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Abstract. Let B be a Borel set in Ed with volume V (B) = ∞. It is shown that
almost all lattices L in Ed contain infinitely many pairwise disjoint d-tuples, that
is sets of d linearly independent points in B. A consequence of this result is the
following: let S be a star body in Ed with V (S) = ∞. Then for almost all lattices
L in Ed the successive minima λ1(S, L), . . . , λd(S, L) of S with respect to L are 0.
A corresponding result holds for most lattices in the Baire category sense. A tool
for the latter result is the semi-continuity of the successive minima.
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1 Introduction and Statement of Results

A lattice L in Euclidean d-space Ed is the system of all integer linear combinations
of d linearly independent vectors in Ed. These vectors form a basis of L and
the absolute value of their determinant is the determinant d(L) of L. d(L) is
independent of the particular choice of a basis. To each lattice L we let correspond
all d × d matrices the column vectors of which form a basis of L. Identify each
such matrix with a point in Ed2

. There is a Borel set F in Ed2
consisting of such

matrices, which has infinite Lebesgue measure and such that to each lattice L
corresponds precisely one matrix in F. Thus there is a one-to-one correspondence
between the space L of all lattices in Ed and F. The Lebesgue measure on F then
yields a measure ν on L.

Results of Rogers [7] (for d ≥ 3) and Schmidt [8] (for d = 2) show that for
a Borel set B in Ed with Lebesgue measure V (B) = ∞, ν-almost all lattices L
contain infinitely many primitive points in B, where a point l ∈ L is primitive if
it is different from the origin o and on the line-segment [o, l] there are no points
of L, except o and l. A refinement of this result is as follows.

Theorem 1. Let B be a Borel set in Ed with V (B) = ∞. Then for ν-almost
every lattice L ∈ L, the set B contains infinitely many, pairwise disjoint d-tuples
of linearly independent primitive points of L.

Tools for the proof are measure theoretic results of Rogers [7] and Schmidt [8] and
a result of Yao and Yao [10] from applied computational geometry on dissection
of sets in Ed.

A star body S in Ed is a closed set with o in its interior such that each ray
with endpoint o meets the boundary of S in at most one point. Equivalently,



S = {x : f(x) ≤ 1}, where f : Ed → R is a distance function, i.e. it is non-
negative, continuous and positively homogeneous of degree 1. The successive
minima of S or f with respect to a lattice L are defined as follows:

λi(S, L) = λi(f, L)

= inf{λ > 0 : λS ∩ L contains i linearly independent vectors}
= inf{max{f(l1), . . . , f(li)} : l1, . . . , li ∈ L linearly independent}

for i = 1, . . . , d. Clearly,

(1) 0 ≤ λ1(S, L) ≤ · · · ≤ λd(S, L) ≤ ∞.

Successive minima play an important role in the geometry of numbers, alge-
braic number theory, Diophantine approximation and computational geometry,
see e.g. [3, 2, 9, 5, 1]. For a surprising relation to Nevanlinna’s value distribution
theory see [4].

Let L be endowed with its natural topology, see [3]. Then L is locally compact
by Mahler’s compactness theorem. Thus a version of the Baire category theorem
implies that L is Baire. That is, any meager set has dense complement, where
a set is meager or of first Baire category, it it is a countable union of nowhere
dense sets, see [6].

Theorem 2. Let S be a star body in Ed with V (S) = ∞. Then λ1(S, L) = · · ·
= λd(S, L) = 0 for

(i) ν-almost all lattices L in L and for

(ii) all lattices L in L, with a meager set of exceptions.

Tools for the proof are Theorem 1 and a semi-continuity result for successive
minima which may be described as follows:

Let (Sn) be a sequence of star bodies and (fn) the corresponding sequence
of distance functions. Then (Sn) converges to a star body S with corresponding
distance function f if the sequence (fn) converges uniformly to f on the solid
unit ball {x : ‖x‖ ≤ 1} of Ed. A sequence (Ln) of lattices converges to a lattice
L, if there are bases {bn1, . . . , bnd} of Ln and {b1, . . . , bd} of L such that bn1 →
b1, . . . , bnd → bd. This notion of convergence induces the topology on L.

Lemma. Let (Sn) be a sequence of star bodies and (Ln) a sequence of lattices in
Ed, converging to a star body S and a lattice L, respectively. Then,

(i) lim sup
n→∞

λi(Sn, Ln) ≤ λi(S, L), for i = 1, . . . , d, and

(ii) if S is bounded, then lim
n→∞

λi(Sn, Ln) exists and is equal to λi(S, L),

for i = 1, . . . , d.

To see that λi is not continuous, let S be a star body with V (S) = ∞ such
that there is a lattice L which has only o in common with the interior of S, for
example the star body {x : |x1 · · ·xd| ≤ 1}, see [3], p. 28. Then 1 ≤ λi(S, L) < ∞,
while by Theorem 2 there is a sequence (Ln) of lattices such that Ln → L with
λi(S, Ln) = 0 for all n.
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2 Proof of Theorem 1

A result of Yao and Yao [10] says that any mass distribution in Ed with positive,
continuous density which tends rapidly to 0 as ‖x‖ → ∞, and of total mass V ,
can be dissected into 2d disjoint Borel parts, each of mass 2−dV and such that
no hyperplane meets all these 2d masses. We need the following version of this
result:

(2) Let A ⊂ Ed be a bounded Borel set with volume V (A) > V > 0. Then A
contains 2d pairwise disjoint Borel subsets, each of volume 2−dV and such
that no (d− 1)-dimensional subspace of Ed meets each of these 2d sets.

To see (2), choose a compact set C ⊂ A with V (C) > V . This is possible by
the inner regularity of Lebesgue measure. Next, choose a continuous function
g : Ed → R+ such that

g ≥ χC ,

∫
Ed

(g − χC) dx < 2−d(V (C)− V ), g(x) → 0 rapidly as ‖x‖ → ∞,

where χC is the characteristic function of C. This is possible by the outer reg-
ularity of Lebesgue measure and Urysohn’s lemma. Let Fi, i = 1, . . . , 2d, be a
dissection of Ed for the density g as described by Yao and Yao such that∫

Fi

g dx = 2−d

∫
Ed

g dx ≥ 2−dV (C).

Then there is no (d − 1)-dimensional subspace of Ed which meets each of the
sets C ∩ Fi, and for the respective volumes of these sets we have the following
estimate:

V (C ∩ Fi) =

∫
Fi

χCdx =

∫
Fi

g dx−
∫
Fi

(g − χC) dx ≥
∫
Fi

g dx−
∫
Ed

(g − χC) dx

> 2−dV (C)− 2−d(V (C)− V ) = 2−dV.

This concludes the proof of (2).
For the proof of Theorem 2 assume first that d ≥ 3. The following result is

an immediate consequence of a result of Rogers [7], p. 286:

(3) Let k = 1, 2, . . . , and A a Borel set in Ed with 0 < V (A) < ∞. Then
the function #∗(A ∩ · ) : L → {0, 1, . . . }, which counts the number of
primitive points of L in A, is Borel measurable and∫

L(k)

(
#∗(A ∩ L)− V (A)

ζ(d)

)2

dν(L) ≤ αV (A).

Here L(k) = {L ∈ L : d(L) ≤ k}, ζ(·) denotes the Riemann zeta-function,
and α > 0 is a constant depending on k and d.
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The main step of the proof is to show the following proposition:

(4) Let k = 1, 2, . . . Then for ν-almost every lattice L ∈ L(k) the set B
contains infinitely many pairwise disjoint d-tuples of linearly independent
points of L.

To prove this, let 0 = %0 < %1 < . . . be such that

V (Bn) > 2dζ(d)n, where Bn = {x ∈ B : %n−1 < ‖x‖ ≤ %n}.

By (2),

(5) for n = 1, 2, . . . , there are 2d pairwise disjoint Borel sets Bni, i = 1, . . . , 2d,
of Bn such that V (Bni) = ζ(d)n and no (d− 1)-dimensional subspaces of
Ed meets each set Bni.

Consequently (3) implies that

(6)

∫
L(k)

(#∗(Bni ∩ L)− n)2dν(L) ≤ α ζ(d)n.

By (5) and (3) the sets Lni = {L ∈ L(k) : #∗(Bni ∩ L) = 0}, i = 1, . . . , 2d, are
Borel. It thus follows from (6) that n2ν(Lni) ≤ α ζ(d)n, or

(7) ν(Lni) ≤
α ζ(d)

n
.

The set Ln = Ln1 ∪ · · · ∪ Ln2d is Borel and consists of all lattices L ∈ L(k) such
that at least one of the sets Bni contains no primitive point of L. Hence L(k)\Ln

is the set of all lattices L ∈ L(k) such that each set Bni contains a primitive point
of L. Hence (5) shows that

(8) for any lattice L ∈ L(k)\Ln, the set Bn contains a d-tuple of linearly
independent points of L.

By (7),

(9) ν(Ln) ≤ α 2dζ(d)

n
.

By definition the sets Bn are pairwise disjoint subsets of B. Hence (8) implies
that

{L ∈ L(k) : B contains infinitely many pairwise disjoint d-tuples
of linearly independent primitive points of L}

⊃ {L ∈ L(k) : for infinitely many n, the set Bn contains a d-tuple
of linearly independent primitive points of L}

⊃ {L ∈ L(k) : for infinitely many n the lattice L is not contained in Ln}

=
∞⋂

m=1

∞⋃
n=m

(L(k)\Ln) = L(k)\
∞⋃

m=1

∞⋂
n=m

Ln.
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Since by (9),

ν
( ∞⋂

n=m

Ln

)
= 0 for m = 1, 2, . . . , and thus ν

( ∞⋃
m=1

∞⋂
n=m

Ln

)
= 0,

the proof of (4) is complete.
Since L =

⋃
L(k), Theorem 1 for d ≥ 3 is an immediate consequence of (4).

Assume now that d = 2 and let ξ be the measure on L used by Schmidt [8],
p. 525. A result of Schmidt [8], p. 526/7, shows that (3) continues to hold, but
with the following weaker inequality:∫

L(k)

(
#∗(A ∩ L)− V (A)

ζ(2)

)2

dξ(L) ≤ β V (A) log2 V (A).

Using this, we see that in the case d = 2 the proof is, in essence, the same as the
above proof for d ≥ 3. Finally, note that the sets of measure 0 with respect to ξ
and ν coincide.�

3 Proof of the Lemma

Let fn and f be the distance functions of Sn and S, respectively. Since distance
functions are positively homogeneous of degree 1, and fn → f uniformly for
‖x‖ ≤ 1, we have that fn → f uniformly on each bounded set in Ed. This yields
the following statement:

(10) Let ln, l ∈ Ed be such that ln → l. Then fn(ln) → f(l).

The following claims are simple consequences of the convergence Ln → L, see [3],
p. 178/9:

(11) Given l ∈ L, there are ln ∈ L such that ln → l.

(12) If ln ∈ Ln and l ∈ Ed such that ln → l, then l ∈ L.

(i): Let ε > 0. By the definition of successive minima one can show that there
are linearly independent lattice points l1, . . . , ld ∈ L such that

(13) max{f(l1, . . . , f(li)} ≤ λi(S, L) + ε.

By (11) we may choose points lnj ∈ Ln, j = 1, . . . , d, such that

(14) lnj → lj.

Since l1, . . . , ld are linearly independent, it follows that

(15) ln1, . . . , lnd ∈ Ln are also linearly independent for all sufficiently large n.
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Hence, by the definition of λi together with (15), (14), (10), and (13) we obtain
that

λi(fn, Ln) ≤ max{fn(ln1), . . . , fn(lni)} ≤ max{f(l1, . . . , f(lni)}+ ε

≤ λi(f, L) + 2ε for all sufficiently large n,

Since ε > 0 was arbitrary, this concludes the proof of claim (i).
(ii): Let 0 < ε < 1. Since fn → f uniformly on {x : ‖x‖ = 1} and f(x) > 0

for ‖x‖ = 1 by the boundedness of S, and fn, f all are continuous and positively
homogeneous of degree 1, there is a constant α > 0 such that

(16) α‖x‖ ≤ (1− ε)f(x) ≤ fn(x) for all x ∈ Ed if n is sufficiently large.

For such n we have that f(x) > 0 for x 6= o, hence Sn is bounded. The definition
of λi then yields that

(17) for all sufficiently large n, there are linearly independent points ln1, . . . , lnd

in Ln, such that λi(fn, Ln) = max{fn(ln1), . . . , fn(lni)} for i = 1, . . . , d.

(16), (17), (1) and (i) together imply that

(18) ‖lni‖ ≤
1

α
fn(lni) ≤

1

α
λi(fn, Ln) ≤ 1

α
λd(fn, Ln)

≤ 1

α
λd(f, L) + ε for all sufficiently large n.

For all sufficiently large n, the vectors ln1, . . . , lnd are linearly independent by (17).
Consequently, | det(ln1, . . . , lnd)| is an integer multiple of d(L). By assumption,
Ln → L. Hence d(Ln) → d(L). Combining this, it follows that

(19) | det(ln1, . . . , lnd)| ≥ d(Ln) ≥ (1− ε) d(L) for all sufficiently large n.

By (18), all the sequences (ln1), . . . , (lnd) are bounded. Fix an index i = 1, . . . , d.
By considering a suitable subsequence of 1, 2, . . . , and re-numbering, if necessary,
we may suppose that

(20) lim inf
n→∞

λi(fn, Ln) is the same as for the original sequence,

and ln1 → l1, . . . , lnd → ld, say. By (10), (12) and (19) the latter implies that

fn(ln1) → f(l1), . . . , fn(lnd) → f(ld), l1, . . . , ld ∈ L,
| det(l1, . . . , ld)| ≥ (1− ε) d(L) > 0.

In particular, l1, . . . , ld are linearly independent. Using (17) and the definition of
λi, it follows that

λi(fn, Ln) = max{(fn(ln1), . . . , fn(lni)} → max{f(l1), . . . , f(li)} ≥ λi(f, L).

This together with (20) and (i) finally yields (ii).�
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4 Proof of Theorem 2

(i): Apply Theorem 1 with B = 1
k
S, k = 1, 2, . . . , to see that for ν-almost

all lattices εS contains a d-tuple of linearly independent primitive points of L for
any ε > 0. Hence λd(S, L) = 0 for ν-almost all lattices L. In conjunction with
(1), this completes the proof of claim (i).

(ii): Let Mn = {L ∈ L : λd(S, L) ≥ 1
n
}, n = 1, 2, . . . Since λd(S, · ) is upper

semi-continuous by the Lemma, Mn is closed. If the interior of Mn is non-empty,
then ν(Mn) > 0 by the definitions of ν and the topology on L, in contradiction
to (i). Hence Mn has empty interior. Being closed, Mn is nowhere dense in L.
Hence

∞⋃
n=1

Mn = {L ∈ L : λd(S, L) > 0} is meager.

Now note (1) to conclude the proof of claim (ii).�

5 Acknowledgement

For their helpful hints we are obliged to Professors Groemer and Welzl and the
referees. Emo Welzl, in particular, pointed out to us the existence of the article
of Yao and Yao which is reviewed neither in the Mathematical Reviews nor in
the Zentralblatt. The first author was supported by the Austrian Science Fund
(FWF), project M821-N12.

References
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