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1 Introduction

The first investigations of simultaneous Diophantine approximation with con-
straints on the denominator are due to Jurkat [9]. Kratz [10, 11] considered the
following particular problem: let x ∈ Rk, k ≥ 2, and g(·) = || · ||2. As in Kratz
[10], define for Q > 0 the successive minima λi = λi(x,Q), i = 1, . . . , k + 1, of x
under the constraint |q| ≤ Q as follows: λi is the minimum of all λ ≥ 0, for which
there are linearly independent vectors p1, . . . , pi ∈ Zk+1 such that

g(pjk+1x− (pj1, . . . , pjk)) ≤ λ and |pjk+1| ≤ Q for j ∈ {1, . . . , i}.

We are interested in an optimal constant c = c(k, || · ||2) such that

λ1 · · ·λk <
c

Q
.

Kratz proved in [11] that

c(2, || · ||2) =
2√
3
.

Assume now, that g(·) is the distance function of a bounded star body K in
Rk. In the following we consider the above problem for g(·) and show in Theorem
3 that

c(k, g) ≥ 1

∆(K)
,

where ∆(K) is the critical determinant of K. Let γk denote the Hermite constant.

Since the critical determinant of the k-dimensional unit ball equals γ
−k/2
k , we

conclude that

c(k, || · ||2) ≥ γ
k
2
k .



To obtain these results, we study in detail the simultaneous approximation
of rationals by rationals with smaller denominator: let n = (n1, . . . , nk, nk+1) ∈
Zk+1, k ≥ 2, be an integer vector. Assume that 0 < n1 ≤ . . . ≤ nk+1 and that
gcd(n1, . . . , nk+1) = 1. Consider the problem to approximate the rational vector
(n1/nk+1, . . . , nk/nk+1) by rational vectors of the form (m1/mk+1, . . . , mk/mk+1)
with mi ∈ Z, i = 1, . . . , k + 1, and 0 ≤ mk+1 < nk+1. More precisely, we
investigate the behavior of the points

(1)

(
m1 −mk+1

n1

nk+1

, . . . , mk −mk+1
nk

nk+1

)

as m = (m1, . . . , mk,mk+1) ranges over Zk+1. Since these points form a k–
dimensional lattice Λ(n) (see Section 2 for details), we make use of tools from
the geometry of numbers. Using a different approach, Lagarias and Hastad [12]
investigated the number N(n, ∆) of vectors v ∈ Λ(n) such that

||v||∞ ≤ ∆

nk+1

.

An algorithmic problem dealing with the lattice Λ(n) for n ∈ Z3 was investigated
by Lempel and Paz [13] and Rote [15].

Let α(K) denote the anomaly of a set K, and if Λ is a lattice, let Λ∗ be its
polar lattice, see [7].

In our first result the lattice Λ(n) is related to the lattice Λ⊥(n) of integer
vectors orthogonal to n. Let Λ⊥k+1(n) be the k-dimensional lattice obtained by
omitting the (k + 1)st coordinate in Λ⊥(n), then holds the following:

Lemma 1. The lattice Λ⊥k+1(n) is the polar lattice of the lattice Λ(n),

Λ⊥k+1(n) = Λ(n)∗.

This result, together with a technique of Schinzel [17], will be used to inves-
tigate the lattice Λ(n). Roughly speaking, given an arbitrary lattice Λ ⊂ Qk,
we can construct a sequence of integer vectors n(t) such that the sequence of
corresponding lattices Λ(n(t)) after an appropriate normalization tends to Λ.

Theorem 1. For any rational lattice Λ with basis b1, . . . , bk ∈ Qk and for all
rationals α1, . . . , αk with 0 < α1 ≤ α2 ≤ · · · ≤ αk ≤ 1, there are an arithmetic
sequence P and a sequence n(t) = (n1(t), . . . , nk(t), nk+1(t)) ∈ Zk+1, t ∈ P, such
that

gcd(n1(t), . . . , nk(t), nk+1(t)) = 1

and Λ(n(t)) has a basis a1(t), . . . , ak(t) with

(2) aij(t) =
bij

d t
+ O

(
1

t2

)
for i, j = 1, . . . , k,
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where d ∈ N is such that d bij, d αj bij ∈ Z for all i, j = 1, . . . , k. Moreover,

(3) nk+1(t) =
dktk

det Λ
+ O(tk−1)

and

(4) αi(t) :=
ni(t)

nk+1(t)
= αi + O

(
1

t

)
.

If f is the distance function of a set K, then both λi(f, Λ) and λi(K, Λ) denote
the i th successive minimum of the lattice Λ with respect to the set K.

Theorem 2. Let K be a bounded star body in Rk and let

Uk+1 = {x ∈ Zk+1 : 0 < x1 ≤ · · · ≤ xk+1, gcd(x1, . . . , xk+1) = 1}.

Then

C(K) := sup
n∈Uk+1

λ1(K, Λ(n)) · · ·λk(K, Λ(n))

det Λ(n)
=

α(K)

∆(K)
.

Moreover, for all α1, . . . , αk ∈ Q with 0 < α1 ≤ α2 ≤ · · · ≤ αk ≤ 1, there exists
an infinite sequence of integer vectors n(t) = (n1(t), . . . , nk(t), nk+1(t)) ∈ Uk+1,
t ∈ T = {t1, t2, . . .}, such that

lim
t→∞
t∈T

λ1(K, Λ(n(t))) · · ·λk(K, Λ(n(t)))

det Λ(n(t))
= C(K);

(5) lim
t→∞
t∈T

ni(t)

nk+1(t)
= αi, i ∈ {1, . . . , k}.

and

(6) lim
t→∞
t∈T

nk+1(t) = ∞.

The proof of Theorem 2 is based on the following lemma of independent
interest. Let D denotes the set of functions f : Rk → [0, +∞) which are positive
homogeneous of degree 1.

Lemma 2. Let {ft} be a sequence of functions in D which converges uniformly
on ||x|| ≤ 1 to a function f in D and let {Lt} be a sequence of lattices in Rk

convergent to a lattice L. Then

(i) lim sup
t→∞

λi(ft, Lt) ≤ λi(f, L), for i = 1, . . . , k;
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(ii) If, in addition, f(x) = 0 only for x = o, then lim
t→∞

λi(ft, Lt) exists and equals

λi(f, L) for i = 1, . . . , k.

This lemma obviously implies the following result.

Corollary 1. If {Lt} is a sequence of lattices in Rk convergent to a full lattice L
and K is a bounded star body then

lim
t→∞

λi(K,Lt) = λi(K, L) for each i ∈ {1, . . . , k}.

A similar result about centrally symmetric convex bodies was recently proved
in a joint paper of the first author with Schinzel and Schmidt [3].

Theorem 3. Let g(y) be the distance function of a bounded star body K in Rk.
Then

c(k, g) ≥ (∆(K))−1.

In Section 8 Theorem 1 will be applied to the problem of decomposition of
integer vectors, where the problem is considered with respect to the supremum
norm. For recent results on this problem for the Euclidean norm || · ||2, see [3].
By tradition, we denote the supremum norm of a vector a by h(a).

Given m linearly independent vectors n1, . . . , nm in Zk+1 let H(n1, . . . , nm)
denote the maximum of the absolute values of the m × m–minors of the ma-
trix (nt

1, . . . , n
t
m) and let D(n1, . . . , nm) be the greatest common divisor of these

minors. Then h(n) = H(n) for n 6= o. For k + 1 > l > m > 0 let

(7) c0(k + 1, l,m) = sup inf

(
D(n1, . . . ,nm)

H(n1, . . . ,nm)

) k−l+1
k−m+1

l∏
i=1

h(pi),

where the supremum is taken over all sets of linearly independent vectors n1, . . . ,nm

in Zk+1 and the infimum over all sets of linearly independent vectors p1, . . . ,pl

in Zk+1 such that

ni =
l∑

j=1

uijpj, uij ∈ Q for all i ≤ m.

It has been proved in [16] that for fixed l, m,

(8) lim sup
k→∞

c0(k + 1, l, m) < ∞
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and in [2] it was shown that

c0(k + 1, 2, 1) ≤ 2

(k + 1)
1
k

.

A result in [6] says that c0(3, 2, 1) = 2/
√

3. Note that

c0(k + 1, 2, 1) = sup
n∈Zk+1\{0}

inf
p,q∈Zk+1\{0}
dim(p,q)=2

n=up+vq,u,v∈Z

h(p)h(q)

h(n)1− 1
k

.

In this paper we continue to study the behavior of c0(k + 1, 2, 1) and prove
the following theorem.

Theorem 4. For k ≥ 3

lim sup
n∈Zk+1

h(n)→∞

inf
p,q∈Zk+1

dim(p,q)=2

n=up+vq,u,v∈Z

h(p)h(q)

h(n)1− 1
k

≥ 1

(k + 1)
1
k

.

A more general result of ChaÃladus [5] yields a weaker inequality with 1/2
instead of 1/(k + 1)1/k.

2 The Lattice Λ(n), Rational Weyl Sequences

and Systems of Linear Congruences

In this section we construct a special lattice Λ(n). Its points correspond to points
of the form (1). Given the vector n, there is a basis of the lattice Zk+1 of the
form n,v1, . . . ,vk. Let

v′i =

(
vi1 − vik+1

n1

nk+1

, . . . , vik − vik+1
nk

nk+1

)
∈ Rk, i ∈ {1, . . . , k}.

The equality
A1v

′
1 + . . . + Akv

′
k = o

implies that
nk+1A1v1 + . . . + nk+1Akvk + Ak+1n = o

with Ak+1 = −A1v1k+1 − . . .− Akvkk+1. Thus the vectors v′1, . . . ,v
′
k are linearly

independent. Denote by Λ(n) the k–dimensional lattice with basis v′1, . . . ,v
′
k.
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Since

1 = det




v11 . . . vk1 n1
...

. . .
...

...
v1k . . . vkk nk

v1k+1 . . . vkk+1 nk+1




= nk+1 det




v11 − v1k+1
n1

nk+1
. . . vk1 − vkk+1

n1

nk+1

n1

nk+1

...
. . .

...
...

v1k − v1k+1
nk

nk+1
. . . vkk − vkk+1

nk

nk+1

nk

nk+1

0 . . . 0 1


 ,

]

we have det Λ(n) = 1/nk+1. It is easily seen, that for every non–zero vector
v ∈ Λ(n) there is a unique vector m ∈ Zk+1 such that

v =

(
m1 −mk+1

n1

nk+1

, . . . , mk −mk+1
nk

nk+1

)
, where 0 ≤ mk+1 < nk+1.

Thus there is a one–to–one correspondence between the points of Λ(n) \ {o} and
the non–zero integer vectors with 0 ≤ mk+1 < nk+1. Note also that since v 6= o,
the vectors m and n are linearly independent.

The lattice Λ(n) appears in some problems of number theory. Let θ1, . . . , θk,
k ≥ 2, be real numbers and let Wk be the sequence of k–dimensional vectors

(9) (iθ1 mod 1, . . . , iθk mod 1), i = 0, 1, 2 . . .

Wk is called a k–dimensional Weyl sequence. We shall consider the case where

θ1 =
n1

nk+1

, . . . , θk =
nk

nk+1

.

Then Wk is nk+1–periodic and the set

Λ(Wk) = {x + y : x ∈ Zk, y ∈ Wk}
is a k–dimensional lattice. It can be shown easily that

Λ(W̧k) = Λ(n).

Consider the lattice nk+1Λ(n) = nk+1Λ(Wk) ⊂ Zk. The points in (2), multi-
plied by nk+1, can be written in the form

(in1 mod nk+1, . . . , ink mod nk+1), i = 0, 1, 2, . . .

Therefore, any point (x1, . . . , xk) ∈ nk+1Λ(n) is a solution of the system

(10)





x1 + rn1 ≡ 0 ( mod nk+1)
...

xk + rnk ≡ 0 ( mod nk+1)

where r is an integer corresponding to mk+1. Hence we may consider Theorems
1 and ?? as results on rational Weyl sequences and solutions of the system (2).
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3 Proof of Lemma 1

Let v be a primitive non–zero vector of Λ(n) and V = nk+1v. Choose a vector
m ∈ Zk+1 such that

v =

(
m1 −mk+1

n1

nk+1

, . . . , mk −mk+1
nk

nk+1

)
.

Let Λ(m,n) denote the lattice with basis m,n. Since v is primitive, we have that

Λ(m,n) = S(m,n) ∩ Zk+1,

where S(m,n) denotes the subspace of Qk+1 spanned by the vectors m,n.
Consider the lattice Λ⊥(m,n) of integer vectors orthogonal to S(m,n) and

choose a basis

(11)

a′1 = (a11, . . . , a1k, a1k+1) ,
...
a′k−1 = (ak−11, . . . , ak−1k, ak−1k+1) ,
a′k = (ak1, . . . , akk, akk+1)

of the lattice Λ⊥(n) such that the first k − 1 vectors a′1 . . . a′k−1 form a basis of
Λ⊥(m,n). It is easy to see that the vectors

a1 = (a11 , . . . , a1k) ,
...
ak = (ak1 , . . . , akk)

form a basis of Λ⊥k+1(n). Consider the matrix

A =




a11 . . . a1k a1k+1

. . .

ak−11 . . . ak−1k ak−1k+1




and denote by Aij the minor obtained by omitting the ith and jth columns in A.
Let

V′
i = min− nim

and let Vi be the vector obtained by omitting the ith entry in V′
i (note this entry

is 0). When omitting the ith entry, we preserve the numbering of the remaining
entries. For example, we consider V3 as a vector of the k–dimensional space
with coordinates x1, x2, x4, . . . , xk+1. In particular, Vk+1 = V. Let Λ⊥i (m,n)
denote the lattice obtained by omitting the ith entries of all vectors of the lattice
Λ⊥(m,n), preserving the numbering of the remaining entries. Denote by Vij the
jth entry of Vi. Then holds the following result.

Lemma 3. Vij = εijAij, where εij = ±1 and εk+1iεk+1j = (−1)i−j.
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Proof. V′
i ∈ Λ(m,n) implies that V′

i⊥Λ⊥(m,n) and thus Vi⊥Λ⊥i (m,n). Hence
Vi can be represented in the form

(12) Vi = si(external product of the vectors of a basis of Λ⊥i (m,n)), si ∈ R.

Therefore,
Vij = εijtiAij, εij = ±1, ti > 0

and obviously εk+1iεk+1j = (−1)i−j. In order to see this, it is enough to note that
the basis a′1 . . . a′k−1 of Λ⊥i (m,n)) obtained from (3) is a basis of the lattice on
the right hand side of (3). Further, the equation Vij = −Vji implies that ti = tj.
Let t = t1 = . . . = tk. It is well known that

(13) det Λ(m,n) = det Λ⊥(m,n),

see e.g. [4], p. 27/28. For the first determinant holds

det Λ(m,n) =

(
mm mn
mn nn

)
=

1

2

∑

i6=j

V 2
ij =

t2

2

∑

i 6=j

A2
ij.

On the other hand, by the Laplace identity (see e.g. [18], Lemma 6D), the second
determinant is

det Λ⊥(m,n) = det(a′ia
′
j)

k−1
i,j=1 =

1

2

∑

i6=j

A2
ij,

and by (3) t = t1 = . . . = tk = 1.

Since V = nk+1v, Lemma 3 implies that the vector v is orthogonal to the
vectors a1, . . . , ak−1 and

vak = 1
nk+1

Vak = 1
nk+1

(Vk+11ak1 + . . . + Vk+1kakk)

= ± 1
nk+1

(Ak+11ak1 − Ak+12ak2 + . . . + (−1)k−1Ak+1kakk)

= ± 1
nk+1

det Λ⊥k+1(n) = ±1.

By taking, if necessary, −v instead of v, we may assume that v ak = 1. This
shows that v ∈ Λ⊥k+1(n)∗. Thus Λ(n) is a sublattice of Λ⊥k+1(n)∗. Since

det Λ(n) = det(Λ⊥k+1(n))∗ =
1

nk+1

,

these lattices coincide.
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4 Proof of Theorem 1

Let {b∗1, . . . ,b∗k} be the basis of the polar lattice Λ∗ polar to the basis {b1, . . . ,bk}
of the lattice Λ, that is,

b∗i bj =

{
1, i = j ,
0, otherwise .

We shall apply Theorem 1 of [17], where m = 1, F = 1, and F1ν , ν ∈ {1, . . . , k+1}
are the minors of order k of the matrix

M = M(T, T1, . . . , Tk)

=




db∗11T + T1 db∗12T . . . db∗1kT d
∑k

i=1 αib
∗
1iT

db∗21T db∗22T + T2 . . . db∗2kT d
∑k

i=1 αib
∗
2iT

...
...

...
...

db∗k1T db∗k2T . . . db∗kkT + Tk d
∑k

i=1 αib
∗
kiT


 ,

where T, T1, . . . , Tk are variables. Let Mi = Mi(T, T1, . . . , Tk) and let B∗
i be the

minor obtained by omitting the ith column in M or in the matrix




b∗11 b∗12 . . . b∗1k

∑k
i=1 αib

∗
1i

b∗21 b∗22 . . . b∗2k

∑k
i=1 αib

∗
2i

...
...

...
...

b∗k1 b∗k2 . . . b∗kk

∑k
i=1 αib

∗
ki


 ,

respectively. As in the proof of Theorem 2 in [17] we have that

(14) |B∗
k+1| = | det(b∗ij)| 6= 0,

(15) |B∗
i | = αi|B∗

k+1|,

(16) Mi = dkB∗
i T

k + polynomial of degree less than k inT

and M1, . . . , Mk have no common factor. By Theorem 1 of [17] there exist integers
t1, . . . , tk and an arithmetic progression P such that for t ∈ P holds

gcd(M1(t, t1, . . . , tk), . . . ,Mk+1(t, t1, . . . , tk)) = 1.

Let
n(t) = (M1(t, t1, . . . , tk), . . . , (−1)kMk+1(t, t1, . . . , tk)).

Then hold (1)and (1).
To prove the equality (1), consider the lattice Λ⊥k+1(n(t)), t ∈ P with basis

a∗1(t) = (db∗11t + t1, db∗12t, . . . , db∗1kt),
a∗2(t) = (db∗21t, db∗22t + t2, . . . , db∗2kt),
...
a∗k(t) = (db∗k1t, db∗k2t, . . . , db∗kkt + tk).
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By Lemma 1 Λ(n(t)) is the polar lattice of the lattice Λ⊥k+1(n(t)). Let {a1(t), . . . , ak(t)}
be a basis of Λ(n(t)) such that

a∗i (t)aj(t) =

{
1, i = j,
0, otherwise.

Consider the matrices A∗(t) = (a∗ij(t))
k
i,j=1 and B∗ = (b∗ij)

k
i,j=1. Let A∗

ij(t) and B∗
ij

be the minors obtained by omitting the ith row and jth column in A∗(t) and B∗,
respectively. Then, in particular,

(17) A∗
ij(t) = dk−1tk−1B∗

ij + O(tk−2).

Moreover,
ai(t) = λ∗(A∗

i1(t),−A∗
i2(t) . . . , (−1)k−1A∗

ik(t)),

where λ∗ = det Λ(n(t)) = (det Λ⊥k+1(n(t)))−1. To check this, note that

det Λ⊥k+1(n(t)) = a∗i (t)(A
∗
i1(t),−A∗

i2(t) . . . , (−1)k−1A∗
ik(t)).

Analogously,
bi = λ(B∗

i1,−B∗
i2, . . . , (−1)k−1B∗

ik),

where λ = (B∗
k+1)

−1 = (det B∗)−1, since obviously

det B∗ = b∗i (B
∗
i1,−B∗

i2 . . . , (−1)k−1B∗
ik).

By (4)
λ∗ = (dktkλ−1 + O(tk−1))−1.

Thus by (4),

aij(t) = (−1)j−1 dk−1tk−1B∗ij+O(tk−2)

dktkλ−1+O(tk−1)
= (−1)j−1 dk−1tk−1B∗ij

dktkλ−1(1+O( 1
t ))

+ O
(

1
t2

)

= (−1)j−1 λB∗ij
dt

+ O
(

1
t2

)
=

bij

dt
+ O

(
1
t2

)
.

5 Proof of Lemma 2

The functions ft, f all are positive homogeneous of degree 1. Hence ft → f
uniformly on any bounded set. Thus

(18) lt → l implies ft(lt) → f(l) as t →∞.

(i): Let ε > 0. Choose linearly independent vectors l1, . . . , lk ∈ L such that

(19) max{f(l1), . . . , f(li)} ≤ λi(f, L) + ε for i ∈ {1, . . . , k}.

By Theorem 1 of [7], pp. 178–179, there exist vectors lt1, . . . , ltk ∈ Lt such that

(20) ltj → lj as t →∞ for j ∈ {1, . . . , k}.
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Clearly,

(21) lt1, . . . , ltk are linearly independent for all sufficiently large t.

Thus

λi(ft, Lt) ≤ max{ft(lt1), . . . , ft(lti)} ≤ max{f(l1), . . . , f(li)}+ ε
≤ λi(f, L) + 2ε for i ∈ {1, . . . , k} and all sufficiently large t

by (5), (5), (5) and (5), concluding the proof of (i).
(ii): Let 0 < ε < 1. Since ft → f uniformly for ||x|| = 1, f(x) > 0 for ||x|| = 1

and ft and f all are positive homogeneous of degree 1, there is an α > 0 such
that

(22) α||x|| ≤ (1− ε)f(x) ≤ ft(x) for all x and all sufficiently large t.

For such t the function ft(x) is positive for x 6= o. Thus the star body {x :
ft(x) ≤ 1} is bounded. Hence we may choose

(23) lt1, . . . , ltk ∈ Lt, linearly independent, such that

max{ft(lt1), . . . , ft(lti)} = λi(ft, Lt), i ∈ {1, . . . , k} for all sufficiently large t.
By (5), (5) and (i),

(24)
||ltj|| ≤ 1

α
ft(ltj) ≤ 1

α
λi(ft, Lt) ≤ 1

α
λd(ft, Lt)

≤ 1
α

λd(f, L) + ε, j ∈ {1, . . . , k} for all sufficiently large t.

Moreover,

| det(lt1, . . . , ltk)| ≥ det Lt ≥ det L(1− ε) for all sufficiently large t

by (5) and since Lt → L and thus det Lt → det L.
The sequences (lt1), . . . , (ltk) all are bounded by (5). The Bolzano – Weier-

strass theorem thus shows that by considering suitable subsequences and re–
indexing, if necessary, we may assume that

ltj → lj ∈ L, | det(l1, . . . , lk)| ≥ det L(1− ε) > 0

see [7], pp. 178–179, Theorem 1. Hence l1, . . . , lk are linearly independent and
ft(ltj) → f(lj) by (5). Thus

λi(ft, Lt) = max{ft(lt1), . . . , ft(lti)} → max{f(l1), . . . , f(li)}
≥ λi(f, L), i ∈ {1, . . . , k}.

Noting (i), this concludes the proof of (ii).
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6 Proof of Theorem ??

The inequality

C(K) = sup
n∈Uk+1

λ1(K, Λ(n)) · · ·λk(K, Λ(n))

det Λ(n)
≤ α(K)

∆(K)

holds by the definition of anomaly (see [7], pp. 191, 192). To show that equality
holds, it is sufficient to prove that

(25) sup
n∈Uk+1

λ1(K, Λ(n)) · · ·λk(K, Λ(n))

det Λ(n)
≥ α(K)

∆(K)
.

Let Λ0 = Λ0(K) be a lattice such that

(26) λ1(K, Λ0) · · ·λk(K, Λ0) = α(K)
∆(K)

det Λ0.

The existence of such lattices for bounded star bodies in R2 was proved in [14]
and for all dimensions in [8], see also [19]. Let r1, . . . , rk be a basis of Λ0. Let
0 < δ < 1 and choose linearly independent vectors b1(δ), . . . ,bk(δ) ∈ Qk such
that

(27)
||bj(δ)− rj||∞ < δ, j ∈ {1, . . . , k},
| det(bT

1 (δ), . . . ,bT
k (δ))− det Λ0| < δ det Λ0.

Apply Theorem 1 to the lattice Λ with basis b1(δ), . . . ,bk(δ) and arbitrarily
chosen rational numbers α1, . . . , αk with 0 < α1 ≤ α2 ≤ · · · ≤ αk ≤ 1. This gives
an arithmetic progression P and a sequence n(t) = (n1(t), . . . , nk(t), nk+1(t)) ∈
Zk+1, t ∈ P , such that Λ(n(t)) has a basis {a1(t), . . . , ak(t)} where

dtaij(t) = bij(δ) + O

(
1

t

)
, i, j ∈ {1, . . . , k}.

Here d = d(δ) ∈ N such that dbij(δ), dαjbij(δ) ∈ Z for all i, j ∈ {1, . . . , k}. Choose
any t0 = t0(δ) ∈ P such that

(28) ||dt0aj(δ)− rj||∞ < δ, j ∈ {1, . . . , k}

and t0 > 1/δ. Put Λδ = dt0Λ(n(t0)). For δ → 0 we obtain an infinite sequence of
lattices {Λδ} and by (6) Λδ → Λ0. In view of Corollary 1,

λ1(K, Λδ) · · ·λk(K, Λδ) → α(K)

∆(K)
det Λ0 as δ → 0.

We have

λ1(K, Λ(n(t0))) · · ·λk(K, Λ(n(t0))) =
λ1(K, Λδ) · · ·λk(K, Λδ)

(d(δ)t0(δ))k
,

12



and by (1) and (6)

(d(δ)t0(δ))
k =

det Λ

det Λ(n(t0))
+ O(tk−1

0 ) <
(1 + δ) det Λ0

det Λ(n(t0))
(1 + O(δ)).

Thus, for every ε > 0 and for sufficiently small δ > 0 there is an integer vector
n = n(t0(δ)) such that

λ1(K, Λ(n)) · · ·λk(K, Λ(n)) >
(1− ε)α(K)

∆(K)
det Λ(n).

This implies (6) and shows that (2) holds for the sequence {n(t0(δ))}. For this
sequence equality (2) holds by (1) and (2) holds by (1).

7 Proof of Theorem 3

We shall show that for every ε > 0 there exist a vector x ∈ Rk and a real number
Q > 0 such that

(29) {λ1(x, Q)}k > 1−ε
∆(K)Q

.

Let

C1(K) := lim sup
n∈Uk+1

||n||∞→∞

{λ1(K, Λ(n))}k

det Λ(n)
.

The proof of Theorem ?? can be easily modified to prove that

(30) C1(K) = 1
∆(K)

.

We just have to take for the lattice Λ0 = Λ0(K) any critical lattice of K and to
replace (6) by the equality

{λ1(K, Λ0)}k =
det Λ0

∆(K)
.

By (7) there is a sequence {n(t)}, such that ||n(t)||∞ → ∞ and for all suffi-
ciently large t holds

{λ1(K, Λ(n(t)))}k >
(1− ε) det Λ(n(t))

∆(K)
(
1− 1

nk+1(t)

) =
1− ε

∆(K)(nk+1(t)− 1)
.

Now put x = (n1(t)/nk+1(t), . . . , nk(t)/nk+1(t)), Q = nk+1(t) − 1 and note that
λ1(K, Λ(n(t))) = λ1(x, Q).

Remark. The proof of Theorem 3 does not yield only rational solutions x of the
inequality (7) for ε > 0. In fact, all vectors which are sufficiently close to a vector
x and satisfy (7) satisfy (7) as well. Moreover, since we apply Theorem 1 with
arbitrarily chosen rational numbers αi, the equality (1) implies that solutions of
(7) approximate any rational point (α1, . . . , αk) with 0 < α1 ≤ α2 ≤ · · · ≤ αk ≤ 1.
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8 Proof of Theorem 4

For any ε > 0 we have to find a sequence {n(t)} of integer vectors such that
h(n(t)) →∞ and for all sufficiently large t the following inequality holds:

(31) inf
p,q∈Zk+1

dim(p,q)=2

n(t)=up+vq,u,v∈Z

h(p)h(q)

h(n(t))1− 1
k

>
1− ε

(k + 1)
1
k

.

Let n = (n1, . . . , nk+1), 0 < n1 ≤ . . . ≤ nk+1, be a primitive integer vector,
that is gcd(n1, . . . , nk+1) = 1, and let m = (m1, . . . , mk+1) be an integer vector,
such that m and n are linearly independent. Consider the polygon Π = Π(m,n)
defined by

(32) Π = {(x, y) : |miy − nix| ≤ 1 for i ∈ {1, . . . , k + 1}}.

Let

(33) v = v(m) :=
(
m1 −mk+1

n1

nk+1
, . . . , mk −mk+1

nk

nk+1

)
∈ Λ(n).

The following lemma is implicit in [2].

Lemma 1. Let 0 < n1 < . . . < nk+1 and ξ > 0. Then there is a centrally
symmetric convex set Mξ = Mξ(n) ⊂ Rk, such that v(m) ∈ Mξ for an integer
vector m if and only if

∆(Π(m,n)) ≥ 1

nk+1ξ
.

Moreover,

(34) Vk(Mξ) > (k + 1)ξk.

Indeed, a set Mξ satisfying the equivalence stated in the lemma is described
by the formula (6) of [2] and the inequality (1) is proved in Lemma 12 ibid. Let
fn(x) be the distance function of the set M1(n). By the definition of Mξ, for v
as in (8), we have that

(35) fn(v) = (nk+1∆(Π))−1 .

Consider a generalized honeycomb Ek
1 given by the inequalities

Ek
1 = {x ∈ Rk : |xi| ≤ 1, |xi − xj| ≤ 1 for i, j ∈ {1, . . . , k}, i 6= j}.

Observe that
Ek

1 =
⋂
p<q

{
x ∈ Rk : (xp, xq) ∈ E21

}
.
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Let gk(x) be the distance function of Ek
1 . Then obviously

gk(x) = max
1≤i<j≤k

g2((xi, xj)).

By Lemma 1 of [2],

Vk(E
k
1 ) = k + 1, ∆(Ek

1 ) =
k + 1

2k

and Ek
1 has a unique critical lattice Λ(Ek

1 ) with basis

b1 = (1, 1/2, . . . , 1/2),
b2 = (1/2, 1, . . . , 1/2),
...
bk = (1/2, 1/2, . . . , 1).

Lemma 4. For any ε > 0 there exists a δ = δ(ε) > 0 such that for all integer
vectors n = (n1, . . . , nk, nk+1) with 1− δ < n1/nk+1 < . . . < nk/nk+1 < 1, for all
x ∈ Rk \ {o}

fn(x) >
(
1− ε

2

)
gk(x).

Proof. By formula (6) of [2], the set M1(n) is the intersection of the sets Gpqr,
where

Gpqr =

{
(x1, . . . , xk) ∈ Rk : (xp, xq) ∈ B1

(
np

nk+1

,
nq

nk+1

)}

for p < q < r = k + 1 and

Gpqr =

{
(x1, . . . , xk) ∈ Rk :

(
xp − np

nr

xr, xq − nq

nr

xr

)
∈ γB1

(
np

nr

,
nq

nr

)}

for p < q < r < k + 1, γ = nk+1/nr. The set B1 = B1 (α, β), 0 < α < β < 1
is defined by the formulae (8)–(13) of [1]. The boundary of B1 consists of two
horizontal segments

±Sh =

{
±(t, 1) ∈ R2 : −1− α

1 + β
≤ t ≤ 1 + α

1 + β

}
,

two vertical segments

±Sv =

{
±(1, t) ∈ R2 : −1− β

1 + α
≤ t ≤ 1− β

1− α

}
,

and four curvilinear arcs ±L1, ±L2 with

±L1 =

{
±(x(t), tx(t)) ∈ R2 :

1− β

1− α
≤ t ≤ 1 + β

1 + α

}
,

x(t) = −t2(1+α)2+2t(1−α+β+αβ)−(1−β)2
4t(β−αt)
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and
±L2 =

{±(X(t),−tX(t)) ∈ R2 : 1−β
1+α

≤ t ≤ 1+β
1−α

}
,

X(t) = −t2(1−α)2+2t(1+α+β−αβ)−(1−β)2
4t(β+αt)

.

By Lemma 1 of [1], B1 is a centrally symmetric convex set. B1.
Assume that there exists an ε > 0 such that for any δ > 0 there exist an

integer vector n = (n1, . . . , nk, nk+1), 1 − δ < n1/nk+1 < . . . < nk/nk+1 < 1 and
a point x ∈ Rk \ {o} with

(36) fn(x) ≤ (
1− ε

2

)
gk(x).

We shall show that this leads to a contradiction. By (8), there is a point a =
(a1, . . . , ak) = λx, λ > 0, such that fn(a) = 1 and

(37) gk(a) = g2((ai, aj)) ≥
(
1− ε

2

)−1

for some i, j ∈ {1, . . . , k}, i < j. Let α = ni/nk+1, β = nj/nk+1. Since a ∈
M1(n), we have (ai, aj) ∈ B1(α, β).

First, we consider the case aiaj ≥ 0. By Lemma 2 of [1]

(38) B1(α, β) ⊂ C1 := {x ∈ R2 : ||x||∞ ≤ 1}

and thus

{(xi, xj) ∈ B1(α, β) : xixj ≥ 0} ⊂ {(xi, xj) ∈ E12 : xixj ≥ 0},

which contradicts (8).
Let us now consider the case aiaj < 0. Suppose aj = −tai. We may assume

without loss of generality that

(39)
(
1− ε

2

)−1 − 1 ≤ t ≤
((

1− ε
2

)−1 − 1
)−1

.

Otherwise (ai, aj) 6∈ C1 and we get a contradiction with (8). Since (1−β)/(1+α)
tends to 0 and (1 + β)/(1− α) tends to infinity as δ tends to 0, we have

1− β

1 + α
< t <

1 + β

1− α

for δ small enough. Then µ(ai, aj) ∈ ±L2 for some µ ≥ 1. Further, for any t from
the interval (8)

X(t) → 1

1 + t
, as δ → 0.

Since g2(1/(1 + t),−t/(1 + t)) = 1, we obtain a contradiction with (8) for all
sufficiently small δ.
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Lemma 5. For any ε > 0 there is an arithmetic progression P and a sequence
of primitive integer vectors n(t) = (n1(t), . . . , nk(t), nk+1(t)), t ∈ P, such that
h(n(t)) → ∞ and for all sufficiently large t ∈ P, for every non–zero vector
v ∈ Λ(n(t)) holds

fn(t)(v) > (1− ε)
{
nk+1(t)∆(Ek

1 )
}− 1

k .

set

Proof. Choose rational numbers 1 − δ(ε) < α1 < α2 < · · · < αk < 1 and apply
Theorem 1 to the lattice Λ = Λ(Ek

1 ), the basis b1, . . . ,bk of Λ and the numbers
α1, α2, . . . , αk. This yields an arithmetic progression P and a sequence of primitive
integer vectors n(t), t ∈ P such that h(n(t)) →∞ and the corresponding lattices
Λ(n(t)) have bases a1(t), . . . , ak(t) where

(40) aij(t) =
bij

dt
+ O

(
1

t2

)
, i, j ∈ {1, . . . , k}.

Here d ∈ N is such that dbij, dαjbij ∈ Z for all i, j ∈ {1, . . . , k}. Moreover,

αi(t) :=
ni(t)

nk+1(t)
= αi + O

(
1

t

)
.

Thus for sufficiently large t,

1− δ(ε) <
n1(t)

nk+1(t)
< . . . <

nk(t)

nk+1(t)
< 1.

We now show that for sufficiently large t ∈ P
(41) λ1(E

k
1 , Λ(n(t))) >

(
1− ε

2

)
{nk+1(t)∆(Ek

1 )}− 1
k .

The equality (8) implies that

dtΛ(n(t)) → Λ, as t →∞, t ∈ P .

Thus, Lemma 1 implies that

λ1(E
k
1 , dtΛ(n(t))) → 1, as t →∞, t ∈ P .

Since

λ1(E
k
1 , Λ(n(t))) =

λ1(E
k
1 , dtΛ(n(t)))

dt
and by (1),

dt = (nk+1(t) det Λ)
1
k

(
1 + O

(
1

t

)) 1
k

,

the inequality (8) holds for all sufficiently large t. By Lemma 4 and (8) for
sufficiently large t ∈ P for every non–zero vector v ∈ Λ(n(t)),

fn(t)(v) >
(
1− ε

2

)
gk(v) ≥ (

1− ε
2

)
λ1(E

k
1 , Λ(n(t)))

(1− ε){nk+1(t)∆(Ek
1 )}− 1

k .

The proof of Lemma is complete.
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After these preparations, the proof of Theorem 4 is rather simple. We shall
show that for every ε > 0 the sequence {n(t)}t∈P obtained in Lemma 8 satisfies (8)
for all sufficiently large t. Let t ∈ P and let p,q ∈ Zk+1 be linearly independent
vectors such that n(t) = up + vq with u, v ∈ Z, that is n(t) ∈ Λ(p,q). Since the
vector n(t) is primitive, it can be extended to a basis of the lattice S(p,q)∩Zk+1

by an integer vector m. Consider the polygon Π = Π(m,n(t)) given by (8).
By Minkowski’s lower bound for the product of successive minima and since
V2(Π) ≤ 4∆(Π), for all linearly independent integer vectors (x1, y1) and (x2, y2),

2∏
i=1

h(yim− xin(t)) ≥ λ1(Π,Z2)λ2(Π,Z2) ≥ 2(V2(Π))−1 ≥ 1

2
(∆(Π))−1.

Since p,q ∈ Λ(m,n(t)), we have that

(42) h(p)h(q) ≥ 1

2
(∆(Π))−1.

By (1), for all sufficiently large t h(n(t)) = nk+1(t). Finally, by (8), (8) and
Lemma 8 for sufficiently large t holds that

h(p)h(q)

h(n(t))1− 1
k

≥ 1

2
(nk+1(t))

1
k fn(t)(v(m)) >

1− ε

(k + 1)
1
k

.
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