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Abstract. In this article we first extend Fejes Tth’s basic result on sums of mo-
ments from the plane to Riemannian 2-manifolds. The extension as well as the
original result show that for certain geometric or analytic problems regular hexag-
onal arrangements are optimal or almost optimal. Then a stability counterpart
of the moment theorem for Riemannian 2-manifolds is given. It shows that, con-
versely, for several problems the optimal configurations are approximately regular
hexagonal. Finally, the following applications are considered: (i) Description of
the form of best approximating convex polytopes circumscribed to smooth convex
bodies in IE 3 as the number of facets tends to infinity. (ii) Description of the con-
vex polytopes with minimum isoperimetric quotient in 3-dimensional Minkowski
spaces as the number of facets tends to infinity. (iii) Description of the arrange-
ment of nodes in optimal numerical integration formulae for Hölder classes of
functions of two variables as the number of nodes tends to infinity.
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1 Introduction

1.1 Amongst a small group of general results in discrete geometry is the following
theorem of Laszl Fejes Tóth on sums of moments : let f : [0,+∞) → [0,+∞) be
non-decreasing and let H be a convex 3, 4, 5, or 6-gon in the Euclidean plane IE 2.
Then, for any finite set S in IE 2,

(1.1)
∫
H

min
p∈S

{f(‖p− x‖)} dx ≥ n
∫

Hn

f(‖x‖) dx,

where n = #S is the number of points of S and Hn is a regular hexagon in
IE 2 of area |H|/n and center at the origin o ; ‖ · ‖ and | · | denote the Euclidean
norm and the ordinary area measure in IE 2. The inequality (1.1), resp. a slightly
different version of it, was first proved by Laszl Fejes Tóth [8] for the 2-sphere
instead of IE 2, and only later for IE 2, see [9]. For alternative proofs, in some cases
for surfaces of constant curvature and also for special non-monotone functions,
see Laszl Fejes Tóth [10], Imre [24], Bollobas and Stern [2], Gabor Fejes Tóth
[7], Florian [12], Papadimitriou [27], Haimovich and Magnanti [21] and, more
recently, Böröczky and Ludwig [3] and the author [19].

Recent applications of the estimate (1.1) to asymptotic approximations of
convex bodies in IE 3 by polytopes are due to Gruber [14] and Böröczky and Lud-
wig [3]. Other applications deal, for example, with planar packing and covering



problems, problems of quantization of data, Gauss channels, optimal location in
economics, the isoperimetric problem for special classes of convex polytopes in
IE 3, the optimal choice of nodes in numerical integration formulae for functions of
two variables and game theory. For references see [20]. Presumably, Fejes Tth’s
theorem can be applied also in biology.

Surprisingly, the inequality (1.1) may be arbitrarily weak: for suitable f the
quotient of the left and right sides in (1.1) has no finite upper bound, even if S
is chosen so as to minimize the left hand integral.

1.2 In view of the applications, two extensions of (1.1) suggest themselves, namely
to higher dimensions and to Riemannian 2-manifolds. While the former at present
seems to be out of reach, it is possible to extend (1.1) to Riemannian 2-manifolds.
To enlarge the range of applications, we consider functions f and Riemannian 2-
manifoldsM with metric %M which satisfy rather mild conditions where, of course,
functions as in the last paragraph have to be excluded, see 2.1.

Let J be a Jordan measurable set in M and for n = 1, 2, . . . let Hn denote
a regular hexagon of IE 2 of area equal to the Riemannian area of J over n and
with center o. Then

inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x))} dωM(x) ∼ n
∫

Hn

f(‖x‖) dx as n→∞.

As is the case for (1.1), also this result implies that for a series of geometric
and analytic problems the regular hexagonal arrangements are close to optimal
or even optimal. The more difficult question asks whether, in such situations,
optimal and almost optimal configurations are almost regular hexagonal. As
expected, the answer is affirmative and is a consequence of the following weak
stability counterpart of the above result:

Let ∫
J

min
p∈Sn

{f(%M(p, x))} dωM(x) ∼ n
∫

Hn

f(‖x‖) dx asn→∞,

where (Sn) is a sequence of finite sets in M with #Sn ≤ n. Then Sn is
uniformly distributed in J and asymptotically a regular hexagonal pattern;

(for definitions see 3.1). In case f(t) = ta, where 0 < a ≤ 2, these results were
announced by the author [19] and Gabor Fejes Tth has informed us of the proof
of a similar stability result for the Euclidean plane.

1.3 We consider several applications of the above results:
(i) Approximation of convex bodies. A convex body in IE 3 is a compact convex
set in IE 3 with non-empty interior. Let δV (. , .) denote the symmetric difference
metric on the space of all convex bodies in IE 3. Given a convex body C, let
Pc

(n) be the set of all convex polytopes circumscribed to C and having at most n

facets. An intensively studied topic is the investigation the quantity δV (C,Pc
(n)) =

inf{δV (C,P ) : P ∈ Pc
(n)} and the description of the polytopes Pn ∈ Pc

(n) for which
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the infimum is attained, that is, the best approximating polytopes of C in Pc
(n); see

[16], [17]. Much is known about the asymptotics of δV (C,Pc
(n)) as n → ∞, but

a precise determination of δV (C,Pc
(n)) and description of Pn seems impossible at

present. In this article it will be shown that

for a sufficiently smooth convex body C in IE 3 the best approximating
polytopes of C in Pc

(n) have asymptotically regular hexagonal facets (with
respect to a suitable Riemannian metric) as n tends to infinity.

(ii) The isoperimetric problem in Minkowski space. Let IE d be endowed with a
further norm. In this new normed space the volume V (.) is the ordinary volume
in IE d, but there are different notions of surface area, e.g. those proposed by
Busemann and Holmes - Thompson. These notions amount to the introduction
of an o-symmetric convex body I, the isoperimetrix, such that the surface area
of a convex body C is defined by SI(C) = lim(V (C + δI)− V (C))/δ as δ → +0.
In the Euclidean case I is the Euclidean unit ball; see [31]. With the help of a
result of Diskant [5], [6] we will prove that

the convex polytopes in IE 3 with minimum isoperimetric quotient amongst
those with n facets have asymptotically regular hexagonal facets (with
respect to a suitable Riemannian metric) as n tends to infinity.

(iii) Numerical integration. Let M and J be as above and consider a class F
of Riemann integrable functions g : J → IR . For given sets of nodes Nn =
{p1, . . . , pn} in J and weights Wn = {w1, . . . , wn} in IR let the error and the
minimum error be defined as follows

E(F , Nn,Wn) = sup
g∈F

{|
∫
J

g(x)dωM(x)−
n∑

k=1

wk g(pk)|},

E(F , n) = inf
Nn,Wn

{E(F , Nn,Wn)}.

The problem arises to determine E(F , n) and to describe the optimal choices of
nodes and weights. For general F (and for M of dimension greater than 2) one
cannot expect much, but in the following case some information can be given:
consider for a modulus of continuity f : [0,∞) → [0,∞) (see 6.1) which satisfies
a weak growth condition (see 2.1), the Hölder class Hf of all functions g : J → IR
such that |g(x) − g(y)| ≤ f(%M(x, y)) for all x, y ∈ J . Using the above results
and differential geometric tools we will show that

E(Hf , n) ∼ n
∫

Hn

f(‖x‖)dx as n→∞

and, if (Nn) and (Wn) are sequences of nodes and weights, respectively,
such that E(Hf , Nn,Wn) ∼ E(Hf , n) as n → ∞, then Nn is uniformly
distributed in J and asymptotically a regular hexagonal pattern.

The asymptotic formula for M = IE 2 and S2 is, in essence, due to Babenko [1].
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2 Extension of Fejes Tth’s theorem to Rieman-

nian 2-manifolds

2.1 The result

A function f : [0,+∞) → [0,+∞) satisfies the growth condition if

f(0) = 0, f is continuous, strictly increasing and for each α > 1 there
are β > γ > 1 (and vice versa) such that γf(t) ≤ f(αt) ≤ βf(t) for all
sufficiently small t ≥ 0. Here β and γ may be chosen arbitrarily close to
1 if α is sufficiently close to 1 (and vice versa).

LetM be a Riemannian 2-manifold. By this we mean thatM is a 2-manifoldM of
differentiability class C1 with a metric tensor field having continuous coefficients.
Let %M and ωM denote the corresponding Riemannian metric and area measure.
A set J in M is Jordan measurable if it has compact closure cl J and its boundary
bd J has measure 0; see also 2.2.1.

Theorem 1.Let f : [0,+∞) → [0,+∞) satisfy the growth condition and let J be
a Jordan measurable set in M with ωM(J) > 0.Then

(2.1) inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x))}dωM(x) ∼ n
∫

Hn

f(‖x‖)dx as n→∞,

where Hn is a regular hexagon in IE 2 with area ωM(J)/n and center o. The
formula (2.1) continues to hold under the assumption that S is contained in J .

It follows from the proof that, in principle, it is possible to construct a sequence
of sets S = Sn which satisfy the asymptotic relation (2.1). In a more general
version of the formula (2.1) there is a continuous weight factor under the left
integral. In its proof the weight factor is used to define a new metric tensor field
on M . Then Theorem 1 can be applied.

The proof of Theorem 1 is split into two parts.

2.2 Preparations for the proof

2.2.1 For a better understanding we first describe the definitions of %M , ωM and
of Jordan measurability. Let U be an open neighborhood of a point in M with
corresponding homeomorphism h which maps U onto an open set U ′ in IE 2. For
each u ∈ U let qu( . ) be the corresponding positive definite quadratic form on
IE 2. A curve K in U is of class C1 if it has a parametrization x : [a, b] → U such
that u = h ◦ x is a parametrization of a curve of class C1 in U ′. The length of K
then is defined as
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b∫
a

q
1/2
u(s)(u̇(s)) ds.

By means of (an appropriate) dissection and addition, the notion of length can
be defined for curves in M which are not contained in a single neighborhood. For
x, y ∈ M let their Riemannian distance %M(x, y) be the infimum of the lengths
of curves of class C1 in M connecting x and y. A set J in U is Jordan measurable
if h(J) is Jordan measurable as a subset of IE 2. Then its area measure ωM(J) is
defined as ∫

h(J)

(det qu)
1/2 du.

Again, by dissection and addition, we can define the concepts of Jordan mea-
surability and area measure for sets in M which are not contained in a single
neighborhood. This definition of Jordan measurability and the one in 1.2 are
equivalent.

2.2.2 The moments M(D, p) and M(a, v). If D is a compact convex set in IE 2,
its moment M(D, p) with respect to a point p in IE 2 is defined as

(2.2)
∫
D

f(‖p− x‖) dx.

Write M(a, v) for the moment of a regular v-gon of area a with respect to its
center.

A suitable linear transformation together with (1.1) yields the following.

(2.3) Let q( . ) be a positive definite quadratic form on IE 2 and Q ⊂ IE 2 a convex
3, 4, 5, or 6-gon. Then for m = 1, 2, ..., and any set S in IE 2 with #S ≤ m
holds ∫

Q

min
r∈S

{f(q1/2(r − s))} ds (det q)1/2 ≥ mM
( |Q|(det q)1/2

m
, 6

)
.

The growth condition (1.2) together with an argument of Babenko [1] and the
application of a suitable linear transformation implies the next result.

(2.4) Let λ > 1, q( . ) a positive definite quadratic form on IE 2 and R a Jordan
measurable set in IE 2. Then for each sufficiently large m there is a set
T ⊂ R with #T ≤ m with the following properties:
(i) The distance (with respect to the norm q( . )1/2) of any point of R to

the nearest point of T is O(m−1/2).

(ii)
∫
R

min
r∈T

{f(q1/2(r − s))} ds (det q)1/2 ≤ λmM
( |R|(det q)1/2

m
, 6

)
.
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2.2.3 Properties of M(a, 6). A special case of a result of the author [19] says that

(2.5) M(a, 6) is convex for a ≥ 0.

Clearly,

(2.6) M(0, 6) = 0 and M(a, 6) is strictly increasing for a ≥ 0.

As a consequence of (2.5) we will show that

(2.7) mM
( a
m
, 6

)
is non-increasing for all a > 0 and m ≥ 1.

Let g be a convex non-decreasing function for t ≥ 0 with g(0) = 0. An inspection
of the graph of g shows that g(t)/t is non-decreasing for t > 0. Hence tg(1/t) is
non-increasing for t > 0. Applying this with g(t) = M(at, 6), where we take into
account (2.5), (2.6), yields (2.7).

Since f satisfies the growth condition, the definition of M(a, 6) implies that

(2.8) M(a, 6) satisfies the growth condition.

2.2.4 The Dirichlet-Voronoi cells DM(S, p). For a finite set S ⊂M let

DM(S, p) = {x ∈ J : %M(p, x) ≤ %M(q, x) for each q ∈ S}, p ∈ S.

Then the following holds:

(2.9) Let (Sn) be a sequence of finite sets in M such that #S ≤ n and∫
J

min
p∈Sn

{f(%M(p, x))}dωM(x) → 0 asn→∞.

Then max
p∈Sn

{diam(DM(Sn, p) ∩ intJ)} → 0 as n→∞.

Here diam stands for diameter. For the proof of (2.9) it is sufficient to show the
following statement: let ε > 0, then for all sufficiently large n: given p ∈ Sn and
x ∈ DM(Sn, p) ∩ int J , then %M(p, x) < 2ε. The compactness of cl int J implies
that there are finitely many points in int J such that the ε-neighborhoods of
these points cover int J . If n is sufficiently large, each of these ε-neighborhoods
contains at least one point of Sn; otherwise the integral in (2.9) cannot converge
to 0. Consequently, for each x ∈ int J the nearest point of Sn has distance less
than 2ε from x. For each x ∈ DM(Sn, p)∩ int J the point p is (one of) the nearest
point(s) of Sn, we thus have that %M(p, x) < 2ε. This concludes the proof of the
above statement and thus of (2.9).

The next remark is obvious.

(2.10) Let S ⊂M be finite and K ⊂ J Jordan measurable. Define
S(K) = {p ∈ S : int (DM(S, p) ∩K) 6= ∅}, n(K) = #S(K). Then∫
K

min
p∈S

{f(%M(p, x))}dωM(x) =
∫
K

min
p∈S(K)

{f(%M(p, x))}dωM(x).

6



2.2.5 In this subsection we use a system of (small) neighborhoods inM to transfer
information from IE 2 to J and vice versa. Let λ > 1. For each p ∈ M choose
U, h = ”′” and U ′ = h(U) as in 2.2.1, where the neighborhood U is so small
that for the positive quadratic form q( . ) corresponding to p and h the following
inequalities hold; here qu( . ) is the positive quadratic form corresponding to u ∈ U
and h.

1

λ
q1/2(x′ − y′) ≤ %M(x, y) ≤ λq1/2(x′ − y′) forx, y ∈ U,

1

λ
(det q)1/2 ≤ (det qu)

1/2 ≤ λ(det q)1/2 foru ∈ U,

1

λ
|K ′|(det q)1/2 ≤ ωM(K) ≤ λ|K ′|(det q)1/2 for Jordan measurableK ⊂ U.

Let V be a Jordan measurable open neighborhood of p with clV ⊂ U . As p ranges
over the compact set cl J the neighborhoods V form an open covering of clJ . Thus
there is a finite subcover. Therefore we may choose points pl ∈ J, l = 1, . . . , k, say,
and corresponding neighborhoods Ul, Vl, homeomorphisms hl = ”′”, and positive
quadratic forms ql such that

(2.11)
1

λ
q
1/2
l (x′ − y′) ≤ %M(x, y) ≤ λq

1/2
l (x′ − y′) forx, y ∈ Ul,

(2.12)
1

λ
(det ql)

1/2 ≤ (det qu)
1/2 ≤ λ(det ql)

1/2 foru ∈ Ul,

(2.13)
1

λ
|K ′|(det ql)

1/2 ≤ ωM(K) ≤ λ|K ′|(det ql)
1/2

for Jordan measurableK ⊂ Ul.

Consider the sets Il = J ∩ (Vl \ (V1 ∪ . . .∪ Vl−1)) for l = 1, . . . , k. Since each Vl is
Jordan measurable, clVl ⊂ Ul and J ⊂ V1 ∪ . . . ∪ Vl, we see that

(2.14) J is the disjoint union of the Jordan measurable sets
Il ⊂ Vl ⊂ Ul, l = 1, . . . , k.

2.3 Proof of Theorem 1

2.3.1 For the proof of Theorem 1 two estimates are needed. The first one is the
following, the second one will be given in 2.3.2.

(2.15) Let 0 < α < 1. Then for all sufficiently large n holds

inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x)}dωM(x) ≥ αnM
(ωM(J)

n
, 6

)
.
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By the growth condition for f and (2.8) we may choose λ > 1 and a corre-
sponding µ > 1 so that

(2.16) M
(a
λ
, 6

)
≥ 1

µ
M(a, 6) for all sufficiently small a ≥ 0,

f(
t

λ
) ≥ 1

µ
f(t) for all sufficiently small t ≥ 0 and such that

1

λ2µ3
> α.

For this λ choose pl, hl = ”′”, Ul, Vl, Il, ql, l = 1, . . . , k, as described in 2.2.5. Then,
in particular, (2.11)-(2.14) hold. Next, choose for each l sets Qli, i = 1, . . . , il,
with the following properties:

(2.17) (i) The sets Qli, i = 1, . . . , il, are compact and pairwise disjoint sets in
intIl ⊂ Ul.

(ii) Q′
li is a square in IE 2 of edgelength 1/kl, say, (with respect to the

norm q
1/2
l ( . )), where kl is a positive integer. Clearly, Qli is Jordan

measurable.

(iii)
∑
l,i

ωM(Qli) ≥
1

λ
ωM(J).

For n = 1, 2 . . ., choose sets Sn in M with #Sn ≤ n such that

(2.18) inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x)} dωM(x) ≥ 1

λ

∫
J

min
p∈Sn

{f(%M(p, x))} dωM(x).

Such a choice is possible since for any n the left side of (2.18) is positive. Define
Snli = Sn(Qli) and nli = n(Qli) as in (2.10). Taking into account (2.14) and
(2.17i), an application of (2.9) and (2.10) then shows that

(2.19) for all sufficiently large n hold:

(i) The sets Snli (⊂ Ul), l = 1, . . . , k, i = 1, . . . , il, are pairwise disjoint.

(ii)
∑
l,i

nli ≤ n.

(iii) min
p∈Sn

{f(%M(p, x))} = min
p∈Snli

{f(%M(p, x))} forx ∈ Qli.

Now, using (2.18), (2.17i), (2.19iii), (2.11), (2.12), the definition of the integral
in M, (2.16), (2.3), (2.13), (2.6), (2.5), Jensen’s inequality, (2.7),(2.19ii), (2.17iii),
(2.6), and (2.16), we obtain the estimate (2.15):

8



inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x)}dωM(x) ≥ 1

λ

∫
J

min
p∈Sn

{f(%M(p, x))}dωM(x)

≥ 1

λ

∑
l,i

∫
Qli

min
p∈Snli

{f(%M(p, x))}dωM(x)

≥ 1

λ

∑
l,i

∫
Q′
li

min
r∈S′

nli

{f
(1

λ
q
1/2
l (r − s)

)
}ds 1

λ
(det ql)

1/2

≥ 1

λ2µ

∑
l,i

nliM
( |Q′

li|(det ql)
1/2

nli

, 6
)
≥ 1

λ2µ

∑
l,i

nliM
(ωM(Qli)

λnli

, 6
)

≥ 1

λ2µ
(n11 + · · ·+ nkik)M

(ωM(Q11) + · · ·+ ωM(Qkik)

λ(n11 + · · ·+ nkik)
, 6

)
≥ 1

λ2µ
nM

(ωM(J)

λ2n
, 6

)
≥ 1

λ2µ3
nM(

ωM(J)

n
, 6) > αnM

(ωM(J)

n
, 6

)
for all sufficiently large n.

2.3.2 The second estimate we require is as follows:

(2.20) Let β > 1. Then for all sufficiently large n holds

inf
S⊂J

#S≤n

∫
J

min
p∈S

{f(%M(p, x)}dωM(x) ≤ β nM
(ωM(J)

n
, 6

)
.

By the growth condition for f and (2.8) we may choose λ > 1 and a corre-
sponding µ > 1 so that

(2.21) f(λt) ≤ µf(t) for all sufficiently small t ≥ 0,
M(λa, 6) ≤ µM(a, 6), for all sufficiently small a ≥ 0, and such that
λ2µ5 < β.

For this λ choose pl, . . . , as described in 2.2.5. Next, consider for each l an
edge-to-edge tiling of IE 2 with translates of a closed square of area

(2.22)

∑k
l=1 |I ′l |(det ql)

1/2

(det ql)1/2
ν,

where ν > 0 is so small that each of these k tilings has the following properties:
let R′

lj, j = 1, . . . , jl, be the tiles of the lth tiling which meet I ′l , then

(2.23) I ′l ⊂ R′
l1 ∪ . . . ∪R′

ljl
⊂ U ′

l , theR′
lj, j = 1, . . . , jl, have disjoint interiors,

(2.24) |R′
l1| = . . . = |R′

ljl
|, |I ′l | ≤ jl|R′

l1| ≤ λ|I ′l |.

Each Rlj = h−1
l (R′

lj) (⊂ Ul) is Jordan measurable. For the proof that

(2.25)
j0
jl
≤ λ

∑k
l=1 |I ′l |(det ql)

1/2

|I ′l |(det ql)1/2
, where j0 = j1 + . . .+ jk,
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consider the second inequality in (2.24), multiply both sides by (det ql)
1/2, insert

the value of |R′
l1| and sum over all l. This gives j0ν ≤ λ or ν ≤ λ/j0. Now consider

the first inequality in (2.24), insert the value of |R′
l1| and note that ν ≤ λ/j0. This

implies (2.25).
Choose m0 so large that for each of the positive definite quadratic forms ql( . )

and each of the Jordan measurable sets (Rlj ∩ J)′ the conclusion of (2.4) holds
for all m ≥ m0. Then, using (2.6) we see that

(2.26) for each m ≥ m0 there are sets T ′mlj ⊂ (Rlj ∩ J)′ with #T ′mlj ≤ m where

(i) The distance (with respect to the norm q( . )1/2) of any point of
(Rlj ∩ J)′ from the nearest point of Tmlj is O(m−1/2).

(ii)
∫

(Rlj∩J)′

min
r∈T ′

mlj

{f(q
1/2
l (r−s))}ds(det ql)

1/2 ≤ λmM
( |R′

lj|(det ql)
1/2

m
, 6

)
.

After these preparations for the proof of (2.19), we assume first that n has
the form n = j0m with m ≥ m0. Let Tn =

⋃
l,j Tmlj, where Tmlj = h−1

l (T ′mlj) (⊂
Rlj ∩ J). Clearly, Tn ⊂ J and #Tn ≤ j0m = n. This together with (2.14), (2.23),
Tn =

⋃
l,j Tmlj, (2.12) and the definition of the integral in M , (2.11), the growth

condition for f , (2.26), (2.21), (2.26ii), (2.24), (2.6), (2.25), (2.6), (2.13), (2.14),
and (2.21) implies that there is an m1 ≥ m0 such that

(2.27) inf
T⊂J

#T≤n

∫
J

min
p∈T

{f(%M(p, x)} dωM(x) ≤
∫
J

min
p∈Tn

{f(%M(p, x)} dωM(x)

≤
∑
l,j

∫
Rlj∩Il

min
p∈Tmlj

{f(%M(p, x)} dωM(x)

≤ λ
∑
l,j

∫
(Rlj∩Il)′

min
r∈T ′

mlj

{f(λq
1/2
l (r − s))} ds (det ql)

1/2

≤ λ2µ
∑
l,j

mM
( |R′

lj|(det ql)
1/2

m
, 6

)
≤ λ2µ

∑
l

jl mM
(
λ|I ′l |(det ql)

1/2

jlm
, 6

)

≤ λ2µ
∑

l

jl mM
(
λ2 ∑

l |I ′l |(det ql)
1/2

j0m
, 6

)
≤ λ2µ j0mM

(
λ3ωM(J)

j0m
, 6

)
≤ λ2µ4nM

(ωM(J)

n
, 6

)
for alln of the formn = j0m,m ≥ m1

For general n we argue as follows: let m2 ≥ m1 be so large that (m+1)/m ≤ λ for
m ≥ m2. Then, given n ≥ j0m2, choose m ≥ m2 such that j0m ≤ n < j0(m+ 1).
Combining this with (2.27), (2.6), and (2.21) finally yields the estimate (2.20):

inf
T⊂J

#T≤n

∫
J

min
p∈T

{f(%M(p, x)}dωM(x) ≤ inf
T⊂J

#T≤j0m

∫
J

min
p∈T

{f(%M(p, x)}dωM(x)

≤ λ2 µ4j0mM
(ωM(J)

j0m
, 6

)
≤ λ2µ4nM

(λωM(J)

n
, 6

)
≤ λ2µ5nM(

ωM(J)

n
, 6) ≤ β nM

(ωM(J)

n
, 6

)
for alln ≥ j0m2.

2.3.4 Theorem 1 is an immediate consequence of (2.15) and (2.20).2
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3 Stability of hexagonal arrangements in Rie-

mannian 2-manifolds

3.1 The stability result

Let M be a Riemannian 2-manifold as defined in 1.2 with Riemannian metric
%M , area measure ωM and the concept of Jordan measurability. Let (Sn) be a
sequence of finite sets in M with #Sn ≤ n and #Sn →∞ as n→∞. Sn is said
to be uniformly distributed in a Jordan measurable set J in M with ωM(J) > 0
if, for each Jordan measurable set K in J with ωM(K) > 0, we have

#(K ∩ Sn)

n
→ ωM(K)

ωM(J)
asn→∞;

see Hlawka [23], p.58. Sn is asymptotically a regular hexagonal pattern of edge-
length %n if the following holds: there exists a positive sequence (%n) and Landau
symbols o(n) and o(1) such that for each point p ∈ Sn, with a set of at most o(n)
exceptions, the relation

{x : %M(p, x) ≤ 1.1%n} ∩ Sn = {p, p1, . . . , p6}, say,

holds, where

%M(p, pj), %M(pj, pj+1) = (1± o(1))%n for j = 1, . . . , 6, p7 = p1.

p1, . . . , p6 are said to form up to o(1) a regular hexagonwith center p of edge
length %n. ((1±o(1))%n denotes a quantity between (1−o(1))%n and (1+o(1))%n.)

Theorem 2.Let f : [0,+∞) → [0,+∞) satisfy the growth-condition, let J be a
Jordan measurable set in M with ωM(J) > 0, and (Sn) a sequence of finite sets
in M with #Sn ≤ n for n = 1, 2, . . . , such that

(3.1)
∫
J

min
p∈Sn

{f(%M(p, x)}dωM(x) ∼ inf
S⊂M
#S≤n

∫
J

min
p∈S

{f(%M(p, x))}dωM(x) as n→∞

Then Sn is uniformly distributed in J and is asymptotically a regular hexagonal
pattern of edge length

(
2ωM(J)√

3n
)1/2.

As was the case for Theorem 1, there is also a more general version of Theorem
2 with a weight factor in the left integral in (3.1).

After some preparations in 3.2 we first prove the result for the Euclidean plane
in 3.3 and then extend it to Riemannian manifolds in 3.4. The former case is
more difficult, but also the extension has to be done with more care than is usual
in order not to loose the stability property.
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3.2 Preparations for the proof

3.2.1 Simplifications. We note that f , or any continuous strictly increasing func-
tion on [0,∞) beween (1−o(t))f(t) and (1+o(t))f(t) as t→ 0, satisfies both the
growth condition and (3.1) (note (2.9)). It therefore suffices to prove Theorem 2
under the additional assumption that f is continuously differentiable for t > 0.
Then

(3.2) g : [0,+∞) → [0,+∞), defined by g(t) = f(t1/2) for t ≥ 0, is continuously
differentiable for t > 0 and satisfies the growth condition.

Let G be a primitive of g with G(0) = 0.
Positive constants independent of m, respectively n, will be denoted in many

cases just by const. If const appears several times in the same or in consecutive
expressions, this does not mean that it denotes necessarily the same constant. To
simplify the presentation, constants are sometimes absorbed by Landau symbols
and in some other cases constants are denoted by Greek letters. ϑ always denotes
a suitable real with 0 < ϑ < 1.

A Landau symbol o(1) (and similarly for the other Landau symbols used) is
a positive function of m or n which converges to 0 as m→∞ or n→∞, respec-
tively. If a Landau symbol appears several times in the same or in consecutive
expressions, it may be different in each case. Some of our arguments are valid
only if m or n is sufficiently large. In several cases this is assumed tacitly.

3.2.2 The moment lemma. The following result of Laszl Fejes Tth [9, 11] will be
useful in the sequel; for the definition of the moments M(D, p) and M(a, p) see
2.2.2.

(3.3) Let D be a convex v-gon with area a and let p ∈ IE 2. Then
M(D, p) ≥M(a, v).

3.2.3 Properties of M(a, v). Set h(a, v) = a/(v tan(π/v)) for a ≥ 0, v ≥ 3. Then
h1/2(a, v) is the inradius of a regular v-gon of area a. Using polar coordinates, we
obtain

(3.4) M(a, p) = 2v

π
v∫

0

h1/2

cosψ∫
0

g(r2)rdrdψ = v

π
v∫

0

G(
h

cos2 ψ
)dψ.

Define M(a, v) for a ≥ 0 and real v ≥ 3 by (3.4).
The first needed property of M(a, v) was proved in [19]. It says that

(3.5) M(a, v) is convex for all a ≥ 0, v ≥ 3.

We draw two consequences of (3.5):

12



(3.6) M(a, v) ≥M(b, v) +Ma(b, v)(a− b),

M(a, v) = M(b, v) +Ma(b, v)(a− b) +
1

2
Maa(b+ ϑ(a− b), v)(a− b)2

for all a, b ≥ 0, v ≥ 3.

Since g = G′ is continuously differentiable for t > 0 (see (3.2)), the function
M(a, v) has continuous partial derivatives up to the second order by (3.4). Now,
noting (3.5), we obtain (3.6).

(3.7) M(a, v) is non-increasing in v for fixed a > 0 and, trivially, strictly in-
creasing in a for fixed v ≥ 3).

To see this, fix a > 0. Then M(a, v) is convex in v by (3.5). The definition of
M(a, v) in (3.4) together with a simple continuity argument shows thatM(a, v) →
M(C, o) as v → +∞, where C is the (solid) circle of area a and center o. Thus
M(a, v) is a bounded convex function for v ≥ 3, which implies (3.7).

Second,

(3.8) const a g(a) ≤M(a, v) ≤const a g(a)

for all sufficiently small a ≥ 0 and all v ≥ 3.

By (3.7) and its proof,M(C, o) ≤M(a, v) ≤M(a, 3). Since clearly (a/2)g(a/2π) ≤
M(C, o) and M(a, 3) ≤ ag(4a/3

√
3), an application of the growth condition for

g (see (3.2)) yields (3.8).
Third,

(3.9) const g(a) ≤Ma(a, v) ≤ const g(a)

for all sufficiently small a ≥ 0 and all v ≥ 3.

Propositions (3.4) and (3.2) imply that for all sufficiently small a ≥ 0 and for
v ≥ 3,

Ma = v ha

π
v∫

0

g
( h

cos2 ψ

) dψ

cos2 ψ
≤ v

v tan π
v

π

v
g
( a

v tan π
v

cos2 π
v

) 1

cos2 π
v

≤ const g(a),

Ma ≥ v ha

π
v∫
π
2v

g
( h

cos2 ψ

) dψ

cos2 ψ
≥ v

v tan π
v

π

2v
g
( a

v tan π
v

cos2 π
2v

) 1

cos2 π
2v

≥ const g(a).

Fourth,

(3.10) Maa(a, v) ≥ const
g(a)

a
for all sufficiently small a > 0 and for 5 ≤ v ≤ 7.

The inequality in (3.10) is a consequence of (3.4) and (3.2):
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Maa = v h2
a

π
v∫

0

g′
( h

cos2 ψ

) dψ

cos4 ψ
≥ vh2

a

2h

π
v∫

0

g′
( h

cos2 ψ

)2h sinψ

cos3 ψ
dψ

=
1

2a tan π
v

(g
( h

cos2 π
v

)
− g(h)) ≥ const

g(a)

a

for all sufficiently small a ≥ 0 and for 5 ≤ v ≤ 7.

As a preparation for the proof of (3.12) we show that

(3.11)
Maa(a, v)Mvv(a, v)−M2

av(a, v)

Maa(a, v)
≥ const ag(a)

for all sufficiently small a > 0, and for 5 ≤ v ≤ 7.

To see this we first specify two candidates for an upper bound of Maa, one of
which actually turns out to be an upper bound. We note that (3.2) implies
g′ ≥ 0. Using this and (3.4), we obtain:

Maa = vh2
a

π
v∫

0

g′(
h

cos2 ψ
)
dψ

cos4 ψ
≤



2vh2
a

π
v∫
π
2v

g′(
h

cos2 ψ
)
dψ

cos4 ψ
, or

2vh2
a

π
2v∫
0

g′(
h

cos2 ψ
)
dψ

cos4 ψ


for all a > 0 and 5 ≤ v ≤ 7.

A representation of MaaMvv −M2
av from [19] and g′ ≥ 0 implies that

MaaMvv −M2
av

=
2π2a

v5 sin2 π
v

π
v∫

0

g′
( h

cos2 ψ

)(
1− sin2 ψ

sin2 π
v

) dψ

cos4 ψ

2a cos2 π
v

v sin2 π
v

π
v∫

0

g′
( h

cos2 ψ

) sin2 ψ

cos4 ψ
dψ

≥ const a2

π
2v∫
0

g′
( h

cos2 ψ

) dψ

cos4 ψ

π
v∫
π
2v

g′
( h

cos2 ψ

) dψ

cos4 ψ

for all sufficiently small a > 0 and 5 ≤ v ≤ 7,

This together with the above upper estimate for Maa and (3.2) then yields (3.11):

MaaMvv −M2
av

Maa

≥



const a2

π
2v∫
0

g′
( h

cos2 ψ

) dψ

cos4 ψ
≥ const

a2

2h

π
2v∫
0

g′
( h

cos2 ψ

)2h sinψ

cos3 ψ
dψ, or

const a2

π
v∫
π
2v

g′
( h

cos2 ψ

) dψ

cos4 ψ
≥ const

a2

2h

π
v∫
π
2v

g′
( h

cos2 ψ

)2h sinψ

cos3 ψ
dψ


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≥


const (g(

h

cos2 π
v

)− g(h)), or

const a(g(
h

cos2 π
v

)− g(
k

cos2 π
2v

))

 ≥ const ag(a)

for all sufficiently small a > 0 and for 5 ≤ v ≤ 7.

Fifth,

(3.12) b2Maa(a, v) + 2bMav(a, v) +Mvv ≥ const a g(a)

for all sufficiently small a > 0 and for b ∈ IR , 5 ≤ v ≤ 7.

The polynomial in b in (3.12) attains its minimum for b = −Mav/Maa. This
together with (3.11) implies (3.12):

b2Maa + 2bMav +Mvv ≥
M2

av

Maa

− 2M2
av

Maa

+Mvv =
MaaMvv −M2

av

Maa

≥ const a g(a)

for all sufficiently small a > 0 and for 5 ≤ v ≤ 7.

Finally we show, sixth, the following estimate which refines (2.7):

(3.13) For each σ with 0 < σ < 1 there is a τ > 1 such that for each a > 0 and
all sufficiently large m = 1, 2, . . ., holds:

σmM(
a

σm
, 6) ≥ τmM(

a

m
, 6).

Let λ = 1/σ > 1. Since M(0, 6) = 0 and since M(a, 6) is convex for a ≥ 0 by
(3.5), an inspection of the graph of M(a, 6) shows that M(a, 6) + Ma(a, 6)(λ −
1)a ≥ λM(a, 6). Hence we have by (3.6), (3.7), (3.8) and (3.10) that

M(λa, 6) ≥M(a, 6) +Ma(a, 6)(λ− 1)a+ constM(a, 6)(λ− 1)2

≥ λM(a, 6) + (λ− 1)2constM(a, 6),

or

1

λ
M(λa, 6) ≥ (1 +

(λ− 1)2

λ
const )M(a, 6) = τM(a, v), say,

for all sufficiently small a > 0. Now replace a by a/m and 1/λ by σ and multiply
both sides with m.

3.2.4 A lower estimate for M(D, o). The following proposition is a refinement of
the moment lemma (3.3) for 6-gons. It can be obtained along the lines of Hajs’
[22] proof of (3.3) and so we omit its proof.
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(3.14) Let D be a convex 6-gon with |D| = a > 0 and o ∈ intD. Let C(δ) =
C((1−δ)(a/2

√
3)1/2, o), where 0 ≤ δ < 1, be the circle of maximum radius

with center o contained in D. Let D(δ) denote a convex 6-gon such that
|D(δ)| = a, C(δ) ⊂ D(δ), the vertices of D(δ) are equidistant from o, the
longest edge of D(δ) touches C(δ), and the 5 other edges all have the same
length. Then M(D, o) ≥M(D(δ), o).

The proof of the next result is surprisingly tedious.

(3.15) Let D and D(δ) be as in (3.14). Then M(D(δ), o) ≥ (1+const δ2)M(a, 6)
for all sufficiently small a > 0 and 0 ≤ δ < 1.

The first step is to show that

(3.16) M(D(δ), o) is non-decreasing for 0 ≤ δ < 1 .

Since M(D(δ), o) is clearly continuous in δ, it is sufficient to prove the following:
let 0 < δ < 1, then for each ε < δ sufficiently close to δ we have M(D(ε), o) ≤
M(D(δ), o). Let p, q, r be consecutive vertices of D(δ) such that the line segment
[q, r] is the longest edge of D(δ). It is the only edge of D(δ) touching C(δ) and
‖p − q‖ < ‖q − r‖. Then, if ε < δ is sufficiently close to δ, the following hold:
if we keep all vertices of D(δ) fixed, except q, and move q parallel to [q, r] a
suitable (small) distance in the direction r − p, we obtain a convex 6-gon E,
say, such that |E| = a, C(ε) ⊂ E, precisely one edge of E touches C(ε), and
M(E, o) < M(D(δ), o). (To see the latter notice that E is obtained from D(δ)
by keeping D(δ) ∩ E pointwise fixed and shearing the triangle D(δ) \ E parallel
to [p, r] onto the triangle E \ D(δ). The shearing strictly decreases distances
from o if ε is sufficiently close to δ.) By (3.14) M(D(ε), o) ≤ M(E, o). Since
M(E, o) < M(D(δ), o), this concludes the proof of (3.16).

In the second step δ is replaced by a parameter ϕ as follows: for 0 ≤ δ < 1 let
0 ≤ ϕ < π/3 be such that the angles under which the longest edge of D(δ) and the
5 other edges appear from o are π/3+2ϕ and π/3−2ϕ/5, respectively. From now
on we write D(ϕ) rather than D(δ). Let r = r(a, ϕ) be the circumradius of D(ϕ).
Since the longest edge of D(ϕ) touches the circle C(δ) = C((1− δ)(a/2

√
3)1/2, o)

and |D(ϕ)| = a, it follows that

(1− δ)(
a

2
√

3
)1/2 = r cos(

π

6
+ ϕ),

a = r2(sin(
π

6
+ ϕ) cos(

π

6
+ ϕ) + 5 sin(

π

6
− ϕ

5
) cos(

π

6
− ϕ

5
))

= r2(
1

2
sin(

π

3
+ 2ϕ) +

5

2
sin(

π

3
− 2ϕ

5
)).

Hence,

r2 = r2(a, ϕ) = 2a(sin(
π

3
+ 2ϕ) + 5 sin(

π

3
− 2ϕ

5
))−1,
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δ = δ(ϕ) = 1− (4
√

3)1/2 cos(
π

6
+ ϕ)(sin(

π

3
+ 2ϕ) + 5 sin(

π

3
− 2ϕ

5
))−1/2.

A numerical calculation readily implies that 1/4 ≤ δ′(ϕ) ≤ 1 for 0 ≤ ϕ < π/3.
Using the fact that δ(0) = 0, we obtain

(3.17)
ϕ

4
≤ δ(ϕ) ≤ ϕ for 0 ≤ ϕ <

π

3
,

(3.18) δ(ϕ) is strictly increasing for 0 ≤ ϕ <
π

3
.

In the third step of the proof of (3.15) it will be shown that

(3.19) M(D(ϕ), o) ≥ (1 + constϕ2)M(a, 6) for 0 ≤ ϕ <
π

3
.

Using (3.18), propositions (3.14) and (3.16) may be expressed as follows:

(3.20) M(D, o) ≥M(D(ϕ), o) for 0 ≤ ϕ <
π

3
.

(3.21) M(D(ϕ), o) is non-decreasing for 0 ≤ ϕ <
π

3
.

Define

k = k(a, ϕ) = r2(a, ϕ) cos2(
π

6
+ϕ) = 2a cos2(

π

6
+ϕ)(sin(

π

3
+2ϕ)+5 sin(

π

3
−2ϕ

5
))−1,

l = l(a, ϕ) = r2(a, ϕ) cos2(
π

6
−ϕ

5
) = 2a cos2(

π

6
−ϕ

5
)(sin(

π

3
+2ϕ)+5 sin(

π

3
−2ϕ

5
))−1.

Then, considering the definition of D(ϕ) = D(δ) in (3.14), one may express
M(D(ϕ), o) as follows:

(3.22) M(D(ϕ), o) = 2

π
6
+ϕ∫

0

k1/2

cosψ∫
0

g(r2)r dr dψ + 10

π
6
−ϕ

5∫
0

l1/2

cosψ∫
0

g(r2)r dr dψ

=

π
6
+ϕ∫

0

G
( k

cos2 ψ

)
dψ + 5

π
6
−ϕ

5∫
0

G
( l

cos2 ψ

)
dψ.

Elementary calculations show that

(3.23) k(a, 0) =
a

2
√

3
, kϕ(a, 0) = −a

3
, kϕϕ(a, 0) = − 4a

15
√

3
, kϕ(a, ϕ) < 0,

l(a, 0) =
a

2
√

3
, lϕ(a, 0) = − a

15
, lϕϕ(a, 0) =

28a

15
√

3
, l(a, ϕ), lϕ(a, ϕ) > 0,

r2(a, ϕ) ≥ r2(a, 0) =
2a

3
√

3
for 0 ≤ ϕ < 0.2.
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Differentiating (3.22), integrating by parts, and taking into account that
−2k(a, ϕ)kϕϕ(a, ϕ), l(a, ϕ), lϕϕ(a, ϕ) > 0 for 0 ≤ ϕ < 0.2, that g′ ≥ 0 and
g(0) = 0, we see that

(3.24) M(D(0), o) = M(a, 6),

Mϕ(D(ϕ), o) = G(r2) + 5
−1

5
G(r2)

+ kϕ

π
6
+ϕ∫

0

g
( k

cos2 ψ

) dψ

cos2 ψ
+ 5lϕ

π
6
−ϕ

5∫
0

g
( l

cos2 ψ

) dψ

cos2 ψ
,

Mϕ(D(0), o) = 0,

Mϕϕ(D(ϕ), o) = kϕ
g(r2)

cos2(π
6

+ ϕ)
+ 5

−1

5
lϕ

g(r2)

cos2(π
6
− ϕ

5
)

+ kϕϕ

π
6
+ϕ∫

0

g
( k

cos2 ψ

) dψ

cos2 ψ
+ k2

ϕ

π
6
+ϕ∫

0

g′
( k

cos2 ψ

) dψ

cos4 ψ

+ 5lϕϕ

π
6
−ϕ

5∫
0

g
( l

cos2 ψ

) dψ

cos2 ψ
+ 5l2ϕ

π
6
−ϕ

5∫
0

g′
( l

cos2 ψ

) dψ

cos4 ψ

= (
kϕ

cos2(π
6

+ ϕ)
− lϕ

cos2(π
6

+ ϕ
5
)
+kϕϕ tan(

π

6
+ϕ)+5lϕϕ tan(

π

6
−ϕ

5
))g(r2)

− 2kkϕϕ

π
6
+ϕ∫

0

g′
( k

cos2 ψ

) sin2 ψ

cos4 ψ
dψ + k2

ϕ

π
6
+ϕ∫

0

g′(
k

cos2 ψ
)

dψ

cos4 ψ

− 2llϕϕ

π
6
−ϕ

5∫
0

g′
( l

cos2 ψ

) sin2 ψ

cos4 ψ
dψ + l2ϕ

π
6
−ϕ

5∫
0

g′
( l

cos2 ψ

) dψ

cos4 ψ

= aJ(ϕ)g(r2)− aK(ϕ)g(k) + aL(ϕ)g(l) for 0 ≤ ϕ < 0.2,

where all the expressions

(3.25) I(ϕ) =
1

k

( kϕ

cos2(π
6

+ ϕ)
− lϕ

cos2(π
6

+ ϕ
5
)
+kϕϕ tan(

π

6
+ϕ)+5lϕϕ tan(

π

6
−ϕ

5
)
)
,

J(ϕ) = I(ϕ) +
1

a

( k2
ϕ

2k sin(π
6

+ ϕ)
− lϕϕ tan(

π

6
− ϕ

5
)
)
,

K(ϕ) =
1

a

k2
ϕ

2k sin(π
6

+ ϕ)
, L(ϕ) =

1

a
lϕϕ tan(

π

6
− ϕ

5
) do not depend on a.

Propositions (3.23) and (3.25) imply that

(3.26) J(0) =
50
√

3− 28

225
, K(0) =

50
√

3

225
, L(0) =

28

225
.

¿From 0 < k ≤ l ≤ r2 cos2(π/6− ϕ/5) ≤ 0.286 r2 for 0 ≤ ϕ < 0.2, and (3.3) we
obtain that 0 < g(k) ≤ g(l) ≤ β g(r2) for 0 ≤ ϕ < 0.2, where 0 < β < 1. Hence
(3.24) implies that
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Mϕϕ(D(ϕ), o) ≥ a(J(ϕ)− (K(ϕ)− L(ϕ) β) g(r2) for 0 ≤ ϕ < 0.2.

Since J(0) − (K(0) − L(0)) = 0, K(0) − L(0) > 0 by (3.26), 0 < β < 1 , and
since J(ϕ), K(ϕ), L(ϕ) are continuous in ϕ and do not depend on a by (3.25),
we conclude further that

Mϕϕ(D(ϕ), o) ≥ const a g(r2) ≥ const a g(a)

for all sufficiently small a > 0 and for 0 ≤ ϕ ≤ const (< 0.2),

where we have used (3.23) and(3.2). Combining this with (3.24) and (3.8) then
yields,

M(D(ϕ), o) ≥M(D(0), o) +Mϕ(D(0), o) +
1

2
Mϕϕ(D(ϑϕ), o)ϕ2

≥M(a, 6) + const a g(a)ϕ2 ≥ (1 + const
a g(a)

M(a, 6)
ϕ2)M(a, 6)

≥ (1 + constϕ2)M(a, 6)

for all sufficiently small a > 0 and for 0 ≤ ϕ ≤const.

Since by (3.21) M(D(ϕ), o) is non-decreasing for 0 ≤ ϕ < π/3 , we thus obtain
(3.19), decreasing the constant in (1 + constϕ2) if necessary.

Finally, noting that D(δ) = D(ϕ) for δ = δ(ϕ), proposition (3.15) is an
immediate consequence of (3.20) and (3.17).

3.2.5 The form of D.

(3.27) There is a Landau symbol o(1) as δ → 0 for which the following hold: let
D and C(δ) be as in (3.14) and let pi, i = 1. . . . , 6, be the mirror images of
the center of C(δ) in the lines containing the edges of D. Then there is a
regular 6-gon with center o, vertices qi, and such that ‖qi‖ = (2a/

√
3)1/2

and ‖pi − qi‖ ≤ o(1)‖qi‖ for i = 1, . . . , 6 .

This result is an immediate consequence of the next proposition.

(3.28) Let ε > 0 . Then for each sufficiently small δ > 0 one gets: for any convex
6-gon D such that |D| = a and C(δ) = C((1−δ)(a/2

√
3)1/2, o) ⊂ D there

is a regular convex 6-gon R with center o, |R| = a , and δH(D,R) < ε.

Here δH is the usual Hausdorff metric on the space of compact convex sets in
IE 2, see [?]. For the proof of (3.28) assume the contrary. Then there are δk > 0
and convex 6-gons Dk such that δk → 0 as k → ∞, |Dk| = a, C(δk) ⊂ Dk, ,
and δH(Dk, R) ≥ ε. For each regular 6-gon R with center o and |R| = a. Since
C(δk) → C(0) = C((a/2

√
3)1/2, o), C(δk) ⊂ Dk, and |Dk| = a, the sequence

(Dk) is bounded. Thus a version of Blaschke‘s selection theorem yields the fol-
lowing: by considering a suitable subsequence and renumbering, if necessary,
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we may assume that Dk → D, say, where D is a convex 3, 4, 5, or 6-gon,
C(0) ⊂ D, |D| = a, and δH(D,R) ≥ ε for each regular 6-gon R with |R| = a and
center o. A simple isoperimetric inequality for polygons says that all convex 3, 4,
5, or 6-gons circumscribed to C(0) = C((a/2

√
3)1/2, o) have area greater than a,

except for the regular 6-gon with center o. Thus D must be a regular 6-gon with
center o. Hence δH(D,R) = 0 for the regular 6-gon R = D with |R| = a and
center o. This contradiction concludes the proof of (3.28) and thus of (3.27).

3.3 Proof of Theorem 2 in the Euclidean case

3.3.1 In the first part we will prove the following proposition.

(3.29) Let H be a convex 3, 4, 5, or 6-gon in IE 2 and (Tm) a sequence of finite
sets in IE 2 with #Tm = m for m = 1, 2, . . . , such that∫

H

min
p∈Tm

{f(‖p− x‖)} dx ∼ mM(
|H|
m
, 6) asm→∞.

Then Tm is asymptotically a regular hexagonal pattern of edge length

(
2|H|√

3m
)1/2.

3.3.2 Simplifications, notations, and remarks. Suitable small distortions of the
sets Tm do not affect proposition (3.29). Thus we may assume that no vertex of
H is equidistant from 2 points of Tm, no point on an edge of H is equidistant
from 3 points of Tm, and no point of IE 2 is equidistant from 4 points of Tm for
m = 1, 2, . . . We clearly may assume that |H| = 1.

Define the Dirichlet-Voronoi cells

D(Tm, p) = {x ∈ H : ‖x− p‖ ≤ ‖x− q‖ for each q ∈ Tm}, p ∈ Tm.

The sets D(Tm, p) are convex polygons in H, possibly degenerate, that is, of
dimension less than 2. For i = 3, 4, . . . , let Dij, j = 1, . . . ,mi, be the proper, that
is the non-degenerate i-gons among these polygons and for each Dij let pij ∈ Tm

be such that Dij = D(Tm, pij). Put aij = |Dij|. Let mprop = m3 + · · ·+mk, where
k is the maximum i with mi > 0. The following properties are easy to check.

(3.30) The polygons Dij, i = 3, . . . , k, j = 1, . . . ,mi, are proper convex polygons
which tile H. A vertex of this tiling in intH is a vertex of precisely 3 such
polygons, a vertex in the relative interior of an edge of H is a vertex of
precisely 2 such polygons and a vertex of H is a vertex of precisely one of
these polygons.

(3.31) a31 + · · ·+ a3m3 + · · ·+ akmk
= 1 (= |H|).
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The assumptions of proposition (3.29), the fact that f is continuous and strictly
increasing and the definition of the Dij together with (3.3) imply that

(3.32) (m+ o(m))M(
1

m
, 6) ≥

∫
H

min
p∈Tm

{f(‖p− x‖)} dx

=
∑
i,j

∫
Dij

f(‖pij − x‖) dx = M(D31, p31) + · · ·+M(Dkmk
, pkmk

)

≥M(a31, 3) + · · ·+M(akmk
, k).

3.3.3 Most polygons D(Tm, p) are proper and contained in intH:

(3.33) mprop = m− o(m).

If (3.33) did not hold, then mprop ≤ σm for infinitely many m, where 0 < σ < 1.
Considering only such m (in the proof of (3.33)), propositions (3.32), (2.10), (1.1),
(2.7) and (3.13) together yield a contradiction and thus settle the proof of (3.33):

(m+ o(m))M(
1

m
, 6) ≥

∫
H

min
p∈Tm

{f(‖p− x‖)} dx

=
∫
H

min
p∈Tm(H)

{f(‖p− x‖)} dx ≥ mpropM(
1

mprop

, 6)

≥ σmM(
1

σm
, 6) > τmM(

1

m
, 6), where τ > 1.

Next,

(3.34) mint = #{Dij : Dij ⊂ intH} = mprop − o(m) = m− o(m).

For, if this were not the case, then mint ≤ σ2m for infinitely many m, where
0 < σ < 1. Consider in the following only such m. Let τ = χ2 > 1 correspond to
σ as in (3.13). By choosing χ (> 1) closer to 1, if necessary, we may suppose that
χ ≤ 1/σ. Since the first expression in (3.32) tends to 0 as m→∞, (2.9) implies
that max{diamDij} → 0 as m → ∞. Choose K ⊂ intH homothetic to H with
|K| = |H|/χ = 1/χ. Then for all sufficiently large m there are mK ≤ mint proper
convex polygons among the sets Dij ∩ K. Thus (3.32), (2.10), (1.1) applied to
K, (2.7), (3.13), the inequality χmint ≤ σm and the equality τ/χ = χ > 1 lead
to a contradiction, concluding the proof of (3.34):

(m+ o(m))M(
1

m
, 6) ≥

∫
H

min
p∈Tm

{f(‖p− x‖)} dx ≥
∫
K

min
p∈Tm

{f(‖p− x‖)} dx

≥
∫
K

min
p∈Tm(K)

{f(‖p− x‖)} dx ≥ mKM(
|K|
mK

, 6) ≥ mintM(
|K|
mint

, 6)

=
1

χ
χmintM(

1

χmint

, 6) ≥ 1

χ
σmM(

1

σm
, 6) ≥ τ

χ
mM(

1

m
, 6).
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3.3.4 Most Dij are 6-gons. We need the auxiliary results (3.35)-(3.37).

(3.35) 3m3 + · · ·+kmk = 6(m3 + · · ·+mk)−o(m) = 6mprop−o(m) = 6m−o(m),

or 3m3 + · · ·+ 5m5 + 7m7 + · · ·+ kmk = 6m 6=6 − o(m) (≤ 6m),

where m 6=6 = m3 + · · · + m5 + m7 + · · · + mk. Let v, e, n = mprop denote the
numbers of vertices, edges, and facets of the tiling of H by the proper convex
polygons Dij. Proposition (3.30) shows that

3v = 3m3 + · · ·+ kmk + vbd + 2vH , 2e = 3m3 + · · ·+ kmk + ebd,

where vbd, vH , ebd are the numbers of vertices of the tiling in the relative interiors
of the edges of H, of the vertices of H, and of the edges of the tiling on bdH,
respectively. Euler’s polytope formula then yields that

6 = 6v − 6e+ 6n = −(3m3 + · · ·+ kmk) + 6n+ 2vbd + 4vH − 3ebd.

Now, noticing that (3.33), (3.34) and vH ≤ 6 imply that n = mprop = m− o(m)
and 2vbd + 4vH − 3ebd − 6 = o(m), proposition (3.35) follows.

(3.36) Let D, E be regular polygons with center o and such that D ⊂ E and the
circumcircle of D contains the incircle of E and vice versa. Then

1

4
≤ |D|
|E|

≤ 4,

as elementary calculations show. The fact that f satisfies the growth condition
and thus is strictly increasing implies the next result.

(3.37) Let D, E be regular polygons with center o and such that D ⊂ E and the
circumcircle of D is contained in the interior of the incircle of E. Then
there are λ > 1 > µ > 0 such that

λD ⊂ µE, λD 6⊂ intµE, |D|+ |E| = |λD|+ |µE|,

M(λD, o) +M(µE, o) < M(D, o) +M(E, o).

After these preparations we prove that

(3.38) m 6=6 = m3 + · · ·+m5 +m7 + · · ·+mk = o(m).

Assume, on the contrary, that (3.38) does not hold. Then

(3.39) m 6=6 ≥ constm for infinitely manym.

Only such m will be considered. (3.32), (3.31), (3.36), (3.37) and (3.33) imply
that
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(3.40) (m+ o(m))M(
1

m
, 6) ≥M(b31, 3) + · · ·+M(bkmk

, k), where

b31 + · · ·+ bkmk
= 1 and

1

5m
≤ bij ≤

5

m
for all sufficiently largem.

It follows from (3.35) and (3.39) that the average number i 6=6 of vertices of the
non-hexagonal polygons Dij satisfies

(3.41) i 6=6 =
1

m 6=6

(3m3 + · · ·+ 5m5 + 7m7 + · · ·+ kmk)

{
≤ 6
→ 6, asm→∞.

Let m<6 = m3 + · · · + m5, m>6 = m7 + · · · + mk. The cases m<6 = 0 and
m>6 = 0 for infinitely many m are excluded by (3.41). Thus we may assume that
m<6, m>6, m 6=6 = m<6 +m>6 > 0 for all sufficiently large m. Consider only such
m. Let

(3.42) b6 =
1

m6

(b61 + · · ·+ b6m6) form6 > 0 and b6 =
1

m
otherwise,

b<6 =
1

m<6

(b31 + · · ·+ b5m5), i<6 =
1

m<6

(3m3 + · · ·+ 5m5),

b>6 =
1

m>6

(b71 + · · ·+ bkmk
), i>6 =

1

m>6

(7m7 + · · ·+ kmk),

b 6=6 =
1

m 6=6

(m<6b<6 +m>6b>6), i 6=6 =
1

m 6=6

(m<6i<6 +m>6i>6).

By (3.40),

(3.43)
1

5m
≤ b<6, b 6=6, b>6 ≤

5

m
, i<6 ≤ 5, i>6 ≥ 7.

Consider the line segment [(b<6, i<6), (b>6, i>6)] and parametrize it in the form:
(a+ bv, v) : i<6 ≤ v ≤ i>6. Clearly,

(3.44)
1

5m
≤ a+ bv ≤ 5

m
for 5 ≤ v ≤ 7 and a+ bi<6 = b<6, a+ bi>6 = b>6.

This, combined with (3.12) and (3.2), shows that

(3.45)
d2

dv2
M(a+ bv, v) = Maa(a+ bv, v)b2 + 2Mav(a+ bv, v)b+Mvv(a+ bv, v)

≥ const
1

m
g(

1

m
) for all sufficiently large m and for 5 ≤ v ≤ 7.

Next it will be proved that

(3.46) (1− λ)M(a+ 5b, 5) + λM(a+ 7b, 7) ≥ (1 + const)M(a+ bv, v)

for all sufficiently large m and for 5.5 ≤ v = 5(1− λ) + 7λ ≤ 6.5.

To see this note first that (3.45) implies the following:
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M(a+ bi2, i2) = M(a+ bv, v) +
d

dv
M(a+ bv, v)(i2 − v)

+
1

2

d2

dv2
M(a+ b(v + ϑ2(i2 − v), (v + ϑ2(i2 − v))(i2 − v)2

≥M(a+ bv, v) +
d

dv
M(a+ bv, v)(i2 − v) + const

1

m
g(

1

m
)(i2 − v)2

for all sufficiently largem and for 5 ≤ v ≤ 7 where i2 = 5 or 7.

This together with 5.5 ≤ v = 5(1 − λ) + 7λ ≤ 6.5, (3.44), (3.8) and (3.2) then
yields (3.46):

(1− λ)M(a+ 5b, 5) + λM(a+ 7b, 7)

≥M(a+ bv, v) + 0 + constmg(
1

m
) ≥ (1 + const)M(a+ bv, v)

for all sufficiently large m and for 5.5 ≤ v = 5(1− λ) + 7λ ≤ 6.5.

Next we prove that

(3.47) (1− µ)M(a+ bi<6, i<6) + µM(a+ bi>6, i>6) ≥ (1 + const)M(a+ bv, v)

for all sufficiently large m and for 5.5 ≤ v = (1− µ)i<6 + µi>6 ≤ 6.5.

Given µ, choose λ such that v = (1− µ)i<6 + µi>6 = 5(1− λ) + 7λ. Since M( , )
is convex by (3.5), propositions (3.46) and (3.44) then yield (3.47).

¿From (3.40), (3.5), (3.47), (3.43), (3.42), (3.41), (3.5), the fact that mprop =
m6 +m 6=6,m6b6 +m 6=6b 6=6 = 1, (3.33), (3.35) and (3.41) and thus m66+m 6=6i 6=6 =
6mprop − o(m), (3.7), (3.43) and (3.8), we obtain that

(m+ o(m))M(
1

m
, 6) ≥ m6M(b6, 6) +m<6M(b<6, i<6) +m>6M(b>6, i>6)

≥ m6M(b6, 6) +m 6=6(
m<6

m 6=6

M(b<6, i<6) +
m>6

m 6=6

M(b>6, i>6))

≥ m6M(b6, 6) +m 6=6M(b 6=6, i6=6)+ const m 6=6M(b 6=6, i6=6)

≥ (m6+m 6=6)M(
1

m6 +m 6=6

(m6b6+m 6=6b 6=6),
1

m6 +m 6=6

(m66+m 6=6i 6=6))

+ constm 6=6M(b 6=6, i6=6)

≥ (m− o(m))M(
1

mprop

, 6) + constm 6=6M(b 6=6, i6=6)

≥ (m− o(m))M(
1

m
, 6) + constm 6=6

1

m
g(

1

m
).

By (3.8), this yields a contradiction to (3.39) and thus concludes the proof of
(3.38):

o(m)
1

m
g(

1

m
) ≥ m 6=6

1

m
g(

1

m
).
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3.3.5 The total area of the non-hexagonal Dij is small. If m 6=6 = 0 for all m with
a finite set of exceptions, we are finished. Assume now that m 6=6 > 0 for infinitely
many m. Only such m will be considered in the following. Let

a6 =
1

m6

(a61 + · · ·+ a6m6), a 6=6 =
1

m 6=6

(a31 + · · ·+ a5m5 + a71 + · · ·+ akmk
).

Then we have

(3.48) m 6=6a 6=6 = o(1).

The average area of the polygons Dij is 1/mprop and thus by (3.33) is equal to
1/(m − o(m)). Therefore, if a 6=6 ≤ a6, then a 6=6 ≤ 1/(m − o(m)) and (3.46) is
an immediate consequence of (3.38). Assume now that a 6=6 ≥ 1/(m − o(m)). If
(3.48) does not hold, then

(3.49) m 6=6a 6=6 ≥ const(> 0) for infinitely many m.

Only such m will be considered. Combining (3.32), (3.5), (3.41), (3.7), (3.6)
with a = a6 or a 6=6 and b = 1/m, (3.33), (3.31), (3.33), (3.9), (3.10), (3.2) and
a 6=6 ≥ 1/mprop ≥ 1/m, we see that

(m+ o(m))M(
1

m
, 6) ≥ m6M(a6, 6) +m 6=6M(a 6=6, i6=6)

≥ m6M(a6, 6) +m 6=6M(a 6=6, 6)

≥ (m6 +m 6=6)M(
1

m
, 6) + (m6(a6 −

1

m
) +m 6=6(a 6=6 −

1

m
))Ma(

1

m
, 6)

+
m 6=6

2
Maa(

1

m
+ ϑ(a 6=6 −

1

m
), 6)(a 6=6 −

1

m
)2

≥ (m− o(m))M(
1

m
, 6) + o(1)g(

1

m
)

+ const
m 6=6g(

1
m

+ ϑ(a 6=6 − 1
m

))
1
m

+ ϑ(a 6=6 − 1
m

)
(a 6=6 −

1

m
)2

≥ (m− o(m))M(
1

m
, 6) + o(1)g(

1

m
) + constm 6=6g(

1

m
)
(a 6=6 − 1

m
)2

a 6=6

.

Thus, taking into account (3.8),

(3.50) m 6=6

(a 6=6 − 1
m

)2

a 6=6

≤ o(1).

Since m 6=6 = o(m) by (3.38), inequality (3.49) together with a 6=6(≥ 1/m) shows
that a 6=6 is an arbitrarily large multiple of 1/m. Hence the left hand side in (3.50)
is essentially equal to m 6=6a 6=6. Thus (3.50) and (3.49) are in contradiction and
the proof of (3.48) is complete.

3.3.6 The area of most of the polygons D6j is approximately 1/m. To see this,
we first give an upper estimate:
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(3.51)
1

m
≤ a6j ≤

1

m
+ o(

1

m
) for all j with a6j ≥

1

m
,

with a set of at most o(m) exceptions.

mM(1/m, 6) → 0, M(0, 6) = 0 and M(a, 6) is strictly increasing and continuous
for a ≥ 0. Thus (3.32) implies that a6j all are arbitrarily small for all sufficiently
large m.From (3.32), (3.6) with a = a6j, b = 1/m, (3.33), (3.38), (3.31), (3.48),
(3.33), (3.38), (3.10),the remark just made, (3.9) and (3.2) it follows that

(m+ o(m))M(
1

m
, 6) ≥M(a61, 6) + · · ·+M(a6m6 , 6)

≥ m6M(
1

m
, 6) +Ma(

1

m
, 6)(m6a6 −

m6

m
)

+
1

2

m6∑
j=1

Maa(
1

m
+ ϑj(a6j −

1

m
), 6)(a6j −

1

m
)2

≥ (m− o(m))M(
1

m
, 6) +Ma(

1

m
, 6)(1− o(1)− (1− o(1)))

+ const
∑
{
g( 1

m
+ ϑj(a6j − 1

m
))

1
m

+ ϑj(a6j − 1
m

)
(a6j −

1

m
)2 : a6j ≥

1

m
}

≥ (m− o(m))M(
1

m
, 6) + o(1)g(

1

m
)

+ const g(
1

m
)
∑
{
(a6j − 1

m
)2

a6j

: a6j ≥
1

m
}.

Thus, using (3.8) and putting a6j = (1 + εj)/m, δj = ε2/(1 + εj) for a6j ≥ 1/m
and εj = δj = 0 for a6j < 1/m, we conclude that

(3.52) o(m)
1

m
g(

1

m
) ≥ g(

1

m
)

m6∑
j=1

ε2
j

(1 + εj)m
, or

m6∑
j=1

δj ≤ o(m).

Denote the Landau symbol in (3.52) by ō(m). Let δj > (ō(m)/m)1/2 for precisely
l indices. Then (3.52) implies that l(ō(m)/m)1/2 ≤ ō(m), or l ≤ o(m). Hence
δj = ε2

j/(1 + εj) ≤ (ō(m)/m)1/2 = o(1) for all j with a set of at most (l ≤)o(m)
exceptions. Thus, a fortiori, εj ≤ o(1) for all j with a set of at most o(m)
exceptions. Considering the definition of εj, this concludes the proof of (3.51).

The proof of the corresponding lower estimate

(3.53)
1

m
− o(

1

m
) ≤ a6j ≤

1

m
for all j with a6j <

1

m
,

with a set of at most o(m) exceptions

is slightly longer. We first show that

(3.54)
1

2m
≤ a6j <

1

m
for all j with a6j <

1

m
,

with a set of at most o(m) exceptions.
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Let m6+, m60, m6−, m6−− be the numbers of indices j with a6j > 1/m,= 1/m,
< 1/m, and < 1/2m, respectively. Denote by a6+, . . . , a6−− the averages of the
corresponding areas. (If m2 = 0, let a2 = 1/m, say.) Assume now that (3.54)
does not hold. Then

(3.55) (m6− ≥)m6−− ≥ constm for infinitely many m.

¿From now on we consider only such m. Propositions (3.55), (3.33), (3.38), (3.31)
and (3.48) imply that

(3.56)
1

m
− a6− ≥

const

m
, a6+ −

1

m
≥ const

m
,

(3.57) m6− +m60 +m6+(= m6) = m− o(m), or
m6−

m
+
m60

m
+
m6+

m
= 1− o(1),

m6−a6− +m60a60 +m6+a6+ = 1− o(1),

and thus

(3.58) m6+(a6+ −
1

m
) = −m6−(a6− −

1

m
) + o(1).

The remark in the proof of (3.51) also shows that a6+ is arbitrarily small for
all sufficiently large m. Combining (3.32), (3.5), (3.6) with a = a6−, a6+ and
b = 1/m, (3.57), (3.58), (3.9), (3.10) the remark about a6+, gives:

(m+ o(m))M(
1

m
, 6) ≥ (m6− +m60 +m6+)M(

1

m
, 6) + (m6−(a6− −

1

m
)

+m6+(a6+−
1

m
))Ma(

1

m
, 6)+

m6+

2
Maa(

1

m
+ϑ(a6+−

1

m
), 6)(a6+−

1

m
)2

≥ (m− o(m))M(
1

m
, 6) + o(1)g(

1

m
) + constm6+g(

1

m
)
(a6+ − 1

m
)2

a6+

.

Hence, using (3.8), (3.58) and (3.55), resp. (3.56), it follows that

o(m)
1

m
g(

1

m
) ≥ o(1)g(

1

m
) +m6+(a6+ −

1

m
)
a6+ − 1

m

a6+

g(
1

m
),

or

o(1) ≥ (m6−(
1

m
− a6−) + o(1))

a6+ − 1
m

a6+

, or o(1) ≥
a6+ − 1

m

a6+

.

If a6+ ≥ 2/m we would have o(1) ≥ 1/2. If a6+ ≤ 2/m, (3.56) would imply
o(1) ≥ const follows. Both alternatives are impossible for sufficiently large m,
and so the proof of (3.54) is complete.

In view of (3.54) it is sufficient for the proof of (3.53) to consider those j with
1/2m ≤ a6j < 1/m. In this case the proof of (3.53) is similar to that of (3.51)
and is therefore omitted.

3.3.7 Before proceeding to the final steps of the proof of proposition (3.29), we
combine the results (3.33), (3.38), (3.34), (3.51), (3.53) and (3.48):
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(3.59) Among the m−o(m) proper convex polygons Dij all up to o(m) are 6-gons
contained in intH of area beween 1/m− o(1/m) and 1/m+ o(1/m). The
total area of these 6-gons D6j is 1 − o(1). Call these D6j and also the
corresponding points p6j nice.

Next we show that

(3.60) each of the m − o(m) nice points p6j ∈ Tm, with a set of at most o(m)
exceptions, has the following property: the 6 points p1, . . . , p6 ∈ Tm which
together with p6j determine D6j (i.e. D6j = {x : ‖x− p6j‖ ≤ ‖x− p1‖,
. . . , ‖x − p6‖}) form up to o(1) a regular 6-gon with center p6j and edge
length (2/

√
3m)1/2. A nice point with this property will be called good

and the corresponding points p1, . . . , p6 its neighbors. A point in Tm which
is not good is bad.

For each nice D6j let C6j = C((1− δj)(a6j/2
√

3)1/2, p6j) be the circle with center
p6j and maximum radius contained in D6j. Then (3.32), (3.15), (3.6) with a = a6j

and b = 1/m, and (3.59) imply the following:

(m+ o(m))M(
1

m
, 6) ≥

m6∑
j=1

M(D6j, p6j) ≥
m6∑
j=1

(1 + const δ2
j )M(a6j, 6)

≥
∑
{(1 + const δ2

j )(M(
1

m
, 6) +Ma(

1

m
, 6)(a6j −

1

m
) : D6j nice}

≥ (m− o(m))M(
1

m
, 6) + constM(

1

m
, 6)

∑
{δ2

j : D6j nice}

− (m− o(m))Ma(
1

m
, 6)o(

1

m
),

or

o(m)M(
1

m
, 6) + o(1)Ma(

1

m
, 6) ≥M(

1

m
, 6)

∑
{δ2

j : D6j nice},

or ∑{δ2
j : D6j nice} ≤ o(m)

by (3.8) and (3.9). Since by (3.59) there are m − o(m) nice D6j, we have to
consider m− o(m) numbers δ2

j ≥ 0 with sum at most o(m). An argument similar
to the one in the proof of (3.51) then shows that δ2

j ≤ o(1) for all δ2
j with a set of

at most o(m) exceptions. This together with (3.28) finally yields (3.60).

(3.61) All points of Tm, with a set of at most o(m) exceptions, are very good,
that is, they are good and their neighbors are also good.

By (3.60) the distance of a good point to any of its neighbors is (1±ō(1))(2/
√

3m)1/2

where ō(1) is the Landau symbol o(1) in (3.60). For each bad point q con-
sider all good points contained in the circle C((1 + ō(1))((2/

√
3m)1/2, q). For

each of these good points p consider the circle C((1 − ō(1))(1/2
√

3m)1/2, p) ⊂
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D(Tm, p). These circles do not overlap and all are contained in the circle C((1 +
ō(1))(3/2)(2/

√
3m)1/2, q). Comparing areas, we see that there are at most 9 such

good circles for sufficiently small ō(1), that is, for sufficiently large m. Now can-
cel all bad points and for each bad point q cancel the (at most 9) good points in
C((1 + ō(1))((2/

√
3m)1/2, q). Since by (3.60) there are at most o(m) bad points,

this amounts to the cancellation of at most o(m) points. Clearly, each of the
remaining m − o(m) − o(m) = m − o(m) good points has no bad neighbor and
thus is very good, concluding the proof of (3.61).

Finally,

(3.62) if p is a very good point and p1, . . . , p6 are its neighbors,
then C(1.15(2/

√
3m)1/2, p) ∩ Tm = {p, p1, . . . , p6}.

To see this note that by (3.61) p, p1, . . . , p6 are contained in the circle in (3.62) and
this circle is contained in D(Tm, p)∪D(Tm, p1)∪ . . .∪D(Tm, p6) as an elementary
argument shows. This yields (3.62).

3.3.8 Proposition (3.29) now follows from (3.60)-(3.62). 2

3.4 Proof of Theorem 2 in the Riemannian case

3.4.1 The first part consists in showing that

(3.63) Sn is uniformly distributed in J .

The function f is continuous with f(0) = 0. We use the growth condition to
see that the right side in (3.1) tends to 0 as n→∞. Hence

(3.64)
∫
J

min
p∈Sn

{f(%M(p, x))} dωM(x) → 0.

In the first step of the proof of (3.63) we establish the following proposition,
where for the definitions of Sn(K) and n(K) the reader is referred to (2.10):

(3.65) Let K ⊂ J be Jordan measurable with 0 < ωM(K) < ωM(J). Then∫
K

min
p∈Sn(K)

{f(%M(p, x))} dωM(x) ∼ n(K)M(
ωM(K)

n(K)
, 6).

Since K is Jordan measurable and ωM(K) > 0, we have intK 6= ∅. By (2.10)
and (3.64) the integral in (3.65) tends to 0 as n→∞. An application of (2.9) to
K instead of J then shows that n(K) = #Sn(K) →∞ as n→∞. Thus if (3.65)
did not hold, Theorem 1 applied to K implies that

(3.66)
∫
K

min
p∈Sn(K)

{f(%M(p, x))} dωM(x) ≥ λn(K)M(
ωM(K)

n(K)
, 6)

for infinitely many n, where λ > 1.
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¿From now on only such n will be considered (in the proof of (3.65)). By (2.8)
there is a µ > 1 such that λM(a, 6) ≥ M(µ a, 6) for all sufficiently small a ≥ 0.
Choose a compact Jordan measurable set L ⊂ int(J \K) with

(3.67) ωM(L) > 0 and µωM(K) + ωM(L) ≥ ν ωM(J), where ν > 1.

Since our choice of L implies that the sets K and L have positive distance, we
conclude from (2.9) and (2.10) that

(3.68) K ∩ L = ∅, Sn(K) ∩ Sn(L) = ∅, n(K ∪ L) = n(K) + n(L) ≤ n
for all sufficiently large n.

Using the argument that was applied to K we get n(L) →∞. Hence Theorem 1
applied to L shows that

(3.69)
∫
L

min
p∈Sn(L)

{f(%M(p, x))} dωM(x) ∼> n(L)M(
ωM(L)

n(L)
, 6).

(The symbol ∼> means the following: the limit inferior of the quotient of the
left and the right side in (3.69) as n→∞ is at least 1.) By (2.8) we may choose
ξ > 1 such that M(ν a, 6) ≥ ξ M(a, 6) for all sufficiently small a ≥ 0. Then, using
obvious abbreviations, (2.1), (3.1), (3.68) (2.10), (3.66), (3.69), our choice of µ,
(3.5) and Jensen’s inequality, (3.68), (2.7), (2.6), (3.67) and our choice of ξ yield
a contradiction and thus conclude the proof of (3.65):

nM(
ωM(J)

n
, 6) ∼

∫
J

≥
∫
K

+
∫
L

∼> λn(K)M(
ωM(K)

n(K)
, 6)+n(L)M(

ωM(L)

n(L)
, 6)

≥ n(K)M(
µωM(K)

n(K)
, 6) + n(L)M(

ωM(L)

n(L)
, 6)

≥ (n(K) + n(L))M(
µωM(K) + ωM(L)

n(K) + n(L)
, 6) ≥ nM(

ν ωM(J)

n
, 6)

≥ ξ nM(
ωM(J)

n
, 6) for all sufficiently large n.

In the second step we show that

(3.70) n(J) ∼ n.

Otherwise n(J) < σn for infinitely many n, where 0 < σ < 1. Only such n will be
considered. By (3.13)) there is τ > 1 such that σ nM(a/σ n, 6) ≥ τ nM(a/n, 6)
for each a ≥ 0 and all sufficiently large n. Then (2.1), (3.1), (2.10) with K = J ,
Theorem 1, and (2.7) yield a contradiction, concluding the proof of (3.70):
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nM(
ωM(J)

n
, 6) ∼

∫
J

∼ n(J)M(
ωM(J)

n(J)
, 6) ≥ σ nM(

ωM(J)

σ n
, 6)

≥ τ nM(
ωM(J)

n
, 6) for all sufficiently large n.

We come to the third step:

(3.71) Let K ⊂ J be Jordan measurable. Then,
(i) n(K) = o(n) for ωM(K) = 0,

(ii) n(K) ∼ n for ωM(K) = ωM(J),

(iii) n(K) ∼ ωM(K)

ωM(J)
n for 0 < ωM(K) < ωM(J).

Assume first that ωM(K) = 0. If (3.71 i) did not hold, n(K) ≥ (η − 1)n for
infinitely many n, where η > 1. Only such n will be considered. Choose a
compact Jordan measurable set L ⊂ int (J \K) with ωM(L) > 0. Since K and L
have positive distance, (2.9) and (2.10) imply that

Sn(K) ∩ Sn(L) = ∅, n(K ∪ L) = n(K) + n(L) ≥ η n(L)
for all sufficiently large n.

As before, n(L) →∞. By (3.13) we may choose 0 < ζ < 1 such that η mM(a/ηm, 6)
≤ ζ mM(a/m, 6) for each a ≥ 0 and all sufficiently large m. These remarks to-
gether with (3.65) and (2.7) imply the following contradiction and thus finish the
proof of (3.71 i):

n(L)M(
ωM(L)

n(L)
, 6) ∼

∫
L

∼
∫

K∪L

∼ n(K ∪ L)M(
ωM(K ∪ L)

n(K ∪ L)
, 6)

≤ η n(L)M(
ωM(L)

η n(L)
, 6) ≤ ζ n(L)M(

ωM(L)

n(L)
, 6)

for all sufficiently large n.

Next assume that ωM(K) = ωM(J). Then J = (J \K)∪K where ωM(J \K) = 0.
Hence n ∼ n(J) ≤ n(J \ K) + n(K) = o(n) + n(K) ≤ o(n) + n by (3.70) and
(3.71 i). Thus n(K) ∼ n and the proof of (3.71 ii) is complete. Finally assume
that 0 < ωM(K) < ωM(J). Then L = J \K also satisfies 0 < ωM(L) < ωM(J).
Clearly,

(3.72) n ∼ n(J) ≤ n(K) + n(L)

{
≤ n(J) + n(bdK) + n(bdL) ≤ n+ o(n),
≥ n(J)− n(bdK)− n(bdL) ≥ n− o(n).

by (3.70), (3.71 i), (2.10) and since the Dirichlet-Voronoi cells {x ∈M : %M(p, x) ≤
%M(q, x) for all q ∈ Sn}, p ∈ Sn, all are connected. If (3.71 iii) were not true, then
(3.70) shows that either

(3.73) n(K) ≤ (1− κ)
ωM(K)

ωM(J)
n and thus

ωM(K)

n(K)
− ωM(J)

n
≥ κ

ωM(K)

n(K)
for infinitely many n, where 0 < κ < 1,
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or the corresponding inequality with K replaced by L would be true. In the latter
case exchange K and L in the following argument. We consider only n satisfying
(3.73). From (3.6), (3.9), (3.10), (3.2), and (3.73) we obtain that

(3.74) M(
ωM(K)

n(K)
, 6) = M(

ωM(J)

n
, 6) +Ma(

ωM(J)

n
, 6)(

ωM(K)

n(K)
− ωM(J)

n
)

+
1

2
Maa(

ωM(J)

n
+ ϑ (

ωM(K)

n(K)
− ωM(J)

n
), 6)(

ωM(K)

n(K)
− ωM(J)

n
)2

≥M(
ωM(J)

n
, 6) +Ma(

ωM(J)

n
, 6)(

ωM(K)

n(K)
− ωM(J)

n
)

+ const
g(ωM (J)

n
)

ωM (K)
n(K)

(
ωM(K)

n(K)
− ωM(J)

n
)2,

M(
ωM(L)

n(L)
, 6) ≥M(

ωM(J)

n
, 6) +Ma(

ωM(J)

n
, 6)(

ωM(L)

n(L)
− ωM(J)

n
)

for all sufficiently large n,

Then (2.1), (3.1), J = K ∪ L, K ∩ L = ∅, (2.10), (3.65), (3.74), (3.73), (3.72),
(3.8), (3.9) and (3.2) yield a contradiction:

M(
ωM(J)

n
, 6) ∼ 1

n

∫
J

=
1

n

∫
K

+
1

n

∫
L

∼ n(K)

n
M(

ωM(K)

n(K)
, 6)+

n(L)

n
M(

ωM(L)

n(L)
, 6)

≥ n(K) + n(L)

n
M(

ωM(J)

n
, 6)

+Ma(
ωM(J)

n
, 6)(

ωM(K) + ωM(L)

n
− n(K) + n(L)

n2
ωM(J))

+ const g(
ωM(K)

n
)
n(K)

ωM(K)

ωM(K)2

n(K)2

≥ n− o(n)

n
M(

ωM(J)

n
, 6) +Ma(

ωM(J)

n
, 6)(

1

n
− n+ o(n)

n2
)ωM(J)

+ const g(
ωM(K)

n
)
ωM(K)

n
,

or

o(1)g(
ωM(J)

n
)
ωM(J)

n
≥ g(

ωM(J)

n
)o(

1

n
) + g(

ωM(J)

n
)
ωM(K)

n
,

or o(1) ≥ const> 0 for all sufficiently large n. This concludes the proof of (3.71 iii)
and thus of (3.71).

Now, in order to prove (3.63), we note that for any Jordan measurable set
K ⊂ J with ωM(K) > 0 proposition (3.71) implies that

#(K ∩Sn)

{
≤ #Sn(K) = n(K)
≥ #Sn(K)−#Sn(bdK) = n(K)− n(bdK)

}
∼ ωM(K)

ωM(J)
n.

3.4.2 In the second part we show the following proposition:
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(3.75) Let 0 < ε ≤ 0.1. Then for all sufficiently large n we have: each p ∈ Sn,
with a set of at most εn exceptions, is, up to ε, the center of a regular
6-gon with vertices p1, . . . , p6 ∈ Sn of edge length %n = (2ωM(J)/

√
3n)1/2

and {x : %M(p, x) ≤ 1.1 %n} ∩ Sn = {p, p1, . . . , p6}.

In the following all distances in IE 2 will be with respect to the norm q1/2( . ),

respectively q
1/2
l ( . ), see below.

First, some preparations are needed. In the proof of (3.75) the following
consequence of proposition (3.29) (taking into account (3.62)) will be used.

(3.76) Let 0 < ε < 1. Then for all sufficiently small δ > 0 we have: let q( . ) be a
positive definite quadratic form on IE 2 and Q′ ⊂ IE 2 a unit square. Then
each finite set S ′ ⊂ IE 2 for which m = #S ′ is sufficiently large and for
which∫

Q′

min
r∈S′

{f(q1/2(r − s))} ds (det q)1/2 ≤ (1 + δ)mM(
|Q′|(det q)1/2

m
, 6),

has the following property: each r ∈ S ′, with a set of at most (ε/3)m ex-
ceptions, is up to ε/3 the center of a regular 6-gon with vertices r1, . . . , r6 ∈
S ′, edge length % = (2|Q′|(det q)1/2/

√
3m)1/2 and such that {s : q1/2(r −

s) ≤ 1.15%} ∩ S ′ = {r, r1, . . . , r6}.

Let 0 < ε ≤ 0.1 and choose a corresponding δ > 0 according to (3.76). Let λ > 1
and ν > 1 correspond to it by the growth condition for f and M (see (2.8)), both
so close to 1 that

(3.77) f(λ t) ≤ ν f(t) for all sufficiently small t ≥ 0,

M(λ a, 6) ≤ ν M(a, 6) for all sufficiently small a ≥ 0,

λ2ν2 ≤ 1 + δ, 1.1λ ≤ 1.15

λ
, 1 + ε ≤ 1.1,

((1 +
ε

3
)λ− (1− ε

3
)
1

λ
)(1 +

ε

6
)λ+ (1 +

ε

6
)λ− 1

λ
≤ ε.

For this λ > 1 choose pl ∈ J, Ul, Vl, hl = ”′”, ql( . ), Il, sets Qli ⊂ int Il ⊂
Ul, Snli = Sn(Qli), nli = #Snli, l = 1, . . . , k, i = 1, . . . , il, as in 2.4 such that in
particular (2.11)-(2.14), (2.17 i,ii), (2.19 i,ii) hold, and, in addition, we have

(3.78) ωM(J \
⋃
l,i

Qli) <
ε

3
ωM(J),

(3.79) nli ∼
ωM(Qli)

ωM(J)
n,

where (3.79) is an immediate consequence of (3.71).
Second,
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(3.80) for all sufficiently large n hold∫
Q′
li

min
r∈S′

nli

{f(q
1/2
l (r − s))} ds (det ql)

1/2 ≤ (1 + δ)nliM(
|Q′

li|(det ql)1/2

nli

, 6).

We use (2.17 i) and (2.19 i) to see that Qli, Snli ⊂ Ul. Combining this with the
definition of the integral in M , (2.12), (2.11), the fact that f is non-decreasing,
(3.77), (3.65), (2.13), (3.7) and (3.77) shows that, for all sufficiently large n,∫

Q′
li

min
r∈S′

nli

{f(q
1/2
l (r − s))} ds (det ql)

1/2 ≤ λ
∫

Qli

min
p∈Snli

{f(λ %M(p, x))} dωM(x)

≤ λ2ν nliM(
ωM(Qli)

nli

, 6) ≤ λ2ν nliM(
λ |Q′

li|(det ql)
1/2

nli

, 6)

≤ λ2ν2 nliM(
|Q′

li|(det ql)
1/2

nli

, 6) ≤ (1 + δ)nliM(
|Q′

li|(det ql)
1/2

nli

, 6).

This completes the proof of (3.80).
Third,

(3.81) for all sufficiently large n hold: for all pairs l, i, each of the nli points
r ∈ S ′nli, with a set of at most (2ε/3)nli exceptions, is up to ε/3 the center
of a regular 6-gon with vertices r1, . . . , r6 ∈ S ′nlii of edge length %′nli where

(
2|Qli|(det ql)

1/2

√
3nli

)1/2 ≤ %′nli ≤ (1 +
ε

6
)(

2|Qli|(det ql)
1/2

√
3nli)1/2

)1/2,

{s : q
1/2
l (r − s) ≤ 1.15%′nli} ⊂ Q′

li ,

{s : q
1/2
l (r − s) ≤ 1.15%′nli} ∩ S ′nli = {r, r1, . . . , r6}.

The square Q′
li has edge length 1/kl, see (2.17 ii). Let R′

li ⊂ Q′
li be a parallel

strip of width 2ϑ along bdQ′
li, where ϑ is so small that for Rli = h−1

l (R′
li) we have

ωM(Rli)/ωM(Qli) < ε/6. Then (3.71 iii) applied to Qli and Rli implies that

(3.82) n(Rli) <
ε

6
nli for all sufficiently large n.

By (2.9) and (2.10),

(3.83) each point of S ′nli has distance < ϑ from Q′
nli for all sufficiently large n.

Let Q′ be a square of edge length 1 which is obtained by fitting together edge-
to-edge Q′

nli and suitable k2 − 1 translates of it. Let S ′ be the union of S ′nli

and its corresponding translates, and similarly for S(R)′ and R′. Since S ′nli \
Sn(Rli)

′ ⊂intQ′
li, (3.82) yields,

(3.84) (1− ε

6
)k2

l nli ≤ m = #S ′ ≤ k2
l nli and #S(R)′ ≤ ε

6
k2

l nli

for all sufficiently large n.
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The definition of Q′ and S ′ and propositions (3.80), (3.84) and (2.7) together
imply that∫

Q′

min
r∈S′

{f(q
1/2
l (r−s))} ds (det ql)

1/2 ≤ k2
l

∫
Q′
li

min
r∈S′

nli

{f(q
1/2
l (r−s))} ds (det ql)

1/2

≤ (1 + δ)k2
l nliM(

k2
l |Q′

li|(det ql)
1/2

k2
l nli

, 6) ≤ (1 + δ)mM(
|Q′|(det ql)

1/2

m
, 6)

for all sufficiently large n.

This permits us to apply (3.76). Thus, using (3.84) and the inequality
(1− ε/6)−1/2 ≤ 1 + ε/6, we see that

(3.85) for all sufficiently large n: each of the m points r ∈ S ′, with a set of at
most (ε/3)m exceptions, is up to ε/3 the center of a regular 6-gon with
vertices r1, . . . , r6 ∈ S ′, edge length %′nli = (2|Q′|(det ql)

1/2/
√

3m)1/2 and

such that {s : q
1/2
l (r − s) ≤ 1.15%′nli} ∩ S ′ = {r, r1, . . . , r6}. For %′nli the

following inequalities hold:

(
2|Qli|(det ql)

1/2

√
3nli

)1/2 ≤ %′nli ≤ (1 +
ε

6
)(

2|Qli|(det ql)
1/2

√
3nli

)1/2,

1.15%′nli(1 + ε/3) < ϑ.

¿From the m ≥ (1 − ε/6)k2
l nli points of S ′ cancel first the at most (2ε/6)m(≤

(2ε/6)k2
l nli) exceptional points and, second, the at most (ε/6)k2

l nli points of
S ′(R′), compare (3.84). There remain at least (1−2ε/3)k2

l nli points which consist
of k2

l families. The first such family is contained in Q′
li \ R′

li. It has at least
(1 − 2ε/3)nli points r, each of which has the properties described in (3.85) and
since 1.15%′nli(1 + ε/3) < ϑ also the 6 neighbors of r are contained in Q′

li and by
(3.83) also in S ′nli. The proof of (3.81) is complete.

Applying h−1
l we will show , fourth, that (3.81) implies the following:

(3.86) for all sufficiently large n: for all pairs l, i each of the nli points p ∈ Snli,
with a set of at most (2ε/3)nli exceptions, is up to ε the center of a regular
6-gon with vertices p1, . . . , p6 ∈ Snli of edge length %n = (2ωM(J)/

√
3n)1/2

and {x : %M(p, x) ≤ 1.1%n} ∩ Sn = {p, p1, . . . , p6}.

Let p ∈ Snli be such that r = p′ ∈ S ′nli is one of the at least (1− 2ε/3)nli points
as described in (3.81). Let r1, . . . , r6 ∈ S ′nli be its neighbors and let pj = h−1

l (rj).
Then (3.81), (2.11), and (3.77) imply that

(3.87) for all sufficiently large n:

(i) (1− ε

3
)
1

λ
%′nli ≤

1

λ
q
1/2
l (r − rj)

≤ %M(p, pj) ≤ λq
1/2
l (r − rj) ≤ (1 +

ε

3
)λ%′nli ≤ 1.1λ%′nli

and similarly for %M(pj, pj+1),
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(ii) {x : %M(p, x) ≤ 1.1λ%′nli} ⊂ {x : %M(p, x) ≤ 1.15

λ
%′nli}

⊂ h−1({s : q
1/2
l (r − s) ≤ 1.15%′nli}) ⊂ Qli,

(iii) {x : %M(p, x) ≤ 1.1λ%′nli} ∩ Sn = {p, p1, . . . , p6}.

We estimate %n, defined in (3.86). From (3.85), (2.13) and (3.79) it follows that

%′nli


≤ (1 +

ε

6
)(

2|Qli|(det ql)
1/2

√
3nli

)1/2 ≤ (1 +
ε

6
)λ1/2(

2ωM(Qli)√
3nli

)1/2

≥ (
2|Qli|(det ql)

1/2

√
3nli

)1/2 ≥ λ−1/2(
2ωM(Qli)√

3nli

)1/2 ≤ (1 +
ε

6
)λ%n,

≥ λ−1%n,

or,

(3.88)
1

λ
%n ≤ %′nli ≤ (1 +

ε

6
)λ%n for all sufficiently large n.

Thus we can conclude from (3.87 i) and (3.77) that

(3.89) |%M(p, pj)− %n| ≤ |%M(p, pj)− %′nli|+ |%′nli − %n|

≤ ((1 +
ε

3
)λ− (1− ε

3
)
1

λ
)%′nli + ((1 +

ε

6
)λ− 1

λ
)%n

≤ (((1 +
ε

3
)λ− (1− ε

3
)
1

λ
)(1 +

ε

6
)λ+ (1 +

ε

6
)λ− 1

λ
)%n ≤ ε%n,

|%M(pj, pj+1)− %n| ≤ . . . ≤ ε%n

for all sufficiently large n.

Hence, up to ε, p is the center of a regular 6-gon in Sn with vertices p1, . . . , p6 ∈ Sn

of edge length %n. Finally, from (3.87 ii,iii), (3.88) and (3.89) we obtain {x :
%M(p, x) ≤ 1.1%n} ∩ Sn = {p, p1, . . . , p6}. The proof of (3.86) is complete.

Fifth, we show that

(3.90) for all sufficiently large n each point p ∈ Sn, with a set of at most εn
exceptions, has the properties described in (3.86).

By (3.78)and (3.71) n(J \⋃
Qli) < (ε/3)n and by (2.19 ii) n11 + · · ·+nkik ≤ n for

all sufficiently large n. Cancel from Sn all points of Sn(J \⋃
Qli) and for each pair

l, i the (2ε/3)nli points which do not have the properties described in (3.86). The
remaining (1− ε)n points of Sn clearly have the properties described in (3.86).

(3.86) und (3.90) together yield (3.75).

3.4.3 We finally show that (3.75) implies that

(3.93) Sn is asymptotically a regular hexagonal pattern of edge length (
2ωM(J)√

3n
)1/2.
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Let εk = 1/k for k = 10, 11, . . . , and choose n10 < n11 < . . . such that (3.75)
with ε = εk holds for n ≥ nk. Define g(n) = n, h(n) = 1 for 1 ≤ n < n10

and g(n) = n/k, h(n) = 1/k for nk ≤ n < nk+1. Then (3.75) says that each
p ∈ Sn, with a set of at most g(n) exceptions, is up to h(n) the center of a
regular 6-gon with vertices p1, . . . , p6 ∈ Sn of edge length (2ωM(J)/

√
3n)1/2 and

{x : %M(p, x) ≤ 1.1%n}∩Sn = {p, p1, . . . , p6}. Since g(n) = o(n) and h(n) = o(1),
the proof of (3.91) is complete.

3.4.4 Propositions (3.63) and (3.91) together yield Theorem 2.2

4 Volume approximation of convex bodies

4.1 The result

If the boundary of a convex body C of class C2 with Gauss curvature κC > 0
is endowed with a Riemannian metric, this metric induces, in any tangent plane
of bdC, an associated Euclidean metric. When considering tangent planes, we
always mean this metric. For the Riemannian metric of the first fundamental
form of equi-affine differential geometry see [26], [28]. The ordinary surface area
measure on bdC is denoted by ω.

Theorem 3.Let C be a convex body in IE 3 of class C2 with κC > 0. Let bdC be
endowed with the Riemannian metric of the first fundamental form of equi-affine
differential geometry. Then the following statements hold:

(i) δV (C,Pc
(n)) ∼

5ω2
EA(bdC)

36
√

3n
as n→∞, where ωEA(bdC) =

∫
bd C

κ
1/4
C (x)dω(x).

(ii) Let the convex polytope Pn ∈ Pc
(n) be best approximating of C with respect

to the symmetric difference metric δV for n = 4, 5, . . .. Then, as n → ∞,
the sets C ∩ bdPn are uniformly distributed in bdC and the facets F of
Pn are asymptotically regular hexagons with centers at the points of C ∩ F
and edge length

(
2ωEA(bdC)

3
√

3n
)1/2.

(i) is simply a restatement of the result in Gruber [14]. (i), as well as the remark
about the uniform distribution in (ii), extends to all dimensions, see Gruber [15]
and Glasauer and Gruber [13]. The result (ii) complements analogous results of
Gruber [18] for the Hausdorff metric, the Banach-Mazur distance and a measure
of distance due to Schneider. A result corresponding to Theorem 3 for the mean
width approximation of C by inscribed convex polytopes can be proved along the
lines of the proof of Theorem 3. Karoly Brczky, Jr. has informed us of a result
similar to Theorem 3 for general polytopes instead of circumscribed ones.
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4.2 The proof

4.2.1 We consider two different ways in which bdC can be thought of as a Rie-
mannian 2-manifold. First we can make use of the ordinary second differential
form and, for the second, we use the first differential form of equi-affine differ-
ential geometry. For the latter see [26],[28]. Let %II , %EA, ωII , ωEA denote the
corresponding Riemannian metrics and area measures on bdC. If J ⊂ bdC is
Jordan measurable with respect to ω, then it is also Jordan measurable with
respect to ωEA and vice versa.

The following propositions are either well known or easy to show using the
definitions; ‖.‖ is the ordinary Euclidean norm.

(4.1) dωII(x) = κ
1/4
C (x)dωEA(x) for x ∈ bdC.

(4.2) For each λ > 1 there is δ > 0 such that
1

λ
≤ %II(x, y)

%EA(x, y)κ
1/8
C (x)

≤ λ for x, y ∈ bdC, ‖x− y‖ ≤ δ.

(4.3) For each λ > 1 there is δ > 0 such that

1

2λ
%2

II(x, y) ≤ dist(x,HC(y)) ≤ λ

2
%2

II(x, y) for x, y ∈ bdC, ‖x− y‖ ≤ δ,

where dist(x,HC(Y )) is the distance between x and the support plane
HC(y) of C at y, measured along the normal of bdC through x.

(4.4) For each λ > 1 there is δ > 0 such that
1

λ

∫
U

dist(x,HC(x))dω(x) ≤ V (U,HC(y)) ≤ λ
∫
U

dist(x,HC(y))dω(x)

for all y ∈ bdC and all Jordan measurable neighborhoods U of y of
diameter ≤ δ, where by V (U,HC(y)) we mean the volume of the set of all
points on a normal through a point of U between U and HC(y).

4.2.2 For n = 4, 5, . . ., choose Sn ⊂ bdC with #Sn = n such that

(4.5)
1

2

∫
bd C

min
p∈Sn

{%2
EA(p, x)}dωEA(x) ∼ n

2

∫
Hn

‖x‖2dx =
5ω2

EA(bdC)

36
√

3n
as n→∞.

Since the right side in (4.5) tends to 0, the sets Sn become increasingly dense
in bdC if n is sufficiently large. Thus the intersection of the supporting halfspaces
of C at the points of Sn is a convex polytope Qn, say, for all sufficiently lare n.
The maximum diameter of the facets of Qn tends to 0. Thus (4.5), (4.1)-(4.4)
and the fact that Pn is best approximating imply that

(4.6)
5ω2

EA(bdC)

36
√

3n
∼ 1

2

∫
bd C

min
p∈Sn

{%2
EA(p, x)}dωEA(x)

∼ 1

2

∫
bd C

min
p∈Sn

{%2
EA(p, x)}κ1/4

C dω(x) ∼ 1

2

∫
bd C

min
p∈Sn

{%2
II(p, x)}dω(x)

∼ δV (C,Qn) ≥ δV (C,Pn)) as n→∞.
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Since δV (C,Pn) → 0, the maximum diameter of the facets of Pn tends to 0. Thus
(4.4)-(4.1) and Theorem 1 imply that

(4.7) δV (C,Pn)) ∼ 1

2

∫
bd C

min
p∈C∩bd Pn

{%2
II(p, x)}dω(x)

∼ 1

2

∫
bd C

min
p∈C∩bd Pn

{%2
EA(p, x)}κ1/4

C dω(x)

=
1

2

∫
bd C

min
p∈C∩bd Pn

{%2
EA(p, x)}dωEA(x) ∼>

5ω2
EA(bdC)

36
√

3n
as n→∞.

Propositions (4.6) and (4.7) together imply Theorem 3(i) and, in addition,

1

2

∫
bd C

min
p∈C∩bd Pn

{%2
EA(p, x)}dωEA(x) ∼ 5ω2

EA(bdC)

36
√

3n
as n→∞.

Theorem 2 then shows that C ∩ bdPn is uniformly distributed in bdC and
asymptotically forms a regular hexagonal pattern in bdC of edge length equal to
(2ωEA(bdC)/3

√
3n)1/2 with respect to the Riemannian metric of the first fun-

damental form of equi-affine differential geometry. Elementary arguments now
imply that each p ∈ C∩bdPn, with a set of at most o(n) exceptions, is up to o(1)
the center of a regular hexagonal facet of Pn of edge length (2ωEA(bdC)/

√
3n)1/2

with respect to the associated Euclidean metric in the plane containing the facet.
This concludes the proof of Theorem 3(ii).2

5 The isoperimetric problem for polytopes in

Minkowski spaces

5.1 The result

Theorem 4. Let I be an isoperimetrix in IE 3 of class C2 with positive Gauss cur-
vature. Let bd I be endowed with the Riemannian metric of the first fundamental
form of equi-affine differential geometry. For n = 4, 5, . . . , let Pn be a convex poly-
tope in IE 3 with n facets and minimum isoperimetric quotient SI(Pn)3/V (Pn)2.
Then the following are true:

(i)
SI(Pn)3

V (Pn)2
∼ 27V (I) +

15ω2
EA(bd I)

4
√

3n
as n→∞.

(ii) By replacing Pn by a homothetic copy, if necessary, we may assume that Pn

is circumscribed to I for n = 4, 5, . . . Then, as n → ∞, the set I ∩ bdPn

is uniformly distributed in bd I and the facets F of Pn are asymptotically
regular hexagons with center I ∩ F and edge length

(
2ωEA(bd I)

3
√

3n
)1/2.
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(i) and the statement in (ii) about the uniform distribution of I ∩ Pn in bd I
extend to all dimensions. This can be proved using results of Gruber [15] and
Glasauer and Gruber [13].

5.2 The proof

Diskant’s result [5] allows us to assume that Pn is circumscribed to I. Using
the definitions of SI( . ) and V ( . ), we have, as in the Euclidean case, SI(Pn) =
3V (Pn). Thus

(5.1)
SI(Pn)3

V (Pn)2
= 27V (Pn).

Hence, since Pn minimizes the isoperimetric quotient, it must have minimum
volume among all convex polytopes with at most n facets and which are circum-
scribed to I. Equality (5.1) together with Theorem 3 thus yields Theorem 4.
2

6 Optimal numerical integration formulas

In this section we assume that M is is of class C3 with metric tensorfield of class
C2, compare section 2.

6.1 The result

A modulus of continuity is a function f : [0,∞) → [0,∞) such that f(s + t) ≤
f(s) + f(t) for all s, t ≥ 0. Recall the definitions of nodes, weights, errors and
minimum errors from section 1.

Theorem 5. Let f : [0,∞) → [0,∞) be a modulus of continuity which satisfies
the growth condition, let J be a Jordan measurable set in M with ωM(J) > 0 and
let Hf = {g : J → IR : |g(x) − g(y)| ≤ f(%M(x, y)) for all x, y ∈ J}. Then the
following statements hold:

(i) E(Hf , n) = inf
Nn,Wn

{E(Hf , Nn,Wn)} ∼ n
∫

Hn

f(‖x‖)dx as n→∞.

(ii) Let (Nn) and (Wn) be sequences of nodes and weights such that

E(Hf , Nn,Wn) ∼ E(Hf , n) as n→∞.

Then Nn is uniformly distributed and forms asymptotically a regular hexag-
onal pattern in J of edge length

(
2ωM(J)√

3n
)1/2.
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Note that from the proof of Theorem 1 it follows that, in principle, it is pos-
sible to construct sequences (Nn) and (Wn) of nodes and weights such that
E(Hf , Nn,Wn) ∼ E(Hf , n). The statement about the uniform distribution in
(ii) can be extended to all dimensions.

6.2 The proof

In essence, our proof of part (i) follows Babenko [1] but with additional difficulties.

6.2.1 First some preparations:

(6.1) For each point in M there is a (geodesically) convex open neighborhood
N such that the following hold: for any p, q ∈ N, p 6= q, the bisector
BN(p, q) = {x ∈ N : %M(p, x) = %M(q, x)} is Jordan measurable of mea-
sure 0.

Since M is of class C3 with metric tensorfield of class C2, each point of M has an
open neighborhood N in M with the following properties: (i) N is contained in
a Jordan measurable neighborhood. (ii) Any two points x, y ∈ N are connected
by a unique geodesic segment of length %M(x, y) in N ; thus, in particular, N is
convex. (iii) For each p ∈ N the geodesics starting at p cover N \ {p} schlicht.
(iv) For each p ∈ N there is a diffeomorphism Dp : N \ {p} → [0, 2π)× (0,+∞)
such that Dp(N \{p}) ⊃ [0, 2π)× (0, a) for a suitable a > 0 and for each geodesic
G starting at p, the image Dp(G ∩ (N \ {p})) is a vertical line segment of the
form {b} × (0, c). See Brauner [4] and Kobayashi and Nomizu [25].

Now, let p, q ∈ N, p 6= q. By (ii), each geodesic starting at p contains at most
one point of the bisector BN(p, q) and the bisector obviously is closed in N \ {p}.
Thus Dp(BN(p, q)) is closed in Dp(N \{p}) and of Lebesgue measure 0 by Fubini’s
theorem. Thus Dp(BN(p, q)) is Jordan measurable and of measure 0. The latter
implies that BN(p, q) is Jordan measurable in N and of measure 0, concluding
the proof of (6.1). For an alternative proof of (6.1) use our assumption about M
to show that M is an Alexandrov space and the fact that in Alexandrov spaces
bisectors have measure 0. The latter is a consequence of a result of Shiohama
and Tanaka [30].

(6.2) Let Nn = {p1, . . . , pn} ⊂ J . If Nn is sufficiently dense in the interior of J ,
intJ , then the Dirichlet-Voronoi cells

Di = DM(Nn, pi) = {x ∈ J : %M(pi, x) ≤ %M(pj, x) for each pj ∈ Nn}

are Jordan measurable sets which tile J .

Consider a finite cover of cl J by neighborhoods as described in (6.1). Then, if
Nn is sufficiently dense in intJ , each Di and all points pj ∈ Nn which are needed
to define it, are contained in one of these neighborhoods, say N . The boundary
bdDi then consists of subsets of bisectors BN(pi, pj) and of subsets of bd J . By
(6.1) and since J is Jordan measurable, it follows that each Di has boundary of
measure 0 and thus is Jordan measurable. In addition, the overlap with any other
Dj (is empty or) has measure 0. The proof of (6.2) is complete.

41



(6.3) Let Nn = {p1, . . . , pn} ⊂ J be sufficiently dense in intJ and let Wn =
{w1, . . . , wn} ⊂ IR . Then

E(Hf , Nn,Wn) ≥ E(Hf , Nn,W n) =
∫
J

min
p∈Nn

{f(%M(p, x))} dωM(x),

where W n = (w1, . . . , wn) with wi = ωM(Di).

We assume that Nn is so dense in intJ , that (6.2) holds. Then the definition of
E(Hf , Nn,W n), proposition (6.2), the fact that the function min{f(%M(pi, x)) :
pi ∈ Nn} is in the classHf , is 0 at the points pi, and the definition ofE(Hf , Nn,Wn)
together imply that

(6.4) E(Hf , Nn,W n) = sup
g∈Hf

{|
∫
J

g(x) dωM(x)−
n∑

i=1

wig(pi)|}

≤ sup
g∈Hf

{
n∑

i=1

∫
Di

|g(x)− g(pi)| dωM(x)} ≤
n∑

i=1

∫
Di

f(%M(pi, x)) dωM(x)

=
∫
J

min
pi∈Nn

{f(%M(pi, x))} dωM(x) ≤ E(Hf , Nn,Wn).

This confirms the inequality in (6.3). Putting Wn = W n in (6.4), equality holds
throughout, which yields the equality in (6.3).

6.2.2 For the proof of Theorem 5(i) note that E(Hf , n) → 0 as n → ∞. Thus
for all sufficiently large n it is sufficient to consider in the definition of E(Hf , n)
only such sets of nodes Nn which are sufficiently dense in intJ in the sense of
proposition (6.3). Then

E(Hf , n) = inf
Nn,Wn

E(Hf , Nn,Wn)) = inf
Nn
E(Hf , Nn,W n)

= inf
Nn
{
∫
J

min
p∈Nn

{f(%M(p, x))} dωM(x)} for all sufficiently large n.

Now apply Theorem 1.

6.2.3 For the proof of Theorem 5(ii) the fact that E(Hf , n) → 0 as n → ∞
and the assumption of part (ii) imply that Nn is sufficiently dense in intJ in the
sense of (6.3) for all sufficiently large n. Proposition (6.3) and the definition of
E(Hf , n) then show that

E(Hf , n) ∼ E(Hf , Nn,Wn) ≥ E(Hf , Nn,W n)

=
∫
J

min
p∈Nn

{f(%M(p, x))} dωM(x) = E(Hf , Nn,W n) ≥ E(Hf , n)

for all sufficiently large n. This, in turn, implies that,∫
J

min
p∈Nn

{f(%M(p, x))} dωM(x) ∼ E(Hf , n).

Combining this with (i) and Theorem 2 yields (ii) and thus concludes the proof
of Theorem 5.2
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