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and rank them according to their richness of term functions.

Note: In general, our algebras will have many operations.

(Qa+) < (Qv+> ) < (Q7+7_7 ) = (Qv ) )

@ general problem: Analyse the relationships between
different algebras on the same set;
by how much is (Q, +, -) “richer” than (Q, +)?

@ specific problem: Which algebras are complete?
(i.e., all functions are term functions)?
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Fix a set X. We write O(") for the set of n-ary operations:
OM = x*X" andwe let O = Ox = J,_y, O,

A clone on X is a set C C O which contains all the projection
functions and is closed under composition.

Equivalently, a clone is the set of term functions of some
universal algebra on X.

The set of clones on X forms a complete lattice: CLONE(X).

Definition: For any C C O let (C) be the clone generated by C.
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Size of CLONE(X)

If X is finite, then Oy is countable.

@ If [X| =1, then Oy is trivial.

@ If [X| =2, then CLONE(X) is countable, and completely
understood. (“Post’s lattice”)

@ If 3 < |X| < Ng, then |[CLONE(X)| = 2%, and not well
understood.

If X is infinite, then
e |0x|=2XI,
@ |CLONE(X)| = 22",
@ and only little is known about the structure of CLONE(X).
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Completeness

The functions A, V,true ,false do not generate all operations
on {true ,false }.

Proof: All these functions are monotone, and — is not.

Now let X be any set.

Assume that < is a nontrivial partial order on X, and that all
functions in C C O are monotone with respect to <.
Then (C) # 0.
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Polymorphisms

Let X be a set, C C 0.

@ If all functions in C respect some order < on X,

@ or: if all functions in C respect some nontrivial equivalence
relation 6

@ or: if all functions in C respect some nontrivial fixed set
AcCX
(i.e., f[AK] C A)

@or...

then (C) # 0.

We write Pol(<), Pol(6), Pol(A), ... for the clone of all functions
respecting <, 6, A, ...
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A simple example

Let X be a finite set, and let C C D be clones on X. Then the
interval [C, D] in CLONE(X) is

@ either finite,

@ or countable,

@ or of size 2%,

Proof: Recall that Oy is countable, so every C C Oy can be
viewed as a real number.
The set [C, D] is a Borel set (even closed) in the natural Polish

topology.

Note 1 All these possibilities are realized: 1,2,..., Nq, 2o,
Note 2 Not true for clones on infinite sets; all cardinalities are
possible.
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The clone T,

The following “canonisation theorem” follows from Ramsey’s
theorem:

For every function f : w x w — w we can find infinite sets A, B
suchthat f[(Ax B) NV (with V :={(x,y) : x <y})
@ is injective,
@ or depends injectively only on x: f(x,y) = h1(x), hy 1-1
@ or depends injectively only ony: f(x,y) = ha(y), h, 1-1
@ or is constant.
This theorem motivates the definition of a clone; namely, the

clone of all functions for which the first case (“injective”) never
happens.
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An open question concerning T»

Let T, be the set of all binary functions f such that there are no
infinite sets A, B such that f[(A x B) is 1-1 above or below the
diagonal.

Let 'fz be the set of all function f : wX — w such that no term
uo(f(u(?),uz(?),-..un(?))

(where each “?” can be either x or y, and all the u; are unary)

isl-lonthesetV :={(X,y) cwxw:X <Yy}

) 'fz is a clone; in fact, it is one of the two maximal clones
containing all unary functions.

@ T, is the binary part of T

@ Both T, and 'fz are complete I'I} sets.

Open Question
Does T, generate T,?
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Let D be afilter. f <p g means that f can be dominated by g
with the help of enumerating functions of sets A € D.
CD = {f f SD Id}

Assuming CH, we can construct an ultrafilter D such that <p is
linear but very long.

The interval [Cp, O] is then isomorphic to the family of Dedekind
cuts in this order. (Hence has no penultimate element).

This shows that there is a clone without a coatom above it.

Proof Using CH, find a sufficiently generic filter for a certain
cleverly constructed o-complete forcing notion.

In ZFC, the existence of such a clone is still open.
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Clones above the idempotent clone

Let Cjp be the clone of all idempotent operations:

Cip = {f : ¥xf(x,...,x) =x}

For every filter D (including the trivial filter (X)) on X let Cp be
clone of D-idempotent functions.

Cip={f:f(x,...,x) =xD-a.e.}

Every clone in the interval [Cip, O] is of the form Cp for some D.
Hence, the interval [Cip, O] is (as a lattice) isomorphic to the
family of open subsets of 5X.

(This translates a problem from algebra to topology.)
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