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1 Introduction and Statement of Results

1.1 Let C be a convex body in Euclidean d-space IE d, that is a compact convex
subset of IE d with non-empty interior and let δV be the symmetric difference
metric on the space of all convex bodies in IE d. For n = d + 1, d + 2, · · · , denote
by Pc

(n) the family of all convex polytopes in IE d circumscribed to C which have
at most n facets. Major approximation problems are to determine the quantity

δV (C,Pc
(n)) = inf{δV (C, P ) : P ∈ Pc

(n)}

and to describe the polytopes for which equality holds, the best approximating
polytopes of C in Pc

(n). Disregarding trivial cases, precise solutions of these prob-

lems are out of reach. General upper estimates for δV (C,Pc
(n)) are easy to obtain.

It is more difficult to determine the precise asymptotics of δV (C,Pc
(n)) as n →∞.

In [6, 8] it was shown that for C (the boundary of which is a surface ) of class C2

with Gauss curvature κC > 0 holds:

(1) δV (C,Pc
(n)) ∼

1

2 n
2

d−1

divd−1A(C)
d+1
d−1 as n →∞.

Here A(C) is the equi-affine surface area measure of (the boundary of) C,

(2) A(C) =
∫

bd C

κC(x)
1

d+1 dσ(x),

where σ is the ordinary surface area measure in IE d. divd−1 is a constant depend-
ing on d. The only explicitly known values are div1 = 1/12 and div2 = 5/18

√
3.

The case d = 2 was settled before by Fejes Tóth [4]. For more information on the



voluminous literature on approximation of convex bodies by polytopes see the
surveys [7, 9].

It is plausible to conjecture that for sufficiently differentiable C the formula
(1) extends to an asymptotic series. For d = 2 the first two terms of this series
were given by Ludwig [14] using tools from equi-affine differential geometry. The
complete series was specified by Tabachnikov [18] in the form of a result on
periodic trajectories of the dual billiard determined by C. For general d Böröczky
[2] showed for convex bodies C of class C3 with κC > 0 the formula

δV (C,Pc
(n)) =

1

2 n
2

d−1

divd−1A(C)
d+1
d−1 + O

( 1

n
2

d−1
+ 1

8d2

)
as n →∞.

1.2 The aim of this article is to prove the following result for d = 3.

Theorem. Let C be a convex body in IE 3 of class C3 with Gauss curvature κC > 0
and affine surface area A(C). Then

δV (C,Pc
(n)) =

5A(C)2

36
√

3 n
+ O

( 1

n1+ 1
4

)
as n →∞.

Actually, a slightly stronger result will be given, see (3) and (41). A scrutiny
of the proof shows that, as in [2], it is sufficient to assume that bdC has a
representation of class C2 with Lipschitz second derivatives. The proof of our
result makes use of geometric tools which, so far, are available only for d = 3.

Böröczky [3] informs us that in case C is a Euclidean ball in IE 3, the error
term in the asymptotic formula in the Theorem has a lower bound of the form

f(n)

n2
, where f(n) →∞ as n →∞.

As remarked before, we conjecture that for sufficiently differentiable C, the
asymptotic formula for δV (C,Pc

(n)) can be extended to an asymptotic series. By
the remark of Böröczky we see that the second term in this series is not of the
form B(C)/n2, as might be expected. Possibly, it has the form C(C)/n3/2. Here
B(C) and C(C) are suitable quantities depending on C.

Considering the recent contributions to asymptotic approximation of convex
bodies by polytopes, it is clear that results similar to our Theorem and with
similar proofs hold for the mean width deviation and for Lp metrics and also for
families of inscribed and general polytopes and for vertices instead of facets. In
some of these cases the proofs are technically more complicated.

For a corresponding, yet weaker result for general d see [12].

1.3 The Theorem can be applied to the isoperimetric problem for convex poly-
topes in a normed space: consider besides the Euclidean norm a further norm
on IE d. A natural choice for “volume” in the normed space thus obtained is the
ordinary volume V . For “surface area” several natural definitions have been pro-
posed. These amount to the introduction of a convex body I with center at the
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origin o, the so-called isoperimetrix. The surface area SI(C) of a convex body C
then is defined by

SI(C) = lim
ε→+0

V (C + εI)− V (C)

ε
, where C + εI = {x + εy : x ∈ C, y ∈ I},

see Thompson [18]. If P is a convex polytope with minimum isoperimetric quo-
tient SI(C)d/V (C)d−1 amongst those with a given number of facets, a result of
Diskant [5] says that after applying a suitable homothety to P , we may assume
that P is circumscribed to I. The definition of SI(P ) then shows that

SI(P )d

V (P )d−1
= ddV (P ) = ddV (I) + ddδV (I, P ).

The asymptotic formula (1) and its refinements thus yield asymptotic formulae
for the minimum isoperimetric quotient. In particular, our Theorem implies the
following result.

Corollary. Let I be an isoperimetrix in IE 3 of class C3 with κC > 0 and
affine surface area A(C) which corresponds to a given norm on IE 3. For n =
4, 5, . . . , let Pn be a convex polytope in IE 3 with minimum isoperimetric quotient
SI(Pn)3/V (Pn)2 amongst all convex polytopes in IE 3 with n facets. Assume (with-
out restriction of generality) that Pn is circumscribed to I. Then

SI(Pn)3

V (Pn)2
= 27V (I) +

5
√

3A(I)2

4n
+ O

( 1

n1+ 1
4

)
as n →∞.

1.4 In [11] we gave an asymptotic formula for the maximum error in numerical
integration formulas for certain classes of continuous functions on the plane or on
Riemannian 2-manifolds. Using ideas of the proof of our Theorem, it is possible
to estimate the error of this asymptotic formula.

2 Proof of the Theorem

Let ], diam, width, | · |, V (·), bd, int, relbd, relint, vert and conv stand for cardi-
nal number, diameter and minimum width (both with respect to the Euclidean
norm ‖ · ‖ in IE 3), ordinary area (2-dimensional Hausdorff measure) and volume,
boundary, interior, relative boundary and interior, set of vertices and convex hull,
respectively. It will always be clear from the context with respect to which set
relbd and relint are considered. B2 and S2 denote the solid Euclidean unit circle
and the Euclidean 2-sphere. For notions not explained below see Schneider [16].

When writing const or α, β, . . . , we mean that this is a suitable positive con-
stant depending only on C. Landau symbols such as O(1/m) denote functions
of the form const/m (in slight contrast to the use in section 1). Constants and
Landau symbols may be different, even if they are denoted alike.

2.1 Lower Estimate. We shall prove that
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(3) δV (C,Pc
(n)) ≥

5A(C)2

36
√

3n
−O

( 1

n1+ 1
2

)
as n →∞.

For n = 4, 5, . . . , let Pn ∈ Pc
(n) be best approximating for C.

2.1.1 First, some tools will be collected. A result of the author [10] says that “Pn

has asymptotically regular hexagonal facets of edge length (A(C)/33/2 n)1/2 with
respect to the Riemannian metric of equi-affine differential geometry on bdC ”.
Noting that two Riemannian metrics on the compact manifold bd C are metrically
equivalent, this implies in particular that

(4) there is a facet F0 of Pn with diamF0 ≤ O(1/n1/2) and the point where
F0 touches C has distance at most O(1/n1/2) from the points where the
adjacent facets touch C.

The metric projection “π” of IE 3 onto C maps each point in IE 3 onto its
(unique) nearest point in C. The rolling theorem of Blaschke [1], pp.118 and 119,
see also Leichtweiss [13], p.1055, and its dual yield the following remarks:

(5) For any p ∈ bd C and r on the support plane Hp of C at p with ‖p−r‖ ≤ α
holds β ‖p− r‖2 ≤ ‖r − rπ‖ ≤ γ ‖p− r‖2.

(6) For any r ∈ IE 3 \ C with ‖r − rπ‖ ≤ const the volume of the convex cone
with apex r and base Hrπ ∩ conv ({r} ∪ C) is at least δ ‖r − rπ‖2.

Next, we state some well-known properties of π:

(7) ‖xπ − yπ‖ ≤ ‖x− y‖ for x, y ∈ IE 3.

(8) Let z ∈ bd C. Then {y ∈ IE 3 : yπ = z} is the exterior normal of bdC at z.

(9) |Sπ| ≤ |S| for any measurable piece S of a surface.

(10) Let Q be a convex polytope containing C. Then π maps bdQ homeomor-
phically onto bdC.

Further needed tools are the following standard representation of bdC and
some of its properties. For p ∈ bd C choose in the support plane Hp of C at p a
Cartesian coordinate system with origin o equal to p. Together with the interior
normal unit vector of bdC at p it yields a Cartesian coordinate system of IE 3.
When speaking of the “lower” part of bdC, this is meant with respect to the last
coordinate. Let ε > 0 be so small that the ε-neighborhood Up of p in bdC is in
the relative interior of the lower part of bdC. Represent Up in the form
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(11) Up = {(s, fp(s)) : s ∈ U ′
p},

where “ ′ ” denotes the orthogonal projection of IE 3 onto Hp and fp is a convex
function of class C3 on the relatively open set U ′

p. The next proposition is a slight
extension of a result of Schneider [15] and can be proved along the same lines.

(12) fp is convex, of class C3, and
|fp,k|, |fp,kl|, |fp,klm|, (gradfp)

2 ≤ const on Up,

where fp,k, fp,kl, fp,klm denote first, second and third partial derivatives of fp.
Define quadratic forms qu on IE 2 by

qu(s) =
∑
k,l

fp,kl(u)sksl for u ∈ U ′
p and s = (s1, s2) ∈ IE 2.

Instead of qu, where u = p′ = p, we also write qp. As a consequence of Blaschke’s
rolling theorem and its dual we have the inequalities

(13) const ‖ · ‖2 ≤ qp(·) ≤ const ‖ · ‖2.

For x ∈ Up we write instead of κC(x) also κC(u) where u = x′. Using the common
expression for κC ,

κC(u) =
det qu

(1 + (gradfp(u))2)2
for u ∈ U ′

p,

and noting (12), it follows that

(14) κC(o) = det qp and
κC is of class C1 and has bounded first partial derivatives on U ′

p.

Let D be a convex disc, that is a convex body in IE 2. Its moment M(D, o)
with respect to the origin o is defined by

M(D, o) =
∫
D

‖s‖2 ds.

A related function M(a, v) is defined as follows:

M(a, v) =
a2

2v tan2 π
v

π
v∫

0

dϕ

cos4 ϕ
for a > 0, v ≥ 3.

If v is an integer, M(a, v) is the moment of a regular convex v-gon with center o
and area a. Elementary calculations yield the following properties:

(15) Let D be a convex disc in IE 2. Then M(tD, o) = t4M(D, o) for t ≥ 0.

5



(16) Let D be a convex disc in IE 2 and q(s) = strAtrAs for s ∈ IE 2 a positive
definite quadratic form, where A is a suitable 2× 2 matrix. Then∫

D

q(s) ds = M(AD, o) (det q)−
1
2 .

(17) Let H be a convex hexagon with center o which is regular with respect to

the norm q
1
2 , where q is a positive definite quadratic form on IE 2. Then

M(H, o) =
5|H|2(det q)

1
2

18
√

3
.

The moment lemma of Fejes Tóth [4], p.198, says the following:

(18) Let D be a convex v-gon and E a regular convex v-gon with center o and
|D| = |E|. Then M(D, o) ≥ M(E, o) = M(|E|, v).

The next two results are due to the author [10]:

(19) M(a, v) is convex in (a, v) for a > 0, v ≥ 3.

(20) M(a, v) is non-increasing in v for any fixed a > 0.

The final tool is a corollary of Euler’s polytope formula, see e.g. Fejes Tóth
[4], p.15:

(21) Let P be a convex polytope in IE 3 with n facets and let v1, . . . , vn be the
number of the vertices of its facets. Then

1

n
(v1 + · · ·+ vn) < 6.

2.1.2 Second, we consider the form of the facets of best approximating polytopes
Pn. Our first aim is to show that

(22) max {diam F : F facet of Pn} ≤ O
( 1

n
1
2

)
.

For the proof of (22) note that the following weaker estimate is an immediate
consequence of the fact that δV (C, Pn) → 0.

(23) max {diam F : F facet of Pn} → 0.

This implies that for all sufficiently large n the intersection of the support half-
spaces of Pn, except the facet F0 (see (4)), is a convex polytope Qn−1 ∈ Pc

(n−1),
say, and Qn−1 \ Pn is a convex polytope with facet F0 which is situated “above”
F0. It follows from (4) that |F0| ≤ O(1/n) and (4) together with (5) implies that
the maximum “height” of Qn−1 \ Pn above F0 is at most O(1/n). Thus
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(24) Qn−1 ∈ Pc
(n−1), V (Qn−1)− V (Pn) ≤ O

( 1

n

)
O

( 1

n

)
=

ζ

n2
,

say. In order to prove (22), assume the contrary. Choose

(25) η >
( ζ

β2δ

) 1
4 .

Then there are infinitely many n (and from now on only these n will be considered
in the proof of (22)) with the following property: Pn has a facet G0, say, such that
diamG0 ≥ 2η/n1/2. Thus G0 has a vertex r, say, such that ‖p−r‖ ≥ η/n1/2, where
p is the point where G0 touches C. By (23) we see that ‖p−r‖ ≤ α for sufficiently
large n where α is from (5). Hence (5) implies that ‖r−rπ‖ ≥ β ‖p−r‖2 ≥ β η2/n.
On the other hand, δV (C, Pn) → 0 and (24) together show that δV (C, Qn−1) → 0,
which, in turn, yields that ‖r− rπ‖ → 0 as n →∞. Let Rn be the intersection of
Qn−1 and the support halfspace of C at rπ. Then ‖r−rπ‖ → 0, ‖r−rπ‖ ≥ β η2/n
and propositions (6) and (25) together imply that for sufficiently large n,

Rn ∈ Pc
(n), V (Qn−1)− V (Rn) ≥ δ ‖r − rπ‖2 ≥ β2 δ η4

n2
>

ζ

n2
.

Considering this and (24), we see that for sufficiently large n holds

Rn ∈ Pc
(n), V (Rn) < V (Pn)− ζ

n2
+

ζ

n2
= V (Pn).

Since this contradicts the fact that Pn is best approximating for C in Pc
(n), the

proof of (22) is complete.
A similar proof shows that

(26) min {width F : F facet of Pn} ≥ O
( 1

n
1
2

)
.

2.1.3 Third, we adapt the standard representation of bdC as described in 2.1.1
according to our needs.

Let Fi, i = 1, . . . , n, denote the facets of Pn and let pi be the point where Fi

touches C. For each pi choose corresponding Hi, Cartesian coordinate systems
for Hi, resp. IE 3 with origin o equal to pi, and Ui, fi, qi and “ ′ ”. Propositions
(26) and (22) together with o ∈ Fi imply that

(27) ci +
ϑ

n
1
2

B2 ⊆ Fi ⊆
ι

n
1
2

B2 for suitable ci ∈ Hi.

In the following we consider only n which are so large that

(28) Fi ⊂ U ′
i .

(Note (22) and the fact that Ui is the ε-neighborhood of pi in bdC, where ε > 0
is a constant.) Propositions (11)–(14) now take the following form:
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(29) Ui = {(s, fi(s)) : s ∈ U ′
i}.

(30) fi is convex, of class C3, and
|fi,k|, |fi,kl|, |fi,klm|, (gradfi)

2 ≤ const on U ′
i .

(31) const ‖ · ‖2 ≤ qi(·) ≤ const ‖ · ‖2.

(32) κC(o) = det qi, κC is of class C1, and
has bounded first partial derivatives on U ′

i .

Represent qi in the form

(33) qi(s) = strAtr
i Ais for s ∈ IE 2, where Ai is a suitable 2× 2 matrix.

Since fi(o) = 0 and gradfi(o) = o, Taylor’s theorem together with (28)–(31)
implies that

(34) fi(s) ≥
1

2
qi(s)−O(qi(s)

3
2 ) for s ∈ Fi ⊆ U ′

i ⊆ Hi.

Since pi = o ∈ Fi ∩ C and Fi ⊆ (ι/n1/2)B2 by (27), proposition (7) shows that
F π

i ⊆ (ι/n1/2)B3 and thus

(35) F π
i
′ ⊂ ι

n
1
2

B2.

Some elementary calculations together with fi(o) = 0, gradfi(o) = o, Taylor’s
theorem and propositions (27), (35), (28) and (30) imply the inequality

(36) ‖x− xπ ′‖ <
κ

n
3
2

for x ∈ Fi.

2.1.4 Fourth, we consider a dissection of bdC. By (7) and (10) the metric
projection π is non-increasing for curve length and maps bdPn homeomorphically
onto bdC. Thus

(37) the sets F π
i , i = 1, . . . , n, form a dissection of bdC.

This means that the sets are closed, their boundaries are continuous curves of
finite length, they have pairwise disjoint interiors and their union equals bdC.

Let

(38) Pni = {(s, t) ∈ Pn : s ∈ (1− κ

ϑn
)(Fi − ci) + ci, 0 ≤ t ≤ fi(s)} ⊆ Pn \ int C

(compare (27)). Next it will be shown that

(39) the sets Pni, i = 1, . . . , n, are pairwise disjoint subsets of Pn \ int C.
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By (37) it is sufficient for the proof of (39) to show that

(40) P π
ni ⊂ relintF π

i .

Being a continuous image of the connected set Pni, the set P π
ni is also connected.

F π
i and P π

ni have a common relative interior point, namely pi, and both are
contained in bdC. Thus, if (40) did not hold, P π

ni ∩ relbdF π
i 6= ∅. Then there is

a point y ∈ Pni such that yπ ∈ relbdF π
i . Choose x ∈ relbdFi with xπ = yπ. It

follows from (8) that y ∈ [x, xπ]. Hence ‖x − y′‖ ≤ ‖x − xπ ′‖ < κ/n3/2 by (36).
This together with y = (s, t) ∈ Pni, s = y′, (38) and (27) implies that

x = y′ + x− y′ ∈ (1− κ

ϑn
)(Fi − ci) + ci +

κ

n
3
2

relint B2

⊆ (1− κ

ϑn
)(Fi − ci) + ci +

κ

ϑn
(relint Fi − ci) ⊆ relint Fi.

Since this contradicts the fact that x ∈ relbdFi, the proof of (40) is complete
which, in turn, yields (39).

2.1.5 Finally, the fact that Pn is best approximating, (39), (38) where we put
(1 − κ/ϑn)(Fi − ci) + ci = (1 − O(1/n))Fi + di, say, (34), (31), (27), (33), (16),
(15), (18) where vi = ] vertFi, det Ai = (det qi)

1/2 and (15), (32), (9), (20), a
calculus formula for surface area, (32), (35), (15), a calculus formula for surface
integrals, (19), Jensen’s inequality, (37), (2), (20), (21) and (17) together imply
proposition (3):

δV (C,Pc
(n)) = δV (C, Pn) = V (Pn \ int C) ≥

∑
i

V (Pni)

=
∑

i

∫
(1−O( 1

n
))Fi+di

fi(s) ds ≥ 1

2

∑
i

∫
(1−O( 1

n
))Fi+di

qi(s) ds (1−O
( 1

n
1
2

)
)

=
1

2

∑
i

M((1−O(
1

n
))AiFi + Aidi, o)(det qi)

− 1
2 (1−O

( 1

n
1
2

)
)

≥ 1

2

∑
i

M(|AiFi|, vi)(det qi)
− 1

2 (1−O
( 1

n

)
)4(1−O

( 1

n
1
2

)
)

≥ 1

2

∑
i

M((det qi)
1
4 |Fi|, vi)(1−O

( 1

n
1
2

)
)

≥ 1

2

∑
i

M(κC(o)
1
4 |F π

i |, vi)(1−O
( 1

n
1
2

)
)

≥ 1

2

∑
i

M(
∫

F π
i
′

κC(o)
1
4 (1 + (gradfi(s))

2)
1
2 ds, vi) (1−O

( 1

n
1
2

)
)

≥ 1

2

∑
i

M(
∫

F π
i
′

κC(s)
1
4 (1 + (gradfi(s))

2)
1
2 ds (1−O

( 1

n
1
2

)
), vi)

× (1−O
( 1

n
1
2

)
)

=
1

2

∑
i

M(
∫

F π
i

κC(x)
1
4 dσ(x), vi)(1−O

( 1

n
1
2

)
)4(1−O

( 1

n
1
2

)
)
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≥ n

2
M(

1

n

∫
bd C

κC(x)
1
4 dσ(x),

1

n
(v1 + · · ·+ vn))(1−O

( 1

n
1
2

)
)

≥ n

2
M(

1

n
A(C), 6) (1−O

( 1

n
1
2

)
) =

5A(C)2

36
√

3 n
−O

( 1

n1+ 1
2

)
.

2.2 Upper Estimate. We shall prove that

(41) δV (C,Pc
(n)) ≤

5A(C)2

36
√

3 n
+ O

( 1

n1+ 1
4

)
as n →∞.

2.2.1 First, a suitable representation of bdC will be introduced, different from
the one in 2.1.

For a proof of the following result for general d see [12].

(42) For m = 1, 2, . . . , the 2-sphere S2 can be dissected into m convex spher-
ical polygons Si, i = 1, . . . ,m, say, such that for each i a circle of radius
O(1/m1/2) is contained in Si and Si is contained in a concentric circle of
radius O(1/m1/2).

Assume that o ∈ int C. Then for each m = 1, 2, . . . , dissect bdC as follows:
project the convex spherical polygons Si ⊂ S2 in radial direction onto bdC.
This gives a dissection of bdC into m sets Ci, i = 1, . . . ,m, say. For each i
consider the ray starting at o which meets Si at the center of the two circles
corresponding to Si according to (42). Let Hi be a plane which intersects this
ray orthogonally, but does not meet C. Let “ ’ ” denote the orthogonal projection
onto Hi. Choose a Cartesian coordinate system in Hi with origin o at the point
where the corresponding ray intersects Hi. Then, for sufficiently large m,

(43) the m sets Ci , i = 1, . . . ,m, form a dissection of bdC, each Ci is a convex
disc in Hi, and

λ

m
1
2

B2 ⊆ C ′
i ⊆

µ

m
1
2

B2.

The Cartesian coordinate system in Hi together with the normal unit vector of Hi

which points to C forms a Cartesian coordinate system of IE 3. When we speak of
the “ lower ” part of bdC, this is with respect to the last coordinate. Represent
the lower part of bdC in the form

(44) {(s, fi(s)) : s ∈ C ′}.

Then, if m is sufficiently large, an argument of Schneider [15] shows (as in 2.1)
that

(45) fi is convex, of class C3, and

|fi,k|, |fi,kl|, |fi,klm|, (gradfi)
2 ≤ const on

2µ

m
1
2

B2.

Define quadratic forms qu by
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(46) qu(s) =
∑
k,l

fi,kl(u)sksl for s ∈ IE 3, where u ∈ 2µ

m
1
2

B2,

qi = qo.

As a consequence of Blaschke’s rolling theorem and the fact that the coefficient
of qu are continuous in u we have for sufficiently large m that

(47) ν ‖ · ‖2 ≤ qi(·) ≤ ξ ‖ · ‖2,

(48) qu ≤ 2qi for any u ∈ 2µ

m
1
2

B2.

Finally, we note that for sufficiently large m,

(49) κC(u) =
det qu

(1 + (gradfi(u))2)2
for u ∈ 2µ

m
1
2

B2.

2.2.2 Second, we shall construct “ almost ” best approximating polytopes Qn for
C in Pc

(n). Let n be sufficiently large and let m = bn1/2c. Consider in Hi an edge-
to-edge tiling with convex hexagons of area |C ′

i|A(C)/A(Ci)n which are regular

with respect to the norm q
1/2
i . Here

(50) A(Ci) =
∫
Ci

κC(x)
1
4 dσ(x), A(C) =

∫
bd C

κC(x)
1
4 dσ(x).

Since |C ′
i| ≤ |Ci| ≤ const |C ′

i| by (43) and (46) and since κC is continuous and
positive on the compact surface bdC, we see that |C ′

i|A(C)/A(Ci) is bounded
between positive constants. This combined with (47) shows that the diameter of
each of these hexagons is at most ρ/n1/2. From (43) it follows that

(1− ρ

λ

(m

n

) 1
2 )C ′

i +
ρ

n
1
2

B2 ⊆ (1− ρ

λ

(m

n

) 1
2 +

ρ

λ

(m

n

) 1
2 )C ′

i = C ′
i.

Thus D′
i = (1 − (ρ/λ)(m/n)1/2)C ′

i is contained in relintC ′
i and has distance at

least ρ/n1/2 from relbdC ′
i. Consider the hexagons of our tiling which meet D′

i.
Since each hexagon has diameter at most ρ/n1/2, all these hexagons are contained
in C ′

i. Hence there are

(51) ni ≤
A(Ci)

A(C)
n

such hexagons. Multiplying each of these hexagons with the factor

1 + ρ
λ

(
m
n

) 1
2

1− ρ
λ

(
m
n

) 1
2

(≤ 1 + O
( 1

n
1
4

)
≤ 2 for sufficiently large n),

gives a system of ni hexagons Hij, j = 1, . . . , ni, in the plane Hi. For sufficiently
large n this system of hexagons has the following properties:
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(52) diamHij ≤
2ρ

n
1
2

,

(53) |Hij| ≤
|C ′

i|A(C)(1 + O
(

1

n
1
4

)
)2

A(Ci)n
≤ |C ′

i|A(C)

A(Ci)n
(1 + O

( 1

n
1
4

)
) ≤ O

( 1

n

)
,

(54) Hij ⊂ (1 + O
( 1

n
1
4

)
)C ′

i ⊆ 2C ′
i ⊆

2µ

m
1
2

B2 ⊂ C ′,

(55) Hi1 ∪ · · · ∪Hini
⊇

1 + ρ
λ

(
m
n

) 1
2

1− ρ
λ

(
m
n

) 1
2

(1− ρ

λ

(m

n

) 1
2 )C ′

i

= C ′
i +

ρ

λ

(m

n

) 1
2 C ′

i ⊇ C ′
i +

ρ

n
1
2

B2 ⊇ C ′
i.

This follows from the definition of these hexagons, the above remarks and propo-
sitions (43) and (50). Choose points pij on the lower side of bdC such that p′ij is
the center of Hij and define corresponding quadratic forms qij by

(56) qij(s) = qp′ij
(s) =

∑
k,l

fi,kl(p
′
ij)s

ksl for s ∈ IE 2.

Noticing (46), (48) and (54), we have that

(57) qij ≤ 2qi.

Finally, define Qn to be the intersection of the support halfspaces of C at the
points pij. (If n is sufficiently large, these points are distributed rather densely
over bdC and thus) Qn is a convex polytope with at most n1 + · · · + nm ≤ n
facets (see (51) and (43)) which is circumscribed to C. Hence

(58) Qn ∈ Pc
(n).

2.2.3 Third, we cover Qn \ int C by sets whose volume may be easily calculated.
Since the sets Ci, i = 1, . . . ,m, form a dissection of bdC by (43), we have that

(59) Qn \ int C ⊂ Qn1 ∪ · · · ∪Qnm, where Qni = {x ∈ Qn \ int C : xπ ∈ Ci}.

Next, the following will be shown:

(60) Qni ⊂ Rni = {(s, t) ∈ Qn : s ∈ C ′
i +

ρ

n
1
2

B2, t ≤ fi(s)}
for sufficiently large n.

12



For the proof of (60) it is sufficient to show the following: let x ∈ Qn \ int C
with xπ ∈ Ci be given, then ‖x′−xπ ′‖ < ρ/n1/2. Since xπ ∈ Ci and thus xπ ′ ∈ C ′

i,
proposition (55) implies that xπ ′ ∈ Hij for suitable j. Elementary calculations,
Taylor’s theorem, (52), (45), (47) and (48) together show that the distance of
xπ from the intersection point y of the exterior normal of bdC at xπ with the
support plane of C at pij is at most O(1/n). Since x ∈ [xπ, y] by (8),

‖x′ − xπ ′‖ ≤ ‖y′ − xπ ′‖ ≤ ‖y − xπ‖ ≤ O
( 1

n

)
.

Since O(1/n) < ρ/n1/2 for sufficiently large n, the proof of (60) is complete.

2.2.4 Finally, (59), (60), (55), the definition of Qni, Taylor’s theorem applied to
fi|Hij, (56) and ‖s−p′ij‖ ≤ O(1/n1/2) (see (52)), (55) and (45), Taylor’s theorem

applied to the coefficients of qi and the fact that ‖p′ij − o‖ ≤ O(1/m1/2) (see

(54)) and ‖s−pij
′‖ ≤ O(1/n1/2) (see (52)), (17), (53), (51), (53), (50), (49), (46),

Taylor’s theorem applied to κC(s)1/4(1 + (gradfi(s))
2)1/2|C ′

i which has bounded
partial derivatives by (45) combined with ‖s − o‖ ≤ O(1/m1/2) (see (43)), a
calculus formula for surface integrals, the definition of A(Ci) and (43) together
imply proposition (41):

δV (C, Qn) = V (Qn \ int C) ≤
∑

i

V (Qni) ≤
∑

i

V (Rni)

≤
∑
i,j

∫
Hij

{fi(s)− fi(pij
′)− gradfi(pij

′)(s− pij
′)} ds

≤ 1

2

∑
i,j

∫
Hij

qij(s− pij
′) ds + |Hij|O

( 1

n
3
2

)
}

≤ 1

2

∑
i,j

{
∫

Hij

qi(s− pij
′) ds + |Hij|O

( 1

n
3
2

)
+ |Hij|O

( 1

n m
1
2

)
}

≤ 1

2

∑
i

ni
5 |Hij|2(det qi)

1
2

18
√

3
(1 + O

( 1

n
1
4

)
)4 + O

( 1

n1+ 1
4

)
≤ 5

36
√

3 n

∑
i

A(Ci)
1−2A(C)2−1|C ′

i|2κC(o)
1
2 (1 + (gradfi(o))

2)

× (1 + O
( 1

n
1
4

)
) + O

( 1

n1+ 1
4

)
=

5A(C)

36
√

3 n

∑
i

A(Ci)
−1(

∫
C′

i

κC(o)
1
4 (1 + (gradfi(o))

2)
1
2 ds)2

× (1 + O
( 1

n
1
4

)
) + O

( 1

n1+ 1
4

)
≤ 5A(C)

36
√

3 n

∑
i

A(Ci)
−1(

∫
C′

i

κC(s)
1
4 (1 + (gradfi(s))

2)
1
2 ds)2

× (1 + O
( 1

m
1
2

)
)2(1 + O

( 1

n
1
4

)
) + O

( 1

n1+ 1
4

)
=

5A(C)

36
√

3 n

∑
i

A(Ci)(1 + O
( 1

n
1
4

)
) + O

( 1

n1+ 1
4

)
=

5A(C)2

36
√

3 n
+ O

( 1

n1+ 1
4

)
.
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2.3 Conclusion. The Theorem now follows from (3) and (41).
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