
BLASCHKE VALUATIONS

CHRISTOPH HABERL

Abstract. All continuous linearly intertwining symmetric Blaschke valua-
tions on convex bodies are completely classified. It is shown that there is a

unique non-trivial such valuation. On symmetric bodies, this valuation is the

curvature image operator.

1. Introduction

A valuation is a function Z : Q → 〈G,+〉 defined on a class of subsets of Rn with
values in an abelian semigroup 〈G,+〉 which satisfies

(1) Z(K ∪ L) + Z(K ∩ L) = ZK + ZL,

whenever K,L,K ∪ L,K ∩ L ∈ Q. Fundamental geometric quantities have been
characterized as valuations with natural additional properties. The most famous
result in this direction is Hadwiger’s celebrated characterization of the intrinsic
volumes as continuous and rigid motion invariant real valued valuations. (See
e.g. [23], [38], [39] for information on the classical theory of valuations and its
applications to integral and stochastic geometry.) Important recent classifications
of real or complex valued valuations and related results can be found e.g. in [1]–[7],
[10], [20], [21], [27], [31], [32].

In classical convex geometry, the basic additions of convex bodies are Minkowski
and Blaschke addition (see Section 2 for precise definitions). Assuming compatibi-
lity with the general linear group, Ludwig [26], [29] obtained a complete classifi-
cation of Minkowski valuations, i.e. valuations where addition in (1) is Minkowski
addition. Her results establish simple characterizations of fundamental operators
like the projection or centroid body operator (see [15]–[18], [28], [30], [41], [43] for
related results). This raises the natural question of classifying Blaschke valuations,
i.e. valuations where addition in (1) is Blaschke addition.

In this paper a classification is established for all continuous symmetric Blaschke
valuations on convex bodies which are compatible with the general linear group.
It turns out that the only nontrivial example of such a valuation is the curvature
image operator on symmetric bodies.

The curvature image is a central notion in the affine geometry of convex bodies;
see e.g. [24], [35], [36]. It is important for affine isoperimetric inequalities; see e.g.
[33], [37]. In particular, the curvature image is a crucial ingredient in the classical
proof of the Blaschke-Santaló inequality. Moreover, the curvature image is closely
related to affine normals and affine surface area and thus is an important concept
in affine differential geometry (see e.g. [25]).
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In order to state the main result, we collect some notation. A detailed description
of the occurring definitions will be given in Sections 2 and 3. Let Kn denote the
space of convex bodies, i.e. nonempty compact convex subsets of Rn, endowed
with the Hausdorff metric. We write Kn

o ⊂ Kn for convex bodies with nonempty
interior which contain the origin. Origin-symmetric bodies in Kn

o are denoted by
Kn

c . Associated with a convex body K ∈ Kn is its surface area measure S(K, ·). If
ω ⊆ Sn−1 is a Borel set, then S(K,ω) is defined as the (n−1)-dimensional Hausdorff
measure of the set of all boundary points ofK for which there exists an outward unit
normal vector belonging to ω. Suppose that K, L ∈ Kn have nonempty interiors.
Then Minkowski’s existence and uniqueness theorem guarantees the existence of a
convex body K#L ∈ Kn with nonempty interior (unique up to translations) such
that

S(K#L, ·) = S(K, ·) + S(L, ·).
This addition is called Blaschke addition and turns the set Kn

c into an abelian
semigroup which we denote by 〈Kn

c ,#〉. A valuation with respect to the semigroup
〈Kn

c ,#〉 is called symmetric Blaschke valuation. Recent results involving Blaschke
addition can be found e.g. in [8], [12], [19], [22], [34]–[36], and [42].

A convex body K ∈ Kn has curvature function f(K, ·) : Sn−1 → R if its surface
area measure S(K, ·) has f(K, ·) as a density with respect to spherical Lebesgue
measure. The symmetric curvature image ΛcK of K ∈ Kn

o is defined as the unique
body in Kn

c with curvature function

f(ΛcK, ·) = 1
2 ρ(K, ·)

n+1 + 1
2 ρ(−K, ·)

n+1.

Here, ρ(K, ·) : Sn−1 → R denotes the radial function of K, i.e. ρ(K,u) = max{λ ≥
0 : λu ∈ K} for u ∈ Sn−1.

The following definition was crucial for previous characterizations of valuations
within the affine theory of convex bodies. An operator Z : Kn

o → Kn
c is called

linearly intertwining if it is positively homogeneous and satisfies either

(2) Z(φK) = φZK

for every φ ∈ SL(n) and all K ∈ Kn
o , or

(3) Z(φK) = φ−t ZK

for every φ ∈ SL(n) and all K ∈ Kn
o .

Our main result for dimensions n ≥ 3 is the following.

Theorem 1. A map Z : Kn
o → 〈Kn

c ,#〉 is a nontrivial, continuous, and linearly
intertwining symmetric Blaschke valuation if and only if there exists a constant
c > 0 such that

ZK = cΛcK

for every K ∈ Kn
o .

Here, a valuation Z is called trivial, if ZK is a multiple of the Blaschke sum of
K and −K for every K ∈ Kn

o . Note that the symmetric curvature image satisfies
(3) while the trivial Blascke valuation satisfies (2). We are not aware of additional
examples of continuous Blaschke valuations which satisfy (2) or (3) and are not ho-
mogeneous. We remark that Blaschke addition coincides with Minkowski addition
for 2-dimensional bodies. Since characterizations for planar Minkowski valuations
were obtained by Ludwig [29], we confine our attention to dimensions greater or
equal than three.
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2. Preliminaries

We work in Euclidean n-space Rn with n ≥ 3. Let ei, i = 1, . . . , n be the elements
of the standard basis of Rn. The usual scalar product of two vectors x and y ∈ Rn

shall be denoted by x · y. For y ∈ Rn\{o}, the halfspace {x ∈ Rn : x · y ≤ t} is
denoted by H−

y,t. Moreover, let H+
y,t = {x ∈ Rn : x · y ≥ t} and Hy,t = H+

y,t ∩H−
y,t.

For simplicity, we write u− = H−
u,0 and u+ = H+

u,0 as well as u⊥ = Hu,0. The
convex hull of a set A ⊂ Rn will be denoted by [A]. To shorten notation we write
[A,±x1, . . . ,±xm] instead of [A∪{x1,−x1, . . . , xm,−xm}] for A ⊂ Rn, m ∈ N, and
x1, . . . , xm ∈ Rn. Let ‖ · ‖ be the Euclidean norm and denote by Bn := {x ∈ Rn :
‖x‖ ≤ 1} the Euclidean unit ball. The boundary of Bn is denoted by Sn−1. We
write B(o, r) for the Euclidean ball with center at the origin and radius r. Usual
Lebesgue measure on Rn is denoted by V and we abbreviate V (Bn) = κn. For a
Borel measurable function f : Sn−1 → R, let

‖f‖p =
(∫

Sn−1
|f(u)|p du

) 1
p

,

where integration is with respect to spherical Lebesgue measure. The function f is
said to be in Lp(Sn−1) or simply in Lp, if ‖f‖p <∞.

General references for the theory of convex bodies are the books by Gardner
[11], Gruber [14], and Schneider [40]. Associated with a convex body K ∈ Kn is its
support function hK : Rn → R defined by

hK(x) = max{x · y : y ∈ K}.

The support function is positively homogeneous of degree one. We shall denote by
δ the Hausdorff metric on Kn: If K, L ∈ Kn, then δ(K,L) is defined by

δ(K,L) = sup
u∈Sn−1

|hK(u)− hL(u)|.

The Minkowski sum K +L ∈ Kn of two bodies K, L ∈ Kn is the usual vector sum
of K and L. Note that

hK+L = hK + hL.

A valuation Z : Q → 〈Kn,+〉 is called Minkowski valuation. Suppose that K ∈ Kn

contains the origin in its interior. Then the polar body K∗ of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

The support function of K∗ and the radial function of K are related by

(4) hK∗ = ρ−1
K

viewed as functions on the sphere.
As explained in the introduction, a body K ∈ Kn gives rise to an important finite

Borel measure S(K, ·) on the sphere called surface area measure. The following
basic properties of this measure can be found in [40, Chapter 4]. The connection
between surface area measures and the surface area S(K) of a convex body K ∈ Kn

is provided by

(5) S(K,Sn−1) = S(K).

For every λ > 0, we have the homogeneity property

(6) S(λK, ·) = λn−1S(K, ·).
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The measure S(K, ·) is rotation covariant, i.e.

(7) S(ϑK, ϑω) = S(K,ω), for all ϑ ∈ O(n), ω ∈ B(Sn−1).

Here, B(Sn−1) denotes the Borel sets on the sphere Sn−1. Moreover, the surface
area measure is weakly continuous. To be precise, if Kj → K with respect to
Hausdorff distance, then S(Kj , ·) converges weakly to S(K, ·).

Surface area measures have their centroids at the origin and cannot be concen-
trated on any great subsphere. Conversely, Minkowski’s existence theorem (see
e.g. [40, Theorem 7.1.2]) shows that a finite Borel measure on the sphere which
has these two properties is the surface area measure of a certain convex body with
nonempty interior. Moreover, Minkowski’s uniqueness theorem states that two con-
vex bodies with nonempty interior and the same surface area measure are translates
of each other (see e.g. [40, Theorem 7.2.1]). Note that by Minkowski’s existence
and uniqueness results on surface area measures, Blaschke addition is well defined
on the set Kn

c . We need the following stability version due to Diskant [9] (see also
[40, Theorem 7.2.2]) of the above uniqueness result. Let Kn(r,R) denote the set of
convex bodies which contain some ball of radius r > 0 and are contained in some
ball of radius R > r.

Theorem 2. Let 0 < r < R. There exist numbers ε0 > 0 and c, depending only
on n, r, R with the following property. If K, L ∈ Kn(r,R) satisfy

|S(K,ω)− S(L, ω)| ≤ ε

for every ω ∈ B(Sn−1) with some ε ∈ [0, ε0], then

δ(K,L′) ≤ cε
1
n

for a suitable translate L′ of L.

For arbitrary convex bodies K, L ∈ Kn we have∫
Sn−1

hL(u) dS(K,u) = lim
ε→0+

V (K + εL)− V (K)
ε

,

(see e.g. [40, Theorem 5.1.6]). We therefore get

(8)
∫

Sn−1
hL(u) dS(φK, u) = |detφ|

∫
Sn−1

hL(φ−tu) dS(K,u).

for arbitrary φ ∈ GL(n), where detφ denotes the determinant of φ. The cosine
transform of a finite Borel measure µ on Sn−1 is defined by

(Cµ)(x) =
∫

Sn−1
|x · v| dµ(v), x ∈ Rn.

For non-negative Borel measurable f on Sn−1, let C f be the cosine transform of
the absolutely continuous measure (with respect to spherical Lebesgue measure)
with density f . An important property of this integral transform is the following
injectivity behavior. If µ is a signed finite even Borel measure on the sphere, then

(9)
∫

Sn−1
|u · v| dµ(v) = 0 for all u ∈ Sn−1 =⇒ µ = 0,

(see e.g. [11, Theorem C.2.1]). We need the transformation behavior

(10) CS(φK, ·)(x) = |detφ|CS(K, ·)(φ−1x), x ∈ Rn,

of the cosine transform which is the special case of formula (8) for L = [±x].
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The cosine transform gives rise to two fundamental operators in convex geometry
and geometric tomography. The projection body ΠK of K ∈ Kn is the convex body
with support function

hΠK = 1
2 CS(K, ·).

We remark that for a unit vector u ∈ Sn−1 the value of h(ΠK,u) is equal to the
(n− 1)-dimensional volume of the projection of K to the hyperplane orthogonal to
u, i.e.

(11) 1
2 CS(K, ·)(u) = Vn−1(K|u⊥).

For φ ∈ GL(n), we obtain from formula (10) for L = [±x] that

(12) Π(φK) = |detφ|φ−tΠK.

This was first proved by Petty but the proof given here was found by Lutwak [35].
In particular, the projection body operator is positively homogeneous of degree
n − 1. The centroid body ΓK of a compact set K ⊂ Rn which is star-shaped with
respect to the origin is defined by

hΓK = 1
n+1 C ρn+1

K .

We remark that our definition of the centroid body differs from the usual one by a
normalizing factor. A change to polar coordinates proves

h(ΓK,u) =
∫

K

|x · u| dx,

where integration is with respect to Lebesgue measure. This directly yields

(13) Γ(φK) = |detφ|φΓK,

for every φ ∈ GL(n). Therefore, the centroid body operator Γ is positively homo-
geneous of degree n+ 1.

We conclude this section with the precise definition of linearly intertwining op-
erators. Let Q be a subset of the power set of Rn which is closed with respect to
the usual action of the general linear group GL(n). An operator Z : Q → P(Rn),
where P(Rn) denotes the power set of Rn, is called SL(n) covariant, if

Z(φK) = φZK

for all φ ∈ SL(n) and every K ∈ Q. It is called SL(n) contravariant, if

Z(φK) = φ−t ZK

for all φ ∈ SL(n) and every K ∈ Q. Here, φ−t denotes the inverse of the transpose
of φ. We call Z positively homogeneous, if there exists an r ∈ R such that

Z(λK) = λr ZK

for every λ > 0 and every K ∈ Q. Finally, Z is called linearly intertwining if it is
co- or contravariant and positively homogeneous on its domain.
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3. The curvature image

A compact set L ⊂ Rn which is star-shaped with respect to the origin o is
uniquely determined by its radial function ρL : Sn−1 → R defined for u ∈ Sn−1 by
ρL(u) = max{λ ≥ 0 : λu ∈ L}. The set of compact sets which are star-shaped
with respect to the origin and whose radial functions are greater than zero on a set
of positive spherical Lebesgue measure is denoted by Sn. Let L ∈ Sn be origin-
symmetric. By Minkowski’s existence and uniqueness theorem the curvature image
ΛL is defined as the unique origin-symmetric convex body with curvature function

f(ΛL, ·) = ρ(L, ·)n+1.

We emphasize that our definition of the curvature image follows, up to normaliza-
tion, [37]. The curvature image and the symmetric curvature image are related by
the following operator. The (n+ 1)-chordal symmetral ∇̃ : Sn → Sn is defined by

ρn+1

∇̃L
= 1

2 ρ
n+1
L + 1

2 ρ
n+1
−L .

Clearly, Λc equals Λ ◦ ∇̃. The aim of this section is to derive the characterizing
properties (stated in Theorem 1) of Λc. Previously, the curvature image was defined
only on star-shaped sets with continuous radial functions. Since in our context the
domain of Λ is larger, we provide detailed proofs of our claims.

Lemma 1. The symmetric curvature image Λc : Kn
o → 〈Kn

c ,#〉 is a continuous
linearly intertwining symmetric Blaschke valuation.

Before we start with the proof of this lemma we emphasize that, by definition, ΛL
is origin-symmetric, i.e.

(14) ΛL = −ΛL for origin-symmetric L ∈ Sn.

Moreover, if we combine the definitions of projection and centroid bodies, then we
arrive at the crucial factorization property of the centroid body operator

(15) ΓL = cΠΛL for origin-symmetric L ∈ Sn,

with c = 2/(n+ 1) (see [35, Formula 6.12]).

Proof. Suppose that L ∈ Sn is origin-symmetric. Note that ρλL = λρL. From (6)
we therefore get

ΛλL = λ
n+1
n−1 ΛL

for every λ > 0. The SL(n) contravariance of Λ is an immediate consequence of
property (15). Indeed, from (13) and (12) we obtain

cΠΛ(φL) = Γ(φL) = φΓL = cφΠΛL = cΠφ−tΛL.

The injectivity property (9) and the symmetry relation (14) yield

(16) Λ(φL) = φ−tΛL

for every φ ∈ SL(n). Note that

ρφL(u) = ‖φ−1u‖−1ρL(φ−1u/‖φ−1u‖)

for φ ∈ SL(n). Thus we obtain

∇̃(φL) = φ∇̃L.
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Combining this with (16) proves that Λ ◦ ∇̃ is SL(n) contravariant. Similarly, the
homogeneity of Λ ◦ ∇̃ follows from the homogeneity of Λ and ∇̃. Consequently, the
symmetric curvature image Λc is linearly intertwining.

Next, we establish the continuity of Λ ◦ ∇̃ on Kn
o . Let Km → K with respect to

Hausdorff distance as m tends to infinity. Initially, we establish the fact that

(17) ‖ρKm − ρK‖n+1 −→ 0.

Since ρKm
−ρK is uniformly bounded, it suffices to prove the pointwise convergence

|ρKm
(u)−ρK(u)| → 0 for almost every u ∈ Sn−1. If the origin is an interior point of

K, then (17) follows from [13, Lemma 2.3.2]. Suppose that the origin is a boundary
point of K. Let u be a unit vector and λmj = ρKmj

(u) be a convergent subsequence
of ρKm

(u) with limit λ. Moreover, denote by Q(K, o) the support cone of K at o,
i.e.

Q(K, o) =
⋂

v∈N(K,o)

H−
v,0

whereN(K, o) is the set of all outward unit normal vectors ofK at o. If u /∈ Q(K, o),
then there exists a v ∈ Sn−1 such that u · v > 0 and K ⊂ H−

v,0. Since λmju · v ≤
hKmj

(v) for every j, we infer λu · v ≤ 0. Thus λ = 0 = ρK(u). Next, suppose that
u ∈ intQ(K, o). As before, it follows from λmj

u ·v ≤ hKmj
(v) for every j and every

v, that λu · v ≤ hK(v). Consequently, λu ∈ K. Moreover, since λmj
u ∈ bdKmj

for every j, we have λu ∈ bdK. By assumption, u · v < 0 for every outward unit
normal v of K at o and hence λ = ρK(u). In conclusion, ρKmj

(u) → ρK(u) for
every convergent subsequence of ρKm

(u) and every u /∈ bdQ(K, o). This finally
proves (17) because ρKm

(u) → ρK(u) for all u /∈ bdQ(K, o) and bdQ(K, o) has
Lebesgue measure zero being the boundary of a convex set.

From (17) we deduce that the (n+1)-chordal symmetrals of the involved bodies
satisfy

(18) ‖ρ∇̃Km
− ρ∇̃K‖n+1 −→ 0.

Indeed, the reverse triangle inequality for the `2n+1-norm shows

‖ρ∇̃Km
− ρ∇̃K‖n+1 ≤

(
1
2

∥∥|ρKm
− ρK |n+1 + |ρ−Km

− ρ−K |n+1
∥∥

1

) 1
n+1

.

The invariance of the spherical Lebesgue measure with respect to orthogonal maps
now implies

‖ρ∇̃Km
− ρ∇̃K‖n+1 ≤ ‖ρKm

− ρK‖n+1.

In order to establish the continuity of Λ ◦ ∇̃ it is therefore enough to show that
ΛLk → ΛL with respect to Hausdorff distance provided that ‖ρLk

− ρL‖n+1 → 0
for origin-symmetric bodies Lk, L ∈ Sn. In order to apply Theorem 2, we have to
ensure that there exist numbers r and R which are independent of k and satisfy
0 < r < R such that ΛLk ∈ Kn(r,R) for every k ∈ N. This will be done in the
next paragraphs. The positive constants c1, c2, . . . in the following derivation will
be independent of k. By the mean value theorem and Hölder’s inequality we deduce∫

Sn−1
|ρn+1

Lk
− ρn+1

L | du ≤ (n+ 1)
∫

Sn−1
|ρLk

− ρL|(ρn
Lk

+ ρn
L) du

≤ (n+ 1)‖ρLk
− ρL‖n+1

(
‖ρLk

‖n
n+1 + ‖ρL‖n

n+1

)
.
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Since ‖ρLk
− ρL‖n+1 → 0, the reverse triangle inequality shows that ‖ρLk

‖n+1 →
‖ρL‖n+1. Thus there exists a constant c1 with

(19)
∫

Sn−1
|ρn+1

Lk
− ρn+1

L | du ≤ c1‖ρLk
− ρL‖n+1

for every k ∈ N. In particular, by (5), the surface areas of ΛLk are bounded from
above, i.e.

(20) S(ΛLk) ≤ c2, for all k ∈ N.
Next, we establish the curvature image inequality

(21) V (ΛL)n−1 ≥ κ−2
n V (L)n+1

for origin-symmetric L ∈ Sn. For star-shaped sets with positive and continuous
radial functions this was established by Lutwak [37, Section 9]. The proof of (21)
in the general case is similar to that of Lutwak because the involved functionals
admit extensions from continuous to Ln+1 radial functions. Indeed, if we denote by
Kn

co the set of n-dimensional convex bodies whose centroids lie at the origin, then
by (4) and Hölder’s inequality

κ
1
n
n G(ΛL) := inf

{
V (Q)

1
n

∫
Sn−1

hQ∗(u) dS(ΛL, u) : Q ∈ Kn
co

}
= inf

{
V (Q)

1
n

∫
Sn−1

ρ−1
Q (u)ρn+1

L (u) du : Q ∈ Kn
co

}
≥ nV (L)

n+1
n .

Here, G(ΛL) is Petty’s geominimal surface area of ΛL. Since

G(K)n ≤ nnκnV (K)n−1

for arbitrary K ∈ Kn
o (see [37, Section 8]), we obtain (21). Consequently,

V (ΛLk)n−1 ≥ κ−2
n V (Lk)n+1

for every k ∈ N. The polar coordinate formula for volume states

nV (Lk) = ‖ρLk
‖n

n.

By Hölders inequality we know that ‖ρLk
−ρL‖n → 0, and hence ‖ρLk

‖n → ‖ρL‖n.
This implies that

(22) V (ΛLk) ≥ c3 > 0.

We recall that for K ∈ Kn
o the isoperimetric inequality states

S(K)n

V (K)n−1
≥ S(Bn)n

V (Bn)n−1

(see e.g. [14, Theorem 8.7]). If we combine this with (20), then we arrive at

(23) V (ΛLk) ≤ c4.

Summarizing (20), (22), and (23), we proved the existence of positive constants
c2, c3, c4 which are independent of k such that

(24) S(ΛLk) ≤ c2, and c3 ≤ V (ΛLk) ≤ c4.

This implies that ΛLk ∈ Kn(r,R) for all k. Indeed, assume that for every r > 0
there exists a k such that B(o, r) 6⊂ ΛLk. Then we can find a sequence xj , j ∈ N, of
points in Rn such that ‖xj‖ ≤ 1/j but xj /∈ ΛLkj

for every j ∈ N. Thus there exists
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a sequence of unit vectors uj and positive numbers tj such that xj ∈ H+
uj ,tj

and
ΛLkj ⊂ H−

uj ,tj
. Since ΛLkj is centrally symmetric, we also have ΛLkj ⊂ H+

uj ,−tj
.

Denote by (ΛLkj )|u⊥ the image of ΛLkj under the orthogonal projection onto the
hyperplane orthogonal to u. Since the orthogonal projection onto a hyperplane is
Lipschitzian, there exists a constant c5 independent of j such that

V (ΛLkj
) ≤ 2tjVn−1((ΛLkj

)|u⊥j ) ≤ c5tjS(ΛLkj
)

for every j ∈ N. But this contradicts the existence of a lower bound of the volumes
in (24) since tj converge to zero as j tends to infinity. Thus there exists an r > 0
with B(o, r) ⊂ ΛLk for all k. Now, it follows directly from this and the upper
bound for the volumes V (ΛLk) that every body ΛLk has to be contained in a ball
B(o,R) for some R > r independent of k. Hence we proved ΛLk ∈ Kn(r,R) for
every k ∈ N.

Let ε0 and c be as in Theorem 2 and suppose ε ≤ cε
1/n
0 . Choose N ∈ N such

that ‖ρLk
− ρL‖n+1 ≤ c−1

1 c−nεn for every k ≥ N . Then we deduce from (19) that

|S(ΛLk, ω)− S(ΛL, ω)| ≤ c−nεn.

Theorem 2 yields vectors xk ∈ Rn with

δ(ΛLk,ΛL− xk) ≤ ε

for each k ≥ N . But ΛLk as well as ΛL are origin-symmetric, and so the definition
of the Hausdorff metric implies

δ(ΛLk,ΛL) ≤ δ(ΛLk,ΛL− xk).

So we finally proved that the map Λ ◦ ∇̃ is continuous.
The fact that Λc is a Blaschke valuation is a direct consequence of the relations

(25) ρL1∪L2(u) = max{ρL1(u), ρL2(u)}, ρL1∩L2(u) = min{ρL1(u), ρL2(u)},

for two star-shaped sets L1, L2 ∈ Sn. �

4. Proof of the characterization theorem

In order to establish our classification result we proceed as follows. We consider
homogeneous SL(n) co- or contravariant Blaschke valuations Z separately. It turns
out that there exists only one possible degree of homogeneity for Z in each case. For
those Z we deduce that the Minkowski valuations Π ◦ Z can be extended from Kn

o

to all convex bodies containing the origin. Known characterizations of Minkowski
valuations will finally prove that Z is of the form stated in Theorem 1.

We remark that an operator Z : Q → P(Rn) is SL(n) covariant and positively
homogeneous of degree q if and only if it satisfies

(26) Z(φK) = (detφ)
q−1

n φZK

for every K ∈ Q and every φ ∈ GL(n) with positive determinant. Similarly, it is
SL(n) contravariant and homogeneous of degree q if and only if it satisfies

(27) Z(φK) = (detφ)
q+1

n φ−t ZK

for every K ∈ Q and every φ ∈ GL(n) with positive determinant.
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4.1. The covariant case.

Lemma 2. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) covariant symmetric
Blaschke valuation which is homogeneous of degree q, then q ≥ 1.

Proof. Suppose K ∈ Kn
o is an arbitrary convex body such that K ∩ e+n and K ∩ e−n

are n-dimensional. For every positive s we have

[K ∩ e+n ,±sen] ∪ [K ∩ e−n ,±sen] = [K,±sen],

[K ∩ e+n ,±sen] ∩ [K ∩ e−n ,±sen] = [K ∩ e⊥n ,±sen].

Since Z is a Blaschke valuation we obtain

S(Z[K,±sen], ·)+S(Z[K∩e⊥n ,±sen], ·) = S(Z[K∩e+n ,±sen], ·)+S(Z[K∩e−n ,±sen], ·),
and therefore∫

Sn−1
hL dS(Z[K,±sen], ·) +

∫
Sn−1

hL dS(Z[K ∩ e⊥n ,±sen], ·)

=
∫

Sn−1
hL dS(Z[K ∩ e+n ,±sen], ·) +

∫
Sn−1

hL dS(Z[K ∩ e−n ,±sen], ·)(28)

for an arbitrary convex body L ∈ Kn. For positive s define a linear map φ by

φei = ei, i = 1, . . . , n− 1, φen = sen.

From the SL(n) covariance and homogeneity of Z as well as relation (26) we get∫
Sn−1

hL dS(Z[K ∩ e⊥n ,±sen], ·) =
∫

Sn−1
hL dS

(
s

q−1
n φZ[K ∩ e⊥n ,±en], ·

)
.

The homogeneity property (6) of surface area measures and formula (8) yield∫
Sn−1

hL dS(Z[K ∩ e⊥n ,±sen], ·) = sα

∫
Sn−1

hL dS(φZ[K ∩ e⊥n ,±en], ·)

= sα+1

∫
Sn−1

hL ◦ φ−t dS(Z[K ∩ e⊥n ,±en], ·)

with α = (q−1)(n−1)
n . Since support functions are positively homogeneous of degree

one, we obtain∫
Sn−1

hL(u) dS(Z[K ∩ e⊥n ,±sen], u)

= sα

∫
Sn−1

hL(su1, . . . , sun−1, un) dS(Z[K ∩ e⊥n ,±en], u).

If we take L = Bn, then hL(x) = ‖x‖ and we infer from (5) and (28) that

sα

∫
Sn−1

‖(su1, . . . , sun−1, un)‖ dS(Z[K ∩ e⊥n ,±en], u)

= S(Z[K ∩ e+n ,±sen]) + S(Z[K ∩ e−n ,±sen])− S(Z[K,±sen]).(29)

Relation (11) proves the equality

lim
s→0+

∫
Sn−1

‖(su1, . . . , sun−1, un)‖ dS(Z[K ∩ e⊥n ,±en], u)

=
∫

Sn−1
|un| dS(Z[K ∩ e⊥n ,±en], u)

= 2Vn−1(Z[K ∩ e⊥n ,±en]|e⊥n ).
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Note that the range of Z consists of n-dimensional convex bodies containing the
origin in their interiors. Consequently, the last limit is greater than zero. Moreover,
since

lim
s→0+

[K ∩ e+n ,±sen] = K ∩ e+n ,

lim
s→0+

[K ∩ e−n ,±sen] = K ∩ e−n ,

lim
s→0+

[K,±sen] = K,

the continuity of Z together with the weak continuity of surface area measures
implies that the right hand side of (29) converges to a finite number as s tends to
zero. Thus by (29) we obtain that sα converges for s → 0+. This implies α ≥ 0.
The definition of α finally shows that the degree q of homogeneity has to be greater
or equal than one. �

In order to further reduce the possible degrees of homogeneity of continuous and
SL(n) covariant symmetric Blaschke valuations, we investigate their behavior on
the standard simplex

Tn = [o, e1, . . . , en].
For this reason, the following linear transformations on Rn will be of importance.
For 0 < λ < 1 and ε ≥ 0 we define

φεe2 = (1− λ− ε)e1 + (λ+ ε)e2, φεek = ek for k 6= 2,
ψεe1 = (1− λ+ ε)e1 + (λ− ε)e2, ψεek = ek for k 6= 1.

Moreover, let

ζεe1 = (1− λ+ ε)e1 + (λ− ε)e2,
ζεe2 = (1− λ− ε)e1 + (λ+ ε)e2,

ζεek = ek for k 6= 1, 2.

Although all of the above maps depend on λ, we will not make this explicit in our
notation. For fixed λ and ε > 0, these transformations are invertible. Note that

φ−1
ε e2 = −1− λ− ε

λ+ ε
e1 +

1
λ+ ε

e2, φ−1
ε ek = ek for k 6= 2,

ψ−1
ε e1 =

1
1− λ+ ε

e1 −
λ− ε

1− λ+ ε
e2, ψ−1

ε ek = ek for k 6= 1,

as well as

ζ−1
ε e1 = λ+ε

2ε e1 + −λ+ε
2ε e2,

ζ−1
ε e2 = λ−1+ε

2ε e1 + 1−λ+ε
2ε e2,

ζ−1
ε ek = ek for k ≥ 3.

Moreover, we have

(30) φεT
n ∪ ψεT

n = Tn, φεT
n ∩ ψεT

n = ζεT
n,

for 0 < ε < min{λ, 1− λ}.

Lemma 3. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) covariant symmetric
Blaschke valuation which is homogeneous of degree q, then q = 1.
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Proof. From Lemma 2 we know that q ≥ 1. Assume that q > 1 and let 0 < λ < 1
as well as 0 < ε < min{λ, 1− λ}. From relation (30) and the valuation property of
Z we deduce

ZTn# Z(ζεTn) = Z(φεT
n)# Z(ψεT

n).
The definition of Blaschke addition therefore yields

S(ZTn, ·) + S(Z(ζεTn), ·) = S(Z(φεT
n), ·) + S(Z(ψεT

n), ·),
and hence

CS(ZTn, ·) + CS(Z(ζεTn), ·) = CS(Z(φεT
n), ·) + CS(Z(φεT

n), ·).
If we combine the homogeneity and SL(n) covariance of Z with the relations (6)
and (26), then we obtain

CS(ZTn, ·)(x) + (det ζε)α CS(ZTn, ·)(ζ−1
ε x)

= (detφε)α CS(ZTn, ·)(φ−1
ε x) + (detψε)α CS(ZTn, ·)(ψ−1

ε x)

with α = (q(n− 1) + 1)/n. Calculating the involved determinants proves

CS(ZTn, ·)(x) + (2ε)α CS(ZTn, ·)(ζ−1
ε x)

= (λ+ ε)α CS(ZTn, ·)(φ−1
ε x) + (1− λ+ ε)α CS(ZTn, ·)(ψ−1

ε x).(31)

Since q > 1, we have α > 1. Obviously, the cosine transform is positively homoge-
neous of degree one and hence

lim
ε→0+

(2ε)α CS(ZTn, ·)(ζ−1
ε x) = 0

for every x ∈ Rn. Taking the limit ε→ 0+ in (31) therefore gives

CS(ZTn, ·)(x) = λα CS(ZTn, ·)(φ−1
0 x) + (1− λ)α CS(ZTn, ·)(ψ−1

0 x).

In terms of projection bodies this reads as

hΠ Z T n(x) = λαhΠ Z T n(φ−1
0 x) + (1− λ)αhΠ Z T n(ψ−1

0 x).

for every x ∈ Rn. Note that the range of Z consists of bodies containing the origin
in their interiors. Thus Π ZTn contains the origin in its interior, too. We conclude
that the support function hΠ Z T n is strictly positive on the sphere. The standard
basis vector e3 is an eigenvector of φ−1

0 and ψ−1
0 . Evaluating the last equation at

e3 gives 1 = λα + (1− λ)α. Since 0 < λ < 1 was arbitrary and α > 1 we arrived at
a contradiction. We infer that q = 1. �

If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) covariant symmetric Blaschke valua-
tion which is homogeneous of degree one, then we will prove in the sequel that Π◦Z
can be extended as a valuation to all convex bodies containing the origin. In order
to show that this extension is SL(n) contravariant and homogeneous, we need the
following result. We denote convex bodies containing the origin by K̄n

o .

Lemma 4. If Z : K̄n
o → 〈Kn,+〉 is a Minkowski valuation which is SL(n) con-

travariant and positively homogeneous of degree q on n-dimensional bodies, then Z
is SL(n) contravariant and positively homogeneous of degree q on its domain K̄n

o .

Proof. By (27) we have to show that

(32) ZφK = (detφ)
q+1

n φ−t ZK

for every K ∈ K̄n
o and every φ ∈ GL(n) with positive determinant. Let dimK =

n − k, where 0 ≤ k ≤ n. We prove our assertion by induction on k. Indeed, for
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k = 0, (32) is true by assumption. As usual, denote by dim the dimension and by
lin the linear hull. Assume that (32) holds for bodies of dimension n − k and let
dimK = n− k − 1. Choose a vector u /∈ linK. Then

[K,u] ∪ [K,−u] = [K,±u], [K,u] ∩ [K,−u] = K.

The convex bodies [K,u], [K,−u], [K,±u] are of dimension n−k. Clearly, we have

φ[K,u] ∪ φ[K,−u] = φ[K,±u], φ[K,u] ∩ φ[K,−u] = φK,

and the convex bodies φ[K,u], φ[K,−u], φ[K,±u] are of dimension n − k. Con-
sequently, the valuation property of Z combined with the induction assumption
shows

hZ φK(x) = hZ φ[K,u](x) + hZ φ[K,−u](x)− hZ φ[K,±u](x)

= (detφ)
q+1

n

(
hZ[K,u](φ−1x) + hZ[K,−u](φ−1x)− hZ[K,±u](φ−1x)

)
= (detφ)

q+1
n hZ K(φ−1x)

for arbitrary x ∈ Rn. This immediately proves that (32) holds for bodies of dimen-
sion n− k − 1. �

Lemma 5. Suppose that Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) covariant sym-
metric Blaschke valuation which is homogeneous of degree one. Then there exists
an extension Z̄ : K̄n

o → 〈Kn,+〉 of Π ◦ Z : Kn
o → 〈Kn,+〉 which is a Minkowski val-

uation. Moreover, this extension Z̄ is SL(n) contravariant, homogeneous of degree
n− 1, continuous on Kn

o , and has origin-symmetric images.

Proof. We define the map Z̄ : K̄n
o → 〈Kn,+〉 by

hZ̄K(x) =


1
2 CS(ZK, ·)(x) dimK = n,
|x · u|Vn−1(Z[K,±u]|u⊥) dimK = n− 1, linK = u⊥, ‖u‖ = 1,
0 dimK < n− 1.

We remark that Z[K,±u]|u⊥ denotes the image of Z[K,±u] under the orthogonal
projection onto the hyperplane u⊥. All functions which occur in the above defini-
tion are sublinear and therefore support functions of a unique convex body. The
definition of projection bodies immediately proves that Z̄ coincides with Π◦Z on n-
dimensional bodies. First, we prove that Z̄ is a valuation. Suppose that K, L ∈ K̄n

o

are convex bodies such that K ∪ L ∈ K̄n
o and let 0 ≤ k ≤ n. If dim(K ∪ L) = k,

then one of the following four cases is valid:
(1k) dimK = k, dimL = k, dimK ∩ L = k,
(2k) dimK = k, dimL = k, dimK ∩ L = k − 1,
(3k) dimK = k, dimL < k,
(4k) dimK < k, dimL = k.

The valuation property trivially holds true for the cases (3k) and (4k) because in
this situation we have L ⊂ K and K ⊂ L, respectively. Therefore it suffices to
prove

(33) hZ̄(K∪L) + hZ̄(K∩L) = hZ̄K + hZ̄L

for the cases (1k) and (2k), 0 ≤ k ≤ n. Suppose that (1n) holds. From the fact
that Z is a symmetric Blaschke valuation we get

S(Z(K ∪ L), ·) + S(Z(K ∩ L), ·) = S(ZK, ·) + S(ZL, ·),
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and thus
1
2 CS(Z(K ∪ L), ·) + 1

2 CS(Z(K ∩ L), ·) = 1
2 CS(ZK, ·) + 1

2 CS(ZL, ·).

The definition of Z̄ immediately proves (33) for this case. In order to establish
relation (33) for the case (2n), it is enough to show

(34) hZ̄K + hZ̄(K∩u⊥) = hZ̄(K∩u+) + hZ̄(K∩u−)

for arbitrary bodies K ∈ K̄n
o and every u ∈ Sn−1 such that K ∩ u± are both n-

dimensional. Let us begin with the special case u = en. Since Z is a Blaschke
valuation on n-dimensional bodies and

[K ∩ e+n ,±sen] ∪ [K ∩ e−n ,±sen] = [K,±sen],

[K ∩ e+n ,±sen] ∩ [K ∩ e−n ,±sen] = [K ∩ e⊥n ,±sen],

for every positive s, we obtain

CS(Z[K,±sen], ·) + CS(Z[K ∩ e⊥n ,±sen], ·)
= CS(Z[K ∩ e+n ,±sen], ·) + CS(Z[K ∩ e−n ,±sen], ·).(35)

For positive s define a linear map φ by

φei = ei, i = 1, . . . , n− 1, φen = sen.

From the SL(n) covariance and homogeneity of Z as well as relation (26) we get

CS(Z[K ∩ e⊥n ,±sen], ·) = CS(φZ[K ∩ e⊥n ,±en], ·).

Formula (10) and the positive homogeneity of the cosine transform therefore yield

CS(Z[K ∩ e⊥n ,±sen], ·)(x) = sCS(Z[K ∩ e⊥n ,±en], ·)(φ−1x)

= CS(Z[K ∩ e⊥n ,±en], ·)((sx1, . . . , sxn−1, xn))

for every x ∈ Rn. Thus we obtain by the homogeneity of C and formula (11) that

lim
s→0+

CS(Z[K ∩ e⊥n ,±sen], ·)(x) = CS(Z[K ∩ e⊥n ,±sen], ·)(xnen)

= |xn|CS(Z[K ∩ e⊥n ,±sen], ·)(en)

= 2|xn|Vn−1(Z[K ∩ e⊥n ,±en]|e⊥n ).

From (35) and the convergence behavior

lim
s→0+

[K ∩ e+n ,±sen] = K ∩ e+n ,

lim
s→0+

[K ∩ e−n ,±sen] = K ∩ e−n ,

lim
s→0+

[K,±sen] = K,

we deduce that

CS(ZK, ·)(x) + 2|x · en|Vn−1(Z[K ∩ e⊥n ,±en]|e⊥n )
= CS(Z(K ∩ e+n ), ·)(x) + CS(Z(K ∩ e−n ), ·)(x).

The definition of Z̄ implies that (34) holds for the case (2n) and u = e⊥n . Now, let
u ∈ Sn−1 and denote by ϑ a proper rotation with ϑen = u. Note that the SL(n)
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covariance of Z and (12) imply the SL(n) contravariance of Π ◦ Z on n-dimensional
bodies. Thus Z̄ is SL(n) contravariant on n-dimensional bodies, too. Hence

hZ̄(K∩u+)(x) + hZ̄(K∩u−)(x)

= hZ̄(ϑ−1K∩e+
n )(ϑ

−1x) + hZ̄(ϑ−1K∩e+
n )(ϑ

−1x)

= hZ̄(ϑ−1K)(ϑ−1x) + |ϑ−1x · en|Vn−1(Z[ϑ−1K ∩ e⊥n ,±en]|e⊥n )

= hZ̄K(x) + |x · u|hΠ Z[ϑ−1K∩e⊥n ,±en](en)

= hZ̄K(x) + |x · u|hΠ Z[K∩u⊥,±u](u)

= hZ̄K(x) + |x · u|Vn−1(Z[K ∩ u⊥,±u]|u⊥)
= hZ̄K(x) + hZ̄(K∩u⊥)(x).

This settles the proof of the valuation property for the case (2n). Next, we deal
with the case (1n−1). Denote by u the unit normal of the orthogonal complement
of lin(K ∪ L). Note that

[K,±u] ∪ [L,±u] = [K ∪ L,±u], and [K,±u] ∩ [L,±u] = [K ∩ L,±u].

All of the above bodies are of dimension n. Since Z is a symmetric Blaschke
valuation we infer

S(Z[K ∪ L,±u], ·) + S(Z[K ∩ L,±u], ·) = S(Z[K,±u], ·) + S(Z[L,±u], ·).

Consequently we have
1
2 CS(Z[K ∪ L,±u], ·)(u) + 1

2 CS(Z[K ∩ L,±u], ·)(u)
= 1

2 CS(Z[K,±u], ·)(u) + 1
2 CS(Z[L,±u], ·)(u),

which can be rewritten as

Vn−1(Z[K ∪ L,±u]|u⊥) + Vn−1(Z[K ∩ L,±u]|u⊥)
= Vn−1(Z[K,±u]|u⊥) + Vn−1(Z[L,±u]|u⊥).

This proves the desired relation (33) for the case (1n−1). In order to establish the
valuation property (33) for the case (2n−1), it suffices to prove

(36) hZ̄K = hZ̄(K∩v+) + hZ̄(K∩v−)

for K ⊂ u⊥ and a unit vector v which is orthogonal to u such that K ∩ v± are
(n − 1)-dimensional. We begin with the special case u = en and v = en−1. Note
that

[K ∩ e+n−1,±sen−1] ∪ [K ∩ e−n−1,±sen−1] = [K,±sen−1],

[K ∩ e+n−1,±sen−1] ∩ [K ∩ e−n−1,±sen−1] = [K ∩ e⊥n−1,±sen−1].

From the validity of (33) for the case (1n−1) we know that

hZ̄[K,±sen−1] + hZ̄[K∩e⊥n−1,±sen−1] = hZ̄[K∩e+
n−1,±sen−1]

+ hZ̄[K∩e−n−1,±sen−1]
.

By the definition of Z̄ this implies

Vn−1(Z[K,±sen−1,±en]|e⊥n ) + Vn−1(Z[K ∩ e⊥n−1,±sen−1,±en]|e⊥n )

= Vn−1(Z[K ∩ e+n−1,±sen−1,±en]|e⊥n ) + Vn−1(Z[K ∩ e−n−1,±sen−1,±en]|e⊥n ).

For positive s define a linear map φ by

φen−1 = sen−1, and φei = ei, i = 1, . . . , n, i 6= n− 1.
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If we denote the orthogonal projection onto a linear subspace H by πH , then the
covariance of Z proves

Vn−1(Z[K ∩ e⊥n−1,±sen−1,±en]|e⊥n ) = Vn−1(πe⊥n
Z[K ∩ e⊥n−1,±sen−1,±en])

= Vn−1(πe⊥n
φZ[K ∩ e⊥n−1,±en−1,±en]).

Since πe⊥n
φZ[K ∩ e⊥n−1,±en−1,±en] converges to πe⊥n−1∩e⊥n

Z[K ∩ e⊥n−1,±en−1,±en]
with respect to Hausdorff distance as s tends to zero and Vn−1 is a continuous
functional on convex bodies contained in e⊥n , we obtain

lim
s→0+

Vn−1(Z[K ∩ e⊥n−1,±sen−1,±en]|e⊥n ) = 0.

Note that the following convergence relations

lim
s→0+

[K,±sen−1,±en] = [K,±en],

lim
s→0+

[K ∩ e+n−1,±sen−1,±en] = [K ∩ e+n−1,±en],

lim
s→0+

[K ∩ e−n−1,±sen−1,±en] = [K ∩ e−n−1,±en],

hold. Thus

Vn−1(Z[K,±en]|e⊥n ) = Vn−1(Z[K ∩ e+n−1,±en]|e⊥n ) + Vn−1(Z[K ∩ e−n−1,±en]|e⊥n ),

and the definition on Z̄ shows

hZ̄K = hZ̄(K∩e+
n−1)

+ hZ̄(K∩e−n−1)
.

This proves (36) for this special case. Next, let ϑ be a proper rotation with ϑen = u
and ϑen−1 = v. Then the definition of Z̄, the covariance of Z in combination with
(12), and the already established special case of the valuation property for (2n−1)
yield

hZ̄(K∩v+)(x) + hZ̄(K∩v−)(x) =

= |x · u|
(
hΠ Z[K∩v+,±u](u) + hΠ Z[K∩v−,±u](u)

)
= |x · u|

(
hΠ Z[ϑ−1K∩e+

n−1,±en](en) + hΠ Z[ϑ−1K∩e−n−1,±en](en)
)

= |x · u|hΠ Z[ϑ−1K,±en](en)
= |x · u|hΠ Z[K,±u](u)
= hZ̄K(x).

In conclusion, it remains to prove (33) for the cases (1k) and (2k) where 0 ≤ k ≤
n − 2. But then the valuation property is trivial because Z̄ vanishes on sets of
dimensions less than n− 1. Thus we finally obtained that Z̄ is a valuation.

Now, we turn to the proof of the SL(n) contravariance and homogeneity of Z̄.
In the above derivation we already used the fact that the SL(n) covariance of Z
and formula (12) imply the SL(n) contravariance of Π ◦Z on n-dimensional bodies.
Consequently, Z̄ is SL(n) contravariant on n-dimensional bodies. Lemma 4 proves
the SL(n) contravariance on bodies of arbitrary dimension. Similarly, Lemma 4
yields the homogeneity of degree (n − 1) of Z̄ on arbitrary bodies containing the
origin.

Since Z is continuous on Kn
o , the surface area measures S(ZKm, ·) converge

weakly to S(ZK, ·) for every sequence Km ∈ Kn
o , m ∈ N, of convex bodies with

Km → K ∈ Kn
o . Consequently, we deduce the pointwise convergence of the support
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functions 1
2 CS(ZKm, ·) to 1

2 CS(ZK, ·) on the sphere. But pointwise convergence
of support functions implies uniform convergence (see e.g. [40, Theorem 1.8.12]).
Hence Π◦Z is continuous on Kn

o . Since Z̄ coincides with Z on n-dimensional bodies,
the proof of this Lemma is finished. �

We need the following classification result of contravariant Minkowski valuations
due to Ludwig [29, Theorem 2]. Let P̄n

o denote convex polytopes which contain the
origin.

Theorem 3. Suppose that Z : P̄n
o → 〈Kn,+〉 is an SL(n) contravariant Minkowski

valuation which is homogeneous of degree n− 1. Then there exist constants c1 ≥ 0,
c2, c3 ∈ R with c1 + c2 + c3 ≥ 0 such that

(37) ZP = c1ΠP + c2ΠoP + c3(−ΠoP )

for every P ∈ P̄n
o .

Here (as well as in Theorems 4 and 5) formulas like (37) have to be read as

hZ P (x) = c1hΠP (x) + c2hΠoP (x) + c3h−ΠoP (x)

for x ∈ Rn. The notation is only used if hZ P is a support function (which is
guaranteed by the restrictions on the constants ci). The operator Πo is defined as
follows. A vector v is a scaled facet normal of P ∈ P̄n

o , if v is an outer normal
vector to a facet of P whose length is equal to the (n − 1)-dimensional volume of
the corresponding facet. If we write Vo(P ) for the set of scaled facet normals of P
which correspond to facets containing the origin, then

ΠoP =
∑

v∈Vo(P )

[o, v],

where the sum is a finite Minkowski sum. If P contains the origin in its interior,
then ΠoP = {o}. As an aside, we mention that the projection body operator has
a similar representation for polytopes. Indeed, if V(P ) denotes the set of all scaled
facet normals, then

ΠP =
∑

v∈V(P )

[o, v].

Lemma 6. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) covariant Blaschke valuation
which is homogeneous of degree one, then there exists a constant c > 0 such that

ZK = c(K#(−K))

for every K ∈ Kn
o .

Proof. Lemma 5 implies that we can extend Π ◦ Z to an SL(n) contravariant val-
uation Z̄ : K̄n

o → 〈Kn,+〉 which is homogeneous of degree n − 1 and continuous
on n-dimensional bodies. The restriction of Z̄ to P̄n

o satisfies the assumptions of
Theorem 3. Thus there exist constants c1 ≥ 0, c2, c3 ∈ R with c1 + c2 + c3 ≥ 0
such that

Z̄P = c1ΠP + c2ΠoP + c3(−ΠoP )

for every P ∈ P̄n
o . Let t = e1 + · · · + en. The continuity of Π, the fact that the

polytope Tn − εt contains the origin in its interior for sufficiently small ε, and the
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continuity of Z̄ prove

c1ΠTn = lim
ε→0+

c1Π(Tn − εt)

= lim
ε→0+

Z̄(Tn − εt)

= Z̄Tn

= c1ΠTn + c2ΠoT
n + c3(−ΠoT

n).

Since hΠoT n(e1) 6= 0 = h−ΠoT n(e1) we get c2 = c3 = 0. By assumption, Z does not
contain {o} in its range which gives c1 > 0. Consequently, we have Z̄P = c1ΠP for
every polytope P ∈ P̄n

o . Since n-dimensional polytopes containing the origin are
dense in Kn

o , the continuity of the involved operators yields

Π ZK = Z̄K = c1ΠK

for every K ∈ Kn
o . Rewriting this in terms of the cosine transform gives

CS(ZK, ·) = c1 CS(K, ·) = c1
2 CS(K#(−K), ·).

But S(ZK, ·) and S(K#(−K), ·) are even, and thus the injectivity property (9)
shows ZK = c(K#(−K)) with c = (c1/2)1/(n−1). �

We summarize the results of this subsection in

Lemma 7. A map Z : Kn
o → 〈Kn

c ,#〉 is a continuous, homogeneous, and SL(n)
covariant Blaschke valuation if and only if there exists a constant c > 0 such that

ZK = c(K#(−K))

for every K ∈ Kn
o .

4.2. The contravariant case. As in the covariant case, we start by reducing
the possible degrees of homogeneity of continuous SL(n) contravariant symmetric
Blaschke valuations.

Lemma 8. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) contravariant symmetric
Blaschke valuation which is homogeneous of degree q, then q ≥ 1/(n− 1).

Proof. The proof is similar to that of Lemma 2. Suppose K ∈ Kn
o is an arbitrary

convex body such that K ∩ e+n and K ∩ e−n are n-dimensional. For every positive s
we have

[K ∩ e+n ,±sen] ∪ [K ∩ e−n ,±sen] = [K,±sen],

[K ∩ e+n ,±sen] ∩ [K ∩ e−n ,±sen] = [K ∩ e⊥n ,±sen].

Since Z is a Blaschke valuation, we have∫
Sn−1

hL dS(Z[K,±sen], ·) +
∫

Sn−1
hL dS(Z[K ∩ e⊥n ,±sen], ·)

=
∫

Sn−1
hL dS(Z[K ∩ e+n ,±sen], ·) +

∫
Sn−1

hL dS(Z[K ∩ e−n ,±sen], ·)(38)

for an arbitrary convex body L ∈ Kn. For positive s define a linear map φ by

φei = ei, i = 1, . . . , n− 1, φen = sen.
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From the SL(n) contravariance and homogeneity of Z as well as relation (27) we
get∫

Sn−1
hL dS(Z[K ∩ e⊥n ,±sen], ·) =

∫
Sn−1

hL dS
(
s

q+1
n φ−t Z[K ∩ e⊥n ,±en], ·

)
.

The homogeneity property (6) of surface area measures and formula (8) yield∫
Sn−1

hL dS(Z[K ∩ e⊥n ,±sen], ·) = sα

∫
Sn−1

hL dS(φ−t Z[K ∩ e⊥n ,±en], ·)

= sα−1

∫
Sn−1

hL ◦ φdS(Z[K ∩ e⊥n ,±en], ·)

for α = (q+1)(n−1)
n . If we take L = Bn, then hL(x) = ‖x‖ and we infer from (5)

and (38) that

sα−1

∫
Sn−1

‖(u1, . . . , un−1, sun)‖ dS(Z[K ∩ e⊥n ,±en], u)

= S(Z[K ∩ e+n ,±sen]) + S(Z[K ∩ e−n ,±sen])− S(Z[K,±sen]).(39)

Since ‖(u1, . . . , un−1, 0)‖ > 0 for all u ∈ Sn−1\{±en} and surface area measures of
n-dimensional bodies are not concentrated on any great subsphere we conclude

lim
s→0+

∫
Sn−1

‖(u1, . . . , un−1, sun)‖ dS(Z[K ∩ e⊥n ,±en], u) > 0.

Moreover, we have

lim
s→0+

[K ∩ e+n ,±sen] = K ∩ e+n ,

lim
s→0+

[K ∩ e−n ,±sen] = K ∩ e−n ,

lim
s→0+

[K,±sen] = K.

Hence the continuity of Z together with the weak continuity of surface area measures
implies that the right hand side of (38) converges to a finite number as s tends to
zero. Thus by (39) we obtain that sα−1 converges for s→ 0+. This implies α ≥ 1.
The definition of α finally shows that the degree q of homogeneity has to be greater
or equal than 1/(n− 1). �

The next result is the covariant counterpart of Lemma 4.

Lemma 9. If Z : K̄n
o → 〈Kn,+〉 is a Minkowski valuation which is SL(n) covariant

and positively homogeneous of degree q on n-dimensional bodies, then Z is SL(n)
covariant and positively homogeneous of degree q on its domain K̄n

o .

Proof. We have to show that

(40) ZφK = (detφ)
q−1

n φZK

for every K ∈ K̄n
o and every φ ∈ GL(n) with positive determinant. Let dimK =

n − k, where 0 ≤ k ≤ n. We prove our assertion by induction on k. Indeed, for
k = 0, (40) is true by assumption. Assume that (40) holds for bodies of dimension
n− k and let dimK = n− k − 1. Choose a vector u /∈ linK. Then

[K,u] ∪ [K,−u] = [K,±u], [K,u] ∩ [K,−u] = K.

The convex bodies [K,u], [K,−u], [K,±u] are of dimension n−k. Clearly, we have

φ[K,u] ∪ φ[K,−u] = φ[K,±u], φ[K,u] ∩ φ[K,−u] = φK,
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and the convex bodies φ[K,u], φ[K,−u], φ[K,±u] are of dimension n − k. Con-
sequently, the valuation property of Z combined with the induction assumption
proves

hZ φK(x) = hZ φ[K,u](x) + hZ φ[K,−u](x)− hZ φ[K,±u](x)

= (detφ)
q−1

n

(
hZ[K,u](φtx) + hZ[K,−u](φ−1x)− hZ[K,±u](φtx)

)
= (detφ)

q−1
n hZ K(φtx)

for arbitrary x ∈ Rn. This immediately proves that (40) holds for bodies of dimen-
sion n− k − 1. �

The following characterization theorem was also established by Ludwig [29, The-
orem 1]. We will make use of it in order to prove that the degree of homogeneity of
a homogeneous, SL(n) contravariant, and continuous symmetric Blaschke valuation
cannot be equal to 1/(n− 1).

Theorem 4. Suppose that Z : P̄n
o → 〈Kn,+〉 is an SL(n) covariant Minkowski

valuation which is homogeneous of degree 1. Then there exist non-negative constants
c1 and c2 such that

ZP = c1P + c2(−P )

for every P ∈ P̄n
o .

Lemma 10. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) contravariant symmetric
Blaschke valuation which is homogeneous of degree q, then q > 1/(n− 1).

Proof. Suppose that q = 1/(n − 1). Then we are able to define an extension Z̄ of
Π ◦ Z by

hZ̄K(x) =
{

1
2 CS(ZK, ·)(x) dimK = n,
1
2 CS(Z[K,±bk+1, . . . ,±bn], ·)(πKx) dimK = k < n,

where the bk+1, . . . , bn are an orthonormal basis of the orthogonal complement of
linK and πK denotes the orthogonal projection onto linK. In order to show that
this extension is well defined, suppose that dimK = k < n and bk+1, . . . , bn as well
as ck+1, . . . , cn are two different orthonormal bases of (linK)⊥. Fix an orthonormal
basis b1, . . . , bk in linK. Denote by ϑ a proper rotation with ϑbi = bi, i = 1, . . . , k
and ϑbi ∈ {±ci}, i = k + 1, . . . , n. Then the contravariance of Z and relation (10)
prove

CS(Z[K,±ck+1, . . . ,±cn], ·)(πKx) = CS(Zϑ[K,±bk+1, . . . ,±bn], ·)(πKx)
= CS(ϑZ[K,±bk+1, . . . ,±bn], ·)(πKx)
= CS(Z[K,±bk+1, . . . ,±bn], ·)(ϑ−1πKx)
= CS(Z[K,±bk+1, . . . ,±bn], ·)(πKx).

Next, we show that Z̄ is a valuation on K̄n
o . We use the same notation as for the

proof of Lemma 5. Let us start with the easy case (1n). The valuation property of
Z implies

S(Z(K ∪ L), ·) + S(Z(K ∩ L), ·) = S(ZK, ·) + S(ZL, ·),

and thus
1
2 CS(Z(K ∪ L), ·) + 1

2 CS(Z(K ∩ L), ·) = 1
2 CS(ZK, ·) + 1

2 CS(ZL, ·).
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The definition on Z̄ immediately proves the assertion. Next, assume that (1k),
0 ≤ k < n, holds. Note that

[K,±bk+1, . . . ,±bn] ∪ [L,±bk+1, . . . ,±bn] = [K ∪ L,±bk+1, . . . ,±bn],
[K,±bk+1, . . . ,±bn] ∩ [L,±bk+1, . . . ,±bn] = [K ∩ L,±bk+1, . . . ,±bn].

From the assumption that Z is a symmetric Blaschke valuation we infer

CS(Z[K ∪ L,±bk+1, . . . ,±bn], ·) + CS(Z[K ∩ L,±bk+1, . . . ,±bn], ·)
= CS(Z[K,±bk+1, . . . ,±bn], ·) + CS(Z[L,±bk+1, . . . ,±bn], ·).

Since linK = linL = lin(K ∪ L) = lin(K ∩ L), the corresponding projections πK ,
πL, πK∪L, and πK∩L are equal and we are done. Now, we consider the case (2k).
It is enough to prove

(41) hZ̄K + hZ̄(K∩v⊥) = hZ̄(K∩v+) + hZ̄(K∩v−)

for a unit vector v ∈ linK such that K ∩ v± are both k-dimensional. Assume
initially that linK = lin{e1, . . . , ek}, and v = ek. We already established the
valuation property for the case (1k). Hence

CS(Z[K,±sek,±ek+1, . . . ,±en], ·)(πKx)
+CS(Z[K ∩ e⊥k ,±sek,±ek+1, . . . ,±en], ·)(πKx)

= CS(Z[K ∩ e+k ,±sek,±ek+1, . . . ,±en], ·)(πKx)

+CS(Z[K ∩ e−k ,±sek,±ek+1, . . . ,±en], ·)(πKx).(42)

For positive s define a linear map φ by

φek = sek, and φei = ei, i = 1, . . . , n, i 6= k.

The definition of φ, the homogeneity property (6), and relations (27) as well as (10)
give

CS(Z[K ∩ e⊥k ,±sek,±ek+1, . . . ,±en], ·)(πKx)

= CS(Zφ[K ∩ e⊥k ,±ek,±ek+1, . . . ,±en], ·)(πKx)

= CS((detφ)
1

n−1φ−t Z[K ∩ e⊥k ,±ek,±ek+1, . . . ,±en], ·)(πKx)

= CS(Z[K ∩ e⊥k ,±ek,±ek+1, . . . ,±en], ·)(φπKx).

Note that lims→0+ φπKx = πK∩v⊥x. So if s tends to zero in (42), then we imme-
diately obtain (41) in this situation. In order to prove (41) for the general case
(2n), denote by ϑ a proper rotation with ϑen = v. Then the contravariance of Z,
the relation ϑ−1πK∩v⊥x = πϑ−1K∩e⊥n

ϑ−1x, and the already established valuation
property (41) for v = en show

CS(Z[K ∩ v+,±v], ·)(x) + CS(Z[K ∩ v−,±v], ·)(x)
= CS(Z[ϑ−1K ∩ e+n ,±en], ·)(ϑ−1x) + CS(Z[ϑ−1K ∩ e−n ,±en], ·)(ϑ−1x)
= CS(Z[ϑ−1K,±en], ·)(ϑ−1x) + CS(Z[ϑ−1K ∩ e⊥n ,±en], ·)(πϑ−1K∩e⊥n

ϑ−1x)

= CS(Z[ϑ−1K,±en], ·)(ϑ−1x) + CS(Z[ϑ−1K ∩ e⊥n ,±en], ·)(ϑ−1πK∩v⊥x)
= CS(Z[K,±v], ·)(x) + CS(Z[K ∩ v⊥,±v], ·)(πK∩v⊥x).

For the case (2k) with k < n, let b1, . . . , bk be an orthonormal basis of linK such
that v = bk. Extend this basis by bk+1, . . . , bn to a basis of Rn. Denote by ϑ a
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proper rotation with ϑei = bi, i = 1, . . . , n − 1, and ϑen = ±bn. Since ϑ−1πKx =
πϑ−1Kϑ

−1x and ϑ−1πK∩v⊥x = πϑ−1K∩e⊥k
ϑ−1x we obtain

CS(Z[K ∩ v+,±bk+1, . . . ,±bn], ·)(πKx)
+CS(Z[K ∩ v−,±bk+1, . . . ,±bn], ·)(πKx)

= CS(Z[ϑ−1K ∩ e+k ,±ek+1, . . . ,±en], ·)(ϑ−1πKx)

+CS(Z[ϑ−1K ∩ e−k ,±ek+1, . . . ,±en], ·)(ϑ−1πKx)

= CS(Z[ϑ−1K ∩ e+k ,±ek+1, . . . ,±en], ·)(πϑ−1Kϑ
−1x)

+CS(Z[ϑ−1K ∩ e−k ,±ek+1, . . . ,±en], ·)(πϑ−1Kϑ
−1x)

= CS(Z[ϑ−1K,±ek+1, . . . ,±en], ·)(πϑ−1Kϑ
−1x)

+CS(Z[ϑ−1K ∩ e⊥k ,±ek, . . . ,±en], ·)(πϑ−1K∩e⊥k
ϑ−1x)

= CS(Z[ϑ−1K,±ek+1, . . . ,±en], ·)(ϑ−1πKx)
+CS(Z[ϑ−1K ∩ e⊥k ,±ek, . . . ,±en], ·)(ϑ−1πK∩v⊥x)

= CS(Z[K,±bk+1, . . . ,±bn], ·)(πKx)
+CS(Z[K ∩ v⊥,±bk, . . . ,±bn], ·)(πK∩v⊥x).

This proves the validity of (41) for the case (2k). Again, the remaining cases (3k)
and (4k) are trivial. Hence we proved that Z̄ is a valuation on K̄n

o . Moreover, it is
SL(n) covariant and positively homogeneous of degree 1 on n-dimensional bodies.
Thus Lemma 9 implies that Z̄ is SL(n) covariant and positively homogeneous of
degree 1 on K̄n

o . From Theorem 4 we infer the existence of two constants c1, c2 ≥ 0
such that

Z̄P = c1P + c2(−P )

for every polytope P ∈ P̄n
o . In particular, we have

Π ZTn = c1T
n + c2(−Tn).

Since Π ZTn is origin-symmetric we deduce

c1 = c1hT n(e1) = hΠ Z T n(e1) = hΠ Z T n(−e1) = c2h−T n(−e1) = c2,

and hence
Π ZTn = c1(Tn + (−Tn)).

Being the cosine transform of an even measure, ΠZTn is (by definition) a zonoid
with center at o. Hence each support set of Π ZTn is centrally symmetric (see e.g.
[40, Corollary 3.5.6]). Thus [c1e1, . . . , c1en] is centrally symmetric, a contradiction.
In conclusion, the degree q of homogeneity is not equal to 1/(n − 1). Lemma 8
implies that q > 1/(n− 1). �

Lemma 11. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) contravariant symmetric
Blaschke valuation which is homogeneous of degree q, then q = (n+ 1)/(n− 1).

Proof. From the last lemma we know that q > 1/(n − 1). Fix a number λ with
0 < λ < 1. From relation (30) and the valuation property of Z we deduce

ZTn# Z(ζεTn) = Z(φεT
n)# Z(ψεT

n),

and hence

CS(ZTn, ·) + CS(Z(ζεTn), ·) = CS(Z(φεT
n), ·) + CS(Z(φεT

n), ·)
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for 0 < ε < min{λ, 1−λ}. If we combine the homogeneity and SL(n) contravariance
of Z with the relations (6) and (27), then we obtain

CS(ZTn, ·)(x) + (det ζε)α CS(ZTn, ·)(ζt
εx)

= (detφε)α CS(ZTn, ·)(φt
εx) + (detψε)α CS(ZTn, ·)(ψt

εx)

with α = (q + 1)(n− 1)/n− 1. Calculating the involved determinants proves

CS(ZTn, ·)(x) + (2ε)α CS(ZTn, ·)(ζt
εx)

= (λ+ ε)α CS(ZTn, ·)(φt
εx) + (1− λ+ ε)α CS(ZTn, ·)(ψt

εx).(43)

Since q > 1/(n− 1), we have α > 0 which yields

lim
ε→0+

(2ε)α CS(ZTn, ·)(ζt
εx) = 0

for every x ∈ Rn. So taking the limit ε→ 0+ in (43) gives

CS(ZTn, ·)(x) = λα CS(ZTn, ·)(φt
0x) + (1− λ)α CS(ZTn, ·)(ψt

0x).

In terms of projection bodies this can be written as

hΠ Z T n(x) = λαhΠ Z T n(φ−1
0 x) + (1− λ)αhΠ Z T n(ψ−1

0 x).

for every x ∈ Rn. Note that the range of Z consists of bodies containing the origin
in their interiors. Thus Π ZTn contains the origin in its interior, too. We conclude
that the support function hΠ Z T n is strictly positive on the sphere. The standard
basis vector e3 is an eigenvector of φt

0 and ψt
0. Evaluating the last equation at e3

gives 1 = λα + (1− λ)α for every λ between zero and one. This implies α = 1 and
hence q = (n+ 1)/(n− 1). �

Lemma 12. Suppose that Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) contravariant
symmetric Blaschke valuation which is homogeneous of degree (n+1)/(n−1). Then
there exists an extension Z̄ : K̄n

o → 〈Kn,+〉 of Π ◦ Z : Kn
o → 〈Kn,+〉 which is a

Minkowski valuation. Moreover, this extension Z̄ is SL(n) covariant, homogeneous
of degree n− 1, and continuous on Kn

o .

Proof. The extension Z̄ is defined by

hZ̄K(x) =
{

1
2 CS(ZK, ·) dimK = n,
0 dimK ≤ n− 1.

The proof that Z̄ is a valuation is much easier than before. Indeed, we just have
to verify the valuation property for the case (2n). (The case (1n) follows as in the
proof of Lemma 5.) Again, it suffices to prove

(44) hZ̄K + hZ̄(K∩u) = hZ̄(K∩u+) + hZ̄(K∩u−)

for an arbitrary unit vector u such that dim(K∩u±) = n. Assume first that u = en.
Since Z is a Blaschke valuation on n-dimensional bodies and

[K ∩ e+n ,±sen] ∪ [K ∩ e−n ,±sen] = [K,±sen],

[K ∩ e+n ,±sen] ∩ [K ∩ e−n ,±sen] = [K ∩ e⊥n ,±sen],

for every positive s, we obtain

CS(Z[K,±sen], ·) + CS(Z[K ∩ e⊥n ,±sen], ·)
= CS(Z[K ∩ e+n ,±sen], ·) + CS(Z[K ∩ e−n ,±sen], ·).(45)
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For positive s define a linear map φ by

φei = ei, i = 1, . . . , n− 1, φen = sen.

From the SL(n) contravariance and homogeneity of Z as well as relation (27) we
get

CS(Z[K ∩ e⊥n ,±sen], ·) = CS
(
s

2
n−1φ−t Z[K ∩ e⊥n ,±en], ·

)
.

Formula (10) yields

CS(Z[K ∩ e⊥n ,±sen], ·)(x) = sCS(Z[K ∩ e⊥n ,±en], ·)(φtx),

for every x ∈ Rn and therefore

lim
s→0+

CS(Z[K ∩ e⊥n ,±sen], ·)(x) = 0.

From (45) and the convergence behavior

lim
s→0+

[K ∩ e+n ,±sen] = K ∩ e+n ,

lim
s→0+

[K ∩ e−n ,±sen] = K ∩ e−n ,

lim
s→0+

[K,±sen] = K,

we deduce that

CS(ZK, ·)(x) = CS(Z(K ∩ e+n ), ·)(x) + CS(Z(K ∩ e−n ), ·)(x).

The definition of Z̄ implies that (44) holds for the case (2n) and u = e⊥n . Next, let
u ∈ Sn−1 be arbitrary. Denote by ϑ a proper rotation with ϑen = u. The definition
of Z̄, the covariance of Π ◦ Z, and the already established valuation property gives

hZ̄(K∩u+)(x) + hZ̄(K∩u−)(x) = hΠ Z(K∩u+)(x) + hΠ Z(K∩u−)(x)

= hΠ Z(ϑ−1K∩e+
n )(ϑ

−1x) + hΠ Z(ϑ−1K∩e−n )(ϑ
−1x)

= hΠ Z(ϑ−1K)(ϑ−1x)
= hZ̄K(x).

This settles the proof of the valuation property in general for the case (2n). In
order to see that Z̄ is SL(n) covariant and homogeneous of degree n + 1, one just
has to apply Lemma 9. �

The following characterization of the centroid body operator due to Ludwig [29,
Theorem 1] will be crucial for our purpose.

Theorem 5. Suppose that Z : P̄n
o → 〈Kn,+〉 is an SL(n) covariant Minkowski

valuation which is homogeneous of degree n+ 1. Then there exist constants c1 ∈ R
and c2 ≥ 0 such that

ZP = c1m(P ) + c2ΓP

for every P ∈ P̄n
o .

Here, m(P ) denotes the moment vector of P , i.e.

m(P ) =
∫

P

x dx.
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Lemma 13. If Z : Kn
o → 〈Kn

c ,#〉 is a continuous SL(n) contravariant symmetric
Blaschke valuation which is homogeneous of degree (n+1)/(n−1), then there exists
a constant c > 0 such that

ZK = cΛ∇̃K
for every K ∈ Kn

o .

Proof. By Lemma 12 we can extend Π ◦ Z to a valuation Z̄ defined on K̄n
o which

is SL(n) covariant and homogeneous of degree n + 1. Thus Theorem 5 proves the
existence of two constants c1 ∈ R and c2 ≥ 0 such that

Z̄P = c1m(P ) + c2ΓP

for every P ∈ P̄n
o . Since Z̄P and ΓP is origin-symmetric on n-dimensional bodies,

we obtain

c1m(P ) · x+ c2hΓP (x) = hZ̄P (x) = hZ̄P (−x) = −c1m(P ) · x+ c2hΓP (x)

for every x ∈ Rn and every P ∈ P̄n
o . Consequently, we have c1 = 0. This implies

Π ZP = c2ΓP for all n-dimensional polytopes. Obviously, c2 > 0. Since Π ◦ Z and
Γ are continuous on Kn

o , we obtain

Π ZK = c2ΓK

for every K ∈ Kn
o . By rewriting this in terms of the cosine transform we obtain

CS(ZK, ·) = 2c2
n+1 C ρn+1

K = 2c2
n+1 C ρn+1

∇̃K
.

The injectivity property (9) finally shows ZK = cΛ∇̃K with c = (2c2/(n +
1))1/(n−1). �

We summarize the results of this subsection in

Lemma 14. A map Z : Kn
o → 〈Kn

c ,#〉 is a continuous, homogeneous, and SL(n)
contravariant valuation if and only if there exists a constant c > 0 such that

ZK = cΛcK

for every K ∈ Kn
o .

If we combine this with Lemma 7, we finally proved Theorem 1.
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