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Łukasiewicz functions on [0,1]

Definition (Fuzzy operations on [0,1])

conjunction: x ∧ y := min(x , y)
disjunction: x ∨ y := max(x , y)

negation: ¬x := 1− x
weak disjunction: x+y := min(x + y ,1)

strong conjunction: x&y := max(x + y − 1,0) = ¬(¬x + ¬y)
implication: x→y := (¬x)+y = max{ z : (x&z) ≤ y }

Note: x ∨ y = (x→y)→y , ¬x = (x→0), . . .

Note: In this talk, fuzzy = Łukasiewicz = Ł.
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Propositional Łukasiewicz logic

Syntax:
I propositional variables p1,p2, . . .

I connectives: +,&,∨,∧,¬,→,>,⊥
I formulas: p1&p1 → p2, . . .

Semantics:
I Assignments: b : {p1,p2, . . .} → [0,1]

I Truth function b̄ : Formulas→ [0,1]:
b̄(p) = b(p), b̄(>) = 1, b̄(ϕ&ψ) = b̄(ϕ)&b̄(ψ), . . .

Ł-Tautologies: {ϕ : ∀b (b̄(ϕ) = 1)}

Warning: p1 ∨ ¬p1 is not a tautology.
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Łukasiewicz predicate logic

Syntax:
I Language L: Relation symbols R, . . . , S (with arities)
I Object variables x , y , . . .
I connectives, quantifiers: ∧, ∀, . . .
I formulas: e.g. ∀x ∃y (R(x , y)&R(y , y)→ S(y , x)).
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Łukasiewicz predicate logic 2

Semantics:

I L-structure M = (M,RM, . . . ,SM):
RM : Mk → [0,1], . . . , SM : Mm → [0,1].

I Assignment v : {x , y , . . .} → M
I Fuzzy values of formulas: ‖ϕ‖Mv .

I ‖R(x , y)‖Mv := RM(v(x), v(y))
I ‖∀x ϕ(x)‖ := inf{ ‖ϕ‖Mvx 7→m

: m ∈ M }
I etc.

I ‖ϕ‖ := inf{‖ϕ‖M : M an L-structure}.

Ł-validities: {ϕ : ϕ closed , ‖ϕ‖M = 1 for every M}.
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Complexity - propositional

Classical propositional logic on {0,1}
The set {ϕ : ∀b (b̄(ϕ) = 1} of classical (or “crisp”) tautologies is

I decidable;
I co-NP-complete. [folklore?]

Propositional Ł-logic on [0,1]:
The set {ϕ : ∀b (b̄(ϕ) = 1} of Ł-Tautologies is

I decidable;
I co-NP-complete. [same proof]
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Complexity - first order

Classical first order predicate logic on {0,1}:
The set {ϕ : M |= ϕ for all crisp M} of classical validities is

I not decidable
I computably enumerable (c.e., Σ0

1)
I in fact: Σ0

1-complete.

First order Ł-logic on [0,1]:
The set {ϕ : ‖ϕ‖M = 1 for all fuzzy M} of Ł-validities is

I not decidable, not Σ0
1, not even Σ0

2 (Scarpellini)
I Π0

2 (Novak-Pavelka)
I Π0

2-complete (Ragaz; G*)
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arithmetical hierarchy: formulas

First order language of arithmetic: +, ·,≤,=,0,1.
Abbreviation: ~x = (x1, . . . , xn), ~y = (y1, . . . , yk ).

I Σ0
1-formulas: ∃x1ψ(x1, ~y), where ψ is quantifier-free (or:

only bounded quantifiers: ∀u < v , ∃u < v .)
I Π0

1-formulas: ∀x1ψ, or ¬(Σ0
1).

I Σ0
n-formulas: ∃x1 ∀x2 · · · ∃∀xn ψ(~x , ~y)

Remark
Most arithmetical formulas that appear in practice are Σ0

n, for
small n. (n = 1,2,3.)
Example: “there are infinitely many twin primes”:
∀x∃p ( p > x , p prime, p + 2 prime ).
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arithmetical hierarchy: sets

A subset of Nk is Σ0
n iff it can be defined by a Σ0

n-formula.

I The Σ0
1 sets are exactly the c.e. (r.e.) sets, or

semi-decidable sets. (projections of decidable sets in Nk+1

I The decidable sets are exactly the sets which are both Σ0
1

and Π0
1.

I Σ0
1 ( Σ0

2 ( · · · , similarly Π0
1 ( Π0

2 ( · · · .
I If C is Π0

n, and f is computable, then f−1(C) is also Π0
n.

I C is a complete Π0
n-set, if C is Π0

n, and every Π0
n-set B can

be reduced to C, i.e., is of the form f−1(C), for some
computable f .
(These are the sets which are maximally complicated among the
Π0

n sets, similar to co-NP-complete)
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Examples of . . . -complete sets

I The set of all (codes for) Turing machines that halt on
input 0 is Σ0

1 complete.
I The set of all (codes for) programs that describe a function

with infinite domain is Π0
2-complete.

I The set Thn(N) of all (codes for) true Σ0
n-formulas is

Σ0
n-complete.

Definition
The set Th(N) (also called true arithmetic) is defined as the set
of all (codes for) true sentences: Th(N) =

⋃∞
n=1 Thn(N).

Th(N) is “infinitely more” complicated than any Thn(N).
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Computable structures

Definition
A crisp structure M = (M,RM, . . . ,SM) is “computable”, if

I M is a decidable subset of N,
I for each relation symbol R, the set RM is a decidable

subset of the respective Nk .
A fuzzy structure M = (M,RM, . . . ,SM) is “computable”, if

I M is a decidable subset of N,
I for each relation symbol R the sets {(~m,q) : RM(~m) < q}

and {(~m,q) : RM(~m) ≤ q} are decidable subsets of the
respective Nk ×Q.
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Computably valid sentences

Recall
I ϕ is classically valid, if M |= ϕ for all crisp structures M;
I ϕ is Ł-valid, if ‖ϕ‖M = 1, for all fuzzy structures M.

Definition
ϕ is C-valid,if M |= ϕ for all computable crisp structures M.
ϕ is C-Ł-valid,if M |= ϕ for all computable fuzzy structures M.

Theorem

1. The set of C-validities is as complicated as Th(N) (true
arithmetic).

2. The set of C-Ł-validities is as complicated as Th(N).
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Tennenbaum’s theorem

While any set of sentences (true in N) has uncountably many
(pairwise nonisomorphic) countable models, we have:

Theorem (Tennenbaum 1959)
There is a single sentences σ such that N is the unique
computable model satisfying σ.

Corollary

1. Th(N) can be computed from the set of C-validities.
2. Th(N) can be computed from the set of C-Ł-validities.

Part (1) is well-known and follows easily from Tennenbaum’s
1959 theorem. The proof of part (2) is similar.
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From fuzzy to crisp via rounding

Fix a language L with finitely many relation symbols R, . . . , S.
I εR := ∃x1 · · · ∃xk (R(~x) ∧ ¬R(~x)) for k -ary R
I εL := εR ∨ · · · ∨ εS (disjunction over all relation symbols)

Let M = (M,RM, . . . ,SM) be a fuzzy L-structure.
Define a crisp structure M̄ and a number eM ∈ [0, 1

2 ] as follows:
I The universe M̄ is the same as the universe of M: M̄ := M.
I For each k -ary relation symbol R:

For all ~a ∈ Mk : M̄ |= R(~a) iff: ‖R(~a)‖M > 1
2

I eM := ‖εL‖M.
Note: eM = 0 iff M is crisp. Try to avoid the case eM = 1

2 .
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Summary

The complexity of the set of valid sentences:

classical Łukasiewicz

propositional co-NP-complete co-NP-complete

predicate Σ0
1-complete Π0

2-complete

computable models Th(N) Th(N)
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