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Optimum Quantization and Its Applications

Peter M. Gruber

Abstract. Minimum sums of moments or, equivalently, distorsion of optimum
quantizers play an important role in several branches of mathematics. Fejes Tóth’s
inequality for sums of moments in the plane and Zador’s asymptotic formula for
minimum distortion in Euclidean d-space are the first precise pertinent results in
dimension d ≥ 2. In this article these results are generalized in the form of asymp-
totic formulae for minimum sums of moments, resp. distortion of optimum quan-
tizers on Riemannian d-manifolds and normed d-spaces. In addition, we provide
geometric and analytic information on the structure of optimum configurations.
Our results are then used to obtain information on

(i) the minimum distortion of high resolution vector quantization and optimum
quantizers,

(ii) the error of best approximation of probability measures by discrete measures
and support sets of best approximating discrete measures,

(iii) the minimum error of numerical integration formulae for classes of Hölder
continuous functions and optimum sets of nodes,

(iv) best volume approximation of convex bodies by circumscribed convex poly-
topes and the form of best approximating polytopes, and

(v) the minimum isoperimetric quotient of convex polytopes in Minkowski spaces
and the form of the minimizing polytopes.
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1 Introduction

1.1 Fejes Tóth’s inequality for sums of moments in the plane. Let
f : [0,+∞) → [0,+∞) be increasing, where f(0) = 0, and let H be a convex 3,
4, 5, or 6-gon in the Euclidean plane E2. Then

(1.1) inf
S⊂E2

#S=n

{∫
H

min
s∈S

{f(‖s− u‖2)}du
}
≥ n

∫
Hn

f(‖u‖2)du,

where n = #S is the number of points of S and Hn a regular convex hexagon in
E2 of area |H|/n and center at the origin o. ‖ · ‖2 and | · | stand for the Euclidean
norm and the ordinary (area) measure. There are more than a dozen proofs for
this result of L. Fejes Tóth [17] and its variants. Its applications range from
packing and covering problems for solid circles, problems of optimal location in
econometrics, quantization of data, Gauss channels and numerical integration, all



in E2, to the isoperimetric problem for special convex polytopes and asymptotic
approximation of convex bodies in E3. See Matérn and Persson [39] and Gruber
[29] for references. Related results, including results on finite difference methods,
cellular biology and territorial behaviour of animals are surveyed by Du, Faber
and Gunzburger [12].

The inequality (1.1) indicates that for certain geometric and analytic prob-
lems in E2 or E3 regular hexagonal configurations are close to optimal, possibly
optimal.

1.2 The corresponding planar stability problem. The objective here is to
describe the sets S = Sn for which equality or approximate equality holds in (1.1).
Although for certain functions f no clear cut answer is possible, Gruber [28, 30]
showed that in E2 and on Riemannian 2–manifolds under suitable restrictions for
f , the sets Sn form ‘asymptotically regular hexagonal patterns’ as n → ∞. For
E2 a similar, slightly more general result was given by G. Fejes Tóth [15].

The stability result implies that for certain geometric and analytic problems
in E2, E3 and on Riemannian 2–manifolds, the optimal or almost optimal configu-
rations are ‘asymptotically regular hexagonal pattern’. For examples see Gruber
[30].

1.3 Extensions to general dimensions. From the point of view of applications
the following extensions suggest themselves. First, determine or estimate the
expressions

(1.2) inf
S⊂M
#S=n

{∫
J

min
p∈S

{f(%m(p, x))}w(x)dωM(x)
}
,

and

(1.3) inf
S⊂Ed

#S=n

{∫
J

min
s∈S

{f(‖s− u‖)}w(u)du
}
.

Here J is a (Jordan) measurable set in a Riemannian d-manifold M with Rie-
mannian metric %M and (area) measure ωM , or in Ed, where the latter is endowed
with an additional norm ‖ · ‖, and w : J → R+ a weight function. Second, de-
scribe the corresponding minimizing or almost minimizing configurations. While
precise answers to these problems are out of reach, asymptotic estimates and up-
per and lower bounds for the expressions in (1.2) and (1.3) and information on
the minimizing configurations have been given for special functions f , particular
norms, and d = 2:

In the context of information theory Zador [48] proved that for f(t) = tα, α >
0, and ‖ · ‖ = ‖ · ‖2 the expression in (1.3) is asymptotically equal to(∫

J

w(u)
d

α+ddu
)α+d

d 1

n
α
d

as n→∞,

omitting a multiplicative constant; for related, more recent work in information
theory see the survey of Gray and Neuhoff [21]. The results in information theory
were used to approximate probability measures by discrete measures, see the
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report of Graf and Luschgy [20]. In the disguise of an asymptotic formula for the
minimum error of numerical integration formulae the same result, but for general
norms instead of ‖ · ‖2, was proved by Chernaya [7]. A similar formula with f
from a wide class of moduli of continuity including the functions of the form tα

and where the asymptotics is described by a function related to f , was given in
the same year by Chernaya [8]. Finally, Gruber [26] and Glasauer and Gruber
[19] proved in the context of convex geometry that the expression in (1.2) for
f(t) = t2 is asymptotically equal to(∫

J

w(x)
d

d+2dωM(x)
) d+2

d 1

n
2
d

as n→∞,

again omitting a multiplicative constant. It is curious to note that all these closely
related results were found independently in different areas of mathematics. The
proofs differ, but a crucial idea, a similarity argument, which was communicated
to Zador by Hammersley, is the same in each of them. In [33] we will describe a
proof for general norms which is also based on it.

If f is strictly increasing, then for S = {sn1, . . . , snn} ⊂ Ed,∫
J

min
i=1,...,n

{f(‖sni − u‖2)}w(u)du =
n∑

i=1

∫
Dni

f(‖sni − u‖2)w(u)du,

where the Dirichlet–Voronoi cells Dni, i = 1, . . . , n, in J corresponding to S are
defined by

Dni = {u ∈ J : ‖sni − u‖2 ≤ ‖snj − u‖2 for j = 1, . . . , n}.

(This explains why we speak of sums of moments.) A conjecture of Gersho [18]
asserts that for f(t) = t2 or, more generally, for strictly increasing f , and for
‖ · ‖ = ‖ · ‖2 and w = 1, there is a convex polytope P with |P | = 1 which admits
a tiling of Ed by congruent copies such that the following holds: as n → ∞, the
cells Dni which correspond to minimizing configurations S = Sn, where #Sn = n,
are ‘asymptotically congruent’ to (|J |/n)1/dP . For d = 2 the author’s stability
result stated above readily implies the truth of this conjecture, showing also that
P is a regular hexagon. This seems to be the first proof of Gersho’s conjecture
for d = 2. Also G. Fejes Tóth’s [15] version of the stability theorem yields a proof
of Gersho’s conjecture for d = 2. (We point out that no proof is provided by [16]
or [42], contrary to positive statements in the literature.) For d ≥ 3 it is not clear
that the conjecture is valid and if so, at present, proofs seem to be out of reach.

Assuming the truth of Gersho’s conjecture, lower bounds for the expression
in (1.3) have been given for certain functions f and certain norms. See [33] for
simple arguments which also lead to lower bounds. For references see the survey
of Gray and Neuhoff [21].

General references for results as described above are Gray and Neuhoff [21],
Du, Faber and Gunzburger [12], Graf and Luschgy [20] and Gruber [33]. The
latter is an easily comprehensible introduction to the present article.
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1.4 Results. We will give asymptotic formulae for the expressions in (1.2) and
(1.3) for a wide class of functions f . Further, geometric and analytic information
on the minimizing configurations S = Sn will be provided; roughly speaking, Sn

is distributed over J rather uniformly and regularly. The hard part of the proof
is to show that Sn is Delone (Section 2).

These results admit interpretations and applications to quantization of data,
approximation of probability measures by discrete probability measures, numeri-
cal integration, approximation of convex bodies by polytopes and the isoperimet-
ric problem for convex polytopes.

An important step in data transmission is to encode signals (in many cases
vectors in Ed) produced by a source into codewords (particular vectors) from a
codebook consisting of, say, n codewords (and which are then transmitted in a
channel). So-called distortions measure the quality of this encoding or quantizing
process. See [21] for the pertinent literature starting with Shannon and Zador.
In Shannon’s theory distortion is estimated as d → ∞, while in Zador’s high
resolution theory estimates for n → ∞ are considered. Our results immediately
imply asymptotic formulae for the minimum distortion of quantization as the
number n of codewords tends to infinity and give information about the structure
of optimum codebooks (Section 3).

Given a probability measure on a Jordan measurable subset of Ed, it is a
natural question to ask, how well can it be approximated by discrete measures.
Here the space of all probability measures is endowed with the Wasserstein or
Kantorovich metric, or generalizations of it. See Graf and Luschgy [20]. Our
results yield asymptotic formulae for the error of the best approximation as the
number of support points of the approximating discrete measures tends to infinity.
In addition, information on the structure of the support of the best approximating
discrete measures is provided (Section 4).

Consider a class of Riemann integrable real functions on a Jordan measurable
subset of Ed or of a Riemannian manifold M . In general it is difficult to estimate
the minimum error of numerical integration formulae with n nodes and weights.
Pertinent results have been given in the context of uniform distribution theory by
Koksma and Hlawka, see [34], further for Sobolev spaces of functions by Sobolev
[46] and his school, including Polovinkin [43], and for classes of Lipschitz or Hölder
continuous functions by Babenko [2] for d = 2 and Sobol’ [45], Chernaya [7, 8]
and others for general d. Our results yield for certain Hölder classes of functions
asymptotic formulae for the minimum error of numerical integration formulae as
the number n of nodes and weights tends to infinity. (Our classes are slightly
less general than those of Chernaya.) Moreover, we obtain information about the
structure of optimal sets of nodes (Section 5).

The special case f(t) = t2 of our result for Riemannian manifolds yields
asymptotic formulae for best volume approximation of convex bodies by circum-
scribed convex polytopes as the number of facets tends to ∞. An argument from
the proof of our manifold result shows that the facets of the best approximating
polytopes are all ‘rather round’ and ‘roughly of the same size’ (Section 6).
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The latter results can be interpreted as asymptotic formulae for the mini-
mum isoperimetric quotient of convex polytopes in a Minkowski space with n
facets as n→∞ and as information about the form of polytopes with minimum
isoperimetric quotient (Section 7).

2 Sums of Moments on Riemannian d-Manifolds

and Normed d-Spaces

2.1 Preliminaries. A function f : [0,+∞) → [0,+∞) satisfies the growth
condition if

(2.1) f(0) = 0, f is continuous and strictly increasing and, for any given s > 1,
the quotient f(st)/f(t) is decreasing and bounded above for t > 0.

In addition to the positive powers of t there are many other functions f : [0,+∞) →
[0,+∞) which satisfy the growth condition. This is shown by the following result.
We state it without proof.

Proposition. Let f : [0,+∞) → [0,+∞) be such that f(t) = 0 only for t = 0.
Define g : R → R by g(u) = log f(eu) for u ∈ R. Then the following statements
are equivalent:
(i) f satisfies the growth condition,
(ii) g is strictly increasing, concave and Lipschitz.

Let M be a Riemannian d-manifold. By this we mean a d-dimensional mani-
fold of class C3 with a metric tensorfield (which has coefficients) of class C1. Let
%M and ωM be the corresponding Riemannian metric and (area) measure on M .
A set J ⊂ M is (Jordan or Riemann) measurable if its closure cl J is compact
and ωM(bd J) = 0, where bd J is the boundary of J . See 2.3 for an alternative
definition of neasurability. A measurable set J ⊂M has positive density if

(2.2) there are β > 1, γ > 0, such that BM(p, %) is measurable and
%d

β
≤ ωM(BM(p, %) ∩ J) ≤ β%d for p ∈ cl J, 0 < % < γ,

where the ball BM(p, %) with center p and radius % is the set {x ∈M : %M(p, x) ≤
%}. The measurability of BM(p, %) for sufficiently small γ follows from an argu-
ment using the exponential mapping, compare the proof of (2.12). Let J ⊂M be
measurable with ωM(J) > 0, let (Sn) be a sequence of sets in M with #Sn = n,
and let δ > 1. Sn is a (1/δn1/d, δ/n1/d)-Delone set in J for n = 1, 2, . . ., if any
two distinct points of Sn have distance at least 1/δn1/d and for each point of J
there is a point of Sn at distance at most δ/n1/d. Sn is uniformly distributed in
J as n → ∞ with respect to an integrable function, a density, w : J → R+ if for
any measurable set K ⊂ J we have,

#(K ∩ Sn) ∼
(∫

K

w(x)dωM(x)
/∫

J

w(x)dωM(x)
)
n as n→∞.
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2.2 Asymptotic results. We will prove the following result, where α > 0 is a
constant corresponding to f , see (2.14).

Theorem 1. Let f : [0,+∞) → [0,+∞) satisfy the growth condition (2.1)
and let α > 0 be the corresponding constant. Then there is a constant div > 0,
depending only on f and d, such that the following is true: let M be a Riemannian
d-manifold, J ⊂ M a compact measurable set with ωM(J) > 0, and w : J → R+

continuous. Then

(i) Fn = inf
S⊂M
#S=n

{∫
J

min
p∈S

{f(%M(p, x))}w(x)dωM(x)
}

∼ div
(∫

J

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

n
1
d

)
as n→∞.

If, in addition, J is connected and has positive density, see (2.2), then the fol-
lowing hold: let (Sn) be a sequence of sets Sn ⊂ M with #Sn = n such that the
infimum in (i) is attained for S = Sn, n = 1, 2, . . .. Then

(ii) there is a constant δ > 1 such that Sn is (1/δn1/d, δ/n1/d)-Delone in J for
n = 1, 2, . . .,

(iii) Sn is uniformly distributed in J with density wd/(α+d) as n→∞.

Analogous results hold under the assumption that S, Sn ⊂ J .

A proof which is similar to that of Theorem 1, but with suitably distorted sets
Sn and which makes use of a result of Ewald, Larman and Rogers [14], yields the
next result.

Theorem 2. Let f : [0,+∞) → [0,+∞) satisfy the growth condition (2.1), let
α > 0 be the corresponding constant, and let ‖ · ‖ be a norm on Ed. Then there is
a constant div > 0, depending only on f and ‖ · ‖, such that the following holds:
let J ⊂ Ed be compact and measurable with |J | > 0, and w : J → R+ continuous.
Then

(i) inf
S⊂Ed

#S=n

{∫
J

min
s∈S

{f(‖s− u‖)}w(u)du
}
∼ div

(∫
J

w(u)
d

α+ddu
)α+d

d
f
( 1

n
1
d

)
as n→∞.

If, in addition, J is connected and has positive density, see (2.2), then the fol-
lowing assertions hold: let (Sn) be a sequence of sets Sn ⊂ Ed with #Sn = n such
that the infimum in (i) is attained for S = Sn, n = 1, 2, . . .. Then

(ii) there is a constant δ > 1 such that Sn is (1/δn1/d, δ/n1/d)-Delone in J for
n = 1, 2, . . .,

(iii) Sn is uniformly distributed in J with ensity wd/(α+d) as n→∞.

Analogous results hold under the assumption that S, Sn ⊂ J .

Remark. Theorem 2 can be generalized to Finsler spaces where all tangent
norms are isometric – as in Theorem 1. For general Finsler spaces there is also
such a result, but then the constant div depends on J .

6



The proof of Theorem 1 will be given in Sections 2.3 - 2.6. To show the Delone
property of Sn is the core of the proof. This property is then used to prove the
asymptotic formula. The latter is the main tool for the proof that Sn is uniformly
distributed. We are aware that there are more direct proofs of the asymptotic
formula; compare the sketch of the proof of the asymptotic formula in Theorem
2 in [33], or the proof of a similar formula due to Chernaya [8].

2.3 Preparations for the proof. First, let M be a Riemannian d-manifold. Let
U be an open neighborhood of a point p ∈M with corresponding homeomorphism
h =“ ′ ” which maps U onto the open set U ′ = h(U) ⊂ Ed. To each u ∈ U ′ there
corresponds a positive definite quadratic form qu on Ed.

A curve C in U is of class C1 if it has a parametrization x : [a, b] → U such
that u = h ◦ x is a parametrization of class C1 of a curve in U ′. The length of C
then is defined to be

(2.3)

b∫
a

qu(t)(u
.(t))

1
2dt.

By means of appropriate dissection and addition one can define the length for
any curve in M which is piecewise of class C1 and which is not contained in a
single neighborhood. The Riemannian distance %M(x, y) of two points x, y ∈M is
the infimum of the lengths of continuous curves in M which connect x, y and are
piecewise of class C1. A curve inM of class C1 which connects two points x, y ∈M
is a (geodesic) segment if its length is %M(x, y). A geodesic is a curve of class C1

in M which consists locally of geodesic segments. A set N ⊂ M is geodesically
convex if for any x, y ∈ N there is a unique geodesic segment connecting x, y and
this segment is contained in N .

A set J ⊂ U is (Riemann or Jordan) measurable in M if h(J) is so in Ed.
Then its (area) measure ωM(J) is defined by

ωM(J) =

∫
h(J)

(det qu)
1
2du,

where du = du1 · · · dud. Again, by dissection and addition onecan define measur-
ability and measure for sets which are not contained in a single neighborhood.
(For an alternative definition see 2.1.)

If J ⊂ U is measurable and w : J → R continuous, then the (Riemann)
integral of w on J is defined by

(2.4)

∫
J

w(x)dωM(x) =

∫
h(J)

w(h−1(u))(det qu)
1
2du.

Also here one can define integrals on sets not contained in a single neighborhood.

Using the exponential map (compare the proof of (2.12)) and simple argu-
ments involving M one can show the following:

7



(2.5) Let I ⊂ M be compact. Then there are ε > 1, ϑ > 0 such that BM(p, %)
is measurable and

%d

ε
≤ ωM(BM(p, %)) ≤ ε%d for p ∈ I, 0 < % ≤ ϑ.

Let J, w : J → R+ be as in Theorem 1 and let λ > 1. For each p ∈M choose
U, h =“ ′ ”, U ′ = h(U), qu, q = qp′ as above where U is so small that the following
claims hold true:

1

λ
q(x′ − y′)

1
2 ≤ %M(x, y) ≤ λq(x′ − y′) for x, y ∈ U,

1

λ
(det q)

1
2 ≤ (det qu)

1
2 ≤ λ(det q)

1
2 for u ∈ U,

1

λ
|K ′|(det q)

1
2 ≤ ωM(K) ≤ λ|K ′|(det q)

1
2 for measurable K ⊂ U,

λ inf{w(x) : x ∈ J ∩ U} ≥ sup{w(x) : x ∈ J ∩ U}.

Let V be an open measurable neighborhood of p with clV ⊂ U .

As p ranges over the compact set J , the corresponding neighborhoods V form
an open covering of J . Thus there is a finite subcover. Therefore there are, say, m
points in J and corresponding neighborhoods Ul, Vl, homeomorphisms hl =“ ′ ”,
and positive definite quadratic forms ql, such that

(2.6)
1

λ
ql(x

′ − y′)
1
2 ≤ %M(x, y) ≤ λql(x

′ − y′)
1
2 for x, y ∈ Ul,

(2.7)
1

λ
(det ql)

1
2 ≤ (det qu)

1
2 ≤ λ(det ql)

1
2 for u ∈ U ′

l ,

(2.8)
1

λ
|K ′|(det ql)

1
2 ≤ ωM(K) ≤ λ|K ′|(det ql)

1
2 for measurable K ⊂ U,

for l = 1, 2, . . . ,m. Moreover, the sets

Jl = J ∩ (Vl\(V1 ∪ . . . ∪ Vl−1)) ⊂ Vl ⊂ Ul, l = 1, . . . ,m,

have the following properties:

(2.9) J is the disjoint union of the measurable sets Jl ⊂ Vl ⊂ Ul,
where Vl is open and measurable, Ul open and clVl ⊂ Ul, l = 1, . . . ,m.

(2.10) wl ≤ w(x) ≤ λwl,
1
λ
Wl ≤ w(x) ≤ Wl for x ∈ Jl,

where wl = inf{w(x) : x ∈ Jl},Wl = sup{w(x) : x ∈ Jl}, l = 1, . . . ,m.

Since J is compact and w : J → R+ continuous,

(2.11) 0 < v = inf{w(x) : x ∈ J} ≤ sup{w(x) : x ∈ J} = W <∞.
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The following result will be used to show that Dirichlet– Voronoi cells are
measurable; here int stands for interior.

(2.12) For each point of M there is a geodesically convex compact neighborhood
N such that for any p, q ∈ intN, p 6= q, the bisector or Leibnizian plane
LN(p, q) = {x ∈ N : %M(p, x) = %M(x, q)} of p, q in N is measurable with
measure 0.

Since M is of class C3 with metric tensorfield of class C1, each point of M has
a compact neighborhood N with the following properties: (i) N ⊂ V , where V
is an open measurable neighborhood; (ii) N is geodesically convex; (iii) for each
p ∈ N the geodesic segments connecting p with bdN cover N\{p} schlicht; (iv)
for each p ∈ intN there is a diffeomorphism E−1

p : V → Ed, the inverse of the
exponential mapping Ep, such that for each geodesic segment G connecting p with
a point of bdN the image E−1

p (G) is a line segment starting at o. See [5] or [36].

Now, given a point of M , let N be the neighborhood of it just described. N
is compact and it is geodesically convex by (ii). Next, let p, q ∈ intN, p 6= q.
Then (ii) implies that each geodesic segment connecting p and bdN contains at
most one point of LN(p, q). Clearly, LN(p, q) is closed in the compact set N .
Hence E−1

p (LN(p, q)) is closed in the compact set E−1
p (N) and each ray starting

at o meets E−1
p (LN(p, q)) at most once by (iii) and (iv). Thus E−1

p (LN(p, q)) has
Lebesgue measure 0. Since it is compact it is (Jordan) measurable with (Jordan)
measure 0. This yields (2.12).

Secondly, f will be investigated. Clearly, (2.1) implies the following:

(2.13) Given 0 < s < 1, the quotient f(st)/f(t) is increasing and has a positive
lower bound for t > 0.

As a consequence of (2.1) and (2.13) it will be shown that

(2.14) There is a constant α > 0, depending on f , such that the limit l(s) =
lim

t→+0
(f(st)/f(t)) exists and is equal to sα for s > 0.

The existence and positivity of this limit follows from (2.1) and (2.13). Then

l(rs) = lim
t→+0

f(rst)f(st)

f(st)f(t)
= l(r)l(s) for r, s > 0.

The function c : R → R defined by c(u) = log l(eu) for u ∈ R thus satisfies
Cauchy’s functional equation. Since f is strictly increasing, (2.1) and (2.13)
imply that l(s) > 1 for s > 1 and l(s) < 1 for 0 < s < 1, respectively. Hence
c(u) < 0 for u < 0 and c(u) > 0 for u > 0. Being a solution of Cauchy’s functional
equation it thus follows that c(u) = αu for u ∈ R, with suitable α > 0. See [37].
This yields (2.14).

The next required property of f is the following:
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(2.15) Define g : R+ → R+ by g(t) = f(1/t1/d) for t > 0. Then, given 0 < η < 1,
ϑ, ι > 0, ϑ 6= ι, there is a constant κ > 0 such that

ηg(ϑt)+(1−η)g(ιt) ≥ (1+κ)g((ηϑ+(1−η)ι)t) for sufficiently large t > 0.

To see this note that by (2.14) and the definition of g hold:

g(ϑt) ∼ 1

ϑ
α
d

g(t), g(ιt) ∼ 1

ι
α
d

g(t),

g((ηϑ+ (1− η)ι)t) ∼ 1

(ηϑ+ (1− η)ι)
α
d

g(t) as t→∞.

2.4 The Delone property of Sn, S̄n. Let M,J,w : J → R+ be as in Theorem 1.
Later on we will assume that J is connected and has positive density.

At first tilings of J by Dirichlet–Voronoi cells will be investigated.Given S =
{p1, . . . , pn} ⊂ M , define the (Dirichlet–Voronoi) cell Di = D(J, S, pi) of pi with
respect to S in J by

Di = {x ∈ J : %M(pi, x) ≤ %M(x, pj) for j = 1, . . . , n}, i = 1, . . . , n.

The circumradius Ri = R(Di) of Di with respect to pi is given by

Ri = inf{R > 0 : BM(pi, R) ⊃ Di}, i = 1, . . . , n.

With these definitions in mind the following will be shown:

(2.16) Let S = {p1, . . . , pn} ⊂ M . If max
1=1,···,n

{Ri} is sufficiently small, then the

cells D1, . . . , Dn are measurable and form a tiling of J ,

i.e., they cover J and their intersections have measure 0. There are finitely many
neighborhoods as described in (2.12) such that their interiors cover the compact
set J . Thus there is a constant 2µ > 0, a Lebesgue number of this covering,
see e.g. [13], with the following property: for each q ∈ J the ball BM(q, 2µ)
is contained in one of these neighborhoods. Assume now that max

i=1,···,n
{Ri} < µ.

Then the following holds:

(2.17) ωM(Di ∩Dj) = 0 for i, j = 1, . . . , n, i 6= j.

If Di∩Dj = ∅, we are finished. Otherwise, let q ∈ Di∩Dj ⊂ J . Then %M(pi, q) =
%M(q, pj) ≤ Rj < µ. Since Ri, Rj < µ, we see that Di ∩Dj ⊂ BM(q, 2µ). Hence
Di ∩ Dj(⊂ BM(q, 2µ)) ⊂ N , where N is one of the neighborhoods as described
in (2.12). Since Di ∩ Dj ⊂ {x ∈ M : %M(pi, x) = %M(x, qj)} it follows that
Di∩Dj ⊂ LN(pi, pj) and thus ωM(Di∩Dj) ≤ ωM(LN(pi, pj)) = 0, by (2.12). The
proof of (2.17) is complete. Since D1, . . . , Dn, J are closed and D1∪ . . .∪Dn = J,
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bdDi ⊂
(⋃

i6=j

Di ∩Dj

)
∪ bd J for i = 1, . . . , n.

This together with (2.17), the measurability of J which implies that ω(bd J) =
0, and the fact that D1, . . . , Dn cover J yields the measurability of the cells
D1, . . . , Dn and the claim that they tile J , concluding the proof of (2.16).

The next preliminary step is to prove that

(2.18) there is a constant ν > 0 such that Fn ≤ νf
(

1

n
1
d

)
for n = 1, 2, . . . ,

where for Fn see (2.3). Let λ = 2 and choose m and Ul, . . . , l = 1, . . . ,m, as in
2.3 such that (2.6) – (2.11) hold. Let n ≥ m. Since the sets J ′l all are measurable
in Ed by (2.9), we may choose bn/mc points in each J ′l such that the Euclidean

balls with centers at these points and radius O(1/bn/mc 1
d ) cover J ′l . Here O(·)

is a suitable Landau symbol, the same for each l. If n is sufficiently large, which
we assume, the balls covering J ′l all are contained in U ′

l by (2.9). Consider the
h−1

l -images of the centers of these balls and let S be the union of all these images,
l = 1, . . . ,m. Then #S ≤ n and (2.6), (2.7), (2.9), (2.11), the definition of
integrals on M , and (2.14) together yield (2.18).

Assume from now on in this subsection that J is connected and has positive
density, i.e., satisfies (2.2), but note that these assumptions will only be needed
beginning with the proof of proposition (2.26). Let Sn = {pn1, . . . , pnn} and
Dni = D(J, Sn, pni), Rni = R(Dni) for i = 1, . . . , n, n = 1, 2, . . .. Our aim is to
show the following:

(2.19) There is a constant δ > 1 such that

1

δn
1
d

≤ min
i,j=1,...,n

i6=j

{%M(pni, pnj)}, max
i=1,...,n

{Rni} ≤
δ

n
1
d

for n = 1, 2, . . . .

We show the upper estimate first. Its proof is split into a series of steps. In
the first step it will be shown that

(2.20) Dni 6= ∅ for i = 1, . . . , n, n = 1, 2, . . . .

If Dni = ∅, then

min
p∈Sn

{%M(p, x)} = min
p∈Sn\{pni}

{%M(p, x)} for x ∈ J.

Now choose q ∈ (intJ)\Sn and let Tn = (Sn\{pni}) ∪ {q}. Then

min
p∈Sn

{%M(p, x)} ≥ min
p∈Tn

{%M(p, x)} for x ∈ J,

where strict inequality holds for all x ∈ J sufficiently close to q. Since f is strictly
increasing by (2.1), S = Sn does not minimize the left hand integral in (2.3). This
contradicts our choice of Sn and thus concludes the proof of (2.20).

The next step is to show that
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(2.21) max
x∈J

{min
p∈Sn

{%M(p, x)}} → 0 as n→∞.

For suppose not. Then there are ξ > 0 and a sequence of points xn ∈ J where
n is from an infinite subsequence of 1, 2, . . ., such that %M(p, xn) ≥ 2ξ for each
p ∈ Sn. Since J is compact, there is a point x ∈ J such that %M(p, x) ≥ ξ for
each p ∈ Sn and n from a suitable infinite subsequence of the subsequence just
considered. Combining this with the assumptions that J has positive density (see
(2.2)) and f is strictly increasing (see (2.1)), we obtain a contradiction to (2.18).
This concludes the proof of (2.21).

(2.20), (2.21) and (2.16) yield the following:

(2.22) max
i=1,...,n

{Rni} → 0 as n→∞,

(2.23) the cells Dn1, . . . , Dnn are measurable and form a tiling of J for all suffi-
ciently large n,

(2.24) there is a compact set I ⊃ J such that Sn ⊂ I for n = 1, 2, . . ..

The definition of Fn in (i), our choice of Sn = {pn1, . . . , pnn} and ofDn1, . . . , Dnn,
(2.23), the assumptions that f is increasing and w ≥ 0 together imply the next
assertion:

(2.25) Let Tn = {qn1, . . . , qnn} ⊂M and let En1, . . . , Enn ⊂ J be measurable and
form a tiling of J for n = 1, 2, . . .. Then, if n is sufficiently large,

Fn =

∫
J

min
i=1,...,n

{f(%M(pni, x))}w(x)dωM(x)

=
n∑

i=1

∫
Dni

f(%M(pni, x))w(x)dωM(x)

≤
∫
J

min
i=1,...,n

{f(%M(qni, x))}w(x)dωM(x)

≤
n∑

i=1

∫
Eni

f(%M(qni, x))w(x)dωM(x).

Before proving the upper estimate in (2.19), a weaker version of it will be
shown in the following step:

(2.26) There is a constant σ > 0 such thatRnj ≤
σ

n
1
d

for suitable j ∈ {1, . . . , n}, n =

1, 2, . . ..

If (2.26) did not hold, then,

12



(2.27) for any (arbitrarily large) ζ > 0 there is an infinite set of n such that

min
i=1,...,n

{Rni} ≥
ζ

n
1
d

.

Take β from (2.2) and v,W from (2.11). By (2.14) one may

(2.28) choose ζ > 0 so large that for suitable τ > 0 holds

ωM(J)Wf(3t) <
ζdv

3dβ

(
f
(2t

3

)
− f

( t
3

))
for 0 < t ≤ τ.

From now on we consider in the proof of (2.26) only such n for which

(2.29) (2.23), (2.25), and (2.27) for the chosen ζ hold, and

(2.30) max
i=1,...,n

{Rni} ≤ γ, τ .

Here for (2.30) we have made use of (2.22) and γ, τ are as in (2.2) and (2.28),
respectively. By (2.29) and (2.23) the cells Dn1, . . . , Dnn are measurable and form
a tiling of J . Hence there is a cell Dnj, say, such that

(2.31) ωM(Dnj) ≤
ωM(J)

n
.

Since in this subsection J is assumed to be connected and since the cellsDn1, . . . , Dnn

tile J by (2.29) and (2.23) and are compact, we may choose a point p ∈ Dnj∩Dnk

for suitable k 6= j. Then %M(pnj, pnk) ≤ %M(pnj, p) + %M(p, pnk) = 2%M(pnj, p) ≤
2Rnj and therefore,

(2.32) k 6= j and %M(pnk, x)(≤ %M(pnk, pnj) + %M(pnj, x)) ≤ 3Rnj for x ∈ Dnj.

Choose q ∈ Dnj with %M(pnj, q) = Rnj. The definition of Dnj then shows that

(2.33) %M(q, x) ≤ Rnj

3
, %M(pni, x) ≥

2Rnj

3
for x ∈ B = BM

(
q,
Rnj

3

)
,

i = 1, . . . , n.

Define fn : J → R by

(2.34) fn(x) = min
i=1,...,n

{f(%M(pni, x))} for x ∈ J .

Finally, the definition of Fn in (i), our choice of Sn = {pn1, . . . , pnn}, (2.34), (2.29)
and (2.23), the measurability of B which follows from (2.30) and (2.2), (2.25),
the assumptions that f is increasing and f, w ≥ 0, (2.32), (2.34), (2.11), (2.30),
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(2.2), (2.34) and (2.33), (2.11), (2.3), (2.34), (2.31), (2.29) and (2.27), (2.30), and
(2.28) lead to the following contradiction and thus conclude the proof of (2.26):

Fn =

∫
J

fn(x)w(x)dωM(x) =
n∑

i=1

∫
Dni

f(%M(pni, x))w(x)dωM(x)

≤
n∑

i=1
i6=j

∫
Dni\B

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f(%M(pnk, x))w(x)dωM(x)

+

∫
B∩J

f(%M(p, x))w(x)dωM(x)

≤
n∑

i=1
i6=j

∫
Dni\B

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f(%M(pnj, x))w(x)dωM(x)

+

∫
Dnj\B

f(3Rnj)w(x)dωM(x) +

∫
B∩J

fn(x)w(x)dωM(x)

−
∫

B∩J

(fn(x)− f(%M(q, x)))w(x)dωM(x)

≤
∫
J

fn(x)w(x)dωM(x) + ωM(Dnj)f(3Rnj)W

−
Rd

nj

3dβ

(
f
(2Rnj

3

)
− f

(Rnj

3

))
v

≤ Fn +
1

n
ωM(J)Wf(3Rnj)−

1

n

ζdv

3dβ

(
f
(2Rnj

3

)
− f

(Rnj

3

))
< Fn.

We come to the final step of the proof of the upper estimate in (2.19). If this
estimate did not hold, then

(2.35) for any (arbitrarily large) ν > 0 there is an infinite set of n such that

Rnk >
ν

n
1
d

for suitable k ∈ {1, . . . , n}.

Take β from (2.2), ε from (2.5), where I is from (2.24), σ from (2.26), and v,W
from (2.11). By (2.14) we may

(2.36) choose ν > 0 so large that

(i) ν > σ,

(ii) for suitable ϕ > 0 hold

Wεσdf
(3σ

n
1
d

)
− vνd

3dβ

(
f
(2t

3

)
− f

( t
3

))
< 0 for

ν

n
1
d

< t < ϕ.

From now on consider in the proof of the upper estimate in (2.19) only such n
that
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(2.37) (2.5), where I is from (2.24), (2.23), (2.25) and (2.35) hold, and

(2.38) max
i=1,...,n

{Rni} ≤ γ, ϑ, ϕ,

where γ, ϑ, ϕ are as in (2.2), (2.5) and (2.36), respectively. Given such an n, let
j be as in (2.26). Then Rnj ≤ σ/n1/d. Choose pnl 6= pnj with %M(pnj, pnl) ≤
2Rnj ≤ 2σ/n1/d. Such a choice is possible since in this subsection J is connected
by assumption, compare the argument that led to (2.32). Then

(2.39) l 6= j and %M(pnl, x) ≤ 3Rnj ≤
3σ

n
1
d

for x ∈ Dnj.

By (2.37), proposition (2.35) holds for n and the chosen ν.Let k be as in (2.35).
Since Rnj ≤ σ/n1/d < ν/n1/d < Rnk by (2.26), (2.36i) and (2.37) and (2.35),

(2.40) k 6= j

follows. Choose p ∈ Dnk with %M(pnk, p) = Rnk. The definition of the cellDnk and
(2.35) then imply that %M(pni, p) ≥ %M(pnk, p) = Rnk > ν/n1/d for i = 1, . . . , n.
Hence,

(2.41) %M(p, x) ≤ Rnk

3
, %M(pni, x) ≥

2Rnk

3
for

x ∈ B = BM

(
p,
Rnk

3

)
, i = 1, . . . , n.

Finally, the definition of Fn in (i), our choice of Sn = {pn1, . . . , pnn}, (2.37) and
(2.25), the measurability of B which follows from (2.38) and (2.2), (2.39), (2.40),
(2.37), (2.23) and (2.25), the assumptions that f is increasing and f, w ≥ 0,
(2.39), (2.34), (2.11), (2.41), (2.38), (2.2), (2.11), (2.38), (2.26), (2.37) and (2.5),
(2.26), (2.37), (2.35), (2.38) and (2.36) together yield a contradiction and thus
conclude the proof of the upper estimate in (2.19):

Fn =
n∑

i=1

∫
Dni

f(%M(pni, x))w(x)dωM(x)

≤
n∑

i=1
i6=j,k

∫
Dni\B

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f(%M(pnl, x))w(x)dωM(x)

+

∫
Dnk\B

f(%M(pnk, x))w(x)dωM(x) +

∫
B∩J

f(%M(p, x))w(x)dωM(x)

≤
n∑

i=1
i6=j,k

∫
Dni\B

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f(%M(pnj, x))w(x)dωM(x)

+

∫
Dnj\B

f(
3σ

n
1
d

)w(x)dωM(x) +

∫
Dnk\B

f(%M(pnk, x))w(x)dωM(x)

+

∫
B∩J

fn(x)w(x)dωM(x)−
∫

B∩J

(fn(x)− f(%M(p, x)))w(x)dωM(x)
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=

∫
J

fn(x)w(x)dωM(x)

+ωM(Dnj)f
(3σ

n
1
d

)
W − vRd

nk

3dβ

(
f
(2Rnk

3

)
− f

(Rnk

3

))
≤ Fn +

1

n
Wεσdf

(3σ

n
1
d

)
− 1

n

vνd

3dβ

(
f
(2Rnk

3

)
− f

(Rnk

3

))
< Fn.

We proceed to the proof of the lower estimate in (2.19). The proof will be
split into two steps. In the first step it will be shown that

(2.42) there is a constant φ > 0 such that for j = 1, . . . , n, holds

Fn ≤
∫
J

gn−1(x)w(x)dωM(x)−φ
n
f
( 1

n
1
d

)
, gn−1(x) = min

i=1,...,n
i6=j

{f(%M(pni, x))}.

It is enough to show this for sufficiently large n. The argument that led to (2.32)
shows that for each x ∈ J there is a point in {pn1, . . . , pnj−1, pnj+1, . . . , pnn} at

distance at most 3δ/n
1
d , where δ is from the upper estimate in (2.19). Hence the

cells in J corresponding to the set {pn1, . . . , pnj−1, pnj+1, . . . , pnn} have circumra-
dius at most 3δ/n1/d. Then (2.16) shows that for all sufficiently large n and any
j = 1, . . . , n, the n − 1 cells corresponding to {pn1, . . . , pnj−1, pnj+1, . . . , pnn} are
measurable and tile J . Thus there is a cell of measure at least ωM(J)/(n− 1) >
ωM(J)/n, say the cell corresponding to pnk. Clearly, k 6= j. Noting (2.24) and
(2.5) we see that this cell has circumradius at least χ/n1/d, where χ > 0 is a
suitable constant. Hence there is a point p of this cell with %M(pnk, p) ≥ χ/n1/d.
The definition of cells then shows that %M(pni, p) ≥ χ/n1/d for i = 1, . . . , d, i 6= j.
As before,

(2.43) %M(p, x) ≤ χ

3n
1
d

, %M(pni, x) ≥
2χ

3n
1
d

for x ∈ B = BM

(
p,

χ

3n
1
d

)
,

i = 1, . . . , n, i 6= j,

compare (2.33) and (2.41). Now, the definitions of Fn in (i) and of gn−1 in
(2.42), the measurability of B which follows from (2.2) for sufficiently large n,
the assumption that J satisfies (2.2), (2.43), the assumptions that f is increasing
and f, w ≥ 0, and (2.11) imply, for sufficiently large n, that

Fn ≤
∫
J

min{ min
i=1,...,n

i6=j

{f(%M(pni, x))}, f(%M(p, x))}w(x)dωM(x)

=

∫
J

min{gn−1(x), f(%M(p, x))}w(x)dωM(x)

≤
∫

J\B

gn−1(x)w(x)dωM(x) +

∫
B∩J

f(%M(p, x))w(x)dωM(x)
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=

∫
J

gn−1(x)w(x)dωM(x)−
∫

B∩J

(gn−1(x)− f(%M(p, x)))w(x)dωM(x)

≤
∫
J

gn−1(x)w(x)dωM(x)− 1

n

χdv

3dβ

(
f
( 2χ

3n
1
d

)
− f

( χ

3n
1
d

))
.

An application of (2.14) then yields (2.42).

In the second step we assume that the lower estimate in (2.19) does not hold.
Then,

(2.44) for any (arbitrarily small) ψ > 0 there is an infinite set of n such that

%M(pnj, pnk) ≤
ψ2

n
1
d

for suitable j, k ∈ {1, . . . , n}, j 6= k.

Let δ, ε, φ,W be as in the upper estimate in (2.19), (2.5), where I is from (2.24),
(2.42), and (2.11), respectively. By (2.14) we may choose 0 < ω,ψ < 1 so small
that

(2.45) βδdωWf
( δ

n
1
d

)
+ βψdWf

(2ψ

n
1
d

)
< φf

( 1

n
1
d

)
,

(2.46) f((1 + ψ)t) ≤ (1 + ω)f(t) for 0 < t ≤ τ ,

with a suitable τ > 0. In the remaining part of the proof of the lower estimate
in (2.19) we consider only n for which

(2.47) (2.25) and (2.44) hold, and

(2.48) max
i=1,...,n

{Rni} ≤
δ

n
1
2

≤ min{γ, τ}, ψ
n

1
d

≤ γ,

where γ is as in (2.2) and τ as in (2.46). For (2.48) we have used (2.19). Propo-
sitions (2.47) and (2.44) and our choice of ψ(< 1) imply that

(2.49) %M(pnk, x) ≤ (1 + ψ)%M(pnj, x) for x /∈ B = BM

(
pnj,

ψ

n
1
d

)
,

%M(pnk, x) ≤
2ψ

n
1
d

for x ∈ B.

Now, combining (2.42), (2.47) and (2.25) applied with n− 1 instead of n, where
Eni = Dni for i = 1, . . . , n, i 6= j, k and Enk = Dnj ∪Dnk, the measurability of B
which follows from (2.24) and (2.5) for sufficiently large n, the assumptions that
f is increasing and f, w ≥ 0, (2.49), (2.46), (2.48) and (2.2), (2.11), (2.48) and
(2.2), the assumptions that f is increasing and f , w ≥ 0 and (2.45), we obtain
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for sufficiently large n the following contradiction which concludes the proof of
the lower estimate in (2.19):

Fn ≤
∫
J

min
i=1,...,n

i6=j

{f(%M(pni, x))}w(x)dωM(x)− φ

n
f
( 1

n
1
d

)
≤

n∑
i=1
i6=j

∫
Dni

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj

f(%M(pnk, x))w(x)dωM(x)

−φ
n
f
( 1

n
1
d

)
≤

n∑
i=1
i6=j

∫
Dni

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f((1 + ψ)%M(pnj, x))w(x)dωM(x)

+

∫
B∩Dnj

f
(2ψ

n
1
2

)
w(x)dωM(x)− φ

n
f
( 1

n
1
d

)
≤

n∑
i=1
i6=j

∫
Dni

f(%M(pni, x))w(x)dωM(x) +

∫
Dnj\B

f(%M(pnj, x))w(x)dωM(x)

+ω

∫
Dnj\B

f(%M(pnj, x))w(x)dωM(x) +
1

n
βψdWf

(2ψ

n
1
2

)
− φ

n
f
( 1

n
1
2

)
≤ Fn +

1

n
βδdωWf

( δ

n
1
d

)
+

1

n
βψdWf

(2ψ

n
1
d

)
− φ

n
f
( 1

n
1
d

)
< Fn.

For n = 1, 2, . . ., choose S̄n = {p̄n1,, . . . , p̄nn} ⊂ J in the following way: if in
(i) the infimum is considered only for S with #S = n for which S ⊂ J (instead
of S ⊂ M), then it is attained for S = S̄n. If J is connected and has positive
density, then a proof similar to the one which led to (2.19), but easier in some
details, shows that

(2.50) there is a constant δ̄ > 1 such that

1

δ̄n
1
d

≤ min
i,j=1,...,n

i6=j

{%M(p̄ni, p̄nj)}, max
i=1,...,n

{R̄ni} ≤
δ̄

n
1
d

for n = 1, 2, . . . ,

where the R̄ni are the circumradii of the cells in J corresponding to {p̄n1, . . . , p̄nn}.

2.5 The constant div. Let M = Ed, J = [0, 1]d, w = 1. If the infimum in (i)
is attained for, say, Tn = {tn1, . . . , tnn}, then Tn ⊂ [0, 1]d. Thus an application
of (2.19) or (2.50), and (2.14) together with the assumptions that f is increasing
and f ≥ 0 yields the following: if

Gn = inf
T⊂Ed

#T=n

{ ∫
[0,1]d

min
t∈T

{f(‖t− u‖2)}du
}

=

∫
[0,1]d

min
i=1,...,n

{f(‖tni − u‖2)}du,

then Gn/f(1/n
1
d ) is bounded between positive constants. Thus, defining
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(2.51) div = lim inf
n→∞

Gn

f
(

1

n
1
d

) ,
it follows that

(2.52) div ∈ R+.

We will show that

(2.53) div = lim
n→∞

Gn

f
(

1

n
1
d

) .
Let δ > 1 be as in (2.19). Choose µ > 1 (arbitrarily close to 1) and let m be such
that

(2.54)
Gm

f
(

1

m
1
d

) ≤ µ div,
f
(

δ

km
1
d

)
f
(

1

km
1
d

) ≤ µ
f
(

δ

m
1
d

)
f
(

1

m
1
d

) for k = 1, 2, . . . .

This is possible by the definition of div in (2.51), (2.52) and (2.1). An application
of (2.13) shows that

(2.55)
f
(

δ

km
1
d

)
f
(

δ

m
1
d

) f(t) ≥ f

(
t

k

)
for 0 < t ≤ δ

m
1
d

, k = 1, 2, . . . .

For k = 1, 2, . . ., dissect the cube [0, 1]d in the usual way into kd cubelets, each of
edge length 1/k. The kd affine transformations

Aa : u1 →
u1 + a1

k
, . . . , ud →

ud + ad

k
, z →

f
(

δ

km
1
d

)
f
(

δ

m
1
d

) z for (u, z) ∈ Ed+1,

where a = (a1, . . . , ad)
T ∈ {0, . . . , k − 1}d,

map the set

{(u, z) ∈ Ed+1 : u ∈ [0, 1]d, 0 ≤ z ≤ min
i=1,...,m

{f(‖tmi − u‖2)}}.

onto kd non-overlapping sets. Together, these sets contain the set

{(u, z) ∈ Ed+1 : u ∈ [0, 1]d, 0 ≤ z ≤ min
i=1,...,m

a∈{0,...,k−1}d

{f(‖Aatmi − u‖2)}.

This follows from (2.55) and the fact that by (2.19) the cells in [0, 1]d corre-

sponding to Tm = {tm1, . . . , tmm} have circumradius at most δ/m
1
d . Hence the

definition of Gkdm and (2.54) show that

Gkdm ≤ kd · 1

kd

f
(

δ

km
1
d

)
f
(

δ

m
1
d

) Gm ≤ µ
f
(

1

km
1
d

)
f
(

1

m
1
d

) Gm,
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and thus, again by (2.54),

Gkdm

f
(

1

km
1
d

) ≤ µ
Gm

f
(

1

m
1
d

) ≤ µ2div.

By (2.14) there is k0 such that

f
(

1

km
1
d

)
f

(
1

(k+1)m
1
d

) ≤ µ for k ≥ k0.

Finally, given n ≥ kd
0m, let k ≥ k0 be such that kdm ≤ n < (k + 1)dm. Thus,

Gn

f
(

1

n
1
d

)( ≤ Gkdm

f
(

1

km
1
d

) f
(

1

km
1
d

)
f
(

1

(k+1)m
1
d

)) ≤ µ3div for all sufficiently large n.

Since µ > 1 was arbitrary, this together with (2.51) implies (2.53).

Next, (2.53) will be extended to arbitrary cubes:

(2.56) Let C be a cube in Ed. Then

Hm = inf
T⊂Ed

#T=m

{∫
C

min
t∈T

{f(‖t− u‖2)}du
}
∼ div|C|

α+d
d f

(
1

m
1
d

)
as m→∞,

where α is as in (2.14). We may assume that C = ν[0, 1]d = [0, ν]d for suitable
ν > 0. By (2.19) the circumradii of the cells corresponding to Tm ⊂ [0, 1]d are
bounded above by δ/m1/d. Thus by (2.14),

Gm =

∫
[0,1]d

min
t∈Tm

{f(‖t− u‖2)}du ∼
∫

[0,1]d

min
νt∈νTm

{f(‖νt− νu‖2)}du
1

να

=

∫
[0,ν]d

min
v∈νTm

{f(‖v − w‖2)}dw
1

να+d
≥ Hm

να+d
=

Hm

|C|α+d
d

,

or
Gm|C|

α+d
d

>∼ Hm as m→∞.

The same argument with [0, 1]d and C exchanged shows that

Hm
>∼ Gm|C|

α+d
d as m→∞,

and therefore,

Hm ∼ Gm|C|
α+d

d as m→∞.

This together with (2.53) yields (2.56).

A suitable affine transformation applied to (2.56) finally gives the following:
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(2.57) Let q(·) be a positive definite quadratic form on Ed and C ′ a cube in Ed

with respect to the norm q(·)1/2. Then

inf
T ′⊂Ed

#T ′=m

{∫
C′

min
t∈T ′

{f(q(t−u)
1
2 )}du

}
∼ div (det q)

α
2d |C ′|

α+d
d f

(
1

m
1
d

)
asm→∞.

2.6 The asymptotic formula. Choose Sn = {pn1, . . . , pnn} and Dn1, . . . , Dnn

for n = 1, 2, . . ., as in 2.4. Define

Sn(K) = {qni ∈ Sn : Dni ∩K 6= φ}, n(K) = #Sn(K) for measurable K ⊂ J.

If in the following an integral is written omitting the integrand, the integrand is
to be w(x)d/(α+d) and by

∫ α
we mean the αth power of

∫
.

In the first part of the proof of the asymptotic formula (i) it will be shown
that

(2.58) Fn
>∼ div

(∫
J

w(x)
d

α+ddωM(x)
)α+d

d
f

(
1

n
1
d

)
as n→∞.

Let λ > 1 and choose Ul, Vl, . . ., for l = 1, . . . ,m, as in 2.3 such that

(2.59) (2.6) – (2.11) hold.

The first step of the proof of (2.58) is to show that

(2.60) there is a constant ν > 1 such that
1

ν
f

(
1

n
1
d

)
≤ Fn ≤ νf

(
1

n
1
d

)
for

n = 1, 2, . . .

The upper estimate was proved in (2.18). For the proof of the lower estimate

choose a set C in Jl, say, such that C ′ is a cube with respect to the norm ql(·)
1
2 .

Then C is measurable and the definition of Fn in (i), (2.11), the assumptions that
f is increasing and f, w ≥ 0, (2.59) and (2.6), the definition of integrals in M ,
(2.59) and (2.7) show that

Fn ≥
∫
C

min
p∈Sn

{f(%M(p, x))}w(x)dωM(x)

≥ 1

λ
v (det ql)

1
2

∫
C′

min
s∈Sn(C)′

{
f
(1

λ
ql(s− u)

1
2

)}
du

≥ 1

λ
v (det ql)

1
2 inf

T ′⊂Ed

#T ′=n(C)

{∫
C′

min
t∈T ′

{
f
(1

λ
ql(t− u)

1
2

)}
du
}
.

If n(C) did not tend to ∞ as n → ∞, the latter expression would not tend to
0, in contradiction to the upper estimate for Fn in (2.60). Hence n(C) → ∞ as
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n → ∞. Thus, using (2.14), (2.57), and the assumption that f is increasing, we
conclude further that

Fn
>∼ 1

λ1+α
v (det ql)

α+d
2d div|C ′|

α+d
d f
( 1

n(C)
1
d

)
≥ 1

λ1+α
v (det ql)

α+d
2d div|C ′|

α+d
d f
( 1

n
1
d

)
as n→∞.

This readily implies the lower estimate in (2.60), concluding the proof of (2.60).

Noting that Fn ≤ νf(1/n1/d) by (2.60), the assumption that f is strictly
increasing, and (2.14), we obtain the following proposition as a byproduct of the
last part of the proof of (2.60):

(2.61) Let C ⊂ Jl, say, such that C ′ is a cube with respect to the norm ql(·)
1
2 .

Then there is a constant ξ with 0 < ξ < 1 such that ξn ≤ n(C) ≤ n for
sufficiently large n.

We come to the second step of the proof of (2.58). Noticing (2.9), we may
choose sets Cli ⊂ Jl, i = 1, . . . , il, l = 1, . . . ,m, with the following properties:

(2.62) The sets Cli ⊂ J, i = 1, . . . , il, l = 1, . . . ,m, are compact and pairwise
disjoint.

(2.63) C ′
li is a cube with respect to the norm ql(·)

1
2 . Thus, in particular, Cli is

measurable.

(2.64)
∑
l,i

∫
Cli

dωM(x) ≥ 1

λ

∫
J

dωM(x).

By the definition of Sn(Cli), (2.62) and (2.22) (which has been proved without
the assumptions that J is connected and has positive density),

(2.65) the sets Sn(Cli) are pairwise disjoint for sufficiently large n. Thus,

(2.66)
∑
l,i

n(Cli) ≤ n for sufficiently large n.

Finally, it follows from (2.63) and (2.61) that

(2.67) there is a constant σ with 0 < σ < 1 such that σn ≤ n(Cli) ≤ n for
i = 1, . . . , il, l = 1, . . . ,m, and sufficiently large n.

In the third step note that (2.60), (2.67) and (2.66) together yield the following
propositions, where

L = lim inf
n→∞

Fn

f
(

1

n
1
d

) (> 0) :
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(2.68) There is an infinite subsequence of 1, 2, . . ., such that Fn/f(1/n
1
d ) → L as

n→∞ in this subsequence.

(2.69) There are constants σli > 0 such that n(Cli) ∼ σlin for i = 1, . . . , il, l =
1, . . . ,m, as n→∞ in the same subsequence as in (2.68). Furthermore,∑

l,i

σli ≤ 1.

In the final step of the proof of (2.58) assume that n is from the subsequence
considered in (2.68) and (2.69) and that it is so large that (2.65) and (2.66) hold.
Then the definition of Fn in (i), our choice of Sn, (2.62), (2.63), the definition of
Sn(Cli), the definition of integrals on M , the assumptions that f is increasing and
f, w ≥ 0, (2.59) and (2.6), (2.10), the inclusion Cli ⊂ Jl, (2.14), (2.57), (2.69), the
definition of integrals on M , (2.59) and (2.6), (2.10), (2.14), (2.64), (2.15), the
assumption that f is increasing, (2.64), (2.69), and (2.14) imply the following:

Fn =

∫
J

min
p∈Sn

{f(%M(p, x))}w(x)dωM(x)

≥
∑
l,i

∫
Cli

min
p∈Sn(Cli)

{f(%M(p, x))}w(x)dωM(x)

≥ 1

λ

∑
l,i

(det ql)
1
2

∫
C′

li

min
s∈Sn(Cli)′

{
f
(1

λ
ql(s− u)

1
2

)}
wldu

∼ 1

λ1+α
div
∑
l,i

(det ql)
α+d
2d |C ′

li|
α+d

d wlf
( 1

(σlin)
1
d

)
≥ 1

λ1+α+1+α+d
d

div
∑
l,i

(∫
Cli

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

(σlin)
1
d

)

∼ 1

λ3+α+α
d

div
∑
l,i

∫
Cli

f
(( ∫

Cli

σlin

) 1
d )

=
1

λ3+α+α
d

div
∑
l,i

∫
Cli

∑
l,i

∫
Cli∑

l,i

∫
Cli

f

(
1(

σlin∫
Cli

) 1
d

)
>∼ 1

λ4+α+α
d

div

∫
J

f

(
1(∑

l,i

∫
Cli

σlin∫
Cli

∑
l,i

∫
Cli

) 1
d

)

=
1

λ4+α+α
d

div

∫
J

f

((∑
l,i

∫
Cli∑

l,i

σlin

) 1
d
)

≥ 1

λ4+α+α
d

div

∫
J

f
((1

λ

∫
J

1

n

) 1
d
)
∼ 1

λ4+α+ 2α
d

div

∫
J

α+d
d

f
( 1

n
1
d

)
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as n → ∞ in the subsequence considered in (2.68) and (2.69). Since λ > 1 was
arbitrary, we have thus shown that

lim inf
n→∞

Fn

f
(

1

n
1
d

) ≥ div
(∫

J

w(x)
d

α+ddωM(x)
)α+d

d
,

which is equivalent to (2.58).

In the second part of the proof of the asymptotic formula (i) we consider, in
addition to Fn, the quantity

F̄n = inf
S̄⊂J

#S̄=n

{∫
J

min
p̄∈S̄

{f(%M(p̄, x))}w(x)dωM(x)
}
.

Our aim is to show that

(2.70) Fn ≤ F̄n
<∼ div

(∫
J

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

n
1
d

)
as n→∞.

Let λ > 1 and choose Ul, Vl, . . . , l = 1, . . . ,m, as in 2.3 such that

(2.71) (2.6) – (2.11) hold.

In the first step of the proof of (2.70) we choose sets Cli, i = 1, . . . , il, l =
1, . . . ,m, with the following properties, where σ > 0 (is small) and Wl is as in
(2.10):

(2.72) For each l = 1, . . . ,m, the sets Cli, i = 1, . . . , il, are compact, non-
overlapping and such that

Jl ⊂ Cl1 ∪ . . . ∪ Clil ⊂ Vl, Cli ∩ Jl 6= ∅.

(2.73) C ′
li is a cube with respect to the norm ql(·)

1
2 (thus, in particular, Cli is

measurable) and such that

(det ql)
1
2 |C ′

li|W
d

α+d

l = σ

∫
J

w(x)
d

α+ddωM(x).

(2.74)
∑
l,i

∫
Cli

≤ λ

∫
J

.

Let i0 = i1 + . . .+ im. Since∑
l,i

(det ql)
1
2 |C ′

li|W
d

α+d

l ≤ λ
d

α+d
+1
∑
l,i

∫
Cli

w(x)
d

α+ddωM(x) ≤ λ3

∫
J

w(x)
d

α+ddωM(x)

by (2.71) and (2.10), (2.7), the definition of integrals on M , and (2.74), it follows
from (2.73) that
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(2.75) σi0 ≤ λ3.

By (2.14) we may chooose k0 so large that

(2.76)
1

i
α
d
0

f
( 1

k
1
d

)
≤ λf

( 1

(i0k)
1
d

)
for k ≥ k0,

(2.77) f
( 1

(i0k)
1
d

)
≤ λf

( 1

(i0(k + 1))
1
d

)
for k ≥ k0.

In the next step of the proof of (2.70) we consider first the case where n is of
the form n = i0k for some k ≥ k0. Assume that

(2.78) inf
T ′⊂Ed

#T ′=k

{∫
C′

li

min
t∈T ′

{f(ql(t− u)
1
2 )}du

}
is attained for T ′ = T ′lik where T ′lik ⊂ C ′

li,#T
′
lik = k.

Applying the result (2.19) for M = Ed and J = C ′
li, i = 1, . . . , il, l = 1, . . . ,m, we

obtain the following, where, omitting indices, T ′lik = {t1, . . . , tk} and D′
1, . . . , D

′
k

are the cells in C ′
li corresponding to the set T ′lik and the norm ql(·)1/2.

(2.79) There is a τ > 1, independent of l, i, k, such that any two distinct points
from T ′lik = {t1, . . . , tk} have distance at least 1/τk1/d and each of the
cells D′

1, . . . , D
′
k has circumradius at most τ/k1/d (with respect to the

norm ql(·)1/2).

Since J is (Jordan) measurable, bd J is measurable and ωM(bd J) = 0. hence
(Cli ∩ bd J)′ is measurable in Ed with |(Cli ∩ bd J)′| = 0. A result on Jordan
measurable sets of measure 0 in Ed then says that the parallel set⋃

u∈(Cli∩bd J)′

(u+ νBd)

has arbitrarily small measure if ν > 0 is sufficiently small. Here Bd is the solid
Euclidean unit ball in Ed. This remark together with (2.79) yields the next
proposition, where Dj = h−1

l (D′
j):

(2.80) There are at most o(k) cells D′
j in C ′

li with (Dj ∩ bd J)′ 6= ∅, where we
may choose the same Landau symbol o(k) for all l, i.

If D′
j ⊂ (Cli ∩ intJ)′, let t̄j = tj, if D′

j ∩ (Cli ∩ bd J)′ 6= ∅, choose for t̄j an
arbitrary point of D′

j ∩ (Cli ∩ bd J)′. Let T̄ ′lik be the set of all points t̄j which

can be obtained in this way and let T̄lik = h−1
l (T̄ ′lik) ⊂ Cli. Then the definition of

integrals on M in (2.4), the assumptions that f is increasing and f, w ≥ 0, (2.72),
(2.71) and (2.6), (2.7), (2.10), (2.14), (2.2), (2.79), (2.80), (2.57), and (2.73) yield
the following:
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(2.81) ∫
Cli∩J

min
p̄∈T̄lik

{f(%M(p̄, x))}w(x)dωM(x)

≤ λ

∫
(Cli∩J)′

min
t̄∈T̄ ′lik

{f(λql(t̄− u)
1
2 )}du Wl (det ql)

1
2

<∼ λ1+α

∫
C′

li

min
t∈Tlik

{f(ql(t− u)
1
2 )}du Wl (det ql)

1
2 + o(k)β

2dτ d

k
f
(2τ

k
1
d

)
∼λ1+α div (det ql)

α+d
2d |C ′

li|
α+d

d Wl f
( 1

k
1
d

)
+ o(1)f

( 1

k
1
d

)
<∼ λ1+α+1+α+d

d div
(
σ

∫
J

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

k
1
d

)
as k →∞,

where the symbols o(k), o(1) are independent of l, i.

For n = iok let T̄n =
⋃

l,i T̄lik. Then #T̄n ≤ n and T̄n ⊂ J . The definitions of

Fn and F̄n, (2.72), (2.71) and (2.9), i0 = i1 + . . . + im, (2.81), (2.75) and (2.14)
together imply that

Fn ≤ F̄n ≤
∫
J

min
p̄∈T̄n

{f(%M(p̄, x))}w(x)dωM(x)

≤
∑
l,i

∫
Cli∩J

min
p̄∈T̄lik

{f(%M(p̄, x))}w(x)dωM(x)

<∼ λ3+2αi0 div
(
σ

∫
J

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

k
1
d

)

= λ3+2α div
(∫

J

w(x)
d

α+ddωM(x)
)α+d

d
(i0σ

)α+d
d

i
α
d
0

f
( 1

k
1
d

)
<∼ λ3+2α+ 3α+3d

d div
(∫

J

w(x)
d

α+ddωM(x)
)α+d

d
f
( 1

n
1
d

)
as n = iok →∞.

Since λ > 1 was arbitrary, this proves (2.70) for n of the form n = iok. This,
together with (2.77) yields (2.70) for general n; compare the argument in the last
part of the proof of (2.53).

Having proved (2.58) and (2.70), the proof of the asymptotic formula (i) with
S ⊂M and also with S̄ ⊂ J is complete.

2.7 Uniform distribution of Sn, S̄n. Assume that J is connected and has
positive density, i.e. satisfies (2.2). We will prove that

(2.82) Sn is uniformly distributed in J with respect to the density wd/(α+d) as
n→∞.
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A proof which is similar to that of (2.80), but slightly more complicated in
several details since it deals with M instead of Ed, and which makes use of (2.19),
(2.24), and (2.5) yields the following:

(2.83) Let Z ⊂ J be measurable with ωM(Z) = 0.
Then n(Z) (= #{i : Dni ∩ Z 6= ∅}) = o(n) as n→∞.

More difficult is the proof of

(2.84) Let K ⊂ J be measurable with 0 < ωM(K) ≤ ωM(J). Then

n(K) ∼ η(K)n as n→∞, where η(K) =

∫
K

/∫
J

.

If ωM(K) = ωM(J), then (2.84) follows from (2.20), which shows that n(J) = n,
and from (2.83). Suppose now that ωM(K) < ωM(J) and assume that (2.84) does
not hold:

(2.85) n(K) 6∼ η(K)n as n→∞.

¿From (2.18) and the definitions of Sn(K), n(K) in 2.6 it follows that

νf
( 1

n
1
d

)
≥ Fn ≥

∫
K

min
p∈Sn

{f(%M(p, x))}w(x)dωM(x)

=

∫
K

min
p∈Sn(K)

{f(%M(p, x))}w(x)dωM(x)

≥ inf
T⊂M

#T=n(K)

{∫
K

min
p∈T

{f(%M(p, x))}w(x)dωM(x)
}
.

This can hold only if n(K) → ∞ as n → ∞. Now, applying the asymptotic
formula (i) to K instead of J , we conclude further that

νf
( 1

n
1
d

)
>∼ div

∫
K

α+d
d

f
( 1

n(K)
1
d

)
as n→∞.

Using the assumption that f is strictly increasing and (2.14) it follows that
n(K)/n is bounded below by a positive constant. An analogous statement holds
for the set L = J\K. By (2.20) and (2.83),

(2.86) n(K) + n(L) = n+ o(n) as n→∞.

(2.85), (2.86) and the above statements on n(K)/n and n(L)/n show that

(2.87) there are ϑ, ι > 0 such that ϑ < 1 < ι or ι < 1 < ϑ and n(K) ∼
ϑη(K)n, n(L) ∼ ιη(L)n as n→∞, where n is from a suitable subsequence
of 1, 2, . . . .
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¿From now on consider in the proof of (2.82) only n from the subsequence in
(2.87). We consider only the case that ϑ < 1 < ι. By (i), the definition of Sn, J =
K ∪L,K ∩L = ∅, the definitions of Sn(K), n(K), Sn(L), n(L) and n(K), n(L) →
∞ as n → ∞ (see (2.87)), the asymptotic formula (i) for K and L instead of
J , (2.87), (2.14), η(L) = 1 − η(K) (see (2.84)), (2.15), ϑ < 1 < ι, (2.87) and
(2.86), and (2.3) we arrive at the following contradiction, where κ > 0, and thus
conclude the proof of (2.84):

Fn =

∫
K

min
p∈Sn(K)

{f(%M(p, x))}w(x)dωM(x)

+

∫
L

min
p∈Sn(L)

{f(%M(p, x))}w(x)dωM(x)

>∼ div
(∫

K

α+d
d

f
( 1

n(K)
1
d

)
+

∫
L

α+d
d

f
( 1

n(L)
1
d

))
∼ div

∫
J

α+d
d
(
η(K)

α+d
d f
( 1

(ϑη(K)n)
1
d

)
+ η(L)

α+d
d f
( 1

(ιη(L)n)
1
d

))
∼ div

∫
J

α+d
d
(
η(K)f

( 1

(ϑn)
1
d

)
+ (1− η(K))f

( 1

(ιn)
1
d

))
≥ (1 + κ) div

∫
J

α+d
d

f
( 1

(η(K)ϑn+ (1− η(K))ιn)
1
d

)
∼ (1 + κ) div

∫
J

α+d
d

f
( 1

(n(K) + n(L))
1
d

)
∼ (1 + κ) div

∫
J

α+d
d

f
( 1

n
1
d

)
∼ (1 + κ)Fn as n→∞ in the subsequence from (2.87).

Applying (2.83) and (2.84) to measurable K ⊂ J yield the following:

#(K ∩ Sn) ≤ n(K) = o(n) as n→∞ for ωM(K) = 0,
#(K ∩ Sn) = n(K)− o(n) ∼ η(K)n as n→∞ for 0 < ωM(K) ≤ ωM(J).

This concludes the proof of (2.82). A similar, even simpler proof shows that

(2.88) S̄n is uniformly distributed in J with respect to the density wd/(α+d) as
n→∞.

2.8 Conclusion. Having proved (2.58) and (2.70), (2.19) and (2.50), and (2.82)
and (2.88), the proof of Theorem 1 is complete. �

3 Distortion of High Resolution Vector Quanti-

zation

3.1 Distortion of vector quantization. Let C1, . . . , Cn be n measurable sets
which tile a measurable set C in Ed and let c1, . . . , cn ∈ Ed. To each signal x ∈ C
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assign the codevector or codeword ci from the codebook {c1, . . . , cn}, where x ∈ Ci.
(In case of ambiguity, which can occur only for x in a set of measure 0, choose
for ci any codevector where x ∈ Ci.) Common measures for the quality of the
thus defined encoder or (vector) quantizer on C can be described as follows: let
f : [0,+∞) → [0,+∞) with f(0) = 0 be increasing, ‖ · ‖ a norm on Ed, and
w : C → R+ continuous. Up to normalization, w is the density of the source
which generates the signals x. Then the corresponding (average) distortion of
our quantizer is defined to be

n∑
i=1

∫
Ci

f(‖ci − u‖)w(u)du.

How should the cells Ci and the codevectors ci be chosen in order to minimize the
distortion? Given c1, . . . , cn, the distortion is minimized if C1 ⊂ D1, . . . , Cn ⊂ Dn

where D1, . . . , Dn are the Dirichlet–Voronoi cells in C corresponding to c1, . . . , cn
and using ‖ · ‖. Then the distortion is∫

C

min
i=1,...,n

{f(‖ci − u‖)}w(u)du.

Thus the minimum distortion is given by

inf
S̄⊂C
#S̄=n

{∫
C

min
c∈S̄

{f(‖ci − u‖)}w(u)du
}
.

3.2 Asymptotic results. Clearly, Theorem 2 translates into the following result.

Theorem 3. Let f : [0,+∞) → [0,+∞) satisfy the growth condition (2.1), let
α > 0 be the corresponding constant, and let ‖·‖ be a norm on Ed. Then there is a
constant div > 0, depending only on f and ‖ ·‖, such that the following statement
holds: let C ⊂ Ed be compact and measurable with |C| > 0 and w : C → R+

continuous. Then

(i) the minimum distortion in the above sense of a quantizer on C with source
density w with n codewords is asymptotically equal to

div
(∫

C

w(u)
d

α+ddu
)α+d

d
f
( 1

n
1
d

)
as n→∞.

If, in addition, C is connected and has positive density, i.e. satisfies (2.2), then
the following claims hold: let (Sn) be a sequence of codebooks in C, where #Sn = n
for n = 1, 2, . . ., and such that the infimum in (i) is attained for Sn. Then

(ii) there is a constant δ > 1 such that Sn is (1/δn1/d, δ/n1/d)-Delone in J for
n = 1, 2, . . .,

(iii) Sn is uniformly distributed in C with density wd/(α+d) as n→∞.

Remark. Theorem 1 admits an analogous interpretation.
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4 Error of Approximation of Probability Mea-

sures by Discrete Measures

4.1 Quantization of probability measures. Let f : [0,∞) → [0,∞) be
monotone increasing, such that f(t) = 0 only for t = 0 and let ‖ · ‖ be a norm
on Ed. Then we can define on the space of all probability measures on Ed the
following notion of distance:

ρf (P,Q) = inf
{ ∫

Ed×Ed

f(‖x− y‖)dµ(x, y)
}

for probability measures P,Q,

where the infimum is extended over all Borel probability measures µ on Ed × Ed

which satisfy the following condition:

P (B) = µ(B × Ed), Q(C) = µ(Ed × C) for all Borel sets B,C ⊂ Ed.

ρf is a slight extension of the Wasserstein- or Kantorovich metric on the space of
all probability measures on Ed. The question arises as to how well can probability
measures be approximated by discrete measures and to describe the best approx-
imating discrete measures. Let Dn denote the space of all discrete probabiliy
measures on Ed the support of which consists of at most n points, n = 1, 2, . . . .
Then for the error of best approximation of a probability measure P on Ed by
probability measures from Dn the following representation holds:

ρf (P,Dn) = inf
D∈Dn

{ρf (P,D)} = inf
S⊂Ed

#S=n

{∫
Ed

min
s∈S

{f(‖u− s‖)}dP (u)
}
.

For this and for references compare Graf and Luschgy [20].

4.2 Asymptotic approximation results. Considering the above, it is clear
that Theorem 2 yields the following result on approximation of probability mea-
sures.

Theorem 4. Let f : [0,+∞) → [0,+∞) satisfy the growth condition (2.1), let
α > 0 be the corresponding constant, and let ‖ · ‖ be a norm on Ed. Then there
is a constant div > 0, depending only on f and ‖ · ‖, such that the following
statement holds: let J ⊂ Ed be compact and measurable with |J | > 0 and P a
probability measure on J with continuous density p : J → R+. Then

(i) the error of best approximation of P by probability measures from Dn is
asymptotically equal to

div
(∫

C

p(u)
d

α+ddu
)α+d

d
f
( 1

n
1
d

)
as n→∞.

If, in addition, J is connected and has positive density, i.e. satisfies (2.2), then the
following claims hold: let (Sn) be a sequence of supports in J , where #Sn = n for
n = 1, 2, . . ., and such that for suitable corresponding discrete probability measures
in Dn the minimum error is attained. Then
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(ii) there is a constant δ > 1 such that Sn is (1/δn1/d, δ/n1/d)-Delone in J for
n = 1, 2, . . .,

(iii) Sn is uniformly distributed in J with density wd/(α+d) as n→∞.

Remark. Obviously, Theorem 1 yields a similar result for the approximation of
probability measures by discrete probability measures on Riemannian manifolds.

5 Error of Numerical Integration Formulae

5.1 Error of numerical integration formulae. Let J ⊂ Ed be a compact
measurable set in Ed with |J | > 0, let F be a class of Riemann integrable functions
g : J → R and w : J → R+ a continuous (weight) function. For given sets of n
nodes N = {p1, . . . , pn} ⊂ J and n weights W = {w1, . . . , wn} ⊂ R the error of
the numerical integration formula∫

J

g(u)w(u)du ≈
n∑

i=1

g(pi)wi for g ∈ F ,

is defined by

(5.1) E(F , w,N,W ) = sup
g∈F

{∣∣∣ ∫
J

g(u)w(u)du−
n∑

i=1

g(xi)wi

∣∣∣}.
The minimum error is then

(5.2) E(F , w, n) = inf
N⊂J,#N=n
W⊂R,#W=n

{E(F , w,N,W )}.

Now the problems arise to determine E(F , w, n) and to describe the optimal
choices of nodes and weights. While for general F not much can be said, we
consider a space of functions for which rather precise information can be given.

5.2 Asymptotic results. A modulus of continuity is an increasing continuous
function f : [0,+∞) → [0,+∞) with f(0) = 0 such that

(5.3) f(s+ t) ≤ f(s) + f(t) for s, t ≥ 0.

Given a modulus of continuity f and a norm ‖ · ‖ on Ed, define the corresponding
Hölder class of functions for J ⊂ Ed by

(5.4) Hf (‖ · ‖, J) = {g : J → R : |g(u)− g(v)| ≤ f(‖u− v‖) for u, v ∈ J}.

Theorem 5. Let f : [0,+∞) → [0,+∞) be a modulus of continuity which
satisfies the growth condition (2.1), let α > 0 be the corresponding constant, and
let ‖ · ‖ be a norm on Ed. Then there is a constant div > 0, depending only on f
and ‖ · ‖, such that we have the following: let J ⊂ Ed be compact and measurable
with |J | > 0 and w : J → R+ continuous. Then

(i) for the minimum error of a numerical integration formula with weight func-
tion w for the Hölder class Hf = Hf (J, ‖ · ‖) holds the asymptotic formula,

E(Hf , w, n) ∼ div
(∫

J

w(u)
d

α+ddu
)α+d

d
f
( 1

n
1
d

)
as n→∞.
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If, in addition, J is connected and has positive density, i.e. satisfies (2.2), then
the following assertions hold: let (Nn) be a sequence of sets of nodes in J , where
#Nn = n for n = 1, 2, . . ., and such that the infimum in (4.2) is attained for Nn

and suitable corresponding Wn. Then

(ii) there is a constant δ > 1 such that Nn is (1/δn1/d, δ/n1/d)-Delone in J for
n = 1, 2, . . .,

(iii) Nn is uniformly distributed in J with density wd/(α+d) as n→∞.

Remark. An analogous result holds for Riemannian d-manifolds instead of Ed

and ‖ · ‖. The asymptotic formula (5.3) for d = 2, ‖ · ‖ = ‖ · ‖2 and w = 1
is due to Babenko [2]. For general d and arbitrary norm a related yet different
asymptotic formula was given by Chernaya [8]. The fact that in Chernaya’s result
w is assumed to be Lebesgue integrable can be reduced to the continuous case by
Lusin’s theorem. A pertinent idea is described also by Sobol’ [45].

5.3 Proof of Theorem 5. First, the following will be shown:

(5.5) Let N = {p1, . . . , pn} ⊂ J and let h : J → R be defined by
h(u) = min

p∈N
{f(‖p− u‖)}. Then h ∈ Hf .

To see this, let u, v ∈ J . By exchanging u and v, if necessary, we may assume
that h(u) ≥ h(v). Then

0 ≤ h(u)− h(v) = min
p∈N

{f(‖p− u‖)} −min
q∈N

{f(‖q − v‖)}
= f(‖p− u‖)− f(‖q − v‖) for suitable p, q ∈ N
≤ f(‖q − u‖)− f(‖q − v‖)
= f(‖q − v + v − u‖)− f(‖q − v‖)
≤ f(‖q − v‖+ ‖v − u‖)− f(‖q − v‖)
≤ f(‖q − v‖) + f(‖v − u‖)− f(‖q − v‖) = f(‖u− v‖),

where we have used the assumptions that f is increasing and that is a modulus
of continuity.

Secondly,

(5.6) let N = {p1, . . . , pn} ⊂ J and W = {w1, . . . , wn} ⊂ R. Define

Di = {u ∈ J : ‖pi − u‖ ≤ ‖pj − u‖ for j = 1, . . . , n}

Ei = Di\(D1 ∪ . . . ∪Di−1), w̄i =

∫
Ei

w(u)du, i = 1, . . . , n

W̄ = {w̄, . . . , w̄n}

Then

E(Hf , w,N,W ) ≥ E(Hf , w,N, W̄ ) =

∫
J

min
p∈N

{f(‖p− u‖)}w(u)du.
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Since J is the disjoint union of E1, . . . , En, g ∈ Hf , Ei ⊂ Di, the assumptions
that f is increasing and w ≥ 0, the definition of h, h ∈ Hf and h(pi) = 0 (see
(5.5)) together imply (5.6):

E(Hf , w,N, W̄ ) = sup
g∈Hf

{∣∣∣ ∫
J

g(u)w(u)du−
n∑

i=1

g(pi)

∫
Ei

w(u)du
∣∣∣}

≤ sup
g∈Hf

{ n∑
i=1

∫
Ei

|g(u)− g(pi)|w(u)du
}

≤
n∑

i=1

∫
Ei

f(‖pi − u‖)w(u)du =
n∑

i=1

∫
Ei

min
pj∈N

{f(‖pj − u‖)}w(u)du

=

∫
J

min
p∈N

{f(‖p− u‖)}w(u)du =

∫
J

h(u)w(u)du

=

∫
J

h(u)w(u)du−
n∑

i=1

h(pi)wi ≤ E(Hf , w,N,W ).

Thirdly, it follows from (5.6) that

E(Hf , w, n) = inf
N⊂J,#N=n
W⊂R,#W=n

{E(Hf , w,N,W )} = inf
N⊂J

#N=n

{E(Hf , w,N, W̄ )}

= inf
N⊂J

#N=n

{∫
J

min
p∈N

{f(‖p− u‖)}w(u)du
}
.

Now apply Theorem 2 to obtain Theorem 5.

6 Volume Approximation of Convex Bodies

6.1 Best volume approximation of convex bodies. Let C be a convex body
in Ed, i.e. a compact convex subset of Ed with non-empty interior and let Pc

(n) be
the set of all convex polytopes with n facets which are circumscribed to C. Let
δV (·, ·) denote the symmetric difference metric on the space of all convex bodies
in Ed. The problems arise to determine or estimate the quantity

δV (C,Pc
(n)) = inf{δV (C,P ) : P ∈ Pc

(n)}

and to describe the polytopes P ∈ Pc
(n) for which the infimum is attained, the

best approximating polytopes of C in Pc
(n) with respect to δV . See [25] and [27] for

the literature on this and related problems.

6.2 Asymptotic approximation results. Refining a result of Böröczky [4]
(asymptotic formula), the following result has been proved by Gruber [32] (asymp-
totic formula and Delone property) and Glasauer and Gruber [19] (uniform distri-
bution property). A weaker version of it (without the error term in the asymptotic
formula) can be obtained as a simple consequence of Theorem 1 above and its
proof; compare the corresponding argument in [30].
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Theorem 6. There is a constant divd−1 > 0 with the following property: let
C be a convex body in Ed (with boundary) of class C3 and with Gauss curvature
κC > 0. Let (Pn), Pn ∈ Pc

(n), be a sequence of best approximating polytopes of C.
Then we have the following statements:

(i) δV (C,P c
(n)) ∼

1

2
divd−1

( ∫
bd C

κC(x)
1

d+1dσ(x)
) d+1

d−1 1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
as n→∞, for any ε > 0,

(ii) there is a constant δ > 1 such that the inradius of each facet of Pn is at least
1/δn1/(d−1) and the circumradius at most δ/n1/(d−1) for n = d+1, d+2, . . .,

(iii) the sets C ∩ bdPn are uniformly distributed on bdC, endowed with the

ordinary surface area measure σ, with respect to the density κ
1/(d+1)
C as

n→∞.

Remark. For d = 3, a sharper result was given in [31].

7 The Isoperimetric Problem for Convex Poly-

topes in Minkowski Spaces

7.1 The isoperimetric problem in Minkowski spaces. Let Ed be endowed
with an additional norm. While in this new normed space the natural notion of
volume is the ordinary volume V (·) or | · | (Haar measure), several different pro-
posals for surface area have been made by Busemann [6], Holmes and Thompson
[35] and Benson [3]. These amount to the introduction of an o-symmetric convex
body I, the isoperimetrix, depending in a suitable way on the solid unit ball of
this norm. The surface area SI(C) of a convex body C then is defined to be

SI(C) = lim
δ→+0

V (C + δI)− V (C)

δ
, where C + δI = {x+ δy : x ∈ C, y ∈ I}.

See the book [47]. For n = d + 1, d + 2, . . ., let Pn be a convex polytope which
has minimum isoperimetric quotient

SI(Pn)d

V (Pn)d−1

among all convex polytopes in Ed with n facets. The problem arises to determine
or estimate the minimum isoperimetric quotient and to describe the form of the
minimizing polytopes Pn.

7.2 Asymptotic isoperimetric results. A result of Diskant [10, 11], which
generalizes a theorem of Lindelöf [38] for the Euclidean case, says that after a
suitable homothety has been applied to Pn, we may assume that Pn is circum-
scribed to I, i.e. Pn ∈ Pc

(n)(I). Then it is easy to see that

SI(Pn)d

V (Pn)d−1
= ddV (Pn).
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Since the isoperimetric quotient is minimal for Pn, the polytope Pn thus is best
approximating of I in Pc

(n)(I). Hence Theorem 5 yields the following result.

Theorem 7. There is a constant divd−1 > 0 such that the following hold: let I
be an isoperimetrix in Ed of class C3 with κI > 0. For n = d+ 1, d+ 2, . . ., let Pn

be a convex polytope with n facets circumscribed to I and minimum isoperimetric
quotient SI(Pn)d/V (Pn)d−1. Then the following assertions hold:

(i)
SI(Pn)d

V (Pn)d−1
∼ ddV (I) +

dd

2
divd−1

( ∫
bd I

κC(x)
1

d+1dσ(x)
) d+1

d−1 1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
as n→∞, for any ε > 0,

(ii) there is a constant δ > 1 such that the inradius of each facet of Pn is at least
1/δn1/(d−1) and the circumradius at most δ/n1/(d−1) for n = d+1, d+2, . . .,

(iii) the sets C ∩ bdPn are uniformly distributed on bdC, endowed with the

ordinary surface area measure σ, with respect to the density κ
1/(d+1)
C as

n→∞.

Remark. For d = 3, a sharper result was given in [31].
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[15] Fejes Tóth G., A stability criterion to the moment theorem, Studia Sci. Math. Hungar.
34 (2001) 209–224
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quationes Math. 58 (1999) 291–295

[30] Gruber, P.M., Optimal configurations of finite point sets in Riemannian 2-manifolds,
Geom. Dedicata 84 (2001) 271–320

[31] Gruber, P.M., Error of asymptotic formulae for volume approximation of convex bodies in
E3, Trudy Mat. Inst. Steklov. 239 (2002) 106–117, Proc. Steklov Math. Inst. 239 (2002)
96–107

[32] Gruber, P.M., Error of asymptotic formulae for volume approximation of convex bodies
in Ed, Monatsh. Math. 135 (2002) 279–304

[33] Gruber, P.M., Optimale Quantisierung, Math. Semesterber. 49 (2003) 227–251
[34] Hlawka, E., The theory of uniform distribution, A B Academic Publ., Berkhamsted 1984
[35] Holmes, R.D., Thompson, A.C., N-dimensional area and content in Minkowski spaces,

Pacific J. Math. 85 (1979) 77–110
[36] Kobayashi, S., Nomizu, K., Foundations of differential geometry, John Wiley, New York

1969
[37] Kuczma, M., An introduction to the theory of functional equations and inequalities

(Cauchy’s equation and Jensen’s inequality), PWN, Warszawa 1985

36
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