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In Many Cases Optimal Configurations Are
Almost Regular Hexagonal

Peter M.Gruber

Abstract. This is a survey of results dealing with point sets which are optimal or
almost optimal with respect to a given property and as a consequence are arranged
in a regular or almost regular hexagonal pattern. The presented results and prob-
lems are from the geometry of numbers, from discrete geometry in the Euclidean
plane, on the 2-sphere and on Riemannian 2-manifolds and from potential theory.
They are related to problems of convexity, numerical integration and econometry
and, presumably, to problems of biology, chemistry, physics, and engineering.
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1 Introduction

It is well known that in certain situations regular and almost regular hexagonal
arrangements are optimal or, at least, close to optimal. Examples of this fact can
be found in the geometry of numbers, in discrete geometry, in econometry and in
other areas.

A related, more difficult problem is whether conversely, in such cases optimal
or close to optimal arrangements are regular or almost regular hexagonal. Apart
from some results in the geometry of numbers, the pertinent results are of rather
recent origin. In this article such results will be discussed. In particular we will
consider the following topics:

lattice packing and covering with circles and quantization of data,
the Epstein zeta function,
general packing and covering with circles in the plane and on

Riemannian 2-manifolds; applications,
nets in the plane, on the 2-sphere and on Riemannian 2-manifolds,
the theorem on sums of moments and its stability counterpart in the

plane and on Riemannian 2-manifolds; applications,
distribution of electric charges on the 2-sphere and on Riemannian

2-manifolds.
In architecture, the technical sciences, chemistry, crystallography, geology,

botany, physiology, microbiology and other areas there are many cases where reg-
ular or almost regular hexagonal arrangements appear. Presumably this is due
to the fact that engineers and nature have the tendency to optimize. Since some
of the mathematical results that will be discussed seem to be related to certain
situations in engineering and in the sciences where regular hexagons appear, these
results may contribute to a better understanding of the latter. Unfortunately,
clear-cut applications are frequently out-of-reach since in most cases it is difficult
to specify precisely what is optimized. Most probably, in typical cases it is a whole
bundle of properties.

2 Lattice packing and covering by circles and quan-
tization of data

In this section we describe classical results on lattice packing and covering by
circles from the geometry of numbers and a result on the best lattice quantizer in
Euclidean 2-space E2. For each result one may formulate a corresponding stability
problem. This is done explicitly only in the case of Theorem 2.
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2.1 Densest lattice packing by circles

A result which goes back to Lagrange [47] is the following.

Theorem 1. Let q(x, y) = ax2 +2bxy + cy2 be a positive definite binary quadratic
form. Then

inf
u,v∈Z, 6=0,0

{q(u, v)} ≤
(4D

3

)1/2

,

where Z is the ring of rational integers and D = ac−b2. The equality sign is needed
precisely if there is a linear transformation of the variables with integer coefficients
and determinant ±1, i.e. an integer unimodular transformation, which transforms
q into a multiple of x2 + xy + y2.

A lattice L in E2 is the system of all integer linear combinations of two linearly
independent vectors b1, b2 ∈ E2. The pair {b1, b2} is then called a basis of L
and the area of the fundamental parallelogram {t1b1 + t2b2 : 0 ≤ ti < 1} is the
determinant d(L) of L. The lattice L is said to be regular hexagonal if it has a basis
{b1, b2} with ‖b1‖ = ‖b2‖ = ‖b1 − b2‖. Here ‖ · ‖ is the ordinary Euclidean norm
on E2. Let C be a compact convex set with non-empty interior in E2, i.e. a convex
body in E2 and L a lattice in E2. The density of the set lattice {C + l : l ∈ L} is
defined as |C|/d(L), where | · | stands for area in E2. More intuitively, it is the
‘total volume of the sets C + l : l ∈ L divided by the total volume of E2’. The set
lattice {C + l : l ∈ L} is a lattice packing by C with packing lattice L if the sets
C + l have pairwise disjoint interiors; it is a lattice covering by C if the union of
all its sets is E2.

Regular hexagonal lattices per se and the related regular planar honeycombs
(see 5.1) have been investigated in hundreds of articles. The pertinent results deal
with crystallography, the Ising model in metallurgy, with mechanical, physical and
chemical problems of plates with regular hexagonal cells, and other situations.
In contrast, in this article we describe geometric and analytic properties which
characterize the regular hexagonal lattices among all planar lattices.

It seems that Gauss [25] was the first to see that the above result of Lagrange
is equivalent to the next statement.

Theorem 2. Any lattice packing by the (solid Euclidean) unit circle in E2 has
density at most π/2

√
3 = 0.9068996 . . .. Equality is attained precisely in the case

when the packing lattice is regular hexagonal and has a basis {b1, b2}, where ‖b1‖ =
‖b2‖ = 2.

Precise density bounds for lattice packings by balls are known up to dimension
8, for higher dimensions there exist only estimates. See Gruber and Lekkerkerker
[36], Conway and Sloane [5] and Zong [75].

We formulate a stability counterpart of Theorem 2 as our first problem.
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Problem 1. Specify a (‘simple’ and ‘small’) function f(ε) for ε > 0 such that
the following hold: let L be a lattice in E2 which provides a packing by the unit
circle of density greater than (π/2

√
3) − ε. Then L has a basis {c1, c2} such that

‖c1 − b1‖, ‖c2 − b2‖ ≤ f(ε), where b1, b2 are suitable vectors in E2 with ‖b1‖ =
‖b2‖ = ‖b1 − b2‖ = 2.

Clearly, Problem 1 and the corresponding covering problem may be formulated also
for higher dimensions. In 4.2 we state a related weak stability result concerning
packing by geodesic circles on Riemannian 2-manifolds.

2.2 Thinnest lattice covering by circles

It is surprising that the covering result which corresponds to the packing result of
Theorem 2 was not given until 1939 by Kershner [48] but then in a more general
form, see 4.1. Here we state only the lattice case.

Theorem 3. Any lattice covering by the unit circle in E2 has density at least
2π/3

√
3 = 1.2091996 . . .. Equality is attained pecisely if the covering lattice is

regular hexagonal and has a basis {b1, b2}, where ‖b1‖ = ‖b2‖ = ‖b1 − b2‖ =
√

3.

The arithmetic version of this result is as follows.

Theorem 4. Let q(x, y) be a positive definite binary quadratic form. Then

sup
ξ,η∈R

inf
u,v∈Z

{q(ξ − u, η − v)} ≥
( 2D

3
√

3

)1/2

.

The equality sign is needed precisely if there is an integer unimodular linear trans-
formation of the variables which transforms q into a multiple of x2 + xy + y2.

The reason for the late appearence of the covering result seems to have been the
fact that in classical Diophantine approximation and geometry of numbers the
arithmetical version of the covering result has not attracted much interest. More
generally, the ‘inhomogeneous or covering problems’ have attracted less interest
than the ‘homogeneous or packing problems’. In modern geometry of numbers
and, in particular, in computational geometry of numbers this is not true any
more.

Theorem 3 has been extended up to dimension 5 and for higher dimensions
there exist estimates, see Gruber and Lekkerkerker [36] and Conway and Sloane
[5].
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2.3 Lattice quantizers

Let L be a lattice in E2. Its Dirichlet-Voronoi cell D(L, o) is the set of all points
in E2 which are at least as close to the origin o as to any other point of L:

D(L, o) = {x ∈ E2 : ‖x‖ ≤ ‖x− l‖ for all l ∈ L}.

Now consider data where each datum is a point in E2 and assume uniform dis-
tribution of data. It is impossible to store each datum, but given a datum one
may store (one of) the point(s) in L nearest to it and use the latter instead. This
approximation process is called quantization of data with respect to the lattice L.
It turns out that a good definition of the error of the approximation process is

E(L, ‖ · ‖2) =
∫

D(L,o)

‖x‖2dx.

See Conway and Sloane [5] and Section 6 below for more information.
An immediate consequence of the moment lemma of Fejes Tóth (see [22,

41]) and the fact that Dirichlet-Voronoi cells of planar lattices are o-symmetric
hexagons or parallelograms is the following result which yields the best lattice
quantizer in dimension 2:

Theorem 5. Among all lattices in E2 of the same determinant precisely the
regular hexagonal lattices have minimum error of quantization.

The problem to determine the best lattice quantizer was solved by Barnes and
Sloane [2] in dimension three, but for higher dimensions only conjectures and
estimates are available.

3 The Epstein zeta-function

We describe results on minima of the Epstein zeta-function and their connection
with the optimal choice of nodes for numerical integration of functions in a Sobolev
space.

3.1 Minima of the Epstein zeta-function

Given a lattice L in E2, the corresponding Epstein zeta function ζ(L, ·) is defined
by

ζ(L, s) =
∑

l∈L, 6=o

1
‖l‖2s

for s > 1.

This zeta-function was first introduced by Epstein [10] in 1903. It is important
for the determination of the potential of crystal lattices and for the lattice energy.
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Moreover, it has applications in the dynamics of viscuous fluids. Sobolev [65] redis-
covered it in 1961 in the context of numerical integration of functions in a Sobolev
space. In the geometry of numbers the Epstein zeta-function was investigated
in Great Britain in the 1950s and the 1960s and in Russia since the late 1960s.
The motive for the investigations in Great Britain was purely number-theoretic,
whereas the Russian school of geometry of numbers started its investigations with
a problem of Sobolev about the optimal choice of nodes for numerical integration
of functions in a Sobolev space. See Naas and Schmidt [55] for general informa-
tion on the zeta function and Gruber and Lekkerkerker [36] for information in our
context.

A major problem in this area is to determine for each s > 1 among all lattices L
of determinant 1 those for which ζ(L, s) is the absolute or a relative minimum. The
following results were achieved by Rankin [59], Cassels [4], Ennola [8], Diananda [6]
and Montgomery [52] (absolute minimum) and by Ryskov [60] (relative minima).

Theorem 6. The following claims hold:
(i) Let s > 1. Then ζ(·, s) attains its absolute minimum m among all lattices of

determinant 1 in E2 precisely for the regular hexagonal lattices.
(ii)Let s ≥ 3. Then the only relative minimum of ζ(·, s) among all lattices of

determinant 1 in E2 is the absolute minimum.

All proofs rely on heavy computations. So far this seems to prevent to find a
related stability result.

Problem 2. Let s > 1. Specify a (‘simple’ and ‘small’) function f(ε) for ε > 0
with the following property: let L be a lattice of determinant 1 in E2 such that
ζ(L, s) < m + ε, where m is the absolute minimum. Then L has a basis {c1, c2}
such that ‖b1 − c1‖, ‖b2 − c2‖ ≤ f(ε), where b1, b2 are suitable vectors such that
‖b1‖ = ‖b2‖ = ‖b1 − b2‖ = (2/

√
3)1/2.

A solution of this problem might be helpful for the approximate description of the
equilibrium distribution of n unit charges on a sphere or a more general manifold
for large n; a precise description seems to be out of reach. See Section 7.

One of the few higher-dimensional results about minima of the zeta-function
says the following: any lattice (of determinant 1) which yields a densest packing
of balls in E3 is a relative minimum for the zeta-function for each s > 3/2. This
was proved by Ennola [9] and for s > 2 by Sandakova [62].
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3.2 Optimal choice of nodes in numerical integration for-
mulae

In order to show the importance of the above minimum problem for the zeta-
function we state the following special case of a result of Sobolev [65].

First, a definition is needed: Let J be a Jordan measurable set in E2 and
consider a class F of Riemann integrable functions g : J → IR . Given sets of
nodes Nn = {p1, · · · , pn} in J and weights Wn = {w1, · · · , wn} in IR , let the error
be defined by

E(F , Nn,Wn) = sup
g∈F

{|
∫
J

g(x) dx−
n∑

k=1

wkg(pk)|}.

Then the following result holds.

Theorem 7. Let L = BZ2 be a lattice of determinant 1 in E2 where B is a (2, 2)
matrix. Let F be a fundamental parallelogram of L and let F be the family of all
L-periodic functions g : E2 → IR of class Cs for which the Sobolev norm∫

F

(
∑
|α|=s

(Dαg)2)1/2 dx

is at most 1. For n = 1, · · · , consider the sets Nn2 = ((1/n)L) ∩ F and Wn2 =
{1/n2, · · · , 1/n2} of n2 nodes, resp. weights. Then

E(F , Nn2 ,Wn2) ≤ 1
(2nπ)s

ζ(B−T Z2, s)1/2.

The bound for the error is minimum if the lattice B−T Z2 is regular hexagonal.

4 General packing and covering with circles in the
plane and on Riemannian 2-manifolds; applica-
tions

In this section we consider density estimates for general packings and coverings
of circles in E2 from discrete geometry and their extensions to Riemannian 2-
manifolds. In addition, corresponding stability results are presented. The density
estimate and the corresponding stability result for coverings on Riemannian 2-
manifolds yield results on the asymptotic approximation of smooth convex bodies
in E3 by convex polytopes with respect to the Hausdorff metric.
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4.1 Circle packing and covering in the plane

Given a bounded set J in E2 or on a Riemannian 2-manifold, a system of (solid)
circles of equal radii is called a circle packing of J if the circles are contained in
J and have disjoint interiors. It is called a circle covering if J is contained in the
union of the circles. The sum of the areas of the circles divided by the area of J
- provided the latter exists - is the density of the packing, resp. covering. If J is
an unbounded set in E2, these notions generalize in a natural way, but they may
not be extended to unbounded sets on all manifolds. An example where such an
extension is impossible is the hyperbolic plane.

An early result of Thue [69], proved by L.Fejes Tóth [17] and Segre and Mahler
[64] in a more rigorous form, says that any circle packing of E2 has density at
most π/2

√
3. Kershner [48] proved that any circle covering of E2 has density at

least 2π/3
√

3. These estimates are precise and equality is attained for the regular
hexagonal lattice packings and coverings. Note that there are uncountably many
other, essentially different circle packings and coverings for which equality also
holds. Thue’s result was extended to dimension 3 by Hales [42] who showed that
the density of any packing of balls in E3 is less or equal to the density of the
densest lattice packing of balls. In higher dimensions only estimates are known.
See Conway and Sloane [5] and Zong [75].

The results of Thue and Kershner are consequences of the following estimate
of L.Fejes Tóth [18, 22].

Theorem 8. Let C be a compact convex set in E2. Then the following statements
hold:

(i) Any circle packing of C consisting of two or more circles of equal radii has
density less than π/2

√
3.

(ii) Any circle covering of C consisting of two or more circles of equal radii has
density greater than 2π/3

√
3.

It is not difficult to show the following asymptotic formulae.

Theorem 9. Let J be a compact set in E2 bounded by a simply closed rectifiable
curve. Then the following claims hold:

(i) For n = 1, 2, · · · , let δ(n) be the maximum density of a packing of J by n
circles of equal radii. Then

δ(n) =
π

2
√

3
+ O

( 1
n1/2

)
as n →∞.

(ii) For n = 1, 2, · · · , let ϑ(n) be the minimum density of a covering of J by n
circles of equal radii. Then

ϑ(n) =
2π

3
√

3
+ O

( 1
n1/2

)
as n →∞.
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For the next result we need a definition: let S be a finite point set in E2 and
let δ > 0. A point p ∈ S is the center of a regular hexagon in S up to δ if there
are σ > 0, the edge length of the hexagon, and points p1, · · · , p6 ∈ S, such that

S ∩ {x : ‖x− p‖ ≤ 1.1 σ} = {p, p1, · · · , p6},

‖p− pi‖, ‖pi+1 − pi‖ = (1± δ)σ.

The choice of the number 1.1 is somewhat arbitrary and (1±δ)σ means a quantity
between (1− δ)σ and (1 + δ)σ.

The author’s [32] stability counterpart of Theorem 8(ii) is as follows.

Theorem 10. Let H be a convex 3,4,5, or 6-gon and ε > 0 sufficiently small.
Then for all coverings of H by, say, m congruent circles of sufficiently small radius
and density less than (2π/3

√
3)(1 + ε) the following hold: in the set of centers of

these circles, each center, with a set of less than 50ε1/3m exceptions, is the center
of a regular hexagon up to 500ε1/3. All these hexagons have the same edge length
(in the above sense).

In other words: if the radius of the circles of the covering is sufficiently small and
the density very close to 2π/3

√
3, then the covering is ‘almost regular hexagonal’.

A corresponding result for the packing case can be proved in a similar way.
In view of applications two generalizations of Theorems 8 and 10 suggest them-

selves, to higher dimensions and to Riemannian manifolds. Except for the result of
Hales, extensions to higher dimensions are out of reach. Extensions to Riemannian
2-manifolds are possible and will be described in subsection 4.3.

4.2 Circle packing and covering on the 2-sphere

Ever since the biologist Tammes [66] investigated the orifices on spherical pollen
grains, problems of densest packing and thinnest covering of S2 by n circles of
equal radii have attracted interest. We refer to the surveys of G.Fejes Tóth and
Kuperberg [16], G.Fejes Tóth [14] and L. Fejes Tóth [23] and state only the fol-
lowing estimate of Habicht and van der Waerden [37]; see also van der Waerden
[70].

Theorem 11. For n = 1, 2, · · · , let δ(n) be the maximum density of a packing of
S2 by n circles of equal radii. Then

π

2
√

3
− const

n1/6
≤ δ(n) ≤ π

2
√

3
.

In the next subsection we will see that packings of S2 with n circles of equal
radii of maximum density necessarily are asymptotically regular hexagonal.
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4.3 Circle packing and covering in Riemannian 2-manifolds

Let M be a Riemannian 2-manifold. By this we mean that M is a 2-manifold of
differentiability class C1 with a metric tensorfield having continuous coefficients.
Then, in particular, for any p ∈ M there are a neighborhood U of p in M and a
homeomorphism h : U → U ′, where U ′ is an open set in E2, and for each u ∈ U ′

there is a positive definite binary quadratic form qu on E2, the coefficients of which
depend continuously on u. A curve K in U is of class C1 if it has a parametrization
x : [a, b] → U such that u = h ◦ x is a parametrization of class C1 of a curve in U ′.
The length of K then is defined as

b∫
a

q
1/2
u(s)(u̇(s)) ds.

By dissecting suitably and adding, the notion of length can be defined for curves in
M not contained in a single neighborhood. For x, y ∈ M let their (Riemannian)
distance %M (x, y) be the infimum of the lengths of the curves of class C1 in M
connecting x and y. The (solid Riemannian) circle in M with center p ∈ M and
radius % > 0 is the set {x ∈ M : %M (p, x) ≤ %}. A set J in U is Jordan measurable
if h(J) is Jordan measurable as a subset of E2. Then its (Riemannian) area
measure ωM (J) is defined as ∫

h(J)

(det qu)1/2 du.

Again, by dissecting suitably and adding, the notions of Jordan measurability and
area measure can be defined for sets in M which are not contained in a single
neighborhood.

Theorems 8 and 9 have the following extension, see Gruber [29] for the covering
result and its history; the packing result may be shown in a similar way.

Theorem 12. Let J be a Jordan measurable set in M with ωM (J) > 0. Then the
following hold:

(i) Let δ(n) denote the supremum of the densities of the packings of J by n
circles of equal radii. Then

lim
n→∞

δ(n) =
π

2
√

3
.

(ii) Let ϑ(n) denote the infimum of the densities of the coverings of J by n circles
of equal radii. Then

lim
n→∞

ϑ(n) =
2π

3
√

3
.
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In the planar case we were able to give information about the rate of convergence
of the densities of the densest packing by n circles and the thinnest covering by
n circles as n → ∞, see Theorem 9. It is not known whether there are similar
refinements available for general Riemannian 2-manifolds, but Habicht and van
der Waerden [37] were able to show a refinement in the case of the 2-sphere, see
Theorem 11 above.

Before stating a weak stability result corresponding to Theorem 12, some defi-
nitions are in place. Let M, J, %M and ωM be as above and let (Sn) be a sequence
of finite sets in M such that #Sn = n, where #Sn is the number of elements of
Sn. We say that Sn is uniformly distributed in J (with respect to ωM ) as n →∞,
if for any Jordan measurable set K in J with ωM (K) > 0 we have that

#(Sn ∩K)
#Sn

→ ωM (K)
ωM (J)

as n →∞.

We say that Sn is asymptotically a regular hexagonal pattern of edge length σn in
M (with respect to %M ) as n →∞ if there are a positive sequence (σn) and Landau
symbols o(n) and o(1) such that the following hold: for all p ∈ Sn, with a set of
at most o(n) exceptions, we have that

{x : %M (p, x) ≤ 1.1 σn} ∩ Sn = {p, p1, · · · , p6}, say,

where
%M (p, pi), %M (pi, pi+1) = (1± o(1))σn (as n →∞).

Almost regular hexagonal pattern on surfaces, in many cases with faults, appear
frequently in biology and microbiology. The following figure from Pum, Messner
and Sleytr [57] shows a freeze-etched preparation of the surface of the archaebac-
terium methanocorpusculum sinense.
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Early references exhibiting almost regular hexagonal pattern in biology are the
classical books of Häckel [38, 39]. Among the numerous more recent references we
mention Wehner and Gehring [74].

The stability counterpart of Theorem 12 can be formulated as follows.

Theorem 13. Let J be a Jordan measurable set in M with ωM (J) > 0. For each
n = 1, 2, · · ·, consider a packing, resp. covering of J by n circles of equal radii such
that the densities of these packings, resp. coverings tend to π/2

√
3 and 2π/3

√
3,

respectively. Then, as n →∞, the set of centers of the nth packing, resp. covering
is uniformly distributed in J and asymptotically a regular hexagonal pattern in J
of edge length (2ωM (J)√

3 n

)1/2

.

The proof of the covering result is due to Gruber [32]. The packing result can be
shown similarly.

Even for relatively simple Jordan measurable sets J and Riemannian 2-manifolds
M - one example is the sphere S2 - it is hopeless to find for sufficiently large n
densest circle packings, respectively thinnest circle coverings, see G.Fejes Tóth and
Kuperberg [16]. In contrast to this, it is possible to construct packings and cover-
ings with n circles in M such that the corresponding densities tend to π/2

√
3 and

2π/3
√

3, respectively, as n →∞.

4.4 Approximation of convex bodies by polytopes with re-
spect to the Hausdorff metric

A convex body in Ed is a compact convex subset of Ed with non-empty interior. The
(Pompeiu-)Hausdorff metric δH on the space of all convex bodies in Ed is defined
as follows: given two convex bodies C,D, their Hausdorff distance δH(C,D) ist the
maximum distance which a point of one of the two bodies can have from the other
body. Given a convex body C, let Pi

n denote the family of all convex polytopes
which are inscribed into C and have n vertices. A convex polytope Pn ∈ Pi

n is
best approximating for C with respect to δH if

δH(C,Pn) = inf{δH(C,P ) : P ∈ Pi
n}.

Major problems in this area are to determine δH(C,Pn), at least asymptotically
as n →∞, and to describe the best approximating polytopes Pn. See Gruber [31]
for detailed information.

Assume now that the boundary bdC of a convex body C is a surface of class
C2 with positive Gauss curvature κC . Let bdC be endowed with the Riemannian
metric %II of the second fundamental form. Schneider [63] showed that the problem
of approximating C by inscribed convex polytopes with respect to the Hausdorff
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metric and the problem to cover bdC by circles of the same radius are closely
related. Using the tools developed in the previous subsection, this leads to the
following result.

Theorem 14. Let C be a convex body in E3 of class C2 with positive Gauss
curvature κC and let bd C be endowed with the Riemannian metric %II and area
measure ωII of the second fundamental form. For n = 4, 5, · · · , let Pn ∈ Pi

n be a
best approximating convex polytope for C. Then the following statements hold:

(i) δH(C,Pn) ∼ 1√
27n

ωII(bdC) as n →∞; ωII(bdC) =
∫

bd C

κ
1/2
C (x) dx.

(ii) The set of vertices of Pn is uniformly distributed in bd C and asymptotically
a regular hexagonal pattern in bdC of edge length(2ωII(bdC)√

3n

)1/2

.

Confirming a conjecture of L.Fejes Tóth [22], (i) was proved by Schneider [63] for
bd C of class C3 and by Gruber [29] in the present case. It extends to all dimensions.
The constants in these results are related to the minimum density of coverings of
Ed−1 by balls of equal radii. The statement about uniform distribution in (ii) was
obtained by Glasauer and Schneider [27]; it holds in all dimensions. The assertion
that the set of vertices is asymptotically a regular hexagonal pattern was proved
by Gruber [32]. This seems to be difficult to generalize to higher dimensions.

While it is hopeless to construct best approximating polytopes, it is possible
to find sequences of polytopes (Qn), where Qn ∈ Pi

n such that δH(C,Qn) ∼
ωII(bdC)/

√
27n as n →∞.

Similar results hold for circumscribed and general best approximating poly-
topes and also in the case where instead of vertices facets are considered. Results
of this form are valid also for the Banach-Mazur distance and for Schneider’s notion
of distance, see [29].

5 Nets in the plane, on the 2-sphere and on Rie-
mannian 2-manifolds

This section contains results from discrete geometry on nets in E2, in particular
the recently proved honeycomb conjecture, further some remarks on nets on the
2-sphere S2 and, finally, a conjecture dealing with an extension of the honeycomb
conjecture to Riemannian 2-manifolds and a corresponding stability result.
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5.1 Nets in the Euclidean plane

Let J be a Jordan domain in E2. By this we mean a simply closed compact
set bounded by a closed Jordan curve. Consider a dissection of J into finitely
many Jordan domains. The union of the boundaries of the Jordan domains of the
dissection is a net in J , the domains are its facets and the sum of their perimeters
is the length of the net. If J is a convex polygon and all facets of a net in J are
convex, then the facets all are convex polygons.

Theorem 15. Let H be a convex 3, 4, 5, or 6-gon in E2 and let a net in H with
convex facets, each of area |H|/n, be given. Then the length of the net is at least
121/4(|H|n)1/2.

This result is a special case of an estimate of L. Fejes Tóth [22], p. 84. For a related
result see G. Fejes Tóth [13]. For corresponding results dealing with more general
sets H and nets with non-convex facets we refer to Hales [43], Theorem 2. See
also Theorem 16 below.

Theorem 15 or, more precisely, its proof implies that among the nets in H with
convex facets ‘almost regular hexagonal nets’ are close to optimal. This naturally
leads to the converse question whether optimal nets with convex facets are ‘almost
regular hexagonal’. It is not too difficult to give a pertinent stability result. We
refrain from doing so but in 5.3 a more general conjecture concerning weak stability
of nets on Riemannian 2-manifolds will be presented.

The notion of net in a Jordan domain easily extends to (unbounded, locally
finite) nets in the plane. By a regular hexagonal net or a honeycomb in the plane
we then mean a net which is defined by a lattice tiling of E2 by regular hexagons.
The following result due to Hales [43] confirms the so-called honeycomb conjecture;
for earlier work on this conjecture and for references see Morgan [54] and Phelan
[56] and, in the 3-dimensional case, Wearie [73].

Theorem 16. Let N be a net in E2, all facets of which have unit area and let C
be the solid unit circle in E2. Then

lim sup
r→+∞

length(N ∩ rC)∑
{area(F ∩ rC) : F facet of N}

≥ 2
√

3,

where equality holds if N is a honeycomb.

A major problem of the proof of Theorem 16 is the lacking convexity of the facets.
While for d = 2 there are optimal nets all facets of which are convex, this does not
seem to hold in case d = 3.

5.2 Nets on the 2-sphere

It is clear how to define nets on the 2-sphere S2, but it is difficult to find nets with
n convex or, possibly, non-convex facets of given areas on S2 of minimum length.
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It follows from the theory of existence and structure of singularities (see Morgan
[53] and Taylor [67]) that the nets of minimum length on S2 with facets of given
areas which may or may not be convex have the property that they consist of
finitely many arcs of great circles which meet at trivalent equiangular vertices.
Nets having this property but which are not necessarily of minimum length are
called Plateau nets.

L.Fejes Tóth [21] has shown the following: if among the nets on S2 with convex
facets of the same area a net has minimum length and all its vertices are trivalent,
then the net is regular, i.e. its facets are congruent regular spherical polygons.
Thus, this can possibly happen only for n = 2, 3, 4, 6, 12.

Heppes [44, 45] has verified that there are 10 Plateau nets with convex facets
on S2 and that the five Plateau nets which are not regular are not solutions of the
minimum length problem with convex facets. Whether the remaining five Plateau
nets are solutions of the minimum length problem where the facets have equal
areas and are convex or, more generally, not necessarily convex, remains open.

5.3 Nets on Riemannian 2-manifolds

Let M be a Riemannian 2-manifold with Riemannian metric %M and area measure
ωM as defined in 4.3. A (geodesic) segment in M is a curve of class C1 in M which
connects two points in M and has minimum length among all such curves. A
continuous curve in M consisting of finitely many segments is called a (geodesic)
polygon. A set in M is (geodesically) convex if with any two of its points it contains
a segment connecting the points. A convex hexagon in M is called regular, if its
vertices have the same distance from a suitable point of the hexagon and any two
consecutive vertices have the same distance. As for E2 and S2, we can define nets
in M or in a subset of it. Let J be a Jordan measurable set in M , (Nn) a sequence
of nets in J , where Nn has n facets, and (σn) a positive sequence. We say that Nn

is asymptotically regular hexagonal of edge length σn if there are Landau symbols
o(n) and o(1) such that up to o(n) facets, each facet of Nn contains a regular
convex geodesic hexagon of edge length ≥ σn(1− o(1)) and is contained in such a
hexagon of edge length ≤ σn(1 + o(1)).

Conjecture on the size and the stability of nets. Let J be a simply connected
compact set in M bounded by a closed Jordan curve of finite length. Then the
following statements hold:

(i) Consider for each n = 1, 2, · · · , a net in J with n facets, each a compact set
of area ωM (J)/n bounded by a closed Jordan curve, such that the net has
minimum length among all such nets. Then the lengths of these nets are
asymptotically equal to 121/4(ωM (J)n)1/2.

(ii) Consider for n = 1, 2, · · · , a net in J with n facets, each a compact set of
area ωM (J)(1±o(1))/n bounded by a closed Jordan curve, and such that the
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lengths of these nets are asymptotically equal to 121/4(ωM (J)n)1/2. Then
Nn is asymptotically regular hexagonal of edge length(2ωM (J)

3
√

3n

)1/2

.

Part (i) of this conjecture may be considered as an extension of Theorems 15 and
16 to Riemannian 2-manifolds. For the proof of part (ii) a stability counterpart of
Theorem 16 is needed first.

6 The theorem on sums of moments and its sta-
bility counterpart

In this section we consider Fejes Tóth’s theorem on sums of moments from discrete
geometry, extend it to Riemannian 2-manifolds and state a corresponding stability
result. The extension and its stability counterpart are then applied to asymptotic
approximation of smooth convex bodies in E3 with respect to the symmetric differ-
ence metric, the isoperimetric problem for convex polytopes in E3, and the optimal
choice of nodes in numerical integration formulae for functions on a Riemannian
2-manifold.

6.1 Sums of moments in the Euclidean plane

Besides the Euler polytope formula and Koebe’s representation theorem for planar
graphs by circles the following theorem of L.Fejes Tóth [19, 22] on sums of moments
is one of the few general results in planar discrete geometry.

Theorem 17. Let f : [0,+∞) → [0,+∞) be non-decreasing and let H be a convex
3, 4, 5, or 6-gon in E2. Then

(1) inf
S⊂E2
#S=n

∫
H

min
p∈S

{f(‖x− p‖)} dx ≥ n

∫
Hn

f(‖x‖) dx,

where Hn is a regular hexagon in E2 of area |H|/n and center at o.

L.Fejes Tóth [19] first proved this result for S2 and only then for E2, see [22].
For alternative proofs, in some cases for surfaces of constant width and special
non-decreasing f , see L. Fejes Tóth [20], Imre [46], G.Fejes Tóth [12], Florian [24],
Haimovich and Magnanti [40], Böröczky and Ludwig [3] and Gruber [33].

The estimate (1) says that in certain situations regular hexagonal configura-
tions of points are close to optimal. We warn the reader that stronger assertions
do not hold: for suitable f the two sides of the inequality (1) differ by arbitrarily
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large factors if n is sufficiently large. Further, again for suitable f , optimal sets S
may be rather different from any regular hexagonal pattern.

Fejes Tóth’s inequality has a large number of applications including problems
of packing and covering of circles, of optimal location, of errors of quantization
of data, and of Gauss channels, all in E2, of the isoperimetric problem for 3-
dimensional polytopes of given combinatorial type such as tetrahedra, hexahedra
and dodecahedra, of the optimal choice of nodes for numerical integration for-
mulae, game theory and of asymptotically best approximation of convex bodies
by polytopes with respect to the symmetric difference metric. See [34, 35] for
references.

6.2 Sums of moments on Riemannian 2-manifolds and its
stability counterpart

In view of applications, two extensions of Theorem 17 come to mind: to higher
dimensions and to Riemannian 2-manifolds. At present the former seems to be
out of reach. What can be expected for Riemannian 2-manifolds? In general no
inequality of the form (1) holds. Thus the best one can hope for is an estimate
for the difference of the two sides. For general f the two sides of (1) may differ
by arbitrarily large factors. In order to get useful results we thus have to restrict
to suitable classes of functions f . Such classes should contain sufficiently general
functions and exclude pathological ones. We consider the class of functions f :
[0,+∞) → [0,+∞) which satisfy the following growth condition:

f(0) = 0, f is continuous and strictly monotone and for any α > 1 there
are β > γ > 1 (and vice versa) such that γf(t) ≤ f(αt) ≤ βf(t) for all
sufficiently small t ≥ 0. Here β, γ may be chosen arbitrarily close to 1 if
α is sufficiently close to 1 (and vice versa).

All positive powers of t, all strictly monotone analytic functions f with f(0) = 0,
their inverses and many other functions satisfy this condition. In [34] we considered
the class of functions f of the form f(t) = tα, where 0 < α ≤ 2. For most
applications this is sufficient.

Let M be a Riemannian 2-manifold with Riemannian metric %M and area
measure ωM .

The following result of the author [35] extends the sum theorem to M .

Theorem 18. Let f : [0,+∞) → [0,+∞) satisfy the growth condition and let J
be a Jordan measurable set in M with ωM (J) > 0. Then

inf
S⊂M
#S=n

∫
J

min
p∈S

{f(%M (p, x))} dωM (x) ∼ n

∫
Hn

f(‖x‖) dx as n →∞,
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where Hn is a regular hexagon in E2 of area ωM (J)/n and center at o. This
asymptotic formula continues to hold under the assumption that S is contained in
J .

The proof of this result makes essential use of the growth condition and of the fact
that M is locally Euclidean.

It follows from the proof of Theorem 18 that it is possible to specify explicitly
sequences (Sn) of sets in M or even in J with #Sn = n for which the asymptotic
relation of Theorem 18 holds.

Theorem 18, as well as the original theorem on sums of moments of L.Fejes
Tóth, says that for a series of geometric and analytic problems regular or almost
regular hexagonal configurations are, at least, close to optimal. Examples will be
presented later. More difficult is the question whether optimal or almost optimal
configurations are almost regular hexagonal. As expected, in many situations the
answer is yes. This is a consequence of the following weak stability counterpart of
Theorem 18 due to Gruber [35]:

Theorem 19. Let f : [0,+∞) → [0,+∞) satisfy the growth condition, let J be a
Jordan measurable set in M with ωM (J) > 0 and let (Sn) be a sequence of finite
sets in M with #Sn = n and such that∫

J

min
p∈Sn

{f(%M (p, x))} dωM (x) ∼ inf
S⊂M
#S=n

∫
J

min
p∈S

{f(%M (p, x))} dωM (x) as n →∞.

Then Sn is uniformly distributed in J and asymptotically a regular hexagonal pat-
tern of edge length (2ωM (J)√

3n

)1/2

.

The proof of this result is complicated. Roughly speaking, it consists of two parts:
in the Euclidean case, in essence, it follows the proof of the sum theorem in Gruber
[33], carefully estimating what is lost at the various steps. The extension to the
Riemannian case requires more care than is common in such extensions in order
not to loose the stability property. In a preliminary draft of the proof use was
made of Vitali’s covering theorem for manifolds to overcome this difficulty which
then could be replaced by a more elementary argument.

G.Fejes Tóth [15] has announced an alternative, more geometric proof of a
result similar to Theorem 19 in the Euclidean case.

6.3 Approximation of convex bodies by polytopes with re-
spect to the symmetric difference metric
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The ordinary surface area measure on bdC is denoted by ω. Define the symmetric
difference metric δV by δV (C,D) = V (C4D) for any two convex bodies C,D.
If the boundary of a convex body C of class C2 with Gauss curvature κC > 0
is endowed with a Riemannian metric, for example with the Riemannian metric
of the fundamental form of equi-affine differential geometry (compare [49]), this
metric induces in any tangent plane of bdC an associated Euclidean metric.

The theorem on sums of moments and the approximation of a convex body in
E3 by circumscribed convex polytopes with respect to δV are closely connected
as noted by Gruber [28]. Thus an application of the last two theorems yields the
following result, see Gruber [28, 35].

Theorem 20. Let C be a convex body in E3 of class C2 with κC > 0 and let
bd C be endowed with the Riemannian metric %EA and area measure ωEA of the
fundamental form of equi-affine differential geometry. For n = 4, 5, · · ·, let Pn

denote a convex polytope with n facets circumscribed to C and best approximating
with respect to δV . Then the following statements hold:

(i) δV (C,Pn) ∼ 5ω2
EA(bdC)
36
√

3n
asn →∞; ωEA(bdC) =

∫
bd C

κ
1/4
C (x) dω(x).

(ii) As n → ∞, the sets C ∩ bd Pn are uniformly distributed in bd C and the
facets F of Pn are asymptotically regular hexagons with center C ∩ F and
edge length (2ωEA(bdC)

3
√

3n

)1/2

.

Except for very special cases, it would be a waste of time to look for best ap-
proximating polytopes, but it is possible to construct for each n = 4, 5, · · · ,
a convex polytope Qn with n facets circumscribed to C and such that holds
δV (C,Qn) ∼ 5ω2

EA(bdC)/36
√

3n as n →∞.
A result analogous to Theorem 20(i) but for the mean width instead of δV is

due to Glasauer and Gruber [26]. There are corresponding results dealing with
inscribed or general polytopes, see Gruber [30] and Ludwig [51]. All these re-
sults extend to dimensions d ≥ 3. Similarly, Theorem 20(ii) has a companion
for inscribed polytopes with n vertices with respect to the mean width distance.
K. Böröczky, Jr., informs us about a result analogous to Theorem 20(ii) but for
general polytopes instead of circumscribed ones. If instead of vertices facets are
considered, similar results hold.

6.4 The isoperimetric problem for convex polytopes in a
Minkowski space

Let Ed be endowed with a further norm. In this new normed space the volume
V (·) is the ordinary volume, but there are different natural notions of surface area,
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for example those proposed by Busemann and by Holmes-Thompson; Busemann’s
notion coincides with the (d−1)−dimensional Hausdorff measure defined by means
of the new norm. These notions amount to the introduction of an o−symmetric
convex body I, the isoperimetrix, such that the surface area SI(C) of a convex
body C is defined by

SI(C) = lim
δ→+0

V (C + δI)− V (C)
δ

, where C + δI = {x + δy : x ∈ C, y ∈ I}.

If I is the solid Euclidean unit ball, we get the ordinary surface area. For more
information see Thompson [68].

A result of Diskant [7] says that a polytope with minimum isoperimetric quo-
tient (using SI) amongst all convex polytopes with n facets after a suitable homo-
thety is circumscribed to the isoperimetrix I. Combining this with Theorem 20
yields the next result, see [35].

Theorem 21. Let I be an isoperimetrix in E3 of class C2 with positive Gauss
curvature. Assume that bd I is endowed with the Riemannian metric %EA and
area measure ωEA of the fundamental form of equi-affine differential geometry.
For n = 4, 5, · · · , let Pn be a convex polytope in E3 with n facets and minimum
isoperimetric quotient SI(Pn)3/V (Pn)2. Then the following results hold:

(i)
SI(Pn)3

V (Pn)2
∼ 27V (I) +

15ω2
EA(bd I)
4
√

3n
as n →∞.

(ii) By replacing Pn by a suitable homothetic copy, if necessary, we may assume
that Pn is circumscribed to I for all n. Then, if n → ∞, the set I ∩ bdPn

is uniformly distributed in bd I and the facets F of Pn are asymptotically
regular hexagons with center I ∩ F and edge length(2ωEA(bd I)

3
√

3n

)1/2

.

(i) and the statement in (ii) about the uniform distribution of I ∩ Pn in bd I hold
in all dimensions. This can be proved using results of Gruber [30] and Gruber and
Glasauer [26]. Diskant’s isoperimetric result cited above generalizes a classical
theorem of Lindelöf [50] for the Euclidean case.

6.5 Optimal numerical integration formulae on Riemannian
2-manifolds

In this subsection we assume that M is a 2-dimensional manifold of class C3 with
metric tensorfield of class C2. Let %M and ωM denote the Riemannian metric and
area measure on M , respectively. Let J be a Jordan measurable set in M with
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ωM (J) > 0 and consider a class F of Riemann integrable functions g : J → IR .
Given sets of nodes Nn = {p1, · · · , pn} in J and weights Wn = {w1, · · · , wn} in IR ,
let the error and the minimum error be defined by

E(F , Nn,Wn) = sup
g∈F

{|
∫
J

g(x) dωM (x)−
n∑

k=1

wkg(pk)|},

E(F , n) = inf
Nn,Wn

{E(F , Nn,Wn)}.

The problems arise to determine E(F , n) and to describe the optimal choices of
nodes and weights. For general F (and also for M of dimension greater than
2) precise answers are out of reach, but we are able to give information in the
following case. We say that f : [0,+∞) → [0,+∞) is a modulus of continuity if it
satisfies the inequality

f(s + t) ≤ f(s) + f(t) for all s, t ≥ 0.

Given such a function f , define the Hölder class Hf with modulus of continuity f
by

Hf = {g : J → IR : |g(x)− g(y)| ≤ f(%M (x, y)) for all x, y ∈ J}.
Now our result can be formulated as follows.

Theorem 22. Let J be a Jordan measurable set in M with ωM (J) > 0, let f :
[0,+∞) → [0,+∞) be a modulus of continuity which satisfies the growth condition
(see 6.2 above), and let Hf be the corresponding Hölder class. Then hold the
following claims:

(i) E(Hf , n) = inf
Nn,Wn

{E(Hf , Nn,Wn)} ∼ n

∫
Hn

f(‖x‖) dx as n →∞.

(ii) Let (Nn) and (Wn) be sequences of nodes and weights such that

E(Hf , Nn,Wn) ∼ E(Hf , n) as n →∞.

Then Nn is uniformly distributed in J and asymptotically a regular hexagonal
pattern in M of edge length (2ωM (J)√

3n

)1/2

.

This result is contained in [35]. For M = E2, S2 the asymptotic formula (i), in
essence, is due to Babenko [1].

It is possible to construct explicitly sequences (Nn) and (Wn) of nodes and
weights such that E(Hf , Nn,Wn) ∼ E(Hf , n) as n →∞.

The statement about the uniform distribution in (ii) holds for all dimensions.
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7 Distribution of electric charges

This section deals with equilibrium distributions of electric charges which move
without friction on S2 and, more generally, on bounded sets in Riemannian 2-
manifolds.

7.1 Electric charges on the 2-sphere

A problem which has been investigated ever since Thompson published his plum
pudding model of the atom and to which botanists, chemists, physicists, computer
scientists and many mathematicians contributed is the following: let n unit charges
move without friction on the unit sphere S2. What is their minimum potential
energy and what are their equilibrium configurations, i.e. the configurations with
minimum potential energy? For Coulomb forces the potential energy of n unit
charges at the points p1, · · · , pn ∈ S2 is (up to a constant) given by∑

i<j

1
‖pi − pj‖

.

Besides Coulomb force also forces which are determined by other powers of the Eu-
clidean distance have been investigated. For surveys we refer to Saff and Kuijlaars
[61] and Erber and Hockney [11].

Using tools from potential theory, Wagner [71, 72] and Rakhmanov, Saff and
Zhou [58] have shown that the minimum potential energy of n unit charges on S2

equals
n2

2
− rn, where constn3/2 ≤ rn ≤ const n3/2,

with suitable constants. Presumably the remainder term rn is asymptotically of
the form const n3/2.

It has been conjectured (see Saff and Kuijlaars) that for n →∞ the equilibrium
configurations are - using our notation - asymptotically regular hexagonal pattern
on S2 with respect to the ordinary metric on S2. Computer experiments support
this conjecture, but it seems to bedifficult to confirm it. One reason for this is
the following: the above expression for the potential energy of the equilibrium
configuration is based on an averaging argument. Hence there are configurations
which differ substantially from regular hexagonal pattern, but have essentially the
same potential energy. Thus the first step in the proof of the conjecture is to refine
the above estimate for the potential energy. A second step then would be to prove
a corresponding weak stability result.

7.2 Electric charges on Riemannian 2-manifolds

We formulate just the following conjecture, where M is a Riemannian 2-manifold
with Riemannian matric %M and area measure ωM .
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Conjecture on equilibrium configurations. Let J be a Jordan domain on M
bounded by a piecewise smooth curve. Assume that electric charges move without
friction on J and its boundary and that unit charges at points x, y ∈ J repel
each other by a force of the form f(%M (x, y)), where f : (0,+∞) → (0,+∞) is,
say, continuous and strictly decreasing. For n = 1, 2, · · · , let Sn be an equilibrium
configuration of n unit charges on J . Then Sn is asymptotically a regular hexagonal
pattern of edge length (2ωM (J)√

3n

)1/2

.
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[16] Fejes Tóth, G., Kuperberg, W., Packing and covering with convex sets, in: P.M. Gruber,
J.M. Wills, eds., Handbook of convex geometry B, 799-860, North Holland, Amsterdam
1993
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[19] Fejes Tóth, L., The isepiphan problem for n-hedra, Amer. J.Math. 70 (1948) 174-180
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[21] Fejes Tóth, L., Regular figures, Pergamon Press, Oxford 1964
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