Clones (1&2)

Martin Goldstern

Discrete Mathematics and Geometry, TU Wien

TACL Olomouc, June 2017

Clones (1&2)

Base set X

Let X be a (nonempty) set.

- Often finite:
 - $X = \{0, 1\}$.
 - $X = \{0, *, 1\}.$
 - $X = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$.
 - $X = \{1, \ldots, n\}.$
 - Etc.
- Sometimes countably infinite:

$$\bullet X = \mathbb{N} = \{0, 1, 2, \ldots\}.$$

Sometimes uncountably infinite:

Operations on X

X =our base set.

- A unary operation is a (total) function $f: X \to X$.
- A binary operation is a function $f: X^2 \to X$.
- ternary, quaternary, ...
- ► A *k*-ary operation is a function $f : X^k \to X$ (for $k \ge 1$).
- ► We write O^(k) or O^(k)_X for the set of all k-ary operations on X. (Sometimes also written X^{X^k}.)

• We let
$$\mathcal{O}_X := \bigcup_{k=1}^{\infty} \mathcal{O}_X^{(k)}$$
.

(For simplicity we will assume that the sets X^k are pairwise disjoint. We will ignore the 0-ary functions and replace them by constant 1-ary functions.)

Transformation monoids

Definition ((abstract) monoid)

A monoid or abstract monoid is a structure (M, *, 1), where

- * is a binary operation on *M*, associative
- ... together with a neutral element 1 (1 * a = a * 1 = a).

Definition (transformation/concrete monoid, unary clone) A *transformation monoid* is a subset $T \subseteq O_X^{(1)}$ (for some *X*) which is closed under composition and contains the identity function *id* : $X \to X$. ((T, \circ, id) will be an abstract monoid.) Conversely, a variant of Cayley's theorem shows that every abstract monoid is isomorphic to a transformation monoid.

Binary clones

A transformation monoid or unary clone on X is a subset $T \subseteq O_X^{(1)}$ which is closed under composition and contains the identity function $id : X \to X$.

Definition

A *binary clone* on *X* is a set $T \subseteq O_X^{(1)}$ which is closed under "composition" and contains the two projections $\pi_1, \pi_2 : X^2 \to X$.

Definition (Composition)

Let $f, g_1, g_2 \in O_X^{(2)}$. The composition $f(g_1, g_2)$ is the function from X^2 to X defined by

$$f(g,g_2)(x,y) := f(g_1(x,y),g_2(x,y))$$

k-ary clones

Definition (k-ary clone)

A *k*-ary clone on X is a set $T \subseteq O_X^{(k)}$ which is closed under "composition" and contains the *k* projections $\pi_1, \ldots, \pi_k : X^k \to X$.

Definition (Composition)

Let $f, g_1, \ldots, g_k \in \mathcal{O}_X^{(k)}$. The composition $f(g_1, \ldots, g_k)$ is the function from X^k to X defined by

$$\forall \vec{x} \in X^k : f(g_1, \ldots, g_k)(\vec{x}) := f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$$

("Plugging g_1, \ldots, g_k into f")

Clones

Definition (Clone)

A *clone* on *X* is a set $T \subseteq O_X = \bigcup_{k=1}^{\infty} O_X^{(k)}$ which is closed under "composition" and contains all projections $\pi_k^n : X^n \to X$, $n = 1, 2, ..., 1 \le k \le n$.

Definition (Composition)

Let $f \in \mathcal{O}^{(k)}$, $g_1, \ldots, g_k \in \mathcal{O}^{(m)}_X$. The composition $f(g_1, \ldots, g_k)$ is the function from X^m to X defined by

$$\forall \vec{x} \in X^m : f(g_1, \ldots, g_k)(\vec{x}) := f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$$

("Plugging g_1, \ldots, g_k into f") If C is a clone, then $C^{(k)} := C \cap \mathcal{O}^{(k)}$ is a k-ary clone, the k-ary fragment of C.

Clones (1&2)

Examples of clones

- The smallest clone J_X contains only the projections.
- The largest clone \mathcal{O}_X contains all operations.
- Every subset S ⊆ O_X will generate a clone ⟨S⟩, the smallest clone containing S. The clone ⟨S⟩ can be obtained from below by closing S under composition, or from above as ⟨S⟩ = ∩{M | S ⊆ M ⊆ O_X, M is a clone}.
- If V is a vector space over the field K, then the set of all linear functions f_a : V^k → V

$$f_{\vec{a}}(v_1,\ldots,v_k) := a_1v_1 + \cdots + a_kv_k$$

(with $\vec{a} = (a_1, \ldots, a_k) \in K^k$) is a clone.

Examples of clones, continued

For every algebra $\mathcal{X} = (X, f, g, ...)$ (=universe X with operations f, g, ... — for example \mathcal{X} might be a group, a ring, etc) we consider

- ► the clone of *term operations* on X, the smallest clone containing all the basic operations f, g,... of X;
- the clone of *polynomial operations* on X, the smallest clone containing all terms as well as all constant unary functions on X.

Many properties of the algebra \mathcal{X} depend only on the clone of term functions, and not on the specific set of basic operations which generates this clone. (E.g. subalgebras, congruence relations, automorphisms, etc)

For example, a Boolean algebra will have the same clone as the corresponding Boolean ring.

The family of all clones

For any nonempty set X let CI(X) be the set of all clones on X.

- ► The intersection of any subfamily of Cl(X) is again in Cl(X).
- (Cl(X), ⊆) is a complete lattice.
 Meet = intersection, join = generated by union.
- J_X is the smallest clone, \mathcal{O}_X the largest.
- If $X = \{0\}$, then there is a unique clone: $J_X = O_X$.
- If $X = \{0, 1\}$, then CI(X) is countably infinite.
- If X is finite and has at least three elements, then Cl(X) is uncountable. (In fact: |Cl(X)| = |ℝ|.)
- ▶ If X is infinite, then . . . (later)

Uncountably many clones

If $X = \{0, 1, 2\}$, then CI(X) is uncountable. Proof sketch.

- We call a k-tuple (a₁,..., a_k) ∈ {0, 1, 2}^k proper, if exactly one of the a_i is equal to 1, and all the others are 2.
- For every k ≥ 3 let f_k : X^k → X be the function that assigns 1 to every proper k-tuple, and 0 to everything else.
- ► For every $A \subseteq \{3, 4, ...\}$ let $C_A := \langle \{f_i \mid i \in A\} \rangle$.
- Check that for k ∉ A we have f_k ∉ C_A.
 (Every composition of functions f_i, i ≠ k will assign 0 to some proper k-tuple.)
- Hence the map $A \mapsto C_A$ is 1-1.

Completeness

```
Fix a base set X.
```

Definition

A set $S \subseteq \mathcal{O}_X$ is *complete* if $\langle S \rangle = \mathcal{O}_X$, i.e., if every operation on *X* is term function of the algebra with operations *S*.

Example

Let
$$X = \{0, 1\}, \mathcal{X} = (X, \lor, \land, \neg, 0, 1).$$

- The set $\{\lor, \land, \neg\}$ is complete.
- The set $\{\land, \neg\}$ is complete.
- ► The set {|} is complete, where $x|y := \neg(x \land y)$. (Sheffer stroke)

Completeness, more examples

Theorem For every X: $\langle \mathfrak{O}_X^{(2)} \rangle = \mathfrak{O}_X$.

Proof.

- finite: Lagrange interpolation
- infinite: use $X \times X \approx X$.

Caution: Most clones *C* are NOT generated by their binary fragment $C \cap O^{(2)}$. (Not even finitely generated.)

Theorem

If $X = \{1, ..., k\}$, then there is a single function $f \in \mathcal{O}_X^{(2)}$ with $\langle f \rangle = \mathcal{O}_X^{(2)}$: Let f(x, x) = x + 1 (modulo k), f(x, y) = 0 otherwise.

(Completeness on infinite sets)

If X is infinite, then \mathcal{O}_X is uncountable. Hence a finite/countable set of operations cannot generate all of \mathcal{O}_X . However:

Theorem

Let $X \neq \emptyset$. For any finite or countable set $T \subseteq O_X$ there is a single function f_T (not necessarily in T) such that $T \subseteq \langle f \rangle$.

Theorem

- If X is countable, then there is a countable dense subset of 𝔅_X (in the natural topology), hence there is a single function f such that the topological closure of ⟨f⟩ is all of 𝔅_X.
- If X is uncountable, then \mathcal{O}_X will not be separable any more.

Completeness, continued

Let $X = \{0, 1\}$ be the 2-element Boolean algebra, with Boolean operations $\land, \lor, \neg, \rightarrow, |, \ldots$

Example

The set $\{\lor, \land, \rightarrow\}$ is not complete.

Proof.

Each of the three operations preserves the set {1}, i.e., this set is a subalgebra of the algebra ({0, 1}, \land , \lor , \rightarrow). Hence every function in $\langle \{\land, \lor, \rightarrow \}$ will also preserve this set, but \neg does not. So $\neg \notin \langle \{\land, \lor, \rightarrow \} \rangle$.

Polymorphisms, example

Example

The set $\{\lor, \land, 0, 1\}$ is not complete.

Proof.

All four functions are monotone in both arguments.

Definition

Let $\rho \subseteq X \times X$ be a relation (Example: \leq on $\{0, 1\}$.) A function $f: X^k \to X$ preserves ρ iff: for all $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix} \in \rho$, we have $\begin{pmatrix} f(x_1, \dots, x_k) \\ f(y_1, \dots, y_k) \end{pmatrix} \in \rho$.

Lemma

If all $f \in S \subseteq O_X$ preserve ρ , then all $f \in \langle S \rangle$ preserve ρ .

Polymorphisms, definition

Definition

Let $\rho \subseteq X^m$ be an *m*-ary relation, and let $f : X^k \to X$ be a *k*-ary function. We say that "*f* preserves ρ " ($f \triangleright \rho$, $f \in Pol(\rho)$) if:

• for all
$$(a_{i,j}: i \leq m, j \leq k) \in X^{m \times k}$$
:

whenever
$$a_{*,1} \in \rho, \ldots, a_{*,k} \in \rho$$
, then also $\begin{pmatrix} f(a_{1,*}) \\ \vdots \\ f(a_{m,*}) \end{pmatrix} \in \rho$.

(We let
$$a_{*,j} := \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{pmatrix}$$
, similarly $a_{i,*} = (a_{i,1}, \dots, a_{i,k})$.)

Equivalently: Letting $(X^m, f^{[m]})$ be the *m*-th power of (X, f): $f \triangleright \rho$ iff ρ is a subalgebra of $(X^m, f^{[m]})$.

Polymorphisms, examples

- Let ρ be a nontrivial unary relation, i.e. Ø ⊊ ρ ⊊ X. Then Pol(ρ) is the set of all operations f such that ρ is a subalgebra of (X, f).
- Let ρ ⊆ X × X be an equivalence relation. Then Pol(ρ) is the set of all operations f such that ρ is a congruence relation of the algebra (X, f).
- Let ρ ⊆ X × X be a (reflexive) partial order. Then Pol(ρ) is the set of all pointwise monotone operations.
- Let ρ ⊆ X × X be the graph of a function r: ρ = {(x, r(x)) : x ∈ X}. Then Pol(ρ) is the set of all functions f such that r is an endomorphism of (X, f), i.e., f commutes with r.

Fix a finite base set X.

Definition

For any relation $\rho \subseteq X^m$ let $Pol(\rho)$ be the set of all operations preserving ρ : $Pol(\rho) := \{f \in \mathcal{O}_X \mid f \triangleright \rho\}$ For a set *R* of relations, let $POL(R) := \bigcap_{\rho \in R} Pol(\rho)$.

Lemma

If $S \subseteq Pol(\rho)$, then also $\langle S \rangle \subseteq Pol(\rho)$. In particular, $Pol(\rho)$ and also POL(R) are always clones.

Theorem

For every clone $C \subseteq O_X$ there exists:

- A set $S \subseteq O_X$ such that $C = \langle S \rangle$. (Trivial)
- A set R of relations such that C = POL(R).

(Helpful to show incompleteness.)

Galois connection

Theorem

For every clone $C \subseteq O_X$ there exists a set R of relations such that $C = POL(R) = \{f \mid \forall \rho \in R : f \rhd \rho\}.$

Proof sketch.

The largest set *R* satisfying $\forall \rho \in \mathbf{R} : \mathbf{C} \subseteq \mathsf{Pol}(\rho)$ is the set

$$\mathsf{INV}(\mathcal{C}) := \{ \rho \mid \forall f \in \mathcal{C} : f \rhd \rho \}$$

For finite sets X, we can check that C = POL(INV(C)).

even: $\langle S \rangle = \text{POL}(\text{INV}(S))$ for all $S \subseteq O_X$. We will see a construction of a "better" set *R* with C = POL(R) later.

Pol: completeness criterion

Fix a finite base set X.

Theorem

For every clone $C \subseteq \mathfrak{O}_X$ there exists a set R of relations such that C = POL(R).

Corollary

If $S \subseteq O_X$ is not complete (i.e., $\langle S \rangle \neq O_X$), then there is a nontrivial relation ρ such that $S \subseteq Pol(\rho)$, hence $\langle S \rangle \subseteq Pol(\rho)$.

(But there are so many candidates for ρ ! Want to search a small set. \rightarrow precomplete clones)

Precomplete clones

Definition

A clone $C \subseteq \mathcal{O}_X$ is "precomplete" (or "maximal") if $C \neq \mathcal{O}_X$, but there is no clone *D* satisfying $C \subsetneq D \subsetneq \mathcal{O}_X$.

Theorem

For any clone $C \subsetneq \mathfrak{O}_X$ there is a precomplete clone C' with $C \subseteq C'$.

(Remark: Not true for infinite sets!)

Proof.

(Use Zorn's lemma??) Let $\mathcal{O}_X = \langle f \rangle$. Among all clones *D* with $C \subseteq D$, $f \notin D$, find a maximal element. (Better proof: later)

Examples of precomplete clones

Example

Let $\emptyset \subsetneq \rho \subsetneq X$. Then Pol(ρ) is precomplete.

Proof.

Assuming $g \notin Pol(\rho)$, we let $C := \langle Pol(\rho) \cup \{g\} \rangle$; we show $C = \mathfrak{O}_X$.

First show that there is $b \notin \rho$ such that the constant operation c_b with value *b* is in *C*.

For any function $f: X^k \to X$ let $\hat{f}: X^{k+1} \to X$ be defined by $\hat{f}(\vec{x}, b) = f(\vec{x})$, and $\hat{f}(\vec{x}, y) \in \rho$ arbitrary for $y \neq b$. Then $\hat{f} \in C$, and $f(\vec{x}) = \hat{f}(\vec{x}, c_b(x_1))$, so $f \in C$.

Example

Let ρ be a bounded partial order. Then Pol(ρ) is precomplete.

Rosenberg's list

Theorem

Let $X = \{1, ..., k\}$. Then there is an explicit finite list of relations $\rho_1, ..., \rho_m$ (including, for example, all nontrivial unary relations, all bounded partial orders) such that every precomplete clone on X is one of Pol(ρ_1), ..., Pol(ρ_m).

Completeness criterion If $\langle S \rangle \neq 0_X$ iff there is some *i* with $\forall f \in S : f \triangleright \rho_i$.

k-ary fragments

Let *D* be a *k*-ary clone. The smallest clone *C* with $C \cap \mathcal{O}_X^{(k)} = D$ is $\langle D \rangle$. $D \subseteq X^{X^k}$ can be viewed as a relation on *X*. The largest clone *C* with $C \cap \mathcal{O}_X^{(k)} = D$ is

$$\mathsf{Pol}(D) = \bigcup_n \{ f \in \mathfrak{O}_X^{(n)} \mid \forall d_1, \dots, d_n \in D : f(d_1, \dots, d_n) \in D \}$$

For any clone *E*, the clones $Pol(E \cap \mathcal{O}_X^{(k)})$ approximate *E* from above, agreeing with *E* on larger and larger sets: $Pol(E \cap \mathcal{O}_X^{(k)}) \cap \mathcal{O}_X^{(k)} = E \cap \mathcal{O}_X^{(k)}$.

Theorem For all clones $E: E = \bigcap_k \operatorname{Pol}(E \cap \mathcal{O}_X^{(k)}).$

CI(X) is dually atomic

Theorem Let X be finite, $C \neq O_X$ a clone. Then there is a precomplete clone $D \supseteq C$.

Proof. Let $C' \supseteq C$ be such that $C' \cap \mathcal{O}_X^{(2)}$ is maximal. (finite!) Let D := Pol(C').