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Base set X

Let X be a (nonempty) set.
I Often finite:

I X = {0,1}.
I X = {0, ∗,1}.
I X =

{
{}, {a}, {b}, {a,b}

}
.

I X = {1, . . . ,n}.
I Etc.

I Sometimes countably infinite:
I X = N = {0,1,2, . . .}.

I Sometimes uncountably infinite:
I X = R, etc.
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Operations on X

X = our base set.

I A unary operation is a (total) function f : X → X .
I A binary operation is a function f : X 2 → X .
I ternary, quaternary, . . .
I A k -ary operation is a function f : X k → X (for k ≥ 1).
I We write O(k) or O(k)

X for the set of all k -ary operations
on X . (Sometimes also written X X k

.)

I We let OX :=
⋃∞

k=1 O
(k)
X .

(For simplicity we will assume that the sets X k are pairwise
disjoint. We will ignore the 0-ary functions and replace them by
constant 1-ary functions.)
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Transformation monoids

Definition ((abstract) monoid)
A monoid or abstract monoid is a structure (M, ∗,1), where
- ∗ is a binary operation on M, associative
- . . . together with a neutral element 1 (1 ∗ a = a ∗ 1 = a).

Definition (transformation/concrete monoid, unary clone)
A transformation monoid is a subset T ⊆ O

(1)
X (for some X )

which is closed under composition and contains the identity
function id : X → X . ((T , ◦, id) will be an abstract monoid.)
Conversely, a variant of Cayley’s theorem shows that every
abstract monoid is isomorphic to a transformation monoid.
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Binary clones

A transformation monoid or unary clone on X is a subset T ⊆ O
(1)
X

which is closed under composition and contains the identity function
id : X → X .

Definition
A binary clone on X is a set T ⊆ O

(1)
X which is closed under

"‘composition"’ and contains the two projections
π1, π2 : X 2 → X .

Definition (Composition)
Let f ,g1,g2 ∈ O

(2)
X . The composition f (g1,g2) is the function

from X 2 to X defined by

f (g,g2)(x , y) := f ( g1(x , y),g2(x , y) )
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k -ary clones

Definition (k -ary clone)
A k-ary clone on X is a set T ⊆ O

(k)
X which is closed under

"‘composition"’ and contains the k projections
π1, . . . , πk : X k → X .

Definition (Composition)
Let f ,g1, . . . ,gk ∈ O

(k)
X . The composition f (g1, . . . ,gk ) is the

function from X k to X defined by

∀~x ∈ X k : f (g1, . . . ,gk )(~x) := f ( g1(~x), . . . ,gk (~x) )

(“Plugging g1, . . . , gk into f ”)
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Clones

Definition (Clone)
A clone on X is a set T ⊆ OX =

⋃∞
k=1 O

(k)
X which is closed

under "‘composition"’ and contains all projections πn
k : X n → X ,

n = 1,2, . . ., 1 ≤ k ≤ n.

Definition (Composition)
Let f ∈ O(k), g1, . . . ,gk ∈ O

(m)
X . The composition f (g1, . . . ,gk ) is

the function from X m to X defined by

∀~x ∈ X m : f (g1, . . . ,gk )(~x) := f ( g1(~x), . . . ,gk (~x) )

(“Plugging g1, . . . , gk into f ”)
If C is a clone, then C(k) := C ∩ O(k) is a k -ary clone, the k -ary
fragment of C.
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Examples of clones

I The smallest clone JX contains only the projections.
I The largest clone OX contains all operations.
I Every subset S ⊆ OX will generate a clone 〈S〉, the

smallest clone containing S. The clone 〈S〉 can be
obtained from below by closing S under composition, or
from above as 〈S〉 =

⋂
{M | S ⊆ M ⊆ OX ,M is a clone }.

I If V is a vector space over the field K , then the set of all
linear functions f~a : V k → V

f~a(v1, . . . , vk ) := a1v1 + · · ·+ akvk

(with ~a = (a1, . . . ,ak ) ∈ K k ) is a clone.
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Examples of clones, continued

For every algebra X = (X , f ,g, . . .) (=universe X with
operations f , g, . . . — for example X might be a group, a ring,
etc) we consider

I the clone of term operations on X , the smallest clone
containing all the basic operations f ,g, . . . of X;

I the clone of polynomial operations on X , the smallest
clone containing all terms as well as all constant unary
functions on X .

Many properties of the algebra X depend only on the clone of
term functions, and not on the specific set of basic operations
which generates this clone. (E.g. subalgebras, congruence
relations, automorphisms, etc)
For example, a Boolean algebra will have the same clone as
the corresponding Boolean ring.
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The family of all clones

For any nonempty set X let Cl(X ) be the set of all clones on X .
I The intersection of any subfamily of Cl(X ) is again in

Cl(X ).
I (Cl(X ),⊆) is a complete lattice.

Meet = intersection, join = generated by union.
I JX is the smallest clone, OX the largest.
I If X = {0}, then there is a unique clone: JX = OX .
I If X = {0,1}, then Cl(X ) is countably infinite.
I If X is finite and has at least three elements, then Cl(X ) is

uncountable. (In fact: |Cl(X )| = |R|.)
I If X is infinite, then . . . (later)
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Uncountably many clones

If X = {0,1,2}, then Cl(X ) is uncountable.

Proof sketch.
I We call a k -tuple (a1, . . . ,ak ) ∈ {0,1,2}k proper, if exactly

one of the ai is equal to 1, and all the others are 2.
I For every k ≥ 3 let fk : X k → X be the function that

assigns 1 to every proper k -tuple, and 0 to everything else.
I For every A ⊆ {3,4, . . .} let CA := 〈{fi | i ∈ A}〉.
I Check that for k /∈ A we have fk /∈ CA.

(Every composition of functions fi , i 6= k will assign 0 to
some proper k -tuple.)

I Hence the map A 7→ CA is 1-1.
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Completeness

Fix a base set X .

Definition
A set S ⊆ OX is complete if 〈S〉 = OX , i.e., if every operation on
X is term function of the algebra with operations S.

Example
Let X = {0,1}, X = (X ,∨,∧,¬,0,1).

I The set {∨,∧,¬} is complete.
I The set {∧,¬} is complete.
I The set {|} is complete, where x |y := ¬(x ∧ y).

(Sheffer stroke)
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Completeness, more examples

Theorem
For every X: 〈O(2)

X 〉 = OX .

Proof.
I finite: Lagrange interpolation
I infinite: use X × X ≈ X .

Caution: Most clones C are NOT generated by their binary
fragment C ∩ O(2). (Not even finitely generated.)

Theorem
If X = {1, . . . , k}, then there is a single function f ∈ O

(2)
X with

〈f 〉 = O
(2)
X : Let f (x , x) = x +1 (modulo k), f (x , y) = 0 otherwise.
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(Completeness on infinite sets)

If X is infinite, then OX is uncountable. Hence a finite/countable
set of operations cannot generate all of OX .
However:

Theorem
Let X 6= ∅. For any finite or countable set T ⊆ OX there is a
single function fT (not necessarily in T ) such that T ⊆ 〈f 〉.

Theorem

• If X is countable, then there is a countable dense subset of
OX (in the natural topology), hence there is a single function
f such that the topological closure of 〈f 〉 is all of OX .

• If X is uncountable, then OX will not be separable any more.
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Completeness, continued

Let X = {0,1} be the 2-element Boolean algebra, with Boolean
operations ∧,∨,¬,→, |, . . . .

Example
The set {∨,∧,→} is not complete.

Proof.
Each of the three operations preserves the set {1}, i.e., this set
is a subalgebra of the algebra ({0,1},∧,∨,→).
Hence every function in 〈{∧,∨,→} will also preserve this set,
but ¬ does not. So ¬ /∈ 〈{∧,∨,→}〉.
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Polymorphisms, example

Example
The set {∨,∧,0,1} is not complete.

Proof.
All four functions are monotone in both arguments.

Definition
Let ρ ⊆ X × X be a relation (Example: ≤ on {0,1}.)
A function f : X k → X preserves ρ iff:

for all
(

x1
y1

)
, . . . ,

(
xk
yk

)
∈ ρ, we have

(
f (x1, . . . , xk )
f (y1, . . . , yk )

)
∈ ρ.

Lemma
If all f ∈ S ⊆ OX preserve ρ, then all f ∈ 〈S〉 preserve ρ.
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Polymorphisms, definition

Definition
Let ρ ⊆ X m be an m-ary relation, and let f : X k → X be a k -ary
function. We say that “f preserves ρ” (f B ρ, f ∈ Pol(ρ)) if:
• for all (ai,j : i ≤ m, j ≤ k) ∈ X m×k :

whenever a∗,1 ∈ ρ, . . . , a∗,k ∈ ρ, then also

 f (a1,∗)
...

f (am,∗)

 ∈ ρ.

(We let a∗,j :=

 a1,j
...

am,j

, similarly ai,∗ = (ai,1, . . . ,ai,k ).)

Equivalently: Letting (X m, f [m]) be the m-th power of (X , f ):
f B ρ iff ρ is a subalgebra of (X m, f [m]).
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Polymorphisms, examples

I Let ρ be a nontrivial unary relation, i.e. ∅ ( ρ ( X .
Then Pol(ρ) is the set of all operations f such that ρ is a
subalgebra of (X , f ).

I Let ρ ⊆ X × X be an equivalence relation. Then Pol(ρ) is
the set of all operations f such that ρ is a congruence
relation of the algebra (X , f ).

I Let ρ ⊆ X × X be a (reflexive) partial order. Then Pol(ρ) is
the set of all pointwise monotone operations.

I Let ρ ⊆ X × X be the graph of a function r :
ρ = {(x , r(x)) : x ∈ X}.
Then Pol(ρ) is the set of all functions f such that r is an
endomorphism of (X , f ), i.e., f commutes with r .
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Fix a finite base set X .

Definition
For any relation ρ ⊆ X m let Pol(ρ) be the set of all operations
preserving ρ: Pol(ρ) := {f ∈ OX | f B ρ}
For a set R of relations, let POL(R) :=

⋂
ρ∈R Pol(ρ).

Lemma
If S ⊆ Pol(ρ), then also 〈S〉 ⊆ Pol(ρ). In particular, Pol(ρ) and
also POL(R) are always clones.

Theorem
For every clone C ⊆ OX there exists:

I A set S ⊆ OX such that C = 〈S〉. (Trivial)
I A set R of relations such that C = POL(R).

(Helpful to show incompleteness.)
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Galois connection

Theorem
For every clone C ⊆ OX there exists a set R of relations such
that C = POL(R) = {f | ∀ρ ∈ R : f B ρ}.

Proof sketch.
The largest set R satisfying ∀ρ ∈ R : C ⊆ Pol(ρ) is the set

INV(C) := {ρ | ∀f ∈ C : f B ρ}

For finite sets X , we can check that C = POL(INV(C)).

even: 〈S〉 = POL(INV(S)) for all S ⊆ OX .
We will see a construction of a “better” set R with C = POL(R)
later.
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Pol: completeness criterion

Fix a finite base set X .

Theorem
For every clone C ⊆ OX there exists a set R of relations such
that C = POL(R).

Corollary
If S ⊆ OX is not complete (i.e., 〈S〉 6= OX ),
then there is a nontrivial relation ρ such that S ⊆ Pol(ρ), hence
〈S〉 ⊆ Pol(ρ).
(But there are so many candidates for ρ! Want to search a
small set. → precomplete clones)
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Precomplete clones

Definition
A clone C ⊆ OX is “precomplete” (or “maximal”) if C 6= OX , but
there is no clone D satisfying C ( D ( OX .

Theorem
For any clone C ( OX there is a precomplete clone C′ with
C ⊆ C′.
(Remark: Not true for infinite sets!)

Proof.
(Use Zorn’s lemma??) Let OX = 〈f 〉. Among all clones D with
C ⊆ D, f /∈ D, find a maximal element.
(Better proof: later)
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Examples of precomplete clones

Example
Let ∅ ( ρ ( X . Then Pol(ρ) is precomplete.

Proof.
Assuming g /∈ Pol(ρ), we let C := 〈Pol(ρ) ∪ {g}〉; we show
C = OX .
First show that there is b /∈ ρ such that the constant operation
cb with value b is in C.
For any function f : X k → X let f̂ : X k+1 → X be defined by
f̂ (~x ,b) = f (~x), and f̂ (~x , y) ∈ ρ arbitrary for y 6= b. Then f̂ ∈ C,
and f (~x) = f̂ (~x , cb(x1)), so f ∈ C.

Example
Let ρ be a bounded partial order. Then Pol(ρ) is precomplete.
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Rosenberg’s list

Theorem
Let X = {1, . . . , k}. Then there is an explicit finite list of
relations ρ1, . . . , ρm (including, for example, all nontrivial unary
relations, all bounded partial orders) such that every
precomplete clone on X is one of Pol(ρ1), . . . , Pol(ρm).
Completeness criterion If 〈S〉 6= OX iff there is some i with
∀f ∈ S : f B ρi .
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k -ary fragments

Let D be a k -ary clone. The smallest clone C with C ∩ O
(k)
X = D

is 〈D〉.
D ⊆ X X k

can be viewed as a relation on X .
The largest clone C with C ∩ O

(k)
X = D is

Pol(D) =
⋃
n

{f ∈ O
(n)
X | ∀d1, . . . ,dn ∈ D : f (d1, . . . ,dn) ∈ D}

For any clone E , the clones Pol(E ∩ O
(k)
X ) approximate E from

above, agreeing with E on larger and larger sets:
Pol(E ∩ O

(k)
X ) ∩ O

(k)
X = E ∩ O

(k)
X .

Theorem
For all clones E: E =

⋂
k Pol(E ∩ O

(k)
X ).
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Cl(X ) is dually atomic

Theorem
Let X be finite, C 6= OX a clone.
Then there is a precomplete clone D ⊇ C.

Proof.
Let C′ ⊇ C be such that C′ ∩ O

(2)
X is maximal. (finite!)

Let D := Pol(C′).
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