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Abstract

All measurable and SL(n)-covariant vector valued valuations on convex polytopes
containing the origin in their interiors are completely classified. The moment vector
is shown to be essentially the only such valuation.

Mathematics subject classification: 52A20, 52B45

1 Introduction
Functionals which are compatible with the geometric and topological structure of their
underlying space are of vital importance in geometry. In convex geometric analysis, val-
uations have been studied from this perspective for decades. Valuations are functionals
µ : S → 〈A,+〉 defined on a collection of sets S with values in an abelian semigroup
〈A,+〉 such that

µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L)

whenever K, L, K ∪ L, K ∩ L are contained in S.
Due to their critical role in Dehn’s solution of Hilbert’s Third Problem, the interest

in valuations dates back to the beginning of the twentieth century. A systematic study
of valuations was initiated later by Hadwiger. This culminated in Hadwiger’s celebrated
characterization theorem, where he classified all continuous and rigid motion invariant
valuations on the space of convex bodies (i.e. nonempty compact convex subsets of Rn
equipped with Hausdorff distance). Hadwiger’s theorem shows that the vector space of
such valuations is finite dimensional and a basis is given by the intrinsic volumes. The
latter are generalizations of such basic notions as volume, surface area and mean width.
In other words, Hadwiger’s result revealed that basic geometric functionals can be

characterized as valuations compatible with certain linear maps and the topology induced
by the Hausdorff distance. This way of looking at functionals in convex geometry turned
out to be extremely fruitful. Indeed, numerous geometric objects have been characterized
in this way over the last years. Examples include mixed volumes, affine surface areas,
the projection body operator and the intersection body operator (see e.g. [1, 2, 9, 17, 18,
21,25,27,29,31–34,39,40,42,43,45,46]).
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Let us mention two examples which illustrate that it pays off to characterize valuations
in this way. First, Alesker’s ingenious classification [3] of continuous and translation in-
variant valuations not only solved the long-standing McMullen conjecture, but also serves
as the basis of a new algebraic integral geometry (see e.g. [4–6, 8, 10, 14, 47]). Second,
Ludwig’s seminal work on body valued valuations [30] paved the way for strengthenings
of the sharp Lp Sobolev, the Moser-Trudinger and the Morrey-Sobolev inequalities (see
e.g. [13, 22,36]).
Let Kno denote the set of convex bodies containing the origin in their interiors. We

write Pno for the subset of Kno consisting of polytopes only. In order to obtain Had-
wiger type theorems in centro-affine geometry, it turned out that one has to consider
valuations defined on Kno . This restriction is necessitated by the evolution of the
classical Brunn-Minkowski theory towards an Orlicz-Brunn-Minkowski theory. Dur-
ing this process, several new operators have been discovered and investigated (see
e.g. [12, 16, 19, 35, 37, 38, 44, 48, 49]). These new objects are far reaching generaliza-
tions of classical notions, but in most cases they are defined only on Kno . So aiming at
characterizations of these new operators, one has to describe valuations on Kno and Pno ,
respectively. As an example, the authors recently obtained the following Hadwiger type
theorem [20].

1.1 Theorem. Let n ≥ 2. A map µ : Pno → R is an upper semicontinuous and SL(n)-
invariant valuation if and only if there exist constants k0, k1, k2 ∈ R such that

µ(P ) = k0 χ(P ) + k1 V (P ) + k2 V (P ∗)

for all P ∈ Pno .

Here, χ is the Euler characteristic, V denotes n-dimensional volume and P ∗ is the
polar body of P (see Section 2 for details).
The impact of Theorem 1.1 to the Orlicz-Brunn-Minkowski theory is revealed if one

combines it with a deep result of Ludwig and Reitzner [35] on affine surface areas. In
this way, the authors [20] obtained the following centro-affine Hadwiger theorem: A map
µ : Kno → R is an upper semicontinuous and SL(n)-invariant valuation if and only if there
exist constants k0, k1, k2 ∈ R and a function ϕ ∈ Conc(R+) such that

µ(K) = k0 χ(K) + k1 V (K) + k2 V (K∗) + Ωϕ(K)

for all K ∈ Kno . The Orlicz affine surface areas Ωϕ were discovered only recently and we
refer to [20] for a precise definition of these functionals and the set Conc(R+).
The aim of this article is to establish the analog of Theorem 1.1 for vector valued valu-

ations. In particular, we strengthen previous characterizations by Ludwig [26]. Whereas
in the scalar case the natural compatibility with the special linear group is given by
SL(n)-invariance, the appropriate notion in the vector case is SL(n)-covariance. A map
µ : Pno → Rn is called SL(n)-covariant if

µ(φP ) = φµ(P ) (1)

for all P ∈ Pno and each φ ∈ SL(n). Our main result is the following theorem.
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1.2 Theorem. Let n ≥ 3. A map µ : Pno → Rn is a measurable and SL(n)-covariant
valuation if and only if there exists a constant k ∈ R such that

µ(P ) = km(P )

for all P ∈ Pno .

The vector m(P ) in Theorem 1.2 is the moment vector of the polytope P ∈ Pno . For
each P ∈ Pno , it is defined by

m(P ) =
∫
P
x dx.

Up to volume normalization, the moment vector coincides with the center of gravity of
P . This makes it a basic notion in mechanics, engineering, physics and geometry.
In dimension two, the situation is different. In contrast to Theorem 1.2, the vector

space of measurable and SL(2)-covariant valuations turns out to be two-dimensional.
Indeed, if we denote by ρπ

2
the counter-clockwise rotation of R2 about the angle π

2 , then
we will prove the following result.

1.3 Theorem. A map µ : P2
o → R2 is a measurable and SL(2)-covariant valuation if

and only if there exist constants k1, k2 ∈ R such that

µ(P ) = k1m(P ) + k2 ρπ2 m(P ∗)

for all P ∈ P2
o .

As mentioned before, Ludwig [26] was the first who obtained classifications in this
centro-affine framework. However, she assumed covariance with respect to the whole
general linear group. Theorems 1.2 and 1.3 do not need homogeneity assumptions at
all. In fact, since the moment vector is homogeneous, Theorem 1.2 shows that SL(n)-
covariance implies homogeneity. We remark that prior to Ludwig’s work, a Hadwiger
type theorem for vector valued valuations was established by Schneider under different
assumptions. We refer to [41] and the references therein for more information on this
subject.
The results of this article can be regarded as the first step towards a complete classifi-

cation of SL(n)-covariant tensor valuations. Such tensor valuations were recently investi-
gated from different perspectives, see e.g. [7,11,23,24,26,29,47]. Maps µ : Pno → (Rn)⊗p
that naturally intertwine the special linear group SL(n), i.e.

µ ◦ φ = φ⊗p µ (2)

for all φ ∈ SL(n), are called SL(n)-covariant. If one identifies (Rn)⊗1 with Rn in the
trivial way, then clearly the two notions (1) and (2) of SL(n)-covariance correspond
to each other. So Theorems 1.2 and 1.3 classify all measurable and SL(n)-covariant
valuations µ : Pno → (Rn)⊗1.
To prove our main results we will need a generalization of Theorem 1.1, which is

interesting in its own right. We will prove in this article that the assumption on upper
semicontinuity can be weakened. In fact, in Section 2 we establish the following theorem
which shows that measurability is sufficient.
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1.4 Theorem. Let n ≥ 2. A map µ : Pno → R is a measurable and SL(n)-invariant
valuation if and only if there exist constants k0, k1, k2 ∈ R such that

µ(P ) = k0 χ(P ) + k1 V (P ) + k2 V (P ∗)

for all P ∈ Pno .

2 Notation and preliminary results
We equip Rn with the standard Euclidean product and fix an orthonormal basis. The
corresponding basis vectors are denoted by e1, . . . , en.
We will often identify Rn−1 with e⊥n . With respect to this identification, a∗ will denote

the first n − 1 coordinates of a vector a ∈ Rn. The subscript · ∗ will also be used to
denote the first n− 1 coordinates of other objects. For example, suppose that a matrix
A ∈ Rn×n is given. Then A∗∗ ∈ R(n−1)×(n−1) is obtained from A by deleting its n-th
row and n-th column. Similarly, A∗n ∈ Rn−1 is obtained from the n-th column of A by
deleting its n-th coordinate. A superscript · ′ will denote the (n−1)-dimensional version
of an n-dimensional object. For example, V ′ will denote the (n−1)-dimensional volume.
When talking about a measurable function between topological spaces, we always

understand the notion of measurability with respect to their Borel σ-algebras.
The well-known solution of Cauchy’s functional equation will be one of the main

ingredients in our proofs. Suppose that f : Rn → R is a measurable function such that

f(s+ t) = f(s) + f(t) (3)

for all s, t ∈ Rn. Then f has to be linear. If f maps to Rm instead of R, then the
corresponding statement also holds, which can be easily deduced from the case m = 1.
In the case n = 1, it is actually enough that (3) holds for positive real numbers.
Let Kn denote the set of convex bodies, i.e. nonempty compact convex subsets of Rn.

As usual, Kn will be equipped with the Hausdorff metric. We write Pn ⊆ Kn for the
subspace of convex polytopes. The space Pn−1 will be repeatedly identified with convex
polytopes that are contained in e⊥n .
In order to keep formulas easy to read, we will use the following conventions. The

convex hull of P1 ∪ . . . ∪ Pm will be denoted by [P1, . . . , Pm], where P1, . . . , Pm ∈ Pn.
Whenever a set contains only one point, we will omit the curly brackets in the above
notation. In particular, E1, . . . , En denote the line segments [−e1, e1], . . . , [−en, en]. If
a map µ is applied to [P1, . . . , Pm], then we will usually write µ[P1, . . . , Pm] instead of
µ([P1, . . . , Pm]).
In the introduction we already used the concept of polar bodies. The polar body

K∗ ∈ Kno of a convex body K ∈ Kno is defined by

K∗ = {y ∈ Rn : ytx ≤ 1 for all x ∈ K}.

Recall that the map K 7→ K∗ is a continuous involution on Kno . Moreover, for bodies
K,L ∈ Kno such that K ∪ L is convex we have

(K ∪ L)∗ = K∗ ∩ L∗ and (K ∩ L)∗ = K∗ ∪ L∗. (4)
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If φ ∈ GL(n), then
(φK)∗ = φ−tK∗, (5)

where φ−t denotes the inverse of the transpose of φ. We refer the reader to [15] and [41]
for proofs of these facts.
The following symbols will have a fixed meaning throughout this article. The letters

a, b, c, d will always denote positive real numbers with associated line segments I :=
[−ae1, be1] and J := [−cen, den], respectively. The letters x, y will always denote elements
of Rn−1. In particular, for n = 2 we have J = [−ce2, de2] and x, y ∈ R. The letter B
will always denote an element of Pn−1

o .
For n = 2, we say that a, b, c, d, x, y form a double pyramid if[

I,−c
(
x
1

)
, d

(
y
1

)]
∩ e⊥2 = I.

For n ≥ 3, we say that B, c, d, x, y form a double pyramid if[
B,−c

(
x
1

)
, d

(
y
1

)]
∩ e⊥n = B.

If x = y = 0, then we call the double pyramid straight. The set of double pyramids
will be denoted by Rn and the set of straight double pyramids by Qn. Using a slightly
different notation, the next theorem was proved by Ludwig in [28].

2.1 Theorem. Let n ≥ 2. Assume that µ : Pno → Rn is a valuation which vanishes on
all SL(n)-images of elements in Rn. Then µ vanishes everywhere.

The notion of SL(n)-covariance has already been introduced in the previous section.
However, we need additional terminology for functions which intertwine the special linear
group. A map µ : Pno → Rn is called SL(n)-contravariant if

µ(φP ) = φ−t µ(P )

for all P ∈ Pno and each φ ∈ SL(n). If the domain of µ is only a subset of Pno and
not necessarily closed under the action of SL(n), we require the covariance respectively
contravariance property to hold only for those combinations of P and φ that make sense.
The notions of SL(n)-covariance and SL(n)-contravariance are closely related to each

other. Indeed, from relation (5) we deduce the following. If P 7→ µ(P ) is SL(n)-covariant,
then P 7→ µ(P ∗) is SL(n)-contravariant. Vice versa, if P 7→ µ(P ) is SL(n)-contravariant,
then P 7→ µ(P ∗) is SL(n)-covariant.
The group of all volume preserving linear maps, i.e. those with determinant 1 or −1,

will be denoted by SL±(n). A map µ : Pno → Rn is called SL±(n)-covariant if

µ(φP ) = φµ(P ) (6)

for all P ∈ Pno and each φ ∈ SL±(n). We say that a map is SL±(n)-signum-covariant if

µ(φP ) = (detφ)φµ(P ) (7)
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for all P ∈ Pno and each φ ∈ SL±(n). Again, if the domain of µ is only a subset of Pno
and not necessarily closed under the action of SL±(n), we require (6) respectively (7) to
hold only for those combinations of P and φ that make sense.
Let us give one example for each of the last two concepts. From the transformation

behaviour of integrals with repect to linear maps, it is easy to see that the moment
vector m is SL±(n)-covariant. In the plane, a simple calculation shows that the map
P 7→ ρπ

2
m(P ∗) is SL±(2)-signum-covariant.

Assume that µ : Pno → Rn is a measurable valuation which is SL(n)-covariant and let
θ ∈ SL±(n) \ SL(n). For all P ∈ Pno define

µ+(P ) = 1
2
(
µ(P ) + θ µ(θ−1P )

)
(8)

and
µ−(P ) = 1

2
(
µ(P )− θ µ(θ−1P )

)
. (9)

The SL(n)-covariance of µ implies that these definitions do not depend on the choice of
θ. Clearly, µ+ and µ− are measurable valuations. Moreover, it is easy to see that µ+ is
SL±(n)-covariant and µ− is SL±(n)-signum-covariant. Obviously,

µ = µ+ + µ−. (10)

In order to establish our main result in dimensions greater or equal than three, we need
a generalization of Ludwig’s characterization [29] of matrix valued valuations. Before we
can formulate her theorem, we have to collect some more definitions. A map µ : Pno →
Rn×n is called GL(n)-covariant if

µ(φP ) = |detφ|φµ(P )φt (11)

for all P ∈ Pno and each φ ∈ GL(n). It is called GL(n)-contravariant if

µ(φP ) = |detφ|−1 φ−t µ(P )φ−1 (12)

for all P ∈ Pno and each φ ∈ GL(n). The operator M2 : Pno → Rn×n defined by

M2(P ) =
∫
P
xxt dx

for P ∈ Pno calculates the moment matrix of the polytope P . Clearly, it is a measurable
valuation that is GL(n)-covariant. Now, we are in a position to formulate the already
mentioned theorem, which is a special case of a result by Ludwig [29].

2.2 Theorem. Assume that µ : Pno → Rn×n is a measurable valuation which is GL(n)-
covariant. Furthermore, assume that µ(P ) is a symmetric matrix for all P ∈ Pno . Then
there exists a k ∈ R such that

µ(P ) = kM2(P )

for all P ∈ Pno .
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As was mentioned before, we will need an even stronger version of this theorem. In
fact, we have to remove the symmetry assumption. That this is possible will be shown
in the following sections.
Finally, we will now prove Theorem 1.4 from the introduction. Note that one part

of the ‘if and only if’-statement in Theorem 1.4 is trivial. Here, and also in the rest of
the article, we will therefore only prove the nontrivial parts of the statements from the
introduction.

2.3 Theorem. Let n ≥ 2. Assume that µ : Pno → R is a measurable valuation which is
SL(n)-invariant. Then there exist constants k0, k1, k2 ∈ R such that

µ(P ) = k0χ(P ) + k1V (P ) + k2V (P ∗)

for all P ∈ Pno .

Proof. The proof of Theorem 1.1 from [20] uses the upper semicontinuity only at one
point in [20, Lemma 3.6]. To weaken the assumption of upper semicontinuity to mea-
surability at this particular point, it suffices to show the following.
Let G : R2 → R be a measurable and antisymmetric function such that

G(s, 0) = G(0, s) = G(s,−s) = 0 (13)

for all s ∈ R. Moreover, suppose that for s, t, u, v ∈ R the quantity

G(t+ r, v − r)−G(s+ r, v − r) +G(s+ r, u− r)−G(t+ r, u− r) (14)

is independent of r ∈ R. We want to show that each G with these properties must vanish
on R2.
Associated with such a function G, define another function H : P1 × P1 → R by

H([s, t], [u, v]) = G(t, v)−G(s, v) +G(s, u)−G(t, u)

for all s, t, u, v ∈ R. One can think of H as a function on rectangles parallel to the
coordinate axes. G can be viewed as a function on the corners of those rectangles. Note
that on the right hand side of the last equation the corners of this rectangle are traversed
counter-clockwise. From (14) we obtain

H([s, t] + r, [u, v]− r) = H([s, t], [u, v]) (15)

for all r, s, t, u, v ∈ R. Plugging s = 0, u = 0 and r = v into (15), we obtain

H([v, t+ v], [−v, 0]) = H([0, t], [0, v]),

which, by (13), simplifies to

−G(t+ v,−v) = G(t, v). (16)
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Plugging t = −v, u = 0 and r = v − s into (15) and using (13) again, we obtain

H([v,−s], [s− v, s]) = H([s,−v], [0, v]).

In terms of G the last equality reads as

−G(v, s) +G(v, s− v)−G(−s, s− v) = −G(s, v).

By the antisymmetry of G and (16) this is equivalent to

G(s,−v) = −G(s, v).

A glance at the definition of H reveals that therefore

H([s, t],−[u, v]) = −H([s, t], [u, v]).

Combining this with (15) we obtain

H([s, t] + r, [u, v] + r) = H([s, t], [u, v]),

which, in combination with (15), yields

H([s, t] + 2r, [u, v]) = H([s, t], [u, v]).

In particular, this equality implies that

H([s, s+ t], [u, v]) = H([0, t], [u, v]). (17)

Using the definition of H in terms of G it is easy to check that

H([0, s+ t], [u, v]) = H([0, s], [u, v]) +H([s, s+ t], [u, v]).

Now (17) implies that t 7→ G(t, v) = H([0, t], [0, v]) satisfies Cauchy’s functional equation
for every v > 0. Since G is measurable, this function is linear. But since G(v, v) = 0, G
vanishes on R2.

3 Proof of the Main Results
3.1 The 1-dimensional case
In dimension one, a map µ : P1

o → R is even if and only if it is SL±(1)-signum-covariant.
Similarly, µ is odd if and only if it is SL±(1)-covariant. Consequently, representation
(10) corresponds to the standard decomposition of µ into its even and odd part. The
following two theorems classify all even and odd valuations µ : P1

o → R, respectively.
By decomposition (10) these results give a complete picture of such valuations. Recall
that for a, b, c, d > 0, we denote by I and J the line segments I = [−ae1, be1] and
J = [−cen, den].
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3.1 Theorem. Assume that µ : P1
o → R is an even valuation. Then, for all a, b > 0,

µ(I) = F (a) + F (b),

where F (r) := 1
2µ[−r, r], r ∈ (0,∞). Moreover, if µ is q-homogeneous for some q ∈ R,

then
µ(I) = const · (aq + bq)

for all a, b > 0.

Proof. We refer to [20] for a proof of the first part of the statement. If µ is q-
homogeneous, then

F (r) = 1
2 µ[−r, r] = rq

1
2 µ[−1, 1] = rqF (1).

This immediately proves the second claim.

3.2 Theorem. Assume that µ : P1
o → R is an odd valuation. Then, for all a, b > 0,

µ(I) = F (b)− F (a),

where F (r) := µ[−1, r], r ∈ (0,∞). Moreover, if µ is q-homogeneous for some q ∈
R \ {0}, then

µ(I) = const · (bq − aq)

for all a, b > 0. If µ is 0-homogeneous and measurable, then

µ(I) = const · ln
(
b

a

)
for all a, b > 0.

Proof. The proof of the first assertion can be found in [20]. In order to establish the
part on the homogeneity we follow [28]. Let µ be q-homogeneous, q ∈ R. By the first
part of the theorem we obtain, for all s, t > 0,

F (st)− F (s) = µ[−s, st] = sqµ[−1, t] = sqF (t),

or, equivalently,
F (st) = F (s) + sqF (t). (18)

For q = 0, the map r 7→ F (exp(r)) satisfies Cauchy’s functional equation. If µ is
measurable, we conclude F (r) = const · ln(r). For q 6= 0, we switch s and t in (18) and
obtain

F (s) + sqF (t) = F (t) + tqF (s).

Setting t = 2 and rearranging terms yields

F (s) = (1− 2q)−1F (2)(1− sq),

which completes the proof.
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3.2 The 2-dimensional case
Let µ : Q2 → R2 be a valuation. We say that µ splits over pyramids if there is a map µ̃
such that

µ[I, J ] = µ̃[I,−ce2] + µ̃[I, de2].

In other words, the value of µ on the straight double pyramid [I, J ] is the sum of the
values of µ̃ on the lower straight pyramid [I,−ce2] and the upper straight pyramid
[I, de2]. Our first result classifies SL±(2)-covariant valuations on Q2 and reveals that
such valuations split over pyramids.

3.3 Lemma. Assume that µ : Q2 → R2 is an SL±(2)-covariant valuation. Then

µ[I, J ] =

−1
c

1
c −1

d
1
d

− 1
a −1

b
1
a

1
b

 ·


F (ac)

F (bc)

F (ad)

F (bd)


for all a, b, c, d > 0, where F (r) := 1

2µ1[−e1, re1, E2], r ∈ (0,∞). In particular, µ splits
over pyramids with

µ̃[I,−ce2] :=

 1
c (F (bc)− F (ac))

− 1
aF (ac)− 1

bF (bc)

 and µ̃[I, de2] :=

1
d(F (bd)− F (ad))
1
aF (ad) + 1

bF (bd)

. (19)

Proof. Clearly, the first component µ1[I, J ] is a valuation in each of its arguments. By
the SL±(2)-covariance it is odd in I and even in J . Using Theorem 3.1, the SL(2)-
covariance and Theorem 3.2, as well as the definition of F , we obtain

µ1[I, J ] = 1
2µ1[I, cE2] + 1

2µ1[I, dE2]

= 1
2µ1

((
1
c 0
0 c

)
[cI, E2]

)
+ 1

2µ1

((
1
d 0
0 d

)
[dI,E2]

)

= 1
2cµ1[cI, E2] + 1

2dµ1[dI,E2]

= 1
c

(F (bc)− F (ac)) + 1
d

(F (bd)− F (ad)).

Similarly, the second component µ2[I, J ] is a valuation in each of its arguments, but it
is even in I and odd in J . By the same arguments as before, we arrive at

µ2[I, J ] = 1
a

(G(ad)−G(ac)) + 1
b

(G(bd)−G(bc)),

where G(r) := 1
2µ2[E1,−e2, re2]. Finally, by the SL±(2)-covariance, G = F .
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We will now consider maps µ : R2 → R2. In order to obtain a complete classifica-
tion of SL±(2)-covariant measurable valuations on R2, we first need to establish some
preliminary results.

3.4 Lemma. Assume that µ : R2 → R2 is an SL(2)-covariant valuation which splits
over pyramids. Then, for a, b > 0 and x, y ∈ R, the function

f I(x, y) := µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
−
(

1 x
0 1

)
µ̃[I,−ce2]−

(
1 y
0 1

)
µ̃[I, de2],

is independent of c, d > 0 as long as a, b, c, d, x, y form a double pyramid. Moreover,

f I(x, y) = f I(x, 0) + f I(0, y) (20)

and
f I(x, y) =

(
1 y
0 1

)
f I(x− y, 0). (21)

Proof. For given a, b, x, y choose c and d so small that a, b, c, d, x, y form a double pyra-
mid. By the valuation property we have

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
+µ

[
I,−s

(
y
1

)
, t

(
y
1

)]
= µ

[
I,−c

(
x
1

)
, t

(
y
1

)]
+µ

[
I,−s

(
y
1

)
, d

(
y
1

)]

for sufficiently small s, t > 0. The SL(2)-covariance implies

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
+
(

1 y
0 1

)
µ[I,−se2, te2] =

µ

[
I,−c

(
x
1

)
, t

(
y
1

)]
+
(

1 y
0 1

)
µ[I,−se2, de2].

Since µ splits over pyramids, this simplifies to

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
+
(

1 y
0 1

)
µ̃[I, te2] = µ

[
I,−c

(
x
1

)
, t

(
y
1

)]
+
(

1 y
0 1

)
µ̃[I, de2].

We conclude that the expression

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
−
(

1 y
0 1

)
µ̃[I, de2]

is independent of d. Similarly we see that the expression

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
−
(

1 x
0 1

)
µ̃[I,−ce2]

11



is independent of c. This proves that f I is indeed well defined. For sufficiently small
r > 0, the valuation property implies that

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
+ µ[I,−re2, re2] = µ

[
I,−c

(
x
1

)
, re2

]
+ µ

[
I,−re2, d

(
y
1

)]
.

Since f I(0, 0) = 0, this proves (20). The SL(2)-covariance and the definition of f I yield

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
=
(

1 y
0 1

)
µ

[
I,−c

(
x− y

1

)
, de2

]

=
(

1 y
0 1

)(
f I(x− y, 0) +

(
1 x− y
0 1

)
µ̃[I,−ce2] + µ̃[I, de2]

)

=
(

1 y
0 1

)
f I(x− y, 0) +

(
1 x
0 1

)
µ̃[I,−ce2] +

(
1 y
0 1

)
µ̃[I, de2],

which implies (21).

3.5 Lemma. Assume that µ : R2 → R2 is a measurable valuation which is SL±(2)-
covariant. Let f I be defined as in Lemma 3.4. Then there exists a k̃ ∈ R such that

f I(x, y) = k̃

(1
a

+ 1
b

)
(x− y)e1

for all a, b > 0 and x, y ∈ R.

Proof. We use µ̃ from Lemma 3.3 and apply Lemma 3.4 to µ. Combining (20) and (21),
we see that

g(x) := f I2 (x, 0) = µ2

[
I,−c

(
x
1

)
, de2

]
− µ2[I, J ]

satisfies Cauchy’s functional equation. Since µ is measurable, so is g. Therefore g is
linear. Thus there exists a ν : P1

o → R with

µ2

[
I,−c

(
x
1

)
, de2

]
− µ2[I, J ] = ν(I)x.

Using the SL±(2)-covariance for
(
−1 0
0 1

)
, we obtain

ν(−I)x = µ2

[
−I,−c

(
x
1

)
, de2

]
−µ2[−I, J ] = µ2

[
I,−c

(
−x
1

)
, de2

]
−µ2[I, J ] = ν(I)(−x).

12



Consequently, ν is odd. From the definition of ν, the SL(2)-covariance of µ for(
−1 0
0 −1

)
, the definition of f I , relation (21) and again the definition of ν we infer

ν(−I)x = µ2

[
−I,−c

(
x
1

)
, de2

]
− µ2[−I, J ]

= −µ2

[
I,−de2, c

(
x
1

)]
+ µ2[I,−J ]

= −f I2 (0, x)
= −f I2 (−x, 0)
= −ν(I)(−x),

i.e. ν is even. Since ν is odd and even, it has to vanish. From (21) we deduce that
f I2 (x, y) = 0.
Using (20), (21) and what we have just shown, we see that

h(x) := f I1 (x, 0) = µ1

[
I,−c

(
x
1

)
, de2

]
− µ1[I, J ]− xµ̃2[I,−ce2]

satisfies Cauchy’s functional equation. Since µ is measurable, so is h. Therefore h is
linear. Thus there exists a ξ : P1

o → R with

µ1

[
I,−c

(
x
1

)
, de2

]
− µ1[I, J ]− xµ̃2[I,−ce2] = ξ(I)x.

Using the definition of ξ, the SL±(2)-covariance for
(
−1 0
0 1

)
and the representation of

µ̃2[I,−rce2] from Lemma 3.3, we obtain

ξ(−I)x = µ1

[
−I,−c

(
x
1

)
, de2

]
− µ1[−I, J ]− xµ̃2[−I,−ce2]

= −µ1

[
I,−c

(
−x
1

)
, de2

]
+ µ1[I, J ]− xµ̃2[I,−ce2]

= −ξ(I)(−x),

13



i.e. ξ is even. Using the SL(2)-covariance of µ for
(
r 0
0 1

r

)
and again Lemma 3.3, yields

ξ(rI)x = µ1

[
rI,−c

(
x
1

)
, de2

]
− µ1[rI, J ]− xµ̃2[rI,−ce2]

= rµ1

[
I,−c

(
x
r
r

)
, rde2

]
− rµ1[I, rJ ]− x

r
µ̃2[I,−rce2]

= rµ1

[
I,−rc

(
x
r2

1

)
, rde2

]
− rµ1[I, rJ ]− r x

r2 µ̃2[I,−rce2]

= rξ(I) x
r2 ,

i.e. ξ is (−1)-homogeneous. Clearly, ξ is a valuation. By Theorem 3.1 there exists a
k̃ ∈ R such that ξ(I) = k̃( 1

a + 1
b ). An application of (21) completes the proof.

A combination of Lemma 3.3, Lemma 3.4, Lemma 3.5 and relation (19) proves the
following.

3.6 Corollary. Assume that µ : R2 → R2 is a measurable valuation which is SL±(2)-
covariant. Then there exists a k̃ ∈ R such that

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
=
(

1 x
0 1

) 1
c (F (bc)− F (ac))

− 1
aF (ac)− 1

bF (bc)

+
(

1 y
0 1

)1
d(F (bd)− F (ad))
1
aF (ad) + 1

bF (bd)


+ k̃

(1
a

+ 1
b

)
(x− y)e1

for all a, b, c, d > 0 and x, y ∈ R, whenever a, b, c, d, x, y form a double pyramid, where
F (r) := 1

2µ1[−e1, re1, E2], r ∈ (0,∞).

Now, we have all prerequisites to classify valuations on R2 which are SL±(2)-covariant
and measurable.

3.7 Lemma. Assume that µ : R2 → R2 is a measurable valuation which is SL±(2)-
covariant. Then there exists a k ∈ R such that

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
= k(a+ b)

(
(c+ d)

(
b− a
d− c

)
+ (yd2 − xc2)e1

)
(22)

for all a, b, c, d > 0 and x, y ∈ R, whenever a, b, c, d, x, y form a double pyramid.

Proof. Let s, t > 0 and define a triangle S by

S =
[
−se1,−e2,

(
s
t

)]
.

14



Based on different representations of S, we will calculate the first component µ1(S) of
µ(S) in two different ways. First, note that

S =
[
−se1,

s

1 + t
e1,−e2, t

(
s
t
1

)]
.

From Corollary 3.6 we deduce

µ1(S) = F

(
s

1 + t

)
− F (s) + 1

t
F

(
st

1 + t

)
− 1
t
F (st)

+ s

t

(1
s
F (st) + 1 + t

s
F

(
st

1 + t

))
− k̃

(1
s

+ 1 + t

s

)
s

t

= F

(
s

1 + t

)
− F (s) + 2 + t

t
F

(
st

1 + t

)
− 2 + t

t
k̃

for some unknown function F : (0,∞)→ R and some unknown constant k̃ ∈ R. Second,
we have the representation

S =
(

0 −1
1 0

)[
−e1,

t

2e1,−s
(
− t
s

1

)
, se2

]
.

From the SL(2)-covariance of µ and Corollary 3.6 we obtain

µ1(S) = −µ2

[
−e1,

t

2e1,−s
(
− t
s

1

)
, se2

]
= F (s) + 2

t
F

(
st

2

)
− F (s)− 2

t
F

(
st

2

)
= 0.

Combining the above representations of µ1(S), yields

F (s) = F

(
s

1 + t

)
+ 2 + t

t
F

(
st

1 + t

)
− 2 + t

t
k̃. (23)

For fixed k̃ this is an inhomogeneous functional equation in F . Clearly, F (r) = k̃,
r ∈ (0,∞), is a solution. So it remains to solve the homogeneous functional equation

G(s) = G

(
s

1 + t

)
+ 2 + t

t
G

(
st

1 + t

)
for an unknown function G : (0,∞) → R. Setting s = u + v and t = u

v , u, v > 0, we
obtain

G(u+ v) = G(v) + 2v + u

u
G(u).

On the other hand, setting s = u+ v and t = v
u , we arrive at

G(u+ v) = G(u) + 2u+ v

v
G(v).

Combining the last two equations we obtain
v

u
G(u) = u

v
G(v).
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Setting v = 1 finally gives
G(u) = u2G(1).

We see that F (r) = kr2 + k̃ for some k ∈ R is the general solution for (23). For this
particular F , Corollary 3.6 immediately proves (22). Note that when calculating (22) in
this way, all terms containing k̃ cancel out.

Finally, we are in a position to prove our main characterization theorems in the plane.
Let us start with the SL±(2)-covariant case.

3.8 Theorem. Assume that µ : P2
o → R2 is a measurable valuation which is SL±(2)-

covariant. Then there exists a k ∈ R such that

µ(P ) = km(P )

for all P ∈ P2
o .

Proof. From Lemma 3.7 we deduce that the vector space of measurable SL±(2)-covariant
valuations µ : R2 → R2 is at most 1-dimensional. Since the moment vector m is a
measurable SL±(2)-covariant valuation onR2, there exists a constant k ∈ R with µ(P ) =
km(P ) for all double pyramids P ∈ R2. Since µ and m are both SL(2)-covariant, the
last equality actually holds for all SL(2) images of elements in R2. Theorem 2.1 therefore
concludes the proof.

Next, the SL±(2)-signum-covariant case will be settled.

3.9 Theorem. Assume that µ : P2
o → R2 is a measurable valuation which is SL±(2)-

signum-covariant. Then there exists a k ∈ R such that

µ(P ) = k ρπ
2
m(P ∗)

for all P ∈ P2
o .

Proof. Define ν : P2
o → R2 by

ν(P ) = ρ−1
π
2
µ(P ∗)

for all P ∈ P2
o . Relations (4) and (5) show that ν is a measurable SL±(2)-covariant

valuation. If Theorem 3.8 is applied to ν, then the assertion follows easily from the fact
that polarity is an involution.

Combining the last two results, we can now prove the non-trivial part of Theorem 1.3.

3.10 Theorem. Assume that µ : P2
o → R2 is a measurable valuation which is SL(2)-

covariant. Then there exist k1, k2 ∈ R such that

µ(P ) = k1m(P ) + k2 ρπ2 m(P ∗)

for all P ∈ P2
o .
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Proof. Define µ+ and µ− as in (8) and (9), respectively. Theorems 3.8 and 3.9 and (10)
now directly imply the desired result.

By the correspondance between co- and contravariant valuations via polarity from
Section 2, the following theorem is equivalent to the previous one.

3.11 Theorem. Assume that µ : P2
o → R2 is a measurable valuation which is SL(2)-

contravariant. Then there exist k1, k2 ∈ R such that

µ(P ) = k1m(P ∗) + k2 ρπ2 m(P )

for all P ∈ P2
o .

At the end of this subsection we prove a generalization of Theorem 2.2 in the 2-
dimensional case. We will show that the symmetry assumption can be omitted.

3.12 Theorem. Assume that µ : P2
o → R2×2 is a measurable valuation which is GL(2)-

covariant. Then there exists a k ∈ R such that

µ(P ) = kM2(P )

for all P ∈ P2
o .

Proof. We can write the map P 7→ µ(P ) as the sum of its symmetric part, P 7→
1
2
(
µ(P ) + µ(P )t

)
, and its antisymmetric part, P 7→ 1

2
(
µ(P )− µ(P )t

)
. Note that

P 7→ µ(P )t inherits all the assumed properties of µ. Therefore, the symmetric and
antisymmetric part of µ are both measurable and GL(2)-covariant valuations. Hence,
by Theorem 2.2, we only have to show that the antisymmetric part vanishes.
Therefore, assume that µ(P ) is antisymmetric for all P ∈ P2

o . The component µ12[I, J ]
is a 2-homogeneous odd valuation in both I and J . On the one hand, by Theorem 3.2,
we have

µ12[I, J ] = const ·
(
b2 − a2

)(
d2 − c2

)
.

In particular, µ12[I, J ] = µ12[−ce1, de1,−ae2, be2]. On the other hand, by the GL(2)-
covariance and the antisymmetry of µ,

µ12[I, J ] = µ12

((
0 1
1 0

)
[−ce1, de1,−ae2, be2]

)
= µ21[−ce1, de1,−ae2, be2]
= −µ12[−ce1, de1,−ae2, be2].

Thus µ12 vanishes on Q2. By the antisymmetry of µ we conclude that µ vanishes on Q2.
As in the proof of Lemma 3.4 one can show that for fixed a, b > 0 and x, y ∈ R, the

quantity

µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
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does not depend on c, d > 0, as long as a, b, c, d, x, y form a double pyramid. Hence for
each I the function

f I(x, y) := µ

[
I,−c

(
x
1

)
, d

(
y
1

)]
is well defined on R× R. As in the proof of Lemma 3.4 we see that

f I(x, y) = f I(x, 0) + f I(0, y)

and

f I(x, y) =
(

1 y
0 1

)
f I(x− y, 0)

(
1 y
0 1

)t
.

Combining these two equations and using the antisymmetry of µ, we see that x 7→
f I12(x, 0) satisfies Cauchy’s functional equation. Since µ is measurable, so is f I , and
hence x 7→ f I12(x, 0) is linear. The definition of f I therefore implies

µ12

[
I,−c

(
rx
1

)
, de2

]
= rµ12

[
I,−c

(
x
1

)
, de2

]
(24)

for r > 0. On the one hand, by the GL(2)-covariance and (24), we obtain

µ12

[
rI,−c

(
x
1

)
, de2

]
= µ12

((
r 0
0 1

)[
I,−c

(
x
r
1

)
, de2

])

= r2µ12

[
I,−c

(
x
r
1

)
, de2

]

= rµ12

[
I,−c

(
x
1

)
, de2

]
.

On the other hand, the GL(2)-covariance and the independence with respect to c and d
yield

µ12

[
rI,−c

(
x
1

)
, de2

]
= µ12

(
r

[
I,− c

r

(
x
1

)
,
d

r
e2

])
= r4µ12

[
I,−c

(
x
1

)
, de2

]
.

We conclude that
µ12

[
I,−c

(
x
1

)
, de2

]
= 0.

By the GL(2)-covariance we have

µ12

[
I,−c

(
x
1

)
, d

(
y
1

)]
= µ12

[
I,−c

(
x− y

1

)
, de2

]
= 0.

From the antisymmetry we infer that µ vanishes on R2. An application of Theorem 2.1
completes the proof.
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As before, the following theorem is equivalent to the previous one.

3.13 Theorem. Assume that µ : P2
o → R2×2 is a measurable valuation which is GL(2)-

contravariant. Then there exists a k ∈ R such that

µ(P ) = kM2(P ∗)

for all P ∈ P2
o .

3.3 The n-dimensional case
In this subsection we will prove our main theorems in all dimensions greater or equal than
three. Let us start by formulating four theorems which will be established in the sequel.
First, we state covariant classification results for vector and matrix valued valuations.

3.14 Theorem. Let n ≥ 2. Assume that µ : Pno → Rn is a measurable valuation which
is SL(n)-covariant. Then, for n = 2, there exist k1, k2 ∈ R such that

µ(P ) = k1m(P ) + k2 ρπ2 m(P ∗)

for all P ∈ Pno and, for n ≥ 3, there exists a k ∈ R such that

µ(P ) = km(P )

for all P ∈ Pno .

3.15 Theorem. Let n ≥ 2. Assume that µ : Pno → Rn×n is a measurable valuation
which is GL(n)-covariant. Then there exists a k ∈ R such that

µ(P ) = kM2(P )

for all P ∈ Pno .

Second, we formulate the corresponding contravariant statements.

3.16 Theorem. Let n ≥ 2. Assume that µ : Pno → Rn is a measurable valuation which
is SL(n)-contravariant. Then, for n = 2, there exist k1, k2 ∈ R such that

µ(P ) = k1m(P ∗) + k2 ρπ2 m(P )

for all P ∈ Pno and, for n ≥ 3, there exists a k ∈ R such that

µ(P ) = km(P ∗)

for all P ∈ Pno .

3.17 Theorem. Let n ≥ 2. Assume that µ : Pno → Rn×n is a measurable valuation
which is GL(n)-contravariant. Then there exists a k ∈ R such that

µ(P ) = kM2(P ∗)

for all P ∈ Pno .
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Recall that the 2-dimensional cases of the above results have already been established.
Obviously, our main Theorem 1.2 will be a direct consequence of Theorem 3.14.
In full generality, the above theorems will be proved at the end of this section. We will

do this by induction on the dimension. However, it is necessary to perform this induction
simultaneously for all four theorems. For the reader’s convenience we therefore collect
the main steps in several lemmas. The induction itself can be found at the very end of
this section. Let us start with the vector valued case.

3.18 Lemma. Let n ≥ 3 and suppose that Theorems 3.16 and 3.17 hold in dimension
n− 1. Assume that µ : Rn → Rn is a measurable valuation which is SL(n)-contravariant
and vanishes on Qn. Then µ vanishes on Rn. More explicitly, if

µ[B,−cen, den] = 0

for all B ∈ Pn−1
o and c, d > 0, then

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
= 0

for all B ∈ Pn−1
o , c, d > 0 and x, y ∈ Rn−1, whenever B, c, d, x, y form a double pyramid.

Proof. The valuation property implies that

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
+ µ

[
B,−s

(
y
1

)
, t

(
y
1

)]
=

µ

[
B,−c

(
x
1

)
, t

(
y
1

)]
+ µ

[
B,−s

(
y
1

)
, d

(
y
1

)]
for sufficiently small s, t > 0. By the SL(n)-contravariance and the assumption that µ
vanishes on Qn, we have

µ

[
B,−s

(
y
1

)
, t

(
y
1

)]
= 0 and µ

[
B,−s

(
y
1

)
, d

(
y
1

)]
= 0.

Therefore
µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
= µ

[
B,−c

(
x
1

)
, t

(
y
1

)]
,

i.e. the left hand side is independent of d. Similarly we see that it is also independent of
c. So for each B ∈ Pn−1 we can define a function fB : Rn−1 × Rn−1 → Rn by

fB(x, y) = µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
,

as long as B, c, d, x, y form a double pyramid. It remains to prove that fB vanishes for
each B ∈ Pn−1. By the SL(n)-contravariance we obtain

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
=
(

Id′ y
0 1

)−t
µ

[
B,−c

(
x− y

1

)
, den

]
,
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which is equivalent to

fB(x, y) =
(

Id′ 0
−yt 1

)
fB(x− y, 0). (25)

The valuation property yields

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
+ µ[B,−ren, ren] = µ

[
B,−c

(
x
1

)
, ren

]
+ µ

[
B,−ren, d

(
y
1

)]

for sufficiently small r > 0. Since µ[B,−ren, ren] = 0, relation (25) implies

fB(x+ y, 0) =
(

Id′ 0
−yt 1

)
fB(x, 0) + fB(y, 0). (26)

So the map x 7→ fB∗ (x, 0) satisfies Cauchy’s functional equation. The measurability of
µ implies that also fB∗ is measurable. Hence x 7→ fB∗ (x, 0) is linear. Thus there exists a
map ν : Pn−1

o → R(n−1)×(n−1) such that

fB∗ (x, 0) = ν(B)x. (27)

Using the SL(n)-contravariance of µ, we see that ν is GL(n − 1)-contravariant. Note
that in order to prove this for linear transformations with negative determinant, one has
to use (25). By the assumption that Theorem 3.17 holds in dimension n−1, there exists
a k ∈ R such that

ν(B) = kM ′2(B∗). (28)

For i ∈ {1, . . . , n − 1}, let Ii be a line segment in span{ei} containing the origin in its
interior. Since n ≥ 3, the double pyramid[

I1, . . . , In−1,−c
(
e′1
1

)
, den

]

is contained in the SL(n)-image of Qn. From relations (27), (28) and the definition of
fB∗ , we obtain

kM ′2([I1, . . . , In−1]∗)e′1 = µ∗

[
I1, . . . , In−1,−c

(
e′1
1

)
, den

]
= 0.

Therefore, k = 0 and, by (25), (27) and (28), we conclude that fB∗ vanishes.
Using what we have just shown, the same approach yields the existence of a map

ξ : Pn−1
o → Rn−1 such that

fBn (x, 0) = ξ(B)tx.

The SL(n)-contravariance of µ implies that ξ is SL(n − 1)-contravariant and (−1)-
homogeneous. Note that the moment vector is homogeneous of degree n + 1. By the
assumption that Theorem 3.16 holds in dimension n− 1, we deduce that ξ vanishes on
Pn−1
o . Therefore, using (25), also fBn vanishes.
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3.19 Lemma. Let n ≥ 3 and suppose that Theorems 3.16 and 3.17 hold in dimension
n−1. Assume that µ : Pno → Rn is a measurable valuation which is SL(n)-contravariant.
Then there exists a k ∈ R such that

µ(P ) = km(P ∗)

for all P ∈ Pno .

Proof. The expression µn[B, J ] is a measurable valuation in both arguments. Since it is
SL(n− 1)-invariant in B, Theorem 2.3 implies that

µn[B, J ] = ν0(J) + ν1(J)V ′(B) + ν2(J)V ′(B∗),

with suitable ν0, ν1, ν2 : P1
o → R. For an arbitrary θ ∈ SL±(n− 1) \ SL(n− 1), we have

ν0(−J) + ν1(−J)V ′(B) + ν2(−J)V ′(B∗)
= µn[B,−J ]
= −µn[θB, J ]
= −

(
ν0(J) + ν1(J)V ′(θB) + ν2(J)V ′((θB)∗)

)
= −ν0(J)− ν1(J)V ′(B)− ν2(J)V ′(B∗),

where we used the invariance of volume with respect to maps with determinant −1 and
(5). Comparing degrees of homogeneity with repect to B shows that ν0, ν1 and ν2 are
odd. Similarly we can check that ν0, ν1 and ν2 are measurable valuations and that ν0
is (−1)-homogeneous, ν1 0-homogeneous and ν2 (−2)-homogeneous. By Theorem 3.2
there exist constants k0, k1, k2 ∈ R such that

µn[B, J ] = k0
(
d−1 − c−1

)
+ k1 ln

(
d

c

)
V ′(B) + k2

(
d−2 − c−2

)
V ′(B∗). (29)

The expression µ∗[B, J ] is also a measurable valuation in both arguments. Since it is
SL(n − 1)-contravariant in B, the assumption that Theorem 3.16 holds in dimension
n− 1 implies that

µ∗[B, J ] = ξ(J)m′(B∗) + δn,3ξ̃(J)ρπ
2
m′(B),

where ξ, ξ̃ : P1
o → R and δn,3 denotes the Kronecker delta. For an arbitrary map θ ∈

SL±(n− 1) \ SL(n− 1) we have

ξ(−J)m′(B∗) + δn,3ξ̃(−J)ρπ
2
m′(B) = µ∗[B,−J ]

= θtµ∗[θB, J ]

= θt
(
ξ(J)m′((θB)∗) + δn,3ξ̃(J)ρπ

2
m′(θB)

)
= ξ(J)m′(B∗)− δn,3ξ̃(J)ρπ

2
m′(B),

where we used the covariance of moment vectors and (5). By comparing degrees of
homogeneity with respect to B, we see that ξ is even and ξ̃ odd. Similarly, we can
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check that ξ and ξ̃ are measurable valuations and that ξ is (−1)-homogeneous and ξ̃
2-homogeneous, where we used that ξ̃ only shows up for n = 3. By Theorems 3.1 and
3.2 there exist constants k3, k̃3 ∈ R such that

µ∗[B, J ] = k3
(
c−1 + d−1

)
m′(B∗) + δn,3k̃3

(
d2 − c2

)
ρπ

2
m′(B). (30)

For i ∈ {1, . . . , n}, let Ii := [−aiei, biei], ai, bi > 0. The SL(n)-contravariance of µ yields

µn[I1, . . . , In−2, In−1, rIn] = µn−1[I1, . . . , In−2,−ranen−1, rbnen−1,−bn−1en, an−1en].

Using (29) and (30), we can compare degrees of homogeneity in r > 0 to see that 2k2 = k3
and k0 = k1 = k̃3 = 0. Therefore, the vector space of measurable valuations on Qn
that are SL(n)-contravariant is at most 1-dimensional. Since the map P 7→ m(P ∗) is a
measurable valuation on Qn which is SL(n)-contravariant, we must have µ(P ) = km(P ∗)
for some constant k ∈ R and all polytopes P ∈ Qn. An application of Lemma 3.18 to
the difference µ(P )− km(P ∗) and a glance at Theorem 2.1 complete the proof.

Next, we establish two facts on matrix valued valuations which will be crucial for our
induction.

3.20 Lemma. Let n ≥ 3. Assume that µ : Rn → Rn×n is a measurable valuation
which is GL(n)-covariant and vanishes on Qn. Furthermore, assume that µ(P ) is an
antisymmetric matrix for all P ∈ Pno . Then µ vanishes on Rn.

Proof. Suppose that B, c, d, x, y form a double pyramid. By the valuation property

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
+ µ

[
B,−s

(
y
1

)
, t

(
y
1

)]
=

µ

[
B,−c

(
x
1

)
, t

(
y
1

)]
+ µ

[
B,−s

(
y
1

)
, d

(
y
1

)]

for sufficiently small s, t > 0. The GL(n)-covariance and the assumption that µ vanishes
on Qn yield

µ

[
B,−s

(
y
1

)
, t

(
y
1

)]
= 0 and µ

[
B,−s

(
y
1

)
, d

(
y
1

)]
= 0.

Therefore,

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
= µ

[
B,−c

(
x
1

)
, t

(
y
1

)]
,

i.e. the left hand side is independent of d. Similarly, we see that it is also independent
of c. So for each B ∈ Pn−1 we can define a function fB : Rn−1 × Rn−1 → Rn×n by

fB(x, y) = µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
,
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as long as B, c, d, x, y form a double pyramid. By the GL(n)-covariance we have

fB(x, y) =
(

Id′ y
0 1

)
fB(x− y, 0)

(
Id′ 0
yt 1

)
. (31)

The valuation property again implies that

µ

[
B,−c

(
x
1

)
, d

(
y
1

)]
+ µ[B,−ren, ren] = µ

[
B,−c

(
x
1

)
, ren

]
+ µ

[
B,−ren, d

(
y
1

)]

for sufficiently small r > 0. Since µ[B,−ren, ren] = 0 and by using (31), this yields

fB(x+ y, 0) =
(

Id′ y
0 1

)
fB(x, 0)

(
Id′ 0
yt 1

)
+ fB(y, 0). (32)

By the antisymmetry, fBnn vanishes. Using (32), it is easy to see that x 7→ fB∗n(x, 0)
satisfies Cauchy’s functional equation. The measurability of µ implies that also fB∗n is
measurable. Hence x 7→ fB∗n(x, 0) is linear. The definition of fB therefore implies that

µ∗n

[
I,−c

(
rx
1

)
, den

]
= rµ∗n

[
I,−c

(
x
1

)
, den

]
(33)

for r > 0. On the one hand, by the GL(n)-covariance and (33), we obtain

µ∗n

[
rB,−c

(
x
1

)
, den

]
= µ∗n

((
r Id′ 0

0 1

)[
B,−c

(
x
r
1

)
, den

])

= rnµ∗n

[
B,−c

(
x
r
1

)
, den

]

= rn−1µ∗n

[
B,−c

(
x
1

)
, den

]
.

On the other hand, the GL(n)-covariance and the independence with respect to c and d
prove

µ∗n

[
rB,−c

(
x
1

)
, den

]
= µ∗n

(
r

[
B,− c

r

(
x
1

)
,
d

r
en

])
= rn+2µ∗n

[
B,−c

(
x
1

)
, den

]
.

Therefore, using (31), µ∗n and by antisymmetry also µn∗ vanish on Rn. Using what we
have just shown, the same approach yields that

rnµ∗∗

[
B,−c

(
x
1

)
, den

]
= rn+2µ∗∗

[
B,−c

(
x
1

)
, den

]
.

Consequently, µ∗∗ vanishes on Rn.
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3.21 Lemma. Let n ≥ 3 and suppose that Theorems 3.14 and 3.15 hold in dimension
n− 1. Assume that µ : Pno → Rn×n is a measurable valuation which is GL(n)-covariant.
Then there exists a k ∈ R such that

µ(P ) = kM2(P )

for all P ∈ Pno .

Proof. As in the proof of Theorem 3.12, it suffices to show that µ vanishes if µ(P ) is
antisymmetric for all P ∈ Pno . Moreover, by Lemma 3.20, the assumed GL(n)-covariance
and Theorem 2.1, it is enough to show that µ vanishes on Qn.
For fixed J , the map B 7→ µ∗∗[B, J ] satisfies the conditions of Theorem 3.15 in dimen-

sion n − 1. In particular, it has symmetric images. But, by assumption, these images
are also antisymmetric. So the map B 7→ µ∗∗[B, J ] vanishes on Pn−1

o .
By the antisymmetry, the only thing left to show is that µ∗n vanishes. The expression

µ∗n[B, J ] is SL(n− 1)-covariant and n-homogeneous in B, and odd and 2-homogeneous
in J . Since it is also a measurable valuation in both arguments, we deduce from Theorem
3.2 and the assumption that Theorem 3.14 holds in dimension n− 1,

µ∗n[B, J ] = k
(
d2 − c2

)
m′(B).

For i ∈ {1, . . . , n − 2}, let Ii be a line segment in span{ei} containing the origin in its
interior. The GL(n)-covariance of µ applied to the map which interchanges the (n−1)-st
and n-th component of a vector yields

µn−1,n[I1, . . . , In−2,−cen−1, den−1, J ] = µn,n−1[I1, . . . , In−2,−cen−1, den−1, J ].

By the antisymmetry, the above quantities vanish. Therefore, k = 0. This completes
the proof.

After these preparations we can now prove the main theorems of this section by
induction on the dimension.

Proof of Theorems 3.14, 3.15, 3.16 and 3.17 . For n = 2, these theorems have been
proved in the previous section. Assume that all four theorems hold in dimension n− 1.
By Lemma 3.19, Theorem 3.16 holds in dimension n. Moreover, Lemma 3.21 shows that
Theorem 3.15 also holds in dimension n. Recall that P 7→ P ∗ transforms covariance into
contravariance and vice versa. Hence, for dimension n, Theorems 3.14 and 3.17 follow
directly from Theorems 3.16 and 3.15, respectively.
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