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Abstract

Complex extensions of the Petty projection inequality and the Busemann-Petty
centroid inequality are established.
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1 Introduction
One of the basic affine isoperimetric inequalities is Petty’s projection inequality [35]:
Among convex bodies of given volume, the ones whose polar projection bodies have
maximal volume are precisely the ellipsoids.
What makes this inequality particularly interesting is the fact it strengthens and directly
implies the classical isoperimetric inequality, see [27]. This insight was used in [43] to
establish the Zhang-Sobolev inequality, an affine inequality far stronger than the classical
sharp Sobolev inequality. Moreover, even decades after its discovery, Petty’s projection
inequality is still the focus of intense research. For example, it was recently shown
to hold for sets of finite perimeter [39]. Additionally, it was extended to an Orlicz
setting [18,29,32] as well as to rigid motion compatible Minkowski valuations [17].
Projection bodies, the objects under consideration in Petty’s projection inequality, were
introduced by Minkowski. Given a real convex body K (i.e. a non-empty compact
convex subset of Rn), its projection body is the convex body ΠK with support function

hΠK(u) = vol(K|u⊥).

Here, vol(K|u⊥) denotes the (n − 1)-dimensional volume of the orthogonal projection
of K onto the hyperplane orthogonal to u. Projection bodies have not only become a
central notion in convex geometry, they also found applications in Minkowski geometry,
stochastic geometry, geometric tomography, symbolic dynamics, and functional analysis
(see, e.g., [10, 11,14,23,37,38]).
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The special role of projection bodies in the affine geometry of convex bodies was dis-
covered by Ludwig in [25, 26], see also [16]. She proved that projection bodies are the
only Minkowski valuations which are contravariant with respect to the real affine group.
In [3], Abardia and Bernig proved a complex analog of Ludwig’s characterization result.
They classified all Minkowski valuations which are contravariant with respect to the
complex affine group. As it turns out, there exists a whole family ΠC of such valua-
tions. So from a valuation theoretic perspective, each member of this family serves as a
complex analog of the projection body operator.
The operator ΠC is defined as follows. Let K(Cn) denote convex bodies in Cn. For
C ∈ K(C) and K ∈ K(Cn) the complex projection body ΠCK is the convex body with
support function

hΠCK(u) = nV (K,Cu),

where Cu := {cu : c ∈ C} and V (K,Cu) denotes the mixed volume of K and Cu. We
refer the reader to Section 2 for the precise definitions.
In [3], Abardia and Bernig asked for an analogue of Petty’s projection inequality for the
operator ΠC . Our main result answers this question in the symmetric case. (Throughout
we use the convention that 0 · ∞ = 0.)

1.1 Theorem. Let C ∈ K(C) and K ∈ K(Cn). If K is centrally symmetric, then

|K|2n−1|Π∗CK| ≤ |B|2n−1|Π∗CB|. (1)

If dimC = 1, equality holds if and only if K is an ellipsoid. If dimC = 2, equality holds
if and only if K is an Hermitian ellipsoid.

Here, | · | stands for volume, Π∗CK denotes the polar of the complex projection body of
K, and B is the complex unit ball in Cn.
Cauchy’s projection formula states that vol(K|u⊥) = nV (K, [−1, 1]u). So if we compare
the definitions of Π and ΠC , we see that Π equals Π[−1,1]. Hence Theorem 1.1 contains
the classical Petty projection inequality as a special case.
As was mentioned in the beginning, Petty’s projection inequality is stronger than the
isoperimetric inequality. We will show in Section 6 that each of the new inequalities
(1) also strengthens and directly implies the isoperimetric inequality. Note that the
inequalities (1) are invariant with respect to the complex linear group GL(n,C). In
contrast, the complex isoperimetric inequality is invariant merely with respect to the
unitary group. Consequently, the affine inequalities are stronger than their unitary
counterparts. Similar phenomenons were also established in [13,17,19].
The theory of real convex bodies is classical and well established. But complex convex
geometry gained momentum only recently, see e.g. [1,2,4–9,21,22,41,42]. In particular,
complex projection bodies were studied in [24,40]. Theorem 1.1 is part of this program.

A second fundamental affine isoperimetric inequality is the Busemann-Petty centroid
inequality [34]: Among convex bodies of given volume, the ones whose centroid bodies
have minimal volume are precisely the origin symmetric ellipsoids.
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As the Petty projection inequality, also the Busemann-Petty centroid inequality has been
extended significantly [12, 18, 29, 31]. Among other applications, these extensions were
used to prove affine Sobolev inequalities [20, 33] and information theoretic inequalities
[30].
The definition of centroid bodies, the objects under consideration in the Busemann-
Petty centroid inequality, dates back to Dupin. Given a real convex body K ⊂ Rn with
non-empty interior, its centroid body is the convex body ΓK with support function

hΓK(u) = 1
|K|

∫
K
|u · x| dx.

Here, integration is with respect to Lebesgue measure and · denotes the standard Eu-
clidean inner product. Let K ∈ Ko(Cn) denote complex convex bodies with non-empty
interior. With regard to the construction of complex projection bodies and the fact that
|u · x| = h[−1,1]u(x), we define the complex centroid body ΓCK of K ∈ Ko(Cn) as the
convex body with support function

hΓCK(u) = 1
|K|

∫
K
hCu(x) dx.

Integration in this definition is with respect to the push forward of Lebesgue measure
under the canonical isomorphism between R2n and Cn. Our second result is the following
complex Busemann-Petty centroid inequality.

1.2 Theorem. Let C ∈ K(C) and K ∈ Ko(Cn). If K is origin-symmetric, then

|K|−1|ΓCK| ≥ |B|−1|ΓCB|. (2)

If dimC = 1, equality holds if and only if K is an origin symmetric ellipsoid. If dimC =
2, equality holds if and only if K is an origin symmetric Hermitian ellipsoid.

Note that, by construction, Γ equals Γ[−1,1]. Hence Theorem 1.2 contains the classical
Busemann-Petty centroid inequality as a special case.

2 Notation and preliminaries
For a complex number c ∈ C we write c for its complex conjugate and |c| for its norm. If
φ ∈ Cm×n, then φ∗ denotes the conjugate transpose of φ. We denote by · the standard
Hermitian inner product on Cn being conjugate linear in the first argument, i.e. x · y =
x∗y for all x, y ∈ Cn. B stands for the complex unit ball {c ∈ Cn : c · c ≤ 1} and Sn for
the complex unit sphere {c ∈ Cn : c · c = 1}. We write ι for the canonical isomorphism
between Cn (viewed as a real vector space) and R2n, i.e.

ι(c) = (<[c1], . . . ,<[cn],=[c1], . . . ,=[cn]), c ∈ Cn,

where < and = are the real and imaginary part, respectively. Note that

<[x · y] = ιx · ιy (3)
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for all x, y ∈ Cn, where the inner product on the right hand side is the standard Euclidean
inner product on R2n.
Let φ ∈ GL(n,C) be decomposed in its real and imaginary part, i.e. φ = <[φ] + i=[φ].
The real matrix representation R[φ] ∈ GL(2n,R) of φ is the block matrix

R[φ] =
(
<[φ] −=[φ]
=[φ] <[φ]

)
.

It is not hard to show that

| detφ|2 = |detR[φ]| (4)

as well as

ι(φx) = R[φ]ιx. (5)

Next, we turn to basics from convex geometry. Throughout, let K,L ∈ K(Cn) be convex
bodies. K is an ellipsoid if

K = {x ∈ Cn : ιx · φιx ≤ 1}+ t

for some positive definite symmetric matrix φ ∈ GL(2n,R) and some t ∈ Cn. A special
class of ellipsoids are Hermitian ellipsoids. K is an Hermitian ellipsoid if

K = {x ∈ Cn : x · φx ≤ 1}+ t

for a positive definite Hermitian matrix φ ∈ GL(n,C) and a t ∈ Cn. Note that K is an
Hermitian ellipsoid if and only if K = ψB + t for some ψ ∈ GL(n,C) and a t ∈ Cn.
The volume |K| of K is defined as the 2n-dimensional Lebesgue measure of ιK, i.e.
|K| := |ιK|. Note that, by (5), |φK| = |ι(φK)| = |R[φ]ιK|. Thus relation (4) implies

|φK| = | detφ|2|K| (6)

for each φ ∈ GL(n,C). In particular we have

|cK| = |c|2n|K| (7)

for all c ∈ C.
In the sequel, we collect complex reformulations of well known results from convex
geometry. These complex versions can be directly deduced from their real counterparts
by an appropriate application of ι. The standard references for these real results are the
books by Gardner [14], Gruber [15], and Schneider [36].
The convex body K is uniquely determined by its support function hK : Cn → R, where

hK(x) = max{<[x · y] : y ∈ K}.

It is an easy consequence of (3) that
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hK = hιK ◦ ι, (8)

where hιK is the usual real support function, i.e. hL(x) = max{x · y : y ∈ L} for
a convex body L ⊂ R2n and x ∈ R2n. Moreover, the definition of support functions
directly implies

hλK = λhK (9)

for all λ ≥ 0, as well as

hφK = hK ◦ φ∗ (10)

for all φ ∈ GL(n,C).
Given two real numbers c, d ≥ 0, the Minkowski sum cK + dL is defined via

cK + dL = {ck + dl : k ∈ K and l ∈ L},

or equivalently,
hcK+dL = chK + dhL.

In particular, the central symmetral ∆K of K is given by ∆K = 1
2K + 1

2(−K). Clearly,

∆(Cu) = (∆C)u (11)

for all C ∈ K(C) and u ∈ Cn.
The support function of an origin-symmetric body C ∈ K(C) can be written as an
integral over the unit circle. In fact, every origin-symmetric planar convex body is a
centered zonoid, and hence there exists a finite even Borel measure µC on S1 such that

hC(u) =
∫
S1
h[−u,u] dµC (12)

for every u ∈ S1. We therefore call µC the complex generating measure of C. The
measure µC is actually unique. This follows from the following general result: If µ is a
signed finite even Borel measure on Sn, then∫

Sn
h[−u,u]dµ = 0 for every u ∈ Sn ⇐⇒ µ = 0. (13)

The complex surface area measure SK of K is the Borel measure on Sn defined for every
Borel set ω ⊂ Sn by

SK(ω) = H2n−1(ι{x ∈ K : ∃u ∈ ω with <[x · u] = hK(u)}).

Here, H2n−1 stands for (2n−1)-dimensional Hausdorff measure on R2n. It is not difficult
to show that surface area measures are translation invariant and

ScK(ω) = SK(c̄ ω) (14)
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for all c ∈ S1 and each Borel set ω ⊂ Sn. Up to translations, a body K ∈ Ko(Cn) is
uniquely determined by its surface area measure, i.e.

SK = SL ⇐⇒ K = L+ t for some t ∈ Cn. (15)

Together with Minkowski’s existence theorem for surface area measures, this allows us
to define the complex Blaschke body ∇K as the unique origin-symmetric convex body
with

S∇K = 1
2SK + 1

2S−K .

From (14) and (15) it follows that for all c ∈ S1

∇(cK) = c∇K. (16)

Moreover, by (15) we have

K = L+ t for some t ∈ Cn and L = −L =⇒ ∇K = L. (17)

The complex mixed volume V (K,L) of two bodies K and L is defined as

2nV (K,L) = lim
ε→0+

|K + εL| − |K|
ε

.

By our definition of volume we have

V (K,L) = V (ιK, ιL), (18)

where the mixed volume on the right hand side is the usual real mixed volume in R2n.
Obviously,

V (K,K) = |K|, (19)

and if φ ∈ GL(n,C), then (6) implies

V (φK, φL) = |detφ|2V (K,L). (20)

Cauchy’s projection formula states that the volume of an orthogonal projection can be
expressed as a special mixed volume. More precisely,

vol(ιK|(ιu)⊥) = nV (ιK, [−1, 1]ιu), (21)

for all u ∈ Sn. The last fact for mixed volumes we want to mention is the representation

V (K,L) = 1
2n

∫
Sn
hLdSK . (22)

We conclude this section with a few remarks on polar sets. Given M ⊂ Cn, its polar set
M∗ is defined by
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M∗ = {x ∈ Cn : <[x · y] ≤ 1 for all y ∈M}.
It is easy to see that

(φM)∗ = φ−∗M∗, (23)
and in particular, for every λ > 0,

(λM)∗ = λ−1M∗. (24)
Let K ∈ K(Cn) contain the origin in its interior. Then K∗ belongs to K(Cn) and also
contains the origin in its interior. Moreover, K can be described not only by its support
function, but also by its radial function. The latter is the function ρK : Cn\{0} → R
with

ρK(x) = max{λ ≥ 0 : λx ∈ K}.
On Cn\{0} we have

ρK∗ = h−1
K . (25)

Finally, the volume of K can be written by the polar formula for volume as

|K| = 1
2n

∫
Sn
ρ2n
K dσ, (26)

where σ stands for the the push forward with respect to ι−1 of H2n−1 on the (2n− 1)-
dimensional Euclidean unit sphere.

3 A characterization of Hermitian ellipsoids
We begin with the following symmetry property of Hermitian ellipsoids.
3.1 Lemma. If K ∈ K(Cn) is an Hermitian ellipsoid, then c∇K = ∇K for all c ∈ S1.
Proof. By assumption, there exists a positive definite Hermitian matrix φ ∈ GL(n,C)
and a vector t ∈ Cn such that K = Eφ + t, where

Eφ := {x ∈ Cn : x · φx ≤ 1}.
Since Eφ is origin-symmetric, it follows from (17) that ∇K = Eφ. Hence it suffices to
prove for all c ∈ S1 that cEφ = Eφ. So let c ∈ S1. Clearly,

cEφ = {x ∈ Cn : (c−1x) · φ(c−1x) ≤ 1}.
From the sesquilinearity of the Hermitian inner product we obtain

(c−1x) · φ(c−1x) = (c−1c−1)x · φx = |c−1|2x · φx.

By assumption, c has norm one. Thus c−1 has also norm one which implies cEφ = Eφ,
as desired.
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Our goal is to establish a converse of the last lemma. This will be done in Theorem 3.4.
But in order to do so, we need some preparations.
Let ψ ∈ GL(n,C) be Hermitian. Then x · ψx is real. Combining this with (3) yields
x · ψx = <[x · ψx] = ιx · ι(ψx). By (5) we obtain

x · ψx = ιx · R[ψ]ιx. (27)

Now, let us establish a condition which ensures that a matrix φ ∈ GL(2n,R) is the real
matrix representation of some complex matrix ψ ∈ GL(n,C).

3.2 Lemma. Let φ ∈ GL(2n,R) be a positive definite symmetric matrix such that

φR[c Id] = R[c Id]φ

for some c ∈ C with =[c] 6= 0. Then there exists a positive definite Hermitian matrix
ψ ∈ GL(n,C) with φ = R[ψ].

Proof. Partition φ in four n× n-matrices by

φ =
(
A C
B D

)
.

Moreover, the real matrix representation of R[c Id] equals

R[c Id] =
(
<[c]Id −=[c]Id
=[c]Id <[c]Id

)
.

Performing the matrix multiplications in our assumption φR[c Id] = R[c Id]φ with the
above representations gives(

<[c]A+ =[c]C <[c]C −=[c]A
<[c]B + =[c]D <[c]D −=[c]B

)
=
(
<[c]A−=[c]B <[c]C −=[c]D
<[c]B + =[c]A <[c]D + =[c]C

)
.

Comparing the upper left entries proves C = −B, whereas comparing the lower left
entries proves A = D. Thus

φ =
(
A −B
B A

)
, (28)

which proves that φ = R[ψ] where ψ = A+ iB. Since φ ∈ GL(2n,R), we infer from (4)
that ψ ∈ GL(n,C).
Next, let us show that ψ is Hermitian. Since φ is supposed to be symmetric, i.e. φ = φt,
representation (28) implies (

A −B
B A

)
=
(
At Bt

−Bt At

)
.

Thus A = At as well as B = −Bt. If we combine this with the definition of ψ we get
ψ = A+ iB = At − iBt = ψ∗. Hence ψ is Hermitian.
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It remains to show that ψ is positive definite. From (27) we know that x ·ψx = ιx ·φιx.
Since, by assumption, φ is positive definite, ψ is therefore also positive definite.

Let φ ∈ GL(2n,R) be a positive definite symmetric matrix. Then

Eφ := {x ∈ Cn : ιx · φιx ≤ 1}

is an origin-symmetric ellipsoid. The next lemma proves that the defining matrix φ of
Eφ is uniquely determined.

3.3 Lemma. Let φ, ψ ∈ GL(2n,R) be positive definite and symmetric. Then

Eφ = Eψ ⇐⇒ φ = ψ.

Proof. First, note that for an arbitrary symmetric θ ∈ GL(2n,R) and k, l = 1, . . . , 2n,

∂

∂xk∂xl
x · θx = ∂

∂xk∂xl

2n∑
s,t=1

θstxsxt = 2θkl. (29)

Now assume that Eφ = Eψ, since the other direction is trivial. Then ρEφ = ρEψ . It
follows easily from the definition of radial functions that for all x ∈ R2n\{0}

ρEφ(ι−1x) = (x · φx)−1/2 and ρEψ(ι−1x) = (x · ψx)−1/2.

Hence x · φx = x · ψx for all x ∈ R2n. Differentiating this equation with respect to xk
and xl implies, by (29), that φkl = ψkl for all k, l = 1, . . . , 2n. Thus φ = ψ.

We are now in a position to establish the desired characterization of Hermitian ellipsoids.

3.4 Theorem. Let K ∈ K(Cn) be an ellipsoid. Then K is Hermitian if and only if
c∇K = ∇K for some c ∈ S1 with =[c] 6= 0.

Proof. First, assume that K is Hermitian. Then the assertion is an immediate conse-
quence of Lemma 3.1.
Next, suppose that there exists a c ∈ S1 with =[c] 6= 0 and c∇K = ∇K. Since K is an
ellipsoid, there exists a positive definite symmetric φ ∈ GL(2n,R) and a t ∈ Cn with
K = Eφ + t. By (17) we have

∇K = Eφ. (30)

It follows easily from the definition of Eφ and (5) that

cEφ = ER[c Id]φR[c Id]−1 .

By our assumption and (30) we know that Eφ = cEφ. So by the last equation

Eφ = ER[c Id]φR[c Id]−1 .

Now Lemma 3.3 proves
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φ = R[c Id]φR[c Id]−1

and thus φR[c Id] = R[c Id]φ. Lemma 3.2 reveals that there exists a positive definite
Hermitian matrix ψ ∈ GL(n,C) with φ = R[ψ]. Thus Eφ = ER[ψ] and hence K =
ER[ψ] +t. An application of (27) to the definition of ER[ψ] implies that K is an Hermitian
ellipsoid.

4 Some properties of the complex projection body operator
In this section we collect some basic properties of complex projection bodies which will
be used in the proof of the complex Petty projection inequality. Throughout this section
let C ∈ K(C) and K ∈ K(Cn).
Let us begin with rewriting the definition of ΠC . Indeed, by relation (22) we have

hΠCK(u) = 1
2

∫
Sn
hCu dSK (31)

for all u ∈ Sn. Next, we note a simple homogeneity property of ΠC . From (31) as well
as relation (9) we obtain for all λ ≥ 0

ΠλCK = λΠCK. (32)

Moreover, it was shown in [3] that ΠC is translation invariant and SL(n,C)-contravariant.
The following theorem extends this contravariance to the whole general group GL(n,C).
For φ ∈ GL(n,C), we denote by φ−∗ the inverse of the conjugate transpose of φ.

4.1 Theorem. Let φ ∈ GL(n,C) and t ∈ Cn. Then ΠC(φK + t) = |detφ|2φ−∗ΠCK.

Proof. The definition of mixed volumes immediately implies that they are translation
invariant in their first argument. A glance at the definition of ΠC therefore reveals that
ΠC is also translation invariant.
Now, let φ ∈ GL(n,C). From the definition of ΠC , equality (20), and the fact that
φ−1Cu = Cφ−1u we infer

hΠC(φK)(u) = nV (φK,Cu) = n| detφ|2V (K,φ−1Cu) = n| detφ|2V (K,Cφ−1u).

The definition of ΠC again as well as (9) and (10) give

hΠC(φK)(u) = | detφ|2hΠCK(φ−1u) = h| detφ|2φ−∗ΠCK(u).

Since convex bodies are uniquely determined by their support functions we are done.

A special case of the last theorem is

ΠC(cK) = cΠCK (33)

for each c ∈ S1. Now, we determine the image of ΠC on balls.
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4.2 Theorem. If dimC > 0, then ΠC maps balls to origin-symmetric balls.

Proof. Since ΠC is translation invariant by Theorem 4.1, it suffices to prove the lemma
for an origin-symmetric ball rB with radius r > 0. It is easy to see that SrB = r2n−1σ,
and thus

hΠC(rB)(u) = r2n−1

2

∫
Sn
hCu dσ (34)

for all u ∈ Sn. Now fix some u0 ∈ Sn. Since SU(n) acts transitively on Sn, we can find
for every u ∈ Sn a ϑu ∈ SU(n) with ϑuu0 = u. This implies Cu = ϑuCu0. If we plug
this into (34) and use (10), we get

hΠC(rB)(u) = r2n−1

2

∫
Sn
hCu0 ◦ ϑ∗u dσ.

But σ is SU(n)-invariant, so the right hand side is independent from u and, since dimC >
0, greater than zero. Hence ΠC(rB) is an origin-symmetric ball.

4.3 Theorem. If K ∈ Ko(Cn), then ΠC(∇K) = Π∆CK.

Proof. A special case of (14) is the equality S−K(ω) = SK(−ω) for every Borel set
ω ⊂ Sn. If we plug the definition of∇ into representation (31) and use the just mentioned
fact, then

hΠC(∇K)(u) = 1
4

∫
Sn
hCu(v) + hCu(−v) dSK(v).

From (10) we know that hCu(−v) = h−(Cu)(v). Thus the definition of ∆ implies

hΠC(∇K)(u) = 1
2

∫
Sn
h∆(Cu)(v) dSK(v).

Since, by (11), ∆(Cu) = (∆C)u, a glance at (31) concludes the proof.

4.4 Corollary. If K ∈ Ko(Cn) is centrally symmetric, then ΠCK = Π∆CK.

Proof. By assumption, K is the translate of an origin-symmetric body. From (17) we
infer that ∇K is a translate of K. The translation invariance of ΠC therefore gives
ΠCK = ΠC∇K. Now Theorem 4.3 prove the assertion.

We conclude this section by relating ΠC to the classical projection body operator. Define
ΠK := Π[−1,1]K. By the definition of Π[−1,1], relation (18), and equality (21), we have

hΠK(u) = nV (K, [−1, 1]u) = nV (ιK, [−1, 1]ιu) = vol(ιK|(ιu)⊥)

for all u ∈ Sn. Keeping (8) in mind, we arrive at

ιΠK = ΠιK, (35)

which justifies our notation Π for Π[−1,1].
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Let us also give a more explicit definition of Π. Indeed, the equality h[−1,1]u(v) =
∣∣<[u·v]

∣∣
together with (31) show, for all u ∈ Sn,

hΠK(u) = 1
2

∫
Sn

∣∣<[u · v]
∣∣dSK(v). (36)

Finally, we reformulate a well known injectivity property of projection bodies. Since
∆[−1, 1] = [−1, 1], Theorem 4.3 yields Π∇K = ΠK. So for K,L ∈ Ko(Cn), the equality
ΠK = ΠL holds if and only if Π∇K = Π∇L. It follows from (13) that this happens
precisely if S∇K = S∇L. By (15) this holds if and only if ∇K = ∇L+ t for some t ∈ Cn.
Due the origin-symmetry of Blaschke bodies, t = 0 and we arrive at

ΠK = ΠL ⇐⇒ ∇K = ∇L for all K,L ∈ Ko(Cn). (37)

5 Proof of the complex Petty projection inequality
We begin with rewriting the support function of Cu for C ∈ K(C) and u ∈ C.

5.1 Lemma. Let C ∈ K(C). Then hCu(v) = hC(u · v) for all u, v ∈ Sn.

Proof. If follows from the definition of support functions and the linearity of the Hermi-
tian inner product in the second argument that

hCu(v) = max
c∈C
{<[v · (cu)]} = max

c∈C
{<[(v · u)c]}.

Furthermore, by the conjugate symmetry of the Hermitian inner product, the definition
of the Hermitian inner product in C, and the definition of support functions

hCu(v) = max
c∈C
{<[u · vc]} = max

c∈C
{<[(u · v) · c]} = hC(u · v).

5.2 Lemma. Let C ∈ K(C) be origin-symmetric. Then, for all u, v ∈ Sn,

hCu(v) =
∫
S1

∣∣<[cu · v]
∣∣dµC(c),

where µC is the complex generating measure of C.

Proof. Let u, v ∈ Sn. From (12) we know that

hC(u · v) =
∫
S1
h[u·v,u·v](c)dµC(c).

It is easy to see that h[−w,w](c) =
∣∣<[c · w]

∣∣ for all c, w ∈ C. Thus

hC(u · v) =
∫
S1

∣∣<[c · (u · v)]
∣∣dµC(c). (38)

By the definition of the Hermitian inner product in C and the sesquilinearity of the
Hermitian inner product in Cn
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c · (u · v) = c(u · v) = (cu) · v.

Plugging this into the integrand of (38) gives

hC(u · v) =
∫
S1

∣∣<[cu · v]
∣∣dµC(c).

Combining this with Lemma 5.1 yields the desired representation of hCu(v).

Based on the representation of the last lemma, we will now see that ΠC is an average
over multiples of Π.

5.3 Lemma. Let C ∈ K(C) be origin-symmetric. Then, for u ∈ Sn and K ∈ K(Cn),

hΠCK(u) =
∫
S1
hcΠK(u)dµC(c). (39)

Moreover, the total mass |µC | satisfies

|µC | =
(
|Π∗B|
|Π∗CB|

) 1
2n

.

Proof. By the integral representation (31) and Lemma 5.2 we have

hΠCK(u) = 1
2

∫
Sn
hCu(v)dSK(v) = 1

2

∫
Sn

∫
S1

∣∣<[cu · v]
∣∣dµC(c)SK(v).

Now Fubini’s theorem and (36) yield

hΠCK(u) = 1
2

∫
S1

∫
Sn

∣∣<[(cu) · v]
∣∣SK(v)dµC(c) =

∫
S1
hΠK(cu)dµC(c).

Since, by equality (10), hΠK(cu) = hcΠK(u), we arrive at the desired representation of
hΠCK(u).
It remains to calculate the total mass of µC . By Lemma 4.2, hΠB is constant on Sn.
From (10) we deduce that hcΠB is also constant and hcΠB = hΠB. Consequently, relation
(39) and the homogeneity property (9) yield

hΠCB = |µC |hΠB = h|µC |ΠB.

In other words, ΠCB = |µC |ΠB. Keeping (24) in mind, polarizing gives

Π∗CB = |µC |−1Π∗B.

Taking the volume on both sides and using (7) we obtain the claimed value for |µC |.

We now relate the volume of a general complex projection body Π∗CK to that of Π∗K.
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5.4 Lemma. Let C ∈ K(C) be origin-symmetric with dimC > 0 and K ∈ Ko(Cn).
Then

|Π∗CK| ≤ |µC |−2n|Π∗K|, (40)

with equality if and only if there exists a point d ∈ S1 with c∇K = d∇K for µC-almost
every c ∈ S1.

Proof. From (25) and the polar formula for volume (26) we get

|Π∗CK| =
1

2n

∫
Sn
hΠCK(u)−2ndσ(u).

Since C is assumed to be at least one-dimensional, |µC | > 0, and by (39) we obtain

|Π∗CK| =
|µC |−2n

2n

∫
Sn

[ 1
|µC |

∫
S1
hcΠK(u)dµC(c)

]−2n
dσ(u).

Now an application of Jensen’s inequality, Fubini’s theorem, and the polar formula for
volume (26) give

|Π∗CK| ≤
|µC |−2n−1

2n

∫
Sn

∫
S1
hcΠK(u)−2ndµC(c)dσ(u)

= |µC |
−2n−1

2n

∫
S1

∫
Sn
hcΠK(u)−2ndσ(u)dµC(c)

= |µC |−2n−1
∫
S1
|cΠ∗K|dµC(c).

From (7) we know that |cΠ∗K| = |Π∗K| for all c ∈ S1. This proves (40).
It remains to establish the equality condition. To do so, let us first prove the following
equivalence for K ∈ Ko(Cn):

∀u ∈ Sn : c 7→ hcΠK(u) is constant µC-almost everywhere
⇐⇒ (41)

∃c0 ∈ S1 : hcΠK(u) = hc0ΠK(u) ∀u ∈ Sn and µC-almost all c ∈ S1.

Obviously, the second condition implies the first one. So let us assume that the first
condition holds. Then for each u ∈ Sn there exist a cu ∈ S1 and a Borel set Nu ⊂ S1

with

µC(Nu) = 0 and hcΠK(u) = hcuΠK(u) for all c ∈ N c
u. (42)

Let u ∈ Sn and b ∈ supp(µC). By definition, each open neighborhood of b has positive
µC measure and therefore non-empty intersection with N c

u. So we can find a sequence
(bk)k∈N with bk ∈ N c

u and bk → b. By the continuity of c 7→ hcΠK(u) and (42) we get
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hbΠK(u) = lim
k→∞

hbkΠK(u) = hcuΠK(u) = hcΠK(u)

for all c ∈ N c
u. Since C is at least one dimensional, there exists a c0 ∈ supp(µC) and

N c
u 6= ∅. So for all u ∈ Sn and c ∈ supp(µC) we have

hcΠK(u) = hc0ΠK(u).

But µC(supp(µC)c) = 0, which concludes the proof of equivalence (41) .
Now, assume that equality holds in (40). Inspecting the above derivation of (40), this
happens if and only if for all u ∈ Sn equality holds when Jensen’s inequality is applied.
The equality condition of Jensen’s inequality implies that this is the case if and only if
for all u ∈ Sn the map c 7→ hcΠK(u) is constant µC-almost everywhere. But (41) reveals
that this happens precisely if there exists a c0 ∈ S1 with hcΠK = hc0ΠK for µC-almost
every c, or equivalently, by (33), if Π(cK) = Π(c0K) for µC-almost every c. From (37)
we know that this happens if and only if ∇(cK) = ∇(c0K) for µC-almost every c. Set
d := c0. An application of (16) concludes the proof of the equality conditions.

Before we continue, let us recall the classical real Petty projection inequality.

5.5 Theorem (Petty’s projection inequality). Let K ⊂ R2n be a convex body with
nonempty interior. Then

|K|2n−1|Π∗K| ≤ |ιB|2n−1|Π∗ιB|

with equality if and only if K is an ellipsoid.

Now, we are in a position to prove the complex Petty projection inequality. We first
establish a version where C ∈ K(C) is origin-symmetric and K ∈ K(Cn) is arbitrary.
Theorem 1, formulated for arbitrary C and centrally symmetric K, will be an easy
consequence.

5.6 Theorem. Let C ∈ K(C) be origin-symmetric and K ∈ K(Cn). Then

|K|2n−1|Π∗CK| ≤ |B|2n−1|Π∗CB|. (43)

If dimC = 1, equality holds if and only if K is an ellipsoid. If dimC = 2, equality holds
if and only if K is an Hermitian ellipsoid.

Proof. If K has no interior points, then |K| = 0 and by our convention 0 · ∞ = 0, the
left hand side of (43) is always zero, whereas the right hand side is non-negative. Hence
(43) trivially holds true and we can assume that K ∈ Ko(Cn).
First, suppose that dimC = 0, i.e. C = {0}. Then, by (31), we have ΠCK = {0}. Hence
Π∗CK = Cn and therefore |Π∗CK| =∞. So inequality (43) is again trivially true.
Now, assume that dimC > 0. Polarizing both sides of (35) and using ∗ ◦ ι = ι ◦ ∗ gives

ιΠ∗K = Π∗ιK. (44)
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From inequality (40), the definition of volume, relation (44), and Theorem 5.5 we get

|K|2n−1|Π∗CK| ≤ |µC |−2n|K|2n−1|Π∗K|
= |µC |−2n|ιK|2n−1|ιΠ∗K|
= |µC |−2n|ιK|2n−1|Π∗ιK|
≤ |µC |−2n|B|2n−1|Π∗B|.

Plugging in the value of the total mass |µC | from Lemma 5.3 proves (43).
Let us turn towards the equality conditions. By Lemma 5.4 and the equality conditions
of the real Petty projection inequality, equality occurs in (43) if and only if there exists
a d ∈ S1 such that c∇K = d∇K for µC-almost all c ∈ S1 and ιK is an ellipsoid. By
definition, the latter is equivalent to K being an ellipsoid.
First, suppose that dimC = 1, i.e. C is a segment [−c0, c0] for some c0 ∈ C\{0}.
It suffices to show that the first of the above equality conditions is always true. The
generating measure µC of C is given by

µC = |c0|
2
(
δ−〈c0〉 + δ〈c0〉

)
,

where δ denotes the Dirac measure and 〈c0〉 := c0|c0|−1 stands for the spherical projection
of c0 to the unit circle. Thus the first equality condition holds if and only if −〈c0〉∇K =
〈c0〉∇K. But this is always true since ∇K is origin-symmetric.
Next, suppose that dimC = 2. If K is an Hermitian ellipsoid, then Lemma 3.1 shows
that the above equality conditions hold. It remains to prove that the above equality
conditions imply that K is an Hermitian ellipsoid. The first equality condition implies
the existence of a point d ∈ S1 and a Borel set N ⊂ S1 with µC(N) = 0 such that
c∇K = d∇K for all c ∈ N c. Since dimC = 2, N c contains two non-antipodal points,
i.e. there exist c0, c1 ∈ N c such that c0 6= −c1 and c0∇K = c1∇K. Clearly, c0 and c1
are also non-antipodal. So for c := c0c

−1
1 we have

c∇K = ∇K where c ∈ S1 with =[c] 6= 0.

Now Theorem 3.4 concludes the proof.

Proof of Theorem 1.1. Since K is assumed to be centrally symmetric and B is centrally
symmetric, Corollary 4.4 proves ΠCK = Π∆CK and ΠCB = Π∆CB. So the desired
inequality (1) is equivalent to

|K|2n−1|Π∗∆CK| ≤ |B|2n−1|Π∗∆CB|.

By definition, ∆C is origin-symmetric and hence Theorem 5.6 immediately implies The-
orem 1.1.
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6 Affine vs. unitary inequalities
The isoperimetric inequality states that among bodies of given perimeter, balls have
largest volume. This can be written as( |∂K|

|∂B|

)−2n
|K|2n−1 ≤ |B|2n−1 (45)

for all K ∈ K(Cn), where the surface area |∂K| of K is defined as H2n−1(ι∂K). We
will show that each of our new Petty projection inequalities (1) is stronger and directly
implies the isoperimetric inequality.
Note that the isoperimetric inequality is only invariant with respect to the unitary group,
whereas the complex Petty projection inequalities are invariant with respect to the larger
affine group SL(n,C). Nevertheless, the affine inequalities turn out to be stronger. This
fact will be an easy consequence of the following theorem.

6.1 Theorem. Suppose that C ∈ K(C) has dimC > 0 and is normalized such that
ΠCB = ΠB. For centrally symmetric K ∈ K(Cn)( |∂K|

|∂B|

)−2n
|Π∗B| ≤ |Π∗CK| ≤ |Π∗K|. (46)

Equality holds in the first inequality if and only if ΠCK is a ball. Equality holds in the
second inequality if and only if there exists a point d ∈ S1 such that c∇K = d∇K for
µ∆C-almost every c ∈ S1.

Proof. First, our normalization ΠCB = ΠB is possible due to Theorem 4.2 and equation
(32). Next, let v ∈ Sn. We write v for the vector obtained from v by componentwise
conjugation. As a special case of Theorem 4.2 we deduce that ΠB is a ball and hence
ΠB = hΠB(v)B. By our normalization assumption we have hΠB(v) = hΠCB(v), and
thus ΠB = hΠCB(v)B. If we polarize both sides of the last equation, keep (24) in mind,
take the volume, and solve for hΠCB(v), we obtain

hΠCB(v) =
( |B|
|Π∗B|

)1/2n
. (47)

Lemma 5.1 and the fact that σ is invariant with respect to componentwise conjugation
show ∫

Sn
hCu(v)dσ(u) =

∫
Sn
hC(u · v)dσ(u) =

∫
Sn
hC(u · v)dσ(u).

By the relation u · v = v · u, Lemma 5.1 again, and (31) we have∫
Sn
hCu(v)dσ(u) =

∫
Sn
hC(v · u)dσ(u) =

∫
Sn
hCv(u)dσ(u) = 2hΠCB(v).

If we combine this with (47) then
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1
2

∫
Sn
hCu(v)dσ(u) =

( |B|
|Π∗B|

)1/2n
. (48)

Now, by the polar formula for volume together with the equality 2n|B| = |∂B|, Jensen’s
inequality, integral representation (31), and Fubini’s theorem

|Π∗CK|
|B|

= 1
|∂B|

∫
Sn
hΠCK(u)−2ndσ(u)

≥
( 1
|∂B|

∫
Sn
hΠCK(u)dσ(u)

)−2n

=
( 1

2|∂B|

∫
Sn

∫
Sn
hCu(v) dSK(v)dσ(u)

)−2n

=
( 1

2|∂B|

∫
Sn

∫
Sn
hCu(v) dσ(u)dSK(v)

)−2n
.

Plugging (48) into the last term and using the fact that the total mass of SK equals
|∂K| yields the first inequality of (46). Equality holds if and only if there is equality in
the above application of Jensen’s inequality, i.e. hΠCK is constant. This is equivalent to
ΠCK being a ball.
Let us now prove the second inequality of (46). By Corollary 4.4, ΠCK = Π∆CK. Hence
it suffices to prove

|Π∗∆CK| ≤ |Π∗K|.

But this is an immediate consequence of Lemma 5.4, since |µ∆C | = 1 by our normaliza-
tion and Lemma 5.3.

If we multiply the inequalities (46) with |K|2n−1 and apply Theorem 1.1, then( |∂K|
|∂B|

)−2n
|Π∗B||K|2n−1 ≤ |Π∗CK||K|2n−1 ≤ |Π∗K||K|2n−1 ≤ |B|2n−1|Π∗B|.

Keeping our normalization |Π∗CB| = |Π∗B| in mind, a glance at Theorem 1.1 and (45)
reveals that each complex Petty projection inequality strengthens and directly implies
the isoperimetric inequality. Moreover, the classical Petty projection inequality turns
out to be the strongest inequality. So roughly speaking, the more invariance properties
the inequality has, the stronger it gets.

7 Some properties of the complex centroid body operator
In this section we collect some basic properties of complex centroid bodies which will be
used in the proof of the complex Busemann-Petty centroid inequality. Throughout this
section let C ∈ K(C) and K ∈ Ko(Cn). We begin with rewriting the definition of ΓC . If
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K contains the origin in its interior, then a change to polar coordinates in the definition
of hΓC shows

hΓCK(u) = 1
(2n+ 1)|K|

∫
Sn
hCu ρ

2n+1
K dσ (49)

for every u ∈ Sn. Next, we will show that ΓC intertwines with the complex general linear
group GL(n,C). More precisely, ΓC turns out to be GL(n,C)-covariant.

7.1 Theorem. Let φ ∈ GL(n,C). Then ΓC(φK) = φΓCK.

Proof. From the definition of ΓC and relation (6) together with the transformation for-
mula we get

hΓC(φK)(u) = 1
|φK|

∫
φK

hCu(x) dx = 1
|K|

∫
K
hCu(φx) dx

for all u ∈ Sn. Now (10), the equality φ∗Cu = C(φ∗u), and the definition of ΓC yield

hΓC(φK)(u) = 1
|K|

∫
K
hφ∗Cu(x) dx = 1

|K|

∫
K
hC(φ∗u)(x) dx = hΓCK(φ∗u).

By (10) again we have hΓC(φK) = hφΓCK , and hence ΓC(φK) = φΓCK.

The following theorem describes the image of ΓC on origin-symmetric balls.

7.2 Theorem. If dimC > 0, then ΓC maps origin-symmetric balls to origin-symmetric
balls.

Proof. Let r > 0. From representation (49), the fact that ρrB = r, and (7), we get

hΓC(rB)(u) = r

(2n+ 1)|B|

∫
Sn
hCu dσ

for every u ∈ Sn. As in the proof of Theorem 4.2 if follows that the right hand side
is independent from u and, since dimC > 0, greater than zero. Hence ΓC(rB) is an
origin-symmetric ball.

7.3 Theorem. If K is origin-symmetric, then ΓCK = Γ∆CK.

Proof. Since K is assumed to be origin-symmetric we have

hΓCK(u) = 1
2|K|

∫
K
hCu(x) + hCu(−x) dx.

From (10) we know that hCu(−v) = h−Cu(v). Thus the definition of ∆ implies

hΓCK(u) = 1
|K|

∫
K
h∆(Cu)(x) dx.

Since, by (11), ∆(Cu) = (∆C)u, we are done.
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We conclude this section by relating ΓC to the classical centroid body operator. De-
fine ΓK := Γ[−1,1]K. Let u ∈ R2n. By (8), the definition of Γ[−1,1], and relation
h[−1,1]ι−1u(x) = |<[ι−1u · x]|,

hιΓK(u) = hΓK(ι−1u) = 1
|K|

∫
K
h[−1,1]ι−1u(x) dx = 1

|K|

∫
K
|<[ι−1u · x]| dx.

But by the definition of volume, equality (3), and the definition of the real centroid body

hιΓK(u) = 1
|ιK|

∫
ιK
|<[ι−1u · ι−1x]| dx = 1

|ιK|

∫
ιK
|u · x| dx = hΓιK(u).

Hence we arrive at

ιΓK = ΓιK, (50)

which justifies our notation Γ for Γ[−1,1]. Γ is actually the basis for all operators ΓC ,
provided that C is 1-dimensional. This is the content of our next result.

7.4 Theorem. If C is origin-symmetric and dimC = 1, then ΓC = cΓ for some c ∈ C.

Proof. By our assumption, C is an origin-symmetric line segment. Thus there exists a
d ∈ C\{0} with C = [−d, d] and therefore

hΓCK(u) = 1
|K|

∫
K
h[−1,1](du)(x) dx = hΓK(du).

So (10) proves hΓCK = hdΓK . If we set c := d, the assertion is proved.

8 Proof of the complex Busemann-Petty centroid inequality
It was shown in [28] that once the real Petty projection inequality is established, the real
Busemann-Petty centroid inequality can be obtained as an almost effortless consequence.
We will adapt this clever argument to prove Theorem 1.2.
Let K,L ∈ K(Cn) contain the origin in their interiors. The dual mixed volume Ṽ (K,L)
of K and L is defined by

Ṽ (K,L) = 1
2n

∫
Sn
ρ2n+1
K ρ−1

L dσ.

An application of Hölder’s inequality and the polar formula for volume proves the dual
Minkowski inequality

Ṽ (K,L) ≥ |K|1+1/2n|L|−1/2n, (51)

with equality if and only if K and L are real dilates.
The following lemma provides a connection of ΠC and ΓC in terms of mixed volumes
and their duals. For C ⊂ C we write C̄ := {c̄ : c ∈ C}.
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8.1 Lemma. Let C ∈ K(C) have dimC > 0. Then

V (K,ΓCL) = 2
(2n+ 1)|L| Ṽ (L,Π∗

C̄
K)

for all K,L ∈ K(Cn) containing the origin in their interiors.

Proof. Representation (22) of mixed volumes and (49) prove

V (K,ΓCL) = 1
2n

∫
Sn
hΓCL(u)dSK(u)

= 1
2n(2n+ 1)|L|

∫
Sn

∫
Sn
hCu(v)ρL(v)2n+1dσ(v)dSK(u).

It follows directly from the definition of support functions that hCu(v) = hC̄v(u). This
together with Fubini’s theorem, representation (31), equality (25), and the definition of
dual mixed volumes gives

V (K,ΓCL) = 1
2n(2n+ 1)|L|

∫
Sn
ρL(v)2n+1

∫
Sn
hC̄v(u)dSK(u)dσ(v)

= 1
n(2n+ 1)|L|

∫
Sn
ρL(v)2n+1hΠC̄K(v)dσ(v)

= 1
n(2n+ 1)|L|

∫
Sn
ρL(v)2n+1ρΠ∗

C̄
K(v)−1dσ(v)

= 2
(2n+ 1)|L| Ṽ (L,Π∗

C̄
K).

Let us introduce two abbreviations which contain all terms of the complex Petty projec-
tion and Busemann-Petty centroid inequality, respectively:

pp(C,K) =
(
|K|2n−1|Π∗CK|

)−1(
|B|2n−1|Π∗CB|

)
(52)

and
bpc(C,K) =

(
|K|−1|ΓCK|

)(
|B|−1|ΓCB|

)−1
. (53)

Note that the complex Petty projection inequality is equivalent to pp(C,K) ≥ 1, whereas
the complex Busemann-Petty inequality is equivalent to bpc(C,K) ≥ 1.

8.2 Lemma. For C ∈ K(C) with dimC > 0 and origin-symmetric K ∈ Ko(Cn),

bpc(C,K) ≥ pp(C̄,ΓCK),

with equality if and only if K and Π∗
C̄

ΓCK are real dilates.

Proof. It is enough to prove that

|K|−1|ΓCK| ≥
( 2

2n+ 1

)2n(
|ΓCK|2n−1|Π∗

C̄
ΓCK|

)−1
(54)
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with equality if and only if K and Π∗
C̄

ΓCK are real dilates. Indeed, assume that (54)
holds. By Theorems 4.2 and 7.2, as well as the fact that the polar of an origin-symmetric
ball is an origin-symmetric ball, B and Π∗

C̄
ΓCB are real dilates. So there is equality in

(54) for K = B. This together with the definitions of bpc and pp show that is indeed
enough to prove (54) along with its equality conditions.
So let us turn towards the proof of (54). Note that by assumption K is origin-symmetric
and contains the origin in its interior. Since dimC > 0, also ΓCK contains the origin in
its interior. So from (19) and Lemma 8.1 we get

|ΓCK| = V (ΓCK,ΓCK) = 2
(2n+ 1)|K| Ṽ (K,Π∗

C̄
ΓCK).

The dual Minkowski inequality (51) applied to the right hand side gives

|ΓCK| ≥
2

2n+ 1
(
|K||Π∗

C̄
ΓCK|−1

)1/2n

with equality if and only ifK and Π∗
C̄

ΓCK are dilates. Rearranging terms yields (54).

Before we prove the complex Busemann-Petty centroid inequality, let us state the clas-
sical real version.

8.3 Theorem (Busemann-Petty centroid inequality). Let K ⊂ R2n be a convex body
with nonempty interior. Then

|K|−1|ΓK| ≥ |ιB|−1|ΓιB|

with equality if and only if K is an origin-symmetric ellipsoid.

Proof of Theorem 1.2. First, assume that dimC = 0, i.e. C = {c} for some c ∈ C. Let
u ∈ Sn. Then hCu(x) = <[x · (cu)] for every x ∈ Cn. So by the definition of complex
centroid bodies and the assumption K = −K together with the transformation formula

hΓCK(u) = 1
|K|

∫
K
<[x · (cu)] dx = − 1

|K|

∫
K
<[x · (cu)] dx = −hΓCK(u).

Thus hΓCK = 0 and hence ΓCK = {0} for every origin-symmetric K. Consequently,
inequality (2) holds trivially true.
Next, let dimC = 1. By Theorem 7.3 we can assume that C is origin-symmetric.
Moreover, by Theorem 7.4 and (7) it suffices to prove the assertion for Γ. But by
(50), inequality (2) is equivalent to the classical Busemann-Petty centroid inequality. So
Theorem 8.3 settles the case where dimC = 1.
Finally, let dimC = 2. From Lemma 8.2 and Theorem 1.1 we get

bpc(C,K) ≥ pp(C̄,ΓCK) ≥ 1. (55)

By the definition of bpc(C,K), this immediately implies the complex Busemann-Petty
centroid inequality (2).

22



Assume that there is equality in (2). Then there must be equality in both inequalities
from (55). ThusK must be a dilate of Π∗

C̄
ΓCK and ΓCK must be an Hermitian ellipsoid.

So there exists a φ ∈ GL(n,C) and a t ∈ Cn with ΓCK = φB+t. From Theorems 4.1 and
4.2 as well as (23) we deduce that Π∗

C̄
ΓCK is an origin-symmetric Hermitian ellipsoid.

So K, being a dilate of Π∗
C̄

ΓCK, is an origin-symmetric Hermitian ellipsoid as well.
It remains to show that the equality condition are also sufficient. So assume that K is
an origin-symmetric Hermitian ellipsoid, i.e. K = φB for some φ ∈ GL(n,C). This,
Theorem 7.1, and (6) prove

|K|−1|ΓCK| = |φB|−1|ΓCφB| = |φB|−1|φΓCB| = |B|−1|ΓCB|.
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