0 : j < ω〉 is an increasing sequence of conditions. First we claim that

pj0 ∈ Dj ∩N . By (5), pj0 ∈ Dj , and since qj is generic, pj0 = p
∼

j
0[Gαj

] ∈ N .

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 341

Next we note that for all k, pk0↾αk ∈ Gαk
. Since pj0 ≥ pk0 for j ≤ k, pj0↾αk ∈ Gαk

for all k ≥ j, hence pj0 ∈ Gδ. Since pj0 ∈ N , dom(pj0) ⊆ δ. So pj0 ∈ Gβ . This shows

Gβ ∩Dj ∩N 6= ∅. So q is generic.

For any i, f j
i ↾j = fi↾j (by the second clause in (1)). So fi = lim

j<ω
f j
i . Since for

all j, f j
i ⊏ni

g, and {f : f ⊏ni
g} is closed, fi ⊏ni

g. So g covers N [Gβ].

In particular, for i < k, fi ⊏ni
g, thus showing condition 5.11(d).

So we also finished the limit case.

6 Applications

The general strategy for preserving a property in limit stages of a countable

support iteration is as follows:

(1) Find a stronger property that can be written as Q‖−∀f ∈ V [G] ∃g ∈ V

f ⊏ g for a Σ0
2 relation ⊏. Let ⊏=

⋃
n ⊏n, where each ⊏n is

closed.

(2) Prove that all Qα preserve 〈⊏n: n ∈ ω〉.

Then by the preservation theorem, for all α, Pα‖−∀f ∈ V [Gα] ∃g ∈ V f ⊏ g,

and hence Pα has the property we wanted to preserve.

Fact 6.1: If for all g and all n, the set {f : f ⊏n g} is closed and open, then:

Q almost preserves ⊏ ⇔ Q preserves ⊏

Proof: ⇐ is clear.

⇒: Assume that g covers the countable elementary model N , p̄ := 〈pn : n ∈ ω〉

is an increasing sequence of conditions interpreting f̄
∼

= (f
∼

0, . . . , f
∼

k−1) ∈ N as

f̄∗ = (f∗
0 , . . . , f

∗
k−1), and let f∗

i ⊏ni
g for all i < k.

Fix i < k. Since the set Ai := {f : f ⊏ni
g} is open, there exists an integer n∗

i

such that [f∗
i ↾n

∗
i] ⊆ Ai.

Let n∗ := max{n∗
i : i < k}. As Q almost preserves ⊏, we can find a generic

condition q ≤ pn∗ , satisfying 5.11(a)–(c).

For each i, we have q‖−f
∼

i↾n
∗ = f∗

i ↾n
∗, thus

q‖−f
∼

i ∈ [f∗
i ↾ni] ⊆ {f : f ⊏ni

g}

so q also satisfies 5.11(d).

In general, “Q preserves ⊏” and “Q almost preserves ⊏” are not equivalent, as

can be seen from the following example:

Example 6.2: Let ⊏ = 〈⊏n: n ∈ ω〉 be defined by f ⊏n g ⇔ ∀k ≥ n : f(k) < g(k),

assume that Q is ωω-bounding (and thus preserves ⊏, see 6.5, below).

Let ⊏′
n=⊏n for n > 0, and let f ⊏′

0 g iff for all k, f(k) = 0, and ⊏′=
⋃

n ⊏′
n.

Then for any f, g: f ⊏ g iff f ⊏′ g, hence for any model N :

g ⊏-covers N iff g ⊏′-covers N

342 MARTIN GOLDSTERN IMCP

and thus: Q almost preserves ⊏ iff Q almost preserves ⊏′.

Claim: If Q adds reals, then Q does not preserve ⊏′. (But if Q is ωω-bounding,

then Q almost preserves ⊏′.)

Proof: Let x∼ be a name such that ‖−Qx∼ ∈ ωω& x∼ /∈ V . Let p̄ := 〈pn : n ∈ ω〉

be an increasing sequence of conditions interpreting x∼. Then

‖−Q∃n : pn /∈ G

Define a name f
∼

∈ ω2 by requiring ‖−Q“f∼
(n) = 0 ⇔ pn ∈ GQ.” Let f∗ be the

function with ∀nf∗(n) = 0.

Then: f∗ ⊏′
0 g, and 〈pn : n ∈ ω〉 interprets f

∼
as f∗, but ‖−Q∃nf∼

(n) 6= 0, thus

‖−Q¬(f∼
⊏′

0 g).

Hence there is no condition satisfying 5.11(d).

Application 1: Preservation of ωω-bounding

Definition 6.3: A forcing notion Q is called ωω-bounding iff

‖−
Q

∀f ∈ ωω ∩ V [G] ∃g ∈ ωω ∩ V ∀n f(n) < g(n)

There is a natural way to translate this property into the framework of the

“preservation theorem” in 5.11:

Definition 6.4: We let (for f, g ∈ ωω)

f ⊏bound
n g ⇔ ∀k ≥ n f(k) < g(k)

This is a closed relation. Letting ⊏bound=
⋃

n ⊏bound
n , clearly Q is ωω-bounding

iff

‖−
Q

∀f ∈ ωω ∩ V [G] ∃g ∈ ωω ∩ V f ⊏bound g

Lemma 6.5: A proper forcing notion Q preserves ⊏bound iff it is ωω-bounding.

Proof: Assume Q preserves ⊏bound. Then for any name f
∼

and any condition

p, let N be a model containing f
∼

and p. Let g cover N . We can find a condition

q ≤ p forcing that f
∼

⊏bound g. Now g is in the ground model, so Q is ωω-bounding.

Conversely, assume that Q is ωω-bounding, and consider a model N and a se-

quence 〈pn : n < ω〉 as in the hypothesis of 5.11. We also have names f
∼

0, . . . , f
∼

k−1,

and functions f∗
i such that pn‖−f

∼
i↾n = f∗

i ↾n for all i < k.

First we note that any N -generic q will force

∀f ∈ N [G] ∃f ′ ∈ N ∀n f(n) < f ′(n)

Since any such f ′ is eventually bounded by g, q‖−∀f ∈ N [G] f ⊏bound g.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 343

We still have to deal with our fixed names f
∼

i. Assume f∗
i ⊏bound

ni
g. For each

n we can find a condition p′n ≤ pn and functions f ′
i,n ∈ N (i < k) such that

p′n‖−∀k f
∼

i(k) < f ′
i,n(k). Let for all i < k f ′

i be defined by

f ′
i(k) = max{f ′

i,n(k) : n ≤ k}+ 1

We can find these sequences 〈p′n : n < ω〉 and 〈f ′
i,n : i < k, n < ω〉 in N , so there

are n′
i such that f ′

i ⊏bound
n′

i
g, n′

i ≥ ni. Let n∗ ≥ n′
i for all i, and let q ≥ p′n∗ be a

generic condition. Then

q‖−∀k ≥ n∗ f
∼

i(k) < f ′
i,n∗(k) < f ′

i(k) < g(k)

q‖−∀k ∈ (ni, n
∗) f

∼
i(k) = f∗

i (k) < g(k)

so q‖−f
∼

i ⊏
bound
ni

g.

Corollary 6.6: The countable support iteration of proper ωω-bounding forcing no-

tions is (proper and) ωω-bounding.

Application 2: Preserving outer measure one

Let Ω be the set of clopen subsets of ω2. Ω is a countable set. We will consider

functions f ∈ ωΩ and functions g ∈ ω2.

µ(A) is the Lebesgue measure of any measurable set A ⊆ ω2, and we let µ∗(A)

be the outer Lebesgue measure of any set A ⊆ ω2.

We let

Crandom := {f ∈ ωΩ : ∀n ∈ ω µ(f(n)) ≤ 2−n}

This is a closed set (in the product topology of ωΩ, where Ω is equipped with

the discrete topology).

For f ∈ Crandom, we let

Af :=
⋂

n∈ω

⋃

k≥n

f(k)

Fact 6.7:

(1) If f ∈ Crandom, then Af ⊆ ω2 is a set of measure zero.

(2) If H ⊆ ω2 has measure zero, then there is f ∈ Crandom such that

H ⊆ Af .

Proof: (1) follows from µ
(⋃

k≥n

f(k)
)
≤ 2−n + 2−n−1 + · · · = 2−n+1.

(2): Let Γ : ω × ω → ω be a monotone bijection. For each m, H can be covered

by an open set of measure < 2−Γ(m,0), say

H ⊆
⋃

k∈ω

[smk] smk ∈ 2<ω µ
(⋃

k∈ω

[smk]
)
≤ 2−Γ(m,0)

344 MARTIN GOLDSTERN IMCP

For each m, we can find a sequence 0 = km0 < km1 < · · · of integers satisfying

µ
(⋃

k≥km
j

smk
)
< 2−Γ(m,j)

for all j ∈ ω.

Define f by

f(Γ(m, j)) =
⋃

{[smk] : kmj ≤ kkmj+1}

This is a finite union of basic clopen sets, hence clopen. Also,

µ(f(Γ(m, j))) ≤ µ
(⋃

k≥km
j

smk
)
≤ 2−Γ(m,j)

so f ∈ Crandom.

Note that for all m,
⋃

j∈ω f(Γ(m, j)) =
⋃
{[smk] : k ∈ ω} ⊇ H. For all n ∈ ω

there is m ∈ ω such that ∀j : Γ(m, j) > n, so

∀n∃m H ⊆
⋃

j∈ω

f(Γ(m, j)) ⊆
⋃

k≥m

f(k)

so H ⊆
⋂

m∈ω

⋃

k≥m

f(k).

Definition 6.8: For f ∈ Crandom, g ∈ ω2, n ∈ ω we let f ⊏random
n g iff ∀k ≥ n g /∈

f(k).

This is a closed relation since (for fixed k), “g ∈ f(k)” is clopen.

Fact 6.9: f ⊏random g iff g /∈ Af .

Fact 6.10: For a countable model N of ZFC:

g ⊏random-covers N ⇔ g is random over N

Proof: Assume that g is random over N . Fix a function f ∈ Crandom. Then as

g is not an element of the null set Af , we have f ⊏random g.

Conversely, assume that ∀f ∈ N f ⊏random g. Then for any measure zero set H

in N we can find a sequence f ∈ Crandom such that H ⊆ Af . Since f ⊏random g,

g /∈ Af , so g /∈ H.

Fact 6.11: If Q preserves ⊏random, then ‖−Qµ
∗(V ∩ ω2) = 1.

Proof: Assume p‖−µ(V ∩ ω2) = 0. Then there is a name f
∼

such that p‖−f
∼

∈

Crandom &V ∩ ω2 ⊆ Af
∼
. Take any countable elementary model N containing p and

f
∼
, and let g cover N . Then p‖−g ∈ Af

∼
, but there is a condition q ≤ p, q‖−“g

covers N [G],” so q‖−g /∈ Af
∼
, a contradiction.

This fact justifies the following definition:

Definition 6.12: We say that a forcing notion Q “preserves outer measure one”

iff Q preserves ⊏random.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 345

In [7], the following property of forcing notions was considered:

Definition 6.13: A forcing notion Q satisfies ∗4 if for every countable N ≺ H(χ),

if P ∈ N , 〈pn : n ∈ ω〉 ∈ N , each pn in P , and 〈A∼n : n ∈ ω〉 ∈ N , each A∼n a P -

name, for every n, pn‖−“A∼n is a Borel set and µ(A∼n) < εn” and limn→∞ εn = 0

and g ∈ ω2 is random over N then there exists q ∈ P such that

(i) q is (N,P)-generic.

(ii) q‖−“g is random over N [GQ].”

(iii) there exists n such that q ≤ pn and q‖−“x /∈ A∼n.”

[7] also showed that Laver forcing has the property ∗4.

Lemma 6.14: If Q satisfies ∗4, then Q “preserves outer measure one.”

Proof: Let 〈pn : n ∈ ω〉, f̄
∼

= 〈f
∼0, . . . , f∼k−1〉 be as in 5.11, let N be a countable

elementary model, and let g cover N . Then g is random over N .

Define Q-names A∼n such that

‖−A
∼n =

⋃

i<k

⋃

m≥n

f
∼

i(m)

Then ‖−µ(An) ≤ εn, where εn := k · 2−n+1.

Let 〈pn : n ∈ ω〉 interpret f̄
∼

as f̄∗, and assume f∗
i ⊏random

ni
g. Let n∗ := max{ni :

i < k}. Applying ∗4 to the sequence 〈pn : n∗ ≤ n < ω〉, we can find an n∗∗ ≥ n∗

and a generic condition q ≤ pn∗∗ such that q‖−“g is random over N [G],” and

q‖−g /∈ An∗∗ .

As g is random over N [G] iff g covers N [G], q satisfies 5.11(a)–(c).

For each i < k we have q‖−g /∈
⋃

m≥n∗∗ f
∼

i(m). So to get 5.11(d), it suffices to

show

q‖−g /∈
⋃

ni≤m<n∗∗

f
∼

i(m)

This follows easily from q ≤ pn∗∗ , as

pn∗∗‖−g /∈
⋃

ni≤m<n∗∗

f∗
i (m) =

⋃

ni≤m<n∗∗

f
∼

i(m)

Thus (by [7]) the Laver forcing “preserves outer measure one.”

Lemma 6.15: The random real forcing notion “preserves outer measure one.”

To prove this lemma, we first show the following claim:

Claim 6.16: Let Q be the random real forcing, and let A∼ be a Q-name for a subset

of IR, p ∈ Q, and assume that for some real c, p‖−µ∗(A∼) < c. Then, letting

A(p) := {x ∈ IR : p‖−x ∈ A
∼
},

we have µ∗(A(p)) ≤ c.

346 MARTIN GOLDSTERN IMCP

Proof of the claim: Let B∼ be the name of a Borel set such that p‖−“A∼ ⊆

B∼&µ(B∼) < c.

Notation: For any set C ⊆ IR2, t ∈ IR, we let

Ct :={x ∈ IR : (x, t) ∈ C}

Ct :={y ∈ IR : (t, y) ∈ C}

There is a Borel set C ⊆ IR2 such that p‖−B∼ = Cr, where r is the canonical name

of the random real. Wlog C ⊆ p× IR. In V we have for almost all x µ(Cx) ≤ c, so

µ(C) ≤ c · µ(p).

Let D := {y : Cy =∗ p} = {y : p ⊆∗ Cy}. (We write X ⊆∗ Y iff µ(X − Y) = 0.)

We claim D = B(p). Proof: We have y ∈ B(p) ⇔ p‖−y ∈ B ⇔ p‖−y ∈ Cr ⇔

p‖−(r, y) ∈ C ⇔ p‖−r ∈ Cy ⇔ µ(p− Cy) = 0.

Clearly µ(C) ≥ µ(D) · µ(p), so µ(D) ≤
µ(C)
µ(p)

≤ c.

This ends the proof of 6.16.

Proof of 6.15:

We first show that Q almost preserves ⊏random and in fact any condition in N

is generic and forces “g is random over N [G],” if g is random over N .

Every condition is generic, because Q satisfies ccc. Now assume that 6‖− “g is

random over N [G].” Then for some condition q, and some B∼ ∈ N , ‖−Q“µ(B∼) = 0”

and q‖−Q“g ∈ B∼.” Let C ∈ N such that ‖−“B∼ = Cr.” So q‖−r ∈ Cg, which is

impossible, since C is a set in N of measure zero, so Cg has measure zero. This

shows that random real forcing almost preserves ⊏random,Crandom.

Assume f∗
i ⊏random

ni
g, pn‖−f

∼
i↾n = f∗

i ↾n.

In N we can define a sequence 〈Bn : n < ω〉 as follows:

Bn :=
{
x ∈ IR : pn‖−x ∈

⋃

i<k

(⋃

m≥n

f
∼

i(m)
)}

By 6.16,

µ∗(Bn) ≤ k ·
∑

m≥n

2−m ≤
2k

2n

Since 〈Bn : n ∈ ω〉 ∈ N , and g is random over N , g /∈
⋂

n Bn. So there exists a

n∗ ≥ max(n0, . . . , nk−1) such that g /∈ Bn. There exists a condition q ≤ pn∗ ,

q‖−∀i < k : g /∈
⋃

m≥n∗

f
∼

i(m)

Since for all i < k,

q‖−g /∈
⋃

ni<m<n∗

f∗
i (m) =

⋃

ni<m<n∗

f
∼

i(m)

we have q‖−∀i < k f
∼

i ⊏
random
ni

g.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 347

A similar proof shows that random real forcing satisfies ∗4, proving a conjecture

of Miller.

Application 3: Preserving nonmeager sets

We consider functions f from ω<ω to ω<ω, and functions g from ω to ω.

Fact 6.17:

(1) For any f : ω<ω → ω<ω, the set

Af := {g : ∀n g↾n⌢f(g↾n) 6⊆ g}

is closed nowhere dense.

(2) Conversely, for every closed nowhere dense set H there is a

function f such that H ⊆ Af .

Proof: For every n, the set {g : g↾n⌢f(g↾n) ⊆ g} =
⋃

η∈nω[η
⌢f(η)] is clopen,

so Af is closed. Af cannot contain any basic interval [η], since Af is disjoint from

[η⌢f(η)].

Conversely, let H be a closed nowhere dense set in ωω. Then as H is closed,

there is a tree T ⊆ ω<ω such that H = {f ∈ ωω : ∀n f↾n ∈ T}. As H is nowhere

dense, for every η ∈ ω<ω there is an extension η⌢f(η) such that H ∩ [η⌢f(η)] = ∅.

Definition 6.18: We let CCohen be the set of all functions from ω<ω to ω<ω.

We define ⊏Cohen by f ⊏Cohen
k g iff

f : ω<ω → ω<ω.

g : ω → ω.

∃n ≤ k : g↾n⌢f(g↾n) ⊆ g.

Fact 6.19: f ⊏Cohen g iff g /∈ Af .

Fact 6.20: g ⊏Cohen-covers N iff g is Cohen over N .

Proof: Recall that g ∈ ω2 is Cohen over a model, iff it not contained in any

meager set coded in the model, iff it is not contained in any closed nowhere dense

set coded in the model.

Assume that g is Cohen over N . Fix a function f ∈ CCohen. Then as g is Cohen,

g is not an element of the meager set Af , so there is an n such that f ⊏Cohen
n g.

Conversely, assume that ∀f ∈ N f ⊏Cohen g. Then for any closed nowhere dense

set H in N we can find a sequence f ∈ CCohen such that H ⊆ Af . Since there is

some n such that f ⊏Cohen
n g, g /∈ H.

Fact 6.21: If Q preserves ⊏Cohen, then Q‖−“V ∩ ωω is not meager”.

Proof: Assume p‖−V ∩ ω2 is meager. Then there is a name f
∼

such that p‖−V ∩
ω2 ⊆ Af

∼
. Take any countable elementary model N containing p and f

∼
, and let g

cover N . Then p‖−g ∈ Af , a contradiction.

In [11, ch.18], a converse to this theorem is proved:

348 MARTIN GOLDSTERN IMCP

Theorem 6.22: Assume that (Q,≤) is a Souslin proper forcing notion (see section

7), and

(∗) ‖−QV ∩ ωω is not meager

and moreover, Q has property (∗) in any extension of V (by set forcing). Then Q

preserves ⊏Cohen.

Example 6.23: Cohen forcing preserves ⊏Cohen.

Proof: Note that each relation ⊏Cohen
n is clopen. By 6.1, it is enough to show

that Cohen forcing almost preserves ⊏Cohen.

We claim that if g covers N , then any condition forces “g covers N [G].” The

proof is exactly the same as the proof in the previous section, with “measure zero”

replaced by “meager”, “random” replaced by “Cohen”, etc.

Application 4: The Laver property

From now on until the end of this section, n will be a variable ranging over

positive natural numbers.

Definition 6.24: For a function h : ω → ω, an “h-cone” is a sequence 〈Am : m ∈ ω〉

of finite subsets of ω with |An| ≤ h(n) for all n > 0.

If h,H : ω → ω, Ā an h-cone, we say that Ā is bounded by H if for all n > 0,

An ⊆ H(n).

Q+ is the set of nonnegative rationals. For r ∈ Q+, an r-cone is an h-cone where

h(m) = ⌊2mr⌋. (⌊x⌋ is the greatest integer ≤ x.)

A “cone” is a sequence 〈Am : m ∈ ω〉 of finite subsets of ω with |An| ≤ 2n (i.e.,

a 1-cone).

We say that Ā = 〈Am : m ∈ ω〉 “covers” f ∈ ωω if for all n > 0 f(n) ∈ An.

If f ∈ ω([ω]<ω), we say that Ā covers f iff for all n > 0 f(n) ⊆ An.

For a function H ∈ ωω, we write
∏

H for the set {f ∈ ωω : ∀n > 0 f(n) < H(n)}.

This is a closed subset of ωω.

Definition 6.25: A forcing notion Q is said to have the Laver Property iff for

every H : ω → ω in V ,

(Laver)H ‖−Q“∀f ∈
∏

H ∩ V [G] : ∃Ā ∈ V , Ā is a cone covering f

Note that if ∀n > 0H(n) ≤ H ′(n), then
∏

H ⊆
∏

H ′, so (Laver)H′ im-

plies (Laver)H . So without loss of generality we may restrict ourselves to some

dominating family of functions H, e.g. all increasing functions in ω(ω − {0}).

Fact 6.26: The following are equivalent for any two universes V0 ⊆ V1:

(1) For all H ∈ ωω ∩ V0: If f ∈ ωω ∩ V1 is bounded by H, then f is

covered by some cone of V0.

(2) For all H ∈ ωω ∩ V0, for all functions h0 ∈ ωω ∩ V0 that diverge

to infinity:

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 349

If f ∈ ωω ∩ V1 is bounded by H, then f is covered by

some h0-cone of V0.

(3) For all H ∈ ωω ∩ V0: For all h0, h1 ∈ ωω ∩ V0: If for all n,

h0(n) ≤ h1(n), and h0(n) = o(h1(n)), i.e., lim
n→∞

h1(n)

h0(n)
= ∞,

then for all h0-cones f ∈ V1:

If f is bounded by H, then f is covered by some h1-cone

F ∈ V0.

We will give the proof of this fact (a routine computation) below.

Definition 6.27: If any/all of these conditions are satisfied, we say that V1 has

the Laver property over V0.

Note that by (1), a forcing notion Q has the Laver property iff

Q‖−V [G] has the Laver property over V

Notation 6.28: Fix some (recursive) map c from [ω]<ω onto the set of rational

numbers in [0,1). If c(x) = r we say “x codes r.”

Definition 6.29: Let

CH := {f ∈ ω
(
[ω]<ω

)
: If f(0) codes r0, then ∀n > 0 : f(n) ⊆ H(n)

and |f(n)| ≤ 2nr0}

Definition 6.30: Let ⊏H = 〈⊏H
k : k < ω〉 be defined by f ⊏H

k g iff

g is a cone bounded by H.

f(0) codes some r0.

f ∈ CH (so ∀n > 0 |f(n)| ≤ 2nr0)

∀n > k f(n) ⊆ g(n).

We let ⊏H=
⋃

k ⊏H
k .

Clearly the set {f : f ⊏H
k g} is closed for all g, and for any countable set a there

is g such that ∀f ∈ a ∩CH f ⊏H g.

Definition 6.31: Let Q be a forcing notion. If H ∈ ωω, 0 ≤ r < s, we write

(Laver)H,r,s for the statement:

(Laver)H,r,s ‖−
Q

“Every r-cone f in V [G] that is bounded by H

is covered by some s-cone F ∈ V ”

Thus, (Laver)H from 6.25 is equivalent to (Laver)H,0,1.

Lemma 6.32: Assume Q is a proper forcing notion. Then the following are equiav-

lent:

(1) Q satisfies the Laver property.

(2) For all H ∈ ωω, all 0 ≤ r < s, Q satisfies (Laver)H,r,s.

(3) For all H ∈ ωω, all 0 ≤ r < 1, Q satisfies (Laver)H,r,1.

(4) For all H ∈ ωω, Q satisfies (Laver)H,0,1.

350 MARTIN GOLDSTERN IMCP

(5) For all H, Q preserves ⊏H .

(6) For all H, Q almost preserves ⊏H .

Proof: We will show (1)⇒(2)⇒(3)⇒(4)⇒(1).

⇓ ⇑

(5)⇒(6)

(1) ⇒ (2) follows from the characterisation 6.26(3), using the functions h0(n) =

2rn, h1(n) = 2sn.

(2) ⇒ (3) ⇒ (4) ⇒ (1) is clear, and also (5) ⇒ (6) is clear.

(6)⇒ (3) follows from 5.6. (Note that in (3) we can restrict ourselves to rational

numbers r.)

So it remains to show (2) ⇒ (5).

Assume that Q satisfies (Laver)H,r,s for all 0 ≤ r < s. Let N be a countable

elementary model, H ∈ N , and assume that g covers N .

Claim: If G is generic over V , and G∩N is generic over N , then g covers N [G].

Proof of the claim: Let f ∈ CH ∩ N [G], and let f(0) code r0. Let t0 :=

(r0 + 1)/2.

So ∀n > 0 f(n) ⊆ H(n) and |f(n)| ≤ 2nr0 . By (Laver)H,r0,t0
, there is F ∈ V ,

∀n > 0 |F (n)| ≤ 2nt0 and f(n) ⊆ F (n) ⊆ H(n). Since G ∩N is generic over N ,

we can find this F in N . We may assume that F (0) codes t0. (So f ∈ CH ∩N .)

Since g covers N , there is a k such that F ⊏H
k gs. So for all n ≥ k, f(n) ⊆

F (n) ⊆ gs(n). This ends the proof of the claim.

So every generic condition will force 5.11(a)–(c).

We still have to deal with condition (d) of 5.11. So assume that 〈pn : n < ω〉

interprets 〈f
∼0, . . . , f∼k−1〉 as 〈f∗

0 , . . . , f
∗
k−1〉, and assume ∀i < k f∗

i ⊏ni
g. Let

f∗
i (0) code ri, and let si, ti be rationals such that ri < si < ti < 1.

By (Laver)H,ri,si
, for all n > 0 we can find a condition p′n ≥ pn such that for all

i < k there exists a function Fn,i with Fn,i(m) ⊆ H(m) and |Fn,i(m)| ≤ 2msi for

all m, and

p′n‖−∀m > 0 f
∼

i(m) ⊆ Fn,i(m)

We can find these sequences 〈p′n : n < ω〉 and 〈Fn,i : n < ω, i < k〉 in N .

Now define for i < k Fi as follows: Fi(0) codes ti, and for n > 0 let

Fi(n) =
⋃

{Fm,i(n) : m ≤ 2n(ti−si)}

Then Fi(n) ⊆ H(n), and |Fi(n)| ≤ 2nti .

Furthermore, we have Fm,i(n) ⊆ Fi(n), if m ≤ 2n(ti−si).

Let m0 be so large that

(i) For all n ≥ m0, all i < k, 2n(ti−si) > n.

(ii) For all i < k, Fi ⊏
H
m0

g.

(iii) For all i < k, m0 > mi (so f∗
i ⊏H

m0
g.)

We now claim that for any generic q ≥ p′m0
,

q‖−∀i < k f
∼

i ⊏ni
g

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 351

Proof: Let G be a generic filter containing q, fix some i < k, and let fi = f
∼

i[G].

For n ∈ [ni,m0) we have fi(n) = f∗
i (n) because q ≤ pm0

, and f∗
i (n) ⊆ g(n)

because f∗
i ⊏H

ni
g.

For n ≥ m0, we have

fi(n) ⊆ Fm0,i(n) because pm0
∈ G,

Fm0,i(n) ⊆ Fi(n) because m0 ≤ n ≤ 2n(ti−si), and

Fi(n) ⊆ gsi(n) because Fi ⊏
H
m0

g.

Hence for all n ≥ ni, fi(n) ⊆ gsi(n), so fi ⊏ni
g.

Corollary 6.33: The Laver property is preserved under countable support iteration

of proper forcing notions.

Proof of 6.26:

Clearly (3) ⇒ (2) ⇒ (1).

To show that (1) ⇒ (3), fix h0, h1 in V0 and f in
∏
n
[ω]<h0(n) ∩ V1. We can find

a function ℓ ∈ ωω ∩ V0 such that for all n ℓ(⌊log h1(n)
h0(n)

⌋) > n. (log is the logarithm

to base 2.)

Let i be a bijection between HF (the hereditarily finite sets) and ω.

Let H ′(k) = 1 + max{i(η)(k) : |η| ≤ ℓ(k), ∀n η(n) < H(n)} and define f ′ ∈ ωω

by f ′(k) = i(f↾ℓ(k)). Then H ′ ∈ V0, and f ′(k) < H ′(k). Using (1) on f ′, we can

get F ′ ∈ V0, such that ∀k f ′(k) ∈ F ′(k)& |F ′(k)| ≤ 2k. Clearly we may assume

i(η) ∈ F ′(k) ⇒ ∀n ∈ dom(η) |η(n)| ≤ h0(n).

Let F (n) =
⋃

{η(n) : i(η) ∈ F ′(
⌊
log(h1(n)/h0(n))

⌋
)}. So |F (n)| ≤ h0(n) ×

h1(n)
h0(n)

≤ h1(n).

Now we claim that for all n, f(n) ⊆ F (n).

Proof: Fix n, and let k =
⌊
log

h1(n)

h0(n)

⌋
, η = f↾ℓ(k). Then ℓ(k) > n, so n ∈

dom(η).

Since i(η) = f ′(k) ∈ F ′(k), f(n) = η(n) ⊆ F (n).

Application 5: The Sacks Property

Definition 6.34: A forcing notion Q is said to have the Sacks Property iff

‖−Q“∀f ∈ ωω ∩ V [G] : ∃Ā ∈ V , Ā is a cone covering f

Fact and Definition 6.35: The following are equivalent for any two universes

V0 ⊆ V1:

(1) Every f ∈ V1 is covered by some cone of V0.

(2) For all functions h0 ∈ ωω ∩ V0 that diverge to infinity:

Every f ∈ V1 is covered by some h0-cone of V0.

352 MARTIN GOLDSTERN IMCP

(3) For all h0, h1 ∈ ωω ∩ V0: If for all n, h0(n) ≤ h1(n), and

h0(n) = o(h1(n)), then for all h0-cones f ∈ V1 there is an h1-cone

F ∈ V0 covering f .

If any/all these conditions are satisfied, we say that V1 has the Sacks property

over V0. We say that a forcing notion Q has the Sacks property iff

Q‖−V [G] has the Sacks property over V

Define H∞(n) = ω for all n, then all proofs about the Laver property can be

translated into proofs for the corresponding facts about the Sacks property, by

letting H range over {H∞} instead of over all increasing functions.

In particular we get

(1) Q has the Sacks property iff Q satisfies (Laver)H,r,s (where

H = H∞) for all r < s iff Q preserves ⊏H∞

.

(2) The Sacks property is preserved under countable support iteration

of proper forcing notions.

(Alternatively, the fact that the Sacks property is preserved by countable support

iteration follows fron the fact that Q has the Sacks property iff Q has the Laver

property and is ωω-bounding.)

Application2 — An Example:

We continue the example from the introduction.

Recall that we are trying to build a model where every set of < c many functions

is bounded, the set of reals cannot be covered by < c many null sets, but there is

a nonmeasurable set of size < c.

Starting in L we construct an countable support iteration 〈Pα, Qα : α < ω2〉 by

requiring

(1) If α is even, then ‖−α“Qα = random real forcing”. Let rα be the

name of the random real added by Qα.

(2) If α is odd, then ‖−αQα = Laver real forcing. Let fα be the

name of the Laver real added by Qα.

Then we have:

(1) If B∼ is a Pβ-name for a (code of a) Borel null set, and α > β is

even, then

‖−εrα /∈ B
∼

(2) If f
∼

is a Pβ-name for a function in ωω, and α > β is odd, then

‖−εf∼
<∗ fα

(Note that Pω2
is proper and satisfies the ℵ2-cc, so no cardinals are collapsed.)

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 353

By 1.20 we know that every real in V [Gω2
] in fact appears in some V [Gβ], for

some β < ω2. So in Vω2
, no set of size ℵ1 of functions is unbounded, and no family

of Borel null sets of size ℵ1 covers all reals numbers.

Hence Vω2
|= b = d + Cov(N).

To conclude this example, we claim that

Vω2
|= IR ∩ V0 is not of measure zero

To prove this claim it is by 6.11 enough to show that Pω2
preserves ⊏random. By

the general preservation theorem it is enough to show that for all α < ω2 we get

‖−αQα preserves ⊏random.

But we remarked already that both random forcing and Laver forcing preserve

⊏random (see 6.15 and [7]).

This finishes the application2.

7. Souslin Proper forcing

We review the basic facts about iteration of Souslin proper forcing notions (from

[5] and [3]).

Definition 7.1: Assume that (Q,≤) is a forcing notion. We say that Q is a

Souslin forcing notion iff Q, ≤, and the incompatibility relation ⊥Q are analytic

sets.

(Note that in general incompatibility is a Π1
1-relation (if ≤ is analytic), so the

demand on ⊥ really says that incompatibility is a Borel relation.)

Notation 7.2: Using a universal Σ1
1-set, we can associate with each real d two Σ1

1

relations ≤d and ⊥d (subsets of IR× IR) such that every analytic pair ≤,⊥ appears

as some ≤d,⊥d, and the relations x ≤d y and x ⊥d y are Σ1
1.

Definition 7.3: We say that “d codes a Souslin forcing” iff

(1) Qd := 〈field(≤d),≤d〉 is a partial quasiorder. (We also write Qd

for the underlying set field(≤d))

(2) For all x, y ∈ Qd: x ⊥d y ⇔ ¬∃z ∈ Qd : x ≥d z& y ≥d z, i.e., ⊥d

is equal to ⊥(Qd,≤d), the incompatibility relation for the forcing

notion Qd.

Remark 7.4: Clearly these are Π1
2 conditions on d.

Definition 7.5: Assume that d codes a Souslin forcing Qd, and M is a transitive

model model of ZFC* that contains d.

(1) We let QM
d be the Souslin forcing coded by d in M .

(2) If p ∈ QM
d , q ∈ Qd, we say that q is (p,M)-generic, iff

q‖−Qd
“GQd

∩M is QM
d -generic over M and contains p.”

354 MARTIN GOLDSTERN IMCP

(3) We say that “Qd is a Souslin Proper forcing” or “d codes a

Souslin Proper forcing” if d codes a Souslin forcing, and

(∗)
for all countable M as above, every p ∈ QM

d there

exists a (p,M)-generic q ∈ Qd

The property that ⊥ is analytic is sometimes not necessary. We say that (Q,≤)

is weakly Souslin, if ≤ (but not necessarily ⊥Q) is analytic. Similarly, we say that

(Q,≤) is weakly Souslin proper if in addition, (3)(∗) holds.

Remark 7.6: (1) “d codes a Souslin proper forcing” is a Π1
3 statement about d.

Hence (by Shoenfield’s absoluteness theorem) if it holds in V , it holds in every

submodel that contains all countable ordinals.

(2) If (M,∈) is a transitive model of a sufficiently large part of ZFC (M may

be a class), and M |=“χ := i+
ω exists, and M0 := H(χ)M is countable, then M0

is a countable model of ZFC*, and q is (p,M)-generic iff q is (p,M0)-generic. So

for all practical purposes we can pretend that M is countable. (In particular this is

true if ω1 is a inaccessible cardinal in M .)

Proof: (1) Every countable model M is isomorphic to some well-founded (ω,R).

If x ∈ IRM , we also write x for its image under this isomorphism.

It is enough to show that “d codes a Souslin Proper forcing notion” is a Π1
3

statement.

d codes a Souslin proper forcing iff for all R ⊆ ω × ω

Either (ω,R) is not well-founded (i.e., there exists an R-descending

sequence)

or (ω,R) 6|= ZFC∗ (this is ∆1
1)

or d /∈ (ω,R)

or for all p ∈ QM
d there is q ∈ Qd such that for all r ≤ q

(i) for all D such that (ω,R) |= “D is open dense

in Qd”, there is an i, (ω,R) |= i ∈ D, r 6⊥ i

(ii) r 6⊥ p.

((i) implies that q‖−G ∩D 6= ∅, and (ii) implies that q‖−p ∈ G.)

Proof of (2): M and M0 contain the same dense sets of Qd.

Context 7.7: In this whole section, ε will be an ordinal ≤ ω2. S will be a countable

subset of ω2 that is closed under immediate successors and predecessors, where the

order type of S is in M . α and γ will stand for ordinals ≤ ε in S. M will be

a countable transitive model of ZFC* (= a large enough fragment of ZFC), or an

“essentially” countable model as in 7.6(2).

For α ∈ S, let αS be the order type of α ∩ S.
~d will be a sequence of length ε, and ~c will be a sequence of length εS, ~c ∈ M .

Definition 7.8: Given a sequence ~d = 〈dα : α < ε〉 we define a countable support

iteration 〈Pα, Qα : α < ε〉, by letting Qα be a Pα-name of Qdα[Gα] (if this is Souslin

proper), i.e. Pα forces the following:

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 355

If dα[Gα] is a code for a Souslin proper forcing, then Qα = Qdα

otherwise Qα = {∅} is the trivial forcing.

Notation and Remark 7.9: We write Q̄~d for the iteration defined above, and we

write P~d↾α for Pα, i.e., P~d↾α is the α-th iteration stage obtained from the definition

~d, and Qα = Qdα
describes the successor extension. If ~d ∈ M |= ZFC∗, then PM

~d↾α

is the α-th iteration stage, computed from the definition ~d in the model M .

We say “~d codes a Souslin proper iteration”, if for all α, ‖−P~d↾α
dα codes a Souslin

Proper forcing.

We will consider sequences ~d and ~c, where |~d| = ε and |~c| = εS , ~c ∈ M .

Definition 7.10: Assume M , ~c, ~d, S, ε are as in 7.7.

By induction on α ∈ S ∩ ε, we will define a Pα-name Gα↾(S,M,~c↾αS , ~d↾α)

(which we usually abbreviate to G′
α or Gα↾(S,M)), by requiring that 1Pα

forces the

following:

G′
α ⊆ PM

~c↾αS and

• If α = β + 1, and

(a) G′
β is (PM

βS ,M)-generic

(b) dβ [Gβ] = cβS [G′
β]

(c) dβ [Gβ] codes a Souslin Proper forcing (in V [Gβ])

then G′
α = G′

β ∗
(
G(β) ∩M [G′

β]
)

If α = β + 1 and (a)–(c) does not hold, then G′
α = ∅.

• If α is a limit, then for p ∈ PM
~c↾αS we let

p ∈ G′
α ⇔ ∀β ∈ S ∩ α p↾βS ∈ G′

β

Definition 7.11: We call ~d and ~c “corresponding” sequences if for all α < ε,

‖−αIf G
′
α is generic over M , then cαS [G′

α] = dα[Gα]

Remark 7.12: We will only consider sequences ~d that code a Souslin proper iter-

ation (see 7.9), and we will only consider corresponding ~c.

Remarks and Notation 7.13:

(1) whenever the parameters M , S, ~c, ~d are clear from the context

we will write G′
α for Gα↾(S,M,~c↾αS , ~d↾α).

(2) If Gα is a P~d↾α-generic filter, then we also write G′
α for the

evaluation of the name G′
α by Gα, similarly for µα.

(3) Let Mα = M [G′
α].

(4) It might seem more natural to write Gα↾(S,M) as G′
αS (= (G′)αS)

instead of G′
α = (Gα)

′, but this would only complicate the notation.

(5) “G′
α is generic” means of course “generic for the forcing PM

~c↾αS

over the model M”.

356 MARTIN GOLDSTERN IMCP

Remark 7.14: Assume ~c and ~d are as in 7.12, and M |=“p
∼

is a PM
~c↾γS -name of a

condition in PM
~c ”.

We say that q is p
∼
-generic (or more precisely, (p

∼
, γ,M, S, c∼, d∼)-generic) iff q

forces:

(A) G′
ε is generic over M .

(B) p
∼
[G′

γ] ∈ G′
ε.

Theorem 7.15: Let ~d, ~c, S, M , γ, ε be as in 7.7. Assume that M |= “p
∼

is a

P~c↾γS -name for a condition in P~c” (so p
∼
↾γ is the name for its restriction to γ, and

there is a canonical P~c-name which we also call p
∼
).

Assume that q ∈ P~d↾γ is (p
∼
↾γ, γ,M, S,~c↾γS , ~d↾γ)-generic. Then there exists a

condition q+ ∈ P~d such that q+↾γ = q and q+ is (p
∼
, γ,M, S,~c, ~d)-generic.

Corollary 7.16: Assume M |= p ∈ P~c. Then there exists a (p,M)-generic condi-

tion q ∈ P~d.

Proof of 7.15:

The proof is by induction on ε.

Successor step: Here is the only place where we explicitly use Souslin properness:

let ε = α+ 1.

Using the induction hypothesis on α, we get a (p
∼
↾α, γ)-generic condition q+↾α ∈

Pα. To find q+(α), we will work in V [Gα], where Gα is an arbitrary generic filter

containing q+↾α. Let d := dα[Gα] (= cαS [G′
α], because ~c and ~d are corresponding

sequences).

Since

(a) G′
α ⊆ P~c↾αS is generic over M

(b) V [Gα] |= d codes a Souslin proper forcing,

and p(α)[G′
α] is in the Souslin proper forcing Qd, by definition we can find an

(p(α)[G′
α],Mα)-generic condition q+(α).

Coming back to V , we use the existential completeness lemma to get a name

(which we also call q+(α)) about which the above is forced by q+↾α.

Clearly this construction ensures that q+ is generic, by 1.10.

Limit step: let 〈αn : n < ω〉 be a cofinal sequence in ε ∩ S, α0 = γ. Let

〈Dn : n ∈ ω〉 enumerate all dense open subsets of PM
~c that are in M .

First we will define a sequence 〈p
∼

n : n ∈ ω〉, p
∼

n ∈ M , p
∼

0 = p
∼
, such that in M

the following will hold:

(0) p
∼

n is a P~c↾αS
n
-name for a condition in P~c

(1) ‖−
αS

n+1

p
∼

n+1 ≤ p
∼

n

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 357

(2) ‖−
αS

n+1

p
∼

n+1 ∈ Dn.

(3) ‖−
αS

n+1

If p
∼

n↾α
S
n+1 ∈ GαS

n+1
then p

∼
n+1↾α

S
n+1 ∈ GαS

n+1
.

(Here, of course, Gβ stands for the canonical name (in M) for the generic object

of PM
~c↾β , and ‖−β is the forcing relation of PM

~c↾β in M .)

For each n we thus get a name p
∼

n that is in M . We use 3.17 and 0.5 (in M) to

obtain p
∼

n+1.

Now we define a sequence 〈qn : n ∈ ω〉, qn ∈ Pαn
, q0 = q, such that for all n:

(a) qn ∈ Pαn
, n ≥ 1 ⇒ qn↾αn−1 = qn−1.

(b) qn is generic for ~d↾α, ~c↾αS , S, M .

(c) qn‖−p
∼

n↾α
S
n ∈ G′

αn
.

qn+1 = q+n can be obtained by the induction hypothesis, applied to αS
n , α

S
n+1,

and p
∼

n↾α
S
n+1.

qn+1 = q+n can be obtained by the induction hypothesis, applied to αn, αn+1,

and p
∼

n↾αn+1. By (c)+ we know

q+n ‖−(p
∼

n)↾α
S
n+1 ∈ G′

αn+1
∩M

Hence by (3) we have

qn+1‖−(p
∼

n+1)↾α
S
n+1 ∈ G′

αn+1
∩M

Since qn+1↾αn = qn, q = lim qn exists and is ≤ qn for all n.

We have to show that q‖−p ∈ G′
ε ∩M and that q is generic. Let Gε be a generic

filter containing q. We will write pn for p
∼

n[G
′
αn

]. (Note that pn ∈ M , because qn

was M -generic and qn ∈ Gαn
.)

Since qn ≥ q ∈ Gε, we have pn↾α
S
n ∈ Gαn

∩M and M |= pn ≤ pn−1 ≤ · · · ≤ p0.

Hence p↾αS
n ∈ G′

αn
∩M for all n, and so by 1.17, p↾δ ∈ Gδ ∩M . As dom(p) ⊆ δ,

p↾δ = p, so p ∈ Gε. Similarly, pn ∈ Gε for all n.

Consider a dense set Dn ⊆ Pε. Since qn+1‖−“p
∼

n+1 ∈ Dn,” we have pn+1 ∈

Gε ∩Dn ∩M .

Hence q is generic.

Shelah has suggested the following modification of the definition of Souslin forc-

ing:

Definition 7.17: Assume (Q,≤) is a forcing notion, Q ⊆ ωω and epdQ (“effec-

tively predense”) is a relation on Q× [Q]ω. (Q,≤, epd) is called a Souslin+ forcing

if

(1) ≤ is analytic, and epd is a Σ1
2 set.

(2) If epd(q, {pi : i < ω}), then {pi : i < ω} is predense below q.

(Q,≤, epd) is called Souslin+ proper iff in addition

358 MARTIN GOLDSTERN IMCP

(3) Whenever (M,∈) |= ZFC is a countable model, Q ∈ M (i.e., the

formulas defining ≤Q and epdQ have parameters in M), and

p ∈ Q ∩M , then there is a condition q ≤ p such that

(∗)
For all A ∈ M , if M |= A is predense below p

then epd(q,A ∩M)

Definition 7.18: We call a condition q satisfying (∗) “(p,Q,M)-effectively generic”.

Fact 7.19: If q is (p,Q,M)-effectively generic, then q is (p,M)-generic.

Note that for Souslin forcing the relation “q is (Q,M)-generic” is in general only

Π1
2, whereas the relation (∗) above is Σ1

2.

Example 7.20: Sacks forcing is Souslin+ proper.

Proof:

Recall that Sacks forcing S is the set of all perfect trees ⊆ 2<ω. (The incom-

patibility relation for Sacks forcing is not analytic, because to find a condition r

extending p and q, one has to intersect the trees p and q (this is an arithmetical

computation) and then find a perfect subtree r ⊆ p ∩ q. The Cantor-Bendixson

argument needed to obtain this tree r may take any countable number of steps,

so an argument using the boundedness principle should show that “p ⊥ q” is not

analytic.)

We let

epd(q, {pi : i < ω}) ⇔ ∃F ⊆ q, F is a front, ∀η ∈ F ∃i pi ≥ q[η].

(Recall that F ⊆ q is called a front, if F is an ⊆-antichain that meets every

branch of q, and q[η] = {ν ∈ q : ν ⊆ η ∨ η ⊆ ν}.)

Clearly epd(q,A) implies that A is predense below q.

To show that condition (3) is satisfied, we need a few definitions and a lemma

about Sacks forcing S.

Definition 7.21: For p ∈ S we let

split(p) := {η ∈ p : η⌢0 ∈ p& η⌢1 ∈ p}

splitn(p) := {η ∈ split(p) : |{ν ∈ split(p) : ν ⊂ η}| = n}

stem(p) is the unique element of split0(p), i.e., the first node in p at which splitting

occurs.

If p ∈ S, D ⊆ S, we write p ∈∗ D iff there is a pure extension r of p such that

r ∈ D. (r is a pure extension of p if stem(p) = r).

Lemma 7.22: Assume D ⊆ S is an open dense set, and let p ∈ S, n ∈ ω. Then

there is a condition q ≤n p and a front F ⊆ q such that ∀η ∈ F , q[η] ∈∗ D.

Proof: Consider the following game G(D, p, n): There are two players, who play

ω many moves. We let A−1 := splitn+1(p).

In the nth move, player I plays ηn ∈ An−1, and player II responds by playing a

set An ⊆ p of pairwise incompatible elements of ω2, |An| ≥ 2, and ∀ν ∈ An, ν ⊇ η.

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 359

Player I wins, if for some k, p[ηk] ∈∗ D.

We claim that player II has no winning strategy. For assume that σ is a winning

strategy for player II, then we can define

q := {η↾l : l ≤ |η|, η appears as some ηn in a play in which

player II obeyed σ}

Clearly q is a tree. q is perfect: Assume η ∈ q. So there is an initial segment

〈η0, A0, . . . , ηk, Ak〉 of a play in which player II obeyed σ, and η ⊆ ηk. Let ν0, ν1
be two incompatible elements of Ak, then both ν0 and ν1 are in q. Hence q ∈ S. It

is also clear that q ≤n p.

But if σ was a winning strategy for player II, then for all η ∈ q, q[η] /∈∗
D, a

contradiction.

The game is closed, so player I must have a winning strategy τ . Let q be defined

as above, with “player II obeys σ” replaced by “player I obeys τ”.

Again q is perfect: Let η ∈ q, so η ⊆ ηk, where 〈η0, A0, . . . , ηk〉 is an initial

segment of a play in which player I obeyed τ . There are 4 incompatible extensions

ν0, ν1, ν2, ν3 of ηk. Let

〈η0, A0, . . . , ηk, {ν0, ν1}, η
′〉 and 〈η0, A0, . . . , ηk, {ν2, ν3}, η

′′〉

be initial segments of plays according to τ . Then η′ ∈ {ν0, ν1}, η
′′ ∈ {ν2, ν3}, so η′

and η′′ are incompatible extensions of η in q. Since τ is a winning strategy, we can

find a front as required.

Corollary 7.23: If D ⊆ S is dense open, p ∈ S, n ∈ ω, then there is p′ ≤n p and

a front F ⊆ p′ such that for all η ∈ F , p′
[η] ∈ D.

Proof: FIrst we can get a condition q and a front F ⊆ q as in the previous

lemma. We may assume that the front F is above the n-th splitting level, i.e.,

∀η ∈ splitn(q) ∃ν ∈ F η ⊆ ν. Now thin out q at each η ∈ F to get into D, i.e., for

all η ∈ F let qη ≤ q[η] be a condition with stem η, qη ∈ D, and let p′ :=
⋃

η∈F qη.

Proof of 7.20: Let M |= ZFC, p ∈ P ∩ M , and let 〈Dn : n ∈ m〉 enumerate

all sets D such that M |= D is dense open below p. Using 7.23 we can find a

sequence 〈(pn, Fn) : n ∈ ω〉, p = p0 ≥0 p1 ≥1 · · · , pn, Fn ∈ M , Fn ⊆ pn a front, and

∀η ∈ Fn qn
[η] ∈ Dn. Let q ≤ pn for all n, then Fn ∩ q is a front in q, and for all

η ∈ Fn ∩ q we have q[η] ∈ D. Now it is easy to see that for all A ∈ M , if M |= A

predense below p, then A ∩M is effectively predense below q.

Remark 7.24: Similar arguments apply to many other forcing notions whose el-

ements are perfect trees — Laver forcing, rational perfect sets, etc. A theorem

analogous to 7.15 can be shown for Souslin+ proper forcing notions.

360 MARTIN GOLDSTERN IMCP

8 A simple preservation theorem for finite support iteration

Context 8.1: Similar to 5.1.

Assumption 8.2: We assume that for all f ∈ C the set {g : f ⊏n g} is closed.

(Often we even have that ⊏n itself is closed, in some reasonable topology.)

Definition 8.3: We say that M is (⊏, ω)-closed if

∀A ⊆ M ∩C (A countable) ∃f∗ ∈ M :

∀g : f∗ ⊏ g ⇒ ∀f ∈ A ∩C f ⊏ g (∗)

Remark: Note that (∗) is a Π1
1-statement, hence absolute between any ∈-models

of ZFC.

Theorem 8.4: Assume M ⊆ V is (⊏, ω)-closed. Let 〈Pα, Qα : α < ε〉 (ε limit) be

a finite support iteration of ccc forcing notions such that

∀α < δ ‖−α∀g ∃f ∈ M ∩C f 6⊏ g

Then ‖−δ∀g ∃f ∈ M f 6⊏ g.

Proof: By 1.20, we may assume that cf(δ) = ω. Assume the conclusion is false,

so there is a condition p0 ∈ Pδ and a Pδ-name g
∼

such that p0‖−∀f ∈ M f ⊏ g
∼
.

Let δ0 < δ1 < · · · be a sequence of ordinals conerging to δ. For each n, let g
∼

n

be a Pδn -name such that

‖−δn
g
∼

n interprets g
∼

(considering g
∼

as a Pδn -name for a Pδ/Gδn -name)

and let f
∼

n be a Pδn -name such that

‖−δn
f
∼

n ∈ M & f
∼

n 6⊏ h

Since Pδ is ccc (even properness is sufficient here), there is a countable set F ∈ V ,

F ⊆ C such that ∀n ‖−δn
f
∼

n ∈ F .

By our assumption, M is (⊏, ω)-closed. So we can find a function f∗ ∈ M such

that

∀h ∈ ωω : f∗ ⊏ h ⇒ ∀f ∈ F ∩C f ⊏ g

Since f∗ ∈ M , p0‖−δf
∗ ⊏ g

∼
. We can find a condition p1 ≤ p0 and an integer n

such that p1‖−f∗ ⊏n g
∼
. Since p1 has finite support, there is an m ∈ ω such that

p1 ∈ Pδm .

Now work in V [Gδm], where p1 ∈ Gδm . Clearly ‖−δm,δf
∗ ⊏n g

∼
. Since fm 6⊏n gm

(where fm = f
∼

m[Gδm], gm = g
∼

m[Gδm]), we also have f∗ 6⊏m gm.

We consider the set {h : f∗ 6⊏m h}. By assumption on ⊏, this is an open set,

containing gm. So there is k ∈ ω such that

∀h : h↾k = gm↾k ⇒ f∗ 6⊏n h

Vol. 06, 1992 TOOLS FOR YOUR FORCING CONSTRUCTION 361

Let q ∈ Pδ/Gδm be a condition forcing g
∼
↾k = gm↾k. Then q also forces f∗ 6⊏n g

∼
,

a contradiction.

Example 1 8.5: Let

f ⊏n g ⇔ ∀k ≥ n f(k) < g(k)

The “bounding” number b is defined by

b := {min |B| : B ⊆ ωω,B is unbounded}

where “B is unbounded” means that there is no function g such that for all f ∈ B

we have f ⊏ g. We are interested in preserving an unbounded family. It is easy to

construct (by induction) an unbounded family B that is well-ordered by ⊏ and has

order type b. It is also easy to see that the cofinality of b must be uncountable.

Hence B is (⊏, ω)-closed. So we get

Fact 8.6: Assume 〈Pα, Qα : α < ε〉 is a finite support iteration of ccc forcing no-

tions such that for all α we have

‖−α B is unbounded in ωω ∩ V [Gα]

Then

‖−ε B is unbounded in ωω ∩ V [Gε]

Proof: Apply 8.4.

In particular, we get: If no Qα adds a dominating function, and V |= b = κ,

then V [Gε] |= b ≤ κ.

Example 2 8.7: Let ⊏random be defined as in 6.8. It was proved above that f ⊏ g iff

g is not in the null set coded by f . So, letting M = V (which is clearly (⊏random, ω)-

closed, we get

Fact 8.8: If 〈Pα, Qα : α < ε〉 is a finite support iteration of ccc forcing notions

such that for all α we have

‖−α there is no random real over V

then

‖−ε there is no random real over V

362 MARTIN GOLDSTERN IMCP

REFERENCES.

[1] J. Baumgartner, Iterated forcing, in: Surveys in set theory (A. R. D. Mathias,

editor), London Mathematical Society Lecture Note Series, No. 8, Cambridge

University Press, Cambridge, 1983.

[2] C. Gray: Ph.D. thesis, University of California, Berkeley.

[3] M. Goldstern, H. Judah, Iteration of Souslin Forcing, Projective Measurability

and the Borel Conjecture, accepted by Israel Journal of Mathematics.

[4] T. Jech, Set theory, Academic Press, New York, 1978.

[5] H. Judah and S. Shelah: Souslin forcing, Journal of Symbolic logic, 53 (1988),

pp.1188–1207.

[6] H. Judah and S. Shelah, ∆1
3-sets of reals, MSRI publication series.

[7] H. Judah and S. Shelah, The Kunen Miller chart, Journal of Symbolic logic,

1990.

[8] K. Kunen, Set Theory: An Introduction to Independence Proofs, North Holland,

Amsterdam-New York-Oxford, 1980.

[9] C. Schlindwein, Revised countable support iteration, to appear in Annals of pure

and applied logic

[10] S. Shelah, Proper Forcing, Lecture Notes in Mathematics Vol. 942, Springer

Verlag.

[11] S. Shelah, Proper and Improper Forcing, to appear in Lecture Notes in Math-

ematics, Springer Verlag.

[12] S. Shelah, More on proper forcing, Journal of Symbolic logic, 49 (1984),

pp.1035–1038.

[13] R. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s prob-

lem, Annals of Mathematics, 94 (1971), pp.201–245.

